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Voice Conversion Based on Deep Neural Networks
for Time-Variant Linear Transformations

Gaku Kotani

Abstract—This paper describes a novel framework of voice con-
version to improve the conversion performance against the amount
of training data. In voice conversion, deep neural networks are
used as conversion models that map source to target features. In
this framework, it generally needs a larger amount of training data
and bigger models to build more accurate conversion models. This
condition, however, will reduce the usability of voice conversion.
In this paper, in order to improve the conversion performance
versus the amount of training data, a top-down knowledge is
introduced into models as prior. We expect that we can take advan-
tage of top-down knowledge we have instead of preparing a large
amount of data. In the proposed method, the conversion process
of features is restricted to time-variant linear transformation on
cepstral space. It explicitly utilizes an attribute of voice conversion
i.e. homo-domain mapping, which is not common in automatic
speech recognition or text-to-speech synthesis. In other words, in
VC, the input and output are on the same feature domain. In
addition, it also makes it possible to explicitly consider the physical
difference between speakers such as the difference of vocal tract
length. The assumption of the homo-domain mapping is related to
conversion methods based on spectral differentials, and then the
relation is discussed in the paper. Experiments demonstrate the
effectiveness of our proposal and the way that the constraint of
linear transformation works is investigated.

Index Terms—Voice conversion (VC), vocal tract length
normalization, spectral differentials, a small amount of data, neural
networks.

1. INTRODUCTION

OICE conversion (VC) is a technique to modify non-
V linguistic information of an input utterance while main-
taining its linguistic information unchanged [1]. The modifica-
tion technique can be applied to various applications such as
converting speaker identity of output speech of text-to-speech
(TTS) synthesis, speech enhancement, anti-spoofing, and so
on [2], [3], [4], [5].

In VC, conversion models are trained in multiple ways. It is
a basic approach to take phonetic correspondence of input and
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output and then have models learn mappings between pairs of
them, this is called a parallel VC [6], [7], [8]. As typical statisti-
cal conversion models, Gaussian mixture models (GMMs) [2],
[6], [9], non-negative matrix factorization (NMF) [8], restricted
Boltzmann machines (RBMs) [10], [11], and deep neural net-
works (DNNs) [7], [12], [13] are adopted. Non-parallel VC
techniques, which do not require the phonetic correspondence
previously, are also widely studied [14], [15], [16], [17]. In
particular, a recognition-synthesis-based approach, including
the use of phonetic posteriorgrams (PPGs) or the combination
of automatic speech recognition (ASR) and TTS, is one of the
most popular ways [17], [18], [19], [20], [21]. Many-to-one or
many-to-many VC are techniques which can take many speak-
ers, often arbitrary speakers, as source or target speakers [17],
[19], [22], [23]. Recognition-synthesis-based systems are often
adopted in both non-parallel and many-to-one VC, since they
generally disentangle contents and speaker’s identity attributes
by exploiting transcriptions as an identifier of contents. In Voice
conversion challenge (VCC) 2018 and 2020, such approaches
have shown good performance [24], [25].

To achieve a high quality conversion, itis areasonable strategy
to collect a large amount of training data, annotate them and train
a big conversion model. However, considering the cost of data
collection, and human and computational resources, it is also
worth investigating how to build a conversion model from a
limited amount of data.

Self-supervised or semi-supervised approaches are also stud-
ied to avoid annotating a huge amount of data [26], [27]. These
approaches exploit not only labeled data but also non-labeled
data. They can reduce the annotation cost, however the other
costs such as the costs of data collection, and human and com-
putational resources still remain to be addressed.

In this paper, we propose another method to build voice
conversion model from a limited amount of data. We introduce
a top-down knowledge into conversion models as prior, in order
to improve the conversion performance versus the amount of
training data. The introduction of the top-down knowledge could
be an alternative to increasing the amount of training data,
since the top-down knowledge can guide the conversion models
without training data. In general, DNNs transform input features
to output features through a series of nonlinear transformations.
In ASR and TTS, this mapping is considered reasonable because
the input and output feature domains are heterogeneous, i.e.
speech and text. In VC, as in ASR and TTS, DNN has achieved
remarkable results but the difference is that the domains are
homogeneous.
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Traditionally, the homo-domain mapping, an attribute of VC,
has been exploited in the form of local linearity in the space of
acoustic features (e.g. cepstra). For example, GMM-VC models
joint probabilities in cepstral space and has achieved a certain
quality of conversion [6], [9]. Another example is NMF-VC,
which utilizes the property of the homo-domain mapping as
a weighted sum of spectral templates [8]. It can be said that
DNN-VC based on the spectral differentials also utilizes this
property [28], [29]. In some previous studies, part of the acoustic
difference of speakers is approximated by linear transformation
in cepstral space, focusing on the physical differences of speak-
ers [30], [31].

Based on the findings, in this paper, the restriction on the
input-output conversion defined in the cepstral space are ex-
ploited as prior in order to improve the performance of DNN-VC,
without increasing the amount of training data.

Our model time-variantly outputs parameters of linear trans-
formation and then the output feature is obtained by the linear
transformation of the input feature. This is VC based on DNN
for time-variant linear transformations (DNN-TVLT). In other
words, this paper attempts to introduce knowledge-based prior
into conversion models, by predicting both the linear transforma-
tion distortions and multiplicative distortions, separately. This
approach was first proposed in [32]. This paper provides more
analytical consideration by using detailed derivation and adds
further experimental discussion. The contents are as followings,

1) extension of experiments with more speaker pairs, the

other language dataset, and a more amount of training
data,

2) introducing vocal tract length transformation explicitly

into conversion process,

3) considering dynamic features,

4) investigation on incorporation of our proposal with LSTM.

(1) The results of extended experiments have strengthen the
effectiveness of our proposal. In addition, we assume that the
introduction of the top-down knowledge could be an alternative
to increasing the amount of training data, since the top-down
knowledge can guide the conversion models without training
data. Based on the assumption, the performance would get close
to the other methods by increasing the amount of training data.
The trends in the experimental results have been somewhat con-
sistent with the expectation. (2) We introduce a new module into
DNN-TVLT, i.e. vocal tract length (VTL) transformation. In the
previous study, DNN-TVLT had only two modules which were
estimation of linear transformation matrix and that of bias vector,
and then the appearance of matrices caused by the difference in
VTL was observed. In this paper, the VTL transformation is
explicitly introduced into our model as a module by estimating
a warping parameter «, and the module is experimentally eval-
uated. The experimental results have shown the effectiveness of
the explicit introduction. (3) We investigate incorporation of our
model with dynamic features. In the previous study, DNN-TVLT
did not consider any kinds of features including time-series
information. In speech recognition, synthesis, and VC studies,
dynamic features are widely used to improve the performance of
systems [33], [34], [35]. They represent the difference between
the consecutive frames and capture the temporal dynamics of
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speech features. Although it is a traditional approach recently,
we adopt it as a step of incorporation of DNN-TVLT with
time-series modeling. The experimental results have shown
that our proposal, the linear modeling of conversion process,
have also worked well with time-series modeling. (4) We also
investigate incorporation with LSTM as a step of incorporation
of our proposal with time-series modeling. The experimental
results have not indicated any advantages of the incorporation,
but the two techniques, which are the linear modeling and
time-series modeling, are different in what is expected. The
incorporation of them in a sophisticated way would need to be
further investigated.

The remainder of this paper is organized as follows. Section II
describes the basic DNN-based VC approach. Section III de-
scribes related works to the homo-domain mapping on cepstral
space. Then, in Section IV, our proposed voice conversion based
on time-variant linear transformations is described. In Section V,
experimental evaluations are described. Finally, Section VI con-
cludes the paper.

II. DNN-BASED VC

In this section, the basic framework of DNN-VC is ex-
plained [7]. DNN-VC has been widely studied and it is common
to train a big model from a huge amount of training data [18],
[21]. There are various ways of exploiting data, such as preparing
alarger amount of training data from source and target speakers,
exploiting multi-speaker data, or exploiting external identifiers
which are used for training ASRs. For a basic one-to-one conver-
sion, VC based on LSTM, CNN, or attention-mechanism have
alsobeen studied [12], [13], [36]. In the following, the most basic
DNN-VC and its feature conversion process are described.

In the traditional DNN-based VC, DNNs are trained to rep-
resent mapping directly from source to target spectral features,
often characterized as cepstrum, with a stack of multiple non-
linear transformations [7]. Let R be a feature vector of the I-th
layer in a DNN, and then the nonlinear transformation function
between two layers is represented as a combination of linear
conversion from the previous layer and an activation function
g(+), which is shown as follows

RO =g (Wmha—l) + b(l)) , (1)

In the traditional DNN-based VC, the DNN is trained to repre-
sent a mapping function from source features « to target ones y
as follows

y=G(z), )

where G(-) is a stack of the layerwise nonlinear transformations
(1). Inthe conversion process, the target feature y is derived from
the given source feature x by the stack of multiple nonlinear
transformations G(-). The direct mapping through the multiple
nonlinear transformations can effectively and flexibly connect
features in heterogeneous domains, such as text and speech in
ASR or TTS. On the other hand, in the case of VC, the direct
mapping by a stack of non-linear functions can be redundant
since the task of VC is homo-domain mapping. In other words,
since it is a conversion from a vector to another in the same
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feature space, the conversion can be simply achieved by one
linear function. In addition, such a simple function will be more
interpretable for us. Modeling spectral differentials is an ex-
ample of the approach that takes advantage of the homo-domain
mapping [28], [29], [37]. In the spectral-differential-based meth-
ods, conversion models are trained to predict the difference of
input and output: y — .

III. RELATED WORKS TO MODEL HOMO-DOMAIN MAPPING
ON CEPSTRAL SPACE

A. GMM-Based VC

In this section, we explain VC based on Gaussian mixture
model (GMM) [2], [6]. In the traditional GMM-based VC,
joint probability of input and output features on cepstrum space
is modeled by GMM, and the conversion process from input
to target features is locally linear transformation, which can
be interpreted as a use of the condition of the homo-domain
mapping.

Let x; and y, be feature vectors of time index ¢ from ut-
terances of source and target speakers, respectively. Note that
these utterances are parallel data. In joint-GMM-based VC,
joint vector z; = [z ,y,]" is modeled by GMM which has
M components as follows

P (2 ]29) = Z“’m (=0 30). ®

where w,,,, u%) and 2%) denote the weight, the mean vector,
and the covariance matrix of the m-th Gaussian component,
respectively. The mean vector and the covariance matrix can be
separately represented by that of source and target features as
follows

(z) (zx) (zy)
(2) _ Hm E(z) _ DI Em 4
S 1 e PR

In the conversion phase, a mapping function from source to target
features F(-) is based on the conditional probability density
P(y, | ©+). When we use minimizing mean square error for the
criterion of the conversion, the mapping function can be written
as follows

B

Fla) =Y P(m|zA?) EY, )

1

3
Il

where

EY) = u) + 2008007 (@ - pl)) . ©
In (5) indicates that the first term P(m|a;, A(*)) plays a role of
allocating the source feature at time ¢ to a specific component
of GMM, and the second term Eﬁ,‘g)t plays a role of linear
transformation corresponding to the component. To be exact,
the conversion in (5) is carried out by the weighted sum of
each component, and then the conversion is not discrete but
continuous. From this point of view, the mapping function F(-)
can be represented as a time-variant linear transformation, which
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is written as follows
Y= F (x) = A(zy) T + b (1), @)
where
M
-y r (m Em Z>) (255@2531)*1) : ®)
m=1
M

P (m 20 A®) (1) — S 8G 2.

m=1
)

In (8) indicates that GMM-based time-variant linear transfor-
mation strongly depends on the properties of GMM, namely
that only the weighted sum of $(¥*)2(#*)~1 i permitted as
the flexibility of the transformation. In addition, the variance-
covariance matrix of joint-GMM E,(ﬁ) is often assumed to
be cross-diagonal. In this case, since parts of the variance-
covariance matrix, 25,3{'"”) and ng'"”), are diagonal matrices, the
flexibility is limited and rotational properties between input and
target features have to be compensated by increasing the number
of components.

In VC based on non-negative matrix factorization (NMF),
although the feature domain and statistical models itself are
different, the conversion process is similar to that of GMM-VC,
in that the input feature vector is assigned to templates for inputs
and the output feature vector is constructed by the weighted sum
of templates for outputs [8].

B. Difference of Speakers in the Cepstral Space

In this section, the difference of speakers in the cepstral space
is discussed. The difference in vocal tract length (VTL) is widely
known as a physical difference between speakers that has a large
impact on acoustic distortion [38]. It has been shown that the
VTL normalization can be described as a linear transformation
in the cepstral space [30]. The effect of a VTL difference on the
spectral shape is modeled by a frequency warping function in
the spectral space. Here, we adopt a first order all-pass transform
function to approximate frequency warping, which is formulated
as

-1

1 _ 2«

(z =€, 2 = &%), (10)

1—az!
where « is a warping parameter (|| < 1.0). w and & are fre-
quencies before and after transformation, respectively. In the
case of a > 0.0, the VTL gets shorter and, for example, this
corresponds to the male-to-female conversion. o < 0.0 realizes
the opposite effect. Pitz et al. modeled the above frequency
warping by a linear transformation in the cepstral space [30].
If power coefficients (cq and ¢y) are excluded, (10) can be
re-written as

(11)
12)

o>
I

Ac,

(61896364 -+)T,

o>
I
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Fig. 1. Visualization of some examples of identical VTL transformation

matrices constructed from a warping parameter a.

1—a? 200 — 20
—a+a® 1—4a®+3a*
A= : : : o D))
_ T
c=(crcacgey -o0), (14)

The element a;; of A is generally denoted as

1 i\ iDL i m
oot X, (o)
(15)
where my = max(0,j — i) and
i\ _)iCm (G=m)
m 0 (j <m),

m(m—1)(m—2)---1

Some examples of the matrices are shown in Fig. 1. It has
also been observed that the VTL transformation (VTLT) matrix
strongly has the property of a rotation matrix, and that the degree
of rotation varies depending on phonemes [31].

Since the VTLT alone converts a part of the speaker identi-
ties, we assume a general linear transformation to increase the
capability of conversion models. As a shift transformation in the
cepstral space, the acoustic properties of microphones are well
known. As for speaker identities, given that GMM models the
average values of spectrum for a certain period of time, we can
assume that part of the conversion of speaker identities is also
filtering, or a shift transformation in the cepstral space. Note
that the physical interpretation of the shift transformation is not
clear but the spectral-differential-based approaches achieve a
certain level of success [28], [29], [37]. Based on these findings,
this paper attempts to introduce knowledge-based prior into
conversion models, by predicting both the linear transformation
distortions and multiplicative distortions, separately.

IV. VC BASED ON DNN FOR TIME-VARIANT LINEAR
TRANSFORMATIONS

In this section, our proposal, VC based on DNN for time-
variant linear transformations (DNN-TVLT) is described. In
DNN-TVLT, the model time-variantly outputs parameters of
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linear transformation, to utilize the homo-domain condition
more effectively than the traditional direct mapping models.
The network architecture of DNN-TVLT-based VC is shown
in Fig. 2. The entire network is composed of four sub-networks
and their connections. For each input x;, they estimate their cor-
responding parameters, which are linear transformation matrix,
biases, warping parameter, and dynamic feature. Using them,
a source feature vector X; = [z, Az, ]" is mapped into its
target feature vector Yy = [¢j, ", Ay, ']7, shown as follows,

= (Ac+A) (20— 0) 40", a7

Ay, = Gay(Xy) (18)
. T
Y= [4,7.89,7] 19)
where
A = Ga(Xy), (20)
1—a? 20 — 20
—ap +af 1—4a? + 3}
A = : :
21
ap = Ga (Xt) (22)
T 71T
(607, B | = Gy (X), (23)

In the above equations, G4 (-), Gb(-), Ga(-), Gay(-) are sub-
networks for estimation of the linear transformation matrix,
biases, warping parameter, and dynamic feature, respectively.

In DNN-TVLT, the process of converting from input to target
features is constrained to linear transformation, which explicitly
models the homo-domain mapping (17). This constraint also
makes it easier to introduce further insights into the conversion
process as constraints. First, the vocal tract length transforma-
tion (VTLT) is introduced as a constraint to estimate linear
transformation matrix (21), (22). The biases corresponding to
shift transformation is introduced before and after the matrix
operation (17) because the VILT has mainly the property of
rotation matrix [31]. In addition, in order to narrow down the
output space of the biases, we introduce Softmax in the layer
one layer before the last layer of the sub-network estimating the
biases, shown as follows,

b, = W Softmax(WL~t hl=2), (24)

where W% and W~ are weight matrices of the Lth and (L —
1):th layers separately, and htL*2 is an activation of the (L —
2):th layer at time index ¢. This means that the finally outputted
bias is a weighted sum of templates, in which W* plays a role
of the trainable templates, and ™' = Softmax(W ! hF—2)
plays a role of the weights depending on the input.
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In our method, the feature conversion process must be a
linear transformation, but in a time-variant way. During the
training, an optimizer evaluates the predicted parameters: A,
v, and b™/*8Y_only in terms of a criterion with respect to
the output: y,. Therefore, there are many possibilities about
combinations of the estimated parameters to obtain the output
feature g, through linear transformation, including unwanted
ones such as a combination of zero matrix and general biases.
The introduction of explicit VTLT into matrix estimation and
Softmax into bias estimation will avoid such unwanted cases. In
other words, they will enhance the advantages of our proposal,
i.e. utilization of the homo-domain condition of VC.

For the generation of the static features, the Maximum Like-
lihood Parameter Generation (MLPG) algorithm was used [35].
The adopted training criterion is the same as it often used
in conventional VC methods, which is minimization of mean
square error (MSE) between the generated features by MLPG
and the target features.

There are some studies related to DNN-TVLT [39], [40].
In [39], VTL transformation is cast to a layer in a DNN for
TTS, not VC. Their experimental results show that the DNN is
capable of predicting the phone-dependent warping parameter
o on artificial data, and that VTLT-based adaptation improve
the quality of an acoustic model on real data. In [40], their
model time-variantly estimates parameters of Gaussian, instead
of directly estimating ones of linear transformations. While these
studies related to our proposed method, this paper differs in that
we focus on the introduction of constraints to the conversion
process and providing more analytical consideration about time-
variant linear transformation using DNN.

V. EXPERIMENTS

A. Experimental Setups

In this section, the linear modeling of feature conversion
process is experimentally evaluated in a parallel training scheme.

.

Framework of the proposed DNN for time-variant linear transformations.

To evaluate our conversion model, subjective evaluations were
carried out.

The ATR Japanese speech dataset B-set were used as four
source and target pairs, which were male-to-male, female-to-
female, male-to-female, and female-to-male pairs (MMY and
FKS as source speakers and MHT and FKS as target speak-
ers) [41]. Speech signals were sampled at 20 kHz and down-
sampled to 16 kHz. From the dataset, subset A, B, I and J of
phoneme-balanced sentences were used, which had about 50
sentences for each subset. The first two subsets, the third and
the forth subsets were used for training, validation and testing,
respectively. For the training set, we basically used only 50
utterances (subset A) except for some experiments in which 100
utterances were used. The amount of training data, 50 utterances,
is a resource-limited condition compared with other studies, for
example, about 600 utterances in [12] or about 800 utterances
in [13]. In the case of Voice Conversion Challenge (VCC), the
amount of the provided training data is comparable to the one
we used in this paper, but almost all submitted systems have
exploited a huge amount of additional training data. Hence, we
consider the training data of 50 utterances is a condition of a
small amount of training data.

Acoustic feature vectors were extracted with a 5-ms shift
and the feature vector consisted of the O-th through 24-th mel-
cepstrums, which were derived from WORLD [42] (D4C edi-
tion [43]) analysis. In the experiments, we compared three meth-
ods, our proposed method (DNN-TVLT), a simple feed-forward
baseline (FFNN), and spectral-differential-based method (DNN-
DIFF). The numbers of layers and units of the DNN-TVLT,
FFNN and DNN-DIFF are shown in Table I. These hyper-
parameters were determined in validation loss by preliminary
experiments. Input and output features of the models were
static and dynamic features of source and target utterances,
respectively. For the the generation of the sequence of target
features, MLPG algorithm was used for all methods [35], [44].
In the process of MLPG, for the variances of target features,
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TABLE I
EXPERIMENTAL CONDITIONS OF EVALUATED METHODS. IN DNN-TVLT, THE FOUR NUMBER OF PARAMETERS OF LAYERS AND UNITS INDICATE THE NUMBER OF
PARAMETERS OF SUB-NETWORKS (ESTIMATING MATRIX, BIAS, WARPING PARAMETER, AND DYNAMIC FEATURE), RESPECTIVELY

Methods Nb. layers (matrix,bias,alpha,delta) ~ Nb. units (matrix,bias,alpha,delta)
DNN-TVLT (for 50 utters.) 32,43 2048,256,512,1024
DNN-TVLT (for 100 utters.) 54,44 2048,256,512,1024
Nb. layers Nb. units
FENN (for 50 utters.) 4 2048
FFNN (for 100 utters.) 4 2048
DNN-DIFF (for 50 utters.) 4 2048
pre-computed (global) ones from all training data were used. B DNN-TVLT B FFNN
The adopted training criterion of the methods were mean square VoM
error (MSE) between target features and its predicted version
generated by MLPG, and also global variance was considered. F2F
The loss function is shown as follows, F2M
L = MSE(y, fwipc) + AMSE(Var(y), Var(yipe)).  (25) M
o ] ] ] 0 0.25 05 0.75 1
where Var(+) indicates calculation of variance along with the
. . . . (a) Naturalness
time axis and A is a scholar value. MSE is chosen as a loss
B DNN-TVLT = FFNN

function on the variances.’

We trained FFNN with A € {0.0,10.0, 20.0, 40.0, 80.0} and
decided X = 20 by listening to the converted speech. As an
optimization method of the models, AMSGrad with a learning
rate of 0.0002 was used [46]. The batch size was 1 utterance,
meaning that the size in the number of frames can be different
at each step. The average number of frames per one batch was
about 700. Training models was performed until the error on the
validation data no longer decreased.

The converted speech were generated based on WORLD
synthesis process from predicted features. The conversion of the
spectral features was performed as described above and the Fj
transformation was performed by linear transformation defined
as

S(it) o(tey) (

T glsre)

(b)(:src) _ M(src)) 4 e (26)
where ¢ and ${"¢ are the source and converted logarithmic
Fy at time index t, respectively. ;) and () are means of
logarithmic Fj of source and target speakers obtained from
training data, respectively. o) and o€ are standard devi-
ations of logarithmic Fy of source and target speakers obtained
from training data, respectively. The aperiodic features were not
converted, it meant the ones of the source utterances were used
as were.

The subjective evaluations were conducted as follows. Two
kinds of preference tests were conducted to evaluate the nat-
uralness of the converted speech and the similarity between
the converted and target speech, respectively. The number of
subjects was 25 for each test. Note that they were disjoint. For
the naturalness evaluation, AB test was conducted in which 20
pairs of two converted speech were suggested and each subject
chose one which sounded more natural speech. For the speaker

'A Gaussian distribution is assumed as the likelihood of GV, as well as in
conventional methods [9], [45]. In this case, the choice of MSE loss on GV
is reasonable since they are equal in terms of fitting the mean vector of the
Gaussian. Of course, since the GV is a positive value, it may not be the correct
assumption, but the assumption would be fine when the training data is adequate.

M2M

F2F

F2M

M2F
0 0.25 0.5

0.75 1

(b) Similarity to the target

Fig. 3. Preference scores between the proposed method (DNN- TVLT) and
baseline (FFNN) on naturalness and similarity to the target of converted speech,
in the case of training from 50 utterances (ATR dataset). 95% confidence
intervals are shown.

identity evaluation, in a similar manner to the naturalness one,
ABX test was conducted. In the test, 20 pairs of two converted
speech and reference speech were suggested and each subject
chose converted one which sounded more similar to the reference
one in terms of speaker identity. Note that all of these evaluations
were conducted via a crowdsourcing system and subjects with
extremely short listening time were manually excluded.

In addition to the experiments using the ATR dataset, we also
conducted ones using the CMU-ARCTIC dataset [47]. From
the dataset, BDL (male) and CLB (female) were chosen as
source speakers and RMS (male) and SLT (female) were chosen
as target speakers. As well as the experiments using the ATR
dataset, we used 50 utterances, 50 utterances, and 50 utterances
for training, validation, and test set. The rest of the experimental
conditions were the same as those in the experiment using the
ATR dataset.

B. Effectiveness of the Proposed Method

The experimental results of the comparison between the pro-
posed DNN-TVLT and FFNN using the ATR dataset, are shown
in Fig. 3. The comparison was in the case of using 50 training
utterances. In Fig. 3, the DNN-TVLT outperformed the FENN in
some cases and, in the other cases, they were almost comparable.
On the other hand, in the case of using 100 training utterances,
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TABLE II
RESULTS OF OBJECTIVE EVALUATIONS BY MEL-CEPSTRAL DISTORTION [DB]. THE MODELS WERE TRAINED USING THE ATR DATASET

FFNN DNN-DIFF DNN-TVLT LSTM LSTM-TVLT
male2male S0utters 5.40 5.57 5.45 5.78 5.65
100utters 5.31 - 5.39 - -
female2female  50utters 5.44 5.28 5.28 5.44 5.34
100utters 5.20 - 5.18 - -
male2female S50utters 6.39 6.46 6.40 6.75 6.55
100utters 6.33 - 6.34 - -
female2male S50utters 5.86 5.90 5.90 5.95 5.95
100utters 5.90 - 5.93 - -
I DNN-TVLT [ FFNN B DNN-TVLT W FFNN
M2M M2M
F2F F2F
Fom FaMm
M2F M2F
0 025 05 0.75 1 0.00 0.25 050 0.75 1.00
(a) Naturalness
(@) Naturalness B DNN-TVLT B FFNN
B DNN-TVLT B FFNN

M2M

F2F

F2Mm

M2F

0 0.25

0.5 0.75 1

(b) Similarity to the target

Fig. 4. Preference scores between the proposed method (DNN-TVLT) and
baseline (FFNN) on naturalness and similarity to the target of converted speech,
in the case of training from 100 utterances (ATR dataset). 95% confidence
intervals are shown.

their performance got closer to be comparable (Fig. 4). When
the amount of training data is increased, the advantage of the
proposed method becomes smaller because models can learn the
knowledge from data. Table II shows results of objective eval-
uations by mel-cepstral distortion (MCD). The MCD indicates
a distance between converted and target features, briefly. The
objective results of the FFNN and DNN-TVLT were not much
different although the subjective ones showed the DNN-TVLT
outperformed the FFNN in some speaker pairs. The reason
would be that MCD does not always indicate the quality of the
finally synthesized speech and their loss function does not equal
MCD itself since it includes loss on GV.

Figs. 5 and 6 show the results of the comparison between the
DNN-TVLT and FENN using the CMU-ARCTIC dataset. The
results were similar to that using the ATR dataset, i.e. the DNN-
TVLT outperformed the FFNN in some cases and, in the other
cases, they were almost comparable. Consequently, the results
of the comparison slightly depend on speaker pairs, but suggest
that the proposed model utilize the prior top-down knowledge
to improve performance.

C. Ablation Study

We evaluated the effects of constraints on linear transforma-
tion matrix and biases by comparing DNN-TVLT to one without

F2F
F2M
M2F
0 0.25 0.5 0.75 1
(b) Similarity to the target
Fig. 5. Preference scores between the proposed method (DNN-TVLT) and

baseline (FFNN) on naturalness and similarity to the target of converted speech,
in the case of training from 50 utterances (CMU-ARCTIC dataset). 95% confi-
dence intervals are shown.

them. The results are shown in Fig. 7. The models were trained
from scratch in which each estimation module was removed
from the DNN-TVLT.

Fig. 7(a) shows the result of the preference test for naturalness
between DNN-TVLT and DNN-TVLT without VTLT, which is
trained without the estimation of «. In the results, DNN-TVLT
outperformed DNN-TVLT w/o VTLT. Fig. 8 shows visualization
of several examples of the linear transformation matrices, each of
which corresponds to a time frame of vowel ‘a’ and was extracted
from a test sentence using forced alignment by Julius [48]. In
the case of DNN-TVLT without VTLT (the bottom of Fig. 8),
the appearance of matrices caused by the difference in VTL
is observed but not clearly. On the other hand, in the case of
DNN-TVLT with VTLT (the top of Fig. 8), the appearance is em-
phasized, in particular the elements corresponding to the higher
dimensions of cepstrum vectors are emphasized. Compensating
the conversion for the high-dimensional elements of cepstrum
vectors has contributed to the improvement of the conversion
performance. The results indicate that VTLT as a constraint
effectively works to improve the performance of the conversion.

Fig. 9 shows examples of residual and VTLT matrices: A; and
Aga). It means that the summations of them are the same matrix
as the top ones in Fig. 8. In Fig. 9, the predicted VTLT matrices
are close to ones in the case of intra-gender and cross-gender,
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@ DNN-TVLT

@ FFNN

0 0.25 0.5

(a) Naturalness
W DNN-TVLT

0.75 1

@ FFNN

0 0.25 0.5
(b) Similarity to the target

0.75 1

Fig. 6. Preference scores between the proposed method (DNN-TVLT) and
baseline (FFNN) on naturalness and similarity to the target of converted speech,
in the case of training from 100 utterances (CMU-ARCTIC). 95% confidence
intervals are shown.

respectively (Fig. 1). However, the residual matrices counteract
it, in the elements corresponding to the higher dimensions of
cepstrum vectors. Although the introduction of VTLT works
well as shown in Fig. 7(a) and Fig. 8, there would be room for
improvement.

Unfortunately, we do not know of any means to evaluate these
matrices in a quantitative way. We have visualized the matrices
since we think that only VTLT in our method is interpretable
(although not quantitatively). Future research will be needed to
make the predicted parameters more interpretable.

In Fig. 7(b), the results of the preference test for naturalness
between DNN-TVLT and DNN-TVLT without Softmax for the
estimation of biases are shown. The results show that in a speaker
pair, the DNN-TVLT outperformed the one without Softmax but,
in the other pairs, they were comparable or the DNN-TVLT was
slightly outperformed. In addtion, we conducted the comparison
between DNN-TVLT w/o VTLT and DNN-TVLT w/o both
VTLT and Softmax (In Fig. 7(c)), this was similar to the previous
condition but the constraint on the estimation of matrices was
excluded. Fig. 7(c) shows that the constraint on the estimation of
biases works better. It means that the constraint on the estimation
of biases using Softmax can be competitive with the one of
matrices.

D. Comparison to Differential-Based Approach

Our proposed method was compared to one of the other
methods, which is based on spectral differentials. In some pre-
vious studies, it has been reported that predicting differentials
d; =y, — x; by DNN is better than predicting target vector it-
self 28], [29], [37]. Differential-based methods are much related
to our approach, because if we fixed linear transformation matrix
A, to identity matrix I, our model is close to such approaches
as follows,

go =1 (20— b{"™) + b{ @7
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[ DNN-TVLT

DNN-TVLT w/o VTLT

M2M

F2F

F2M

M2F

0 0.25 0.5 0.75 1

(a) Comparison to the proposed model w/o VTLT

B DNN-TVLT DNN-TVLT w/o Softmax

M2M
F2F |
F2M |
M2F |

I
0 0.25 0.5 0.75 1

(b) Comparison to the proposed model w/o Softmax

DNN-TVLT w/o VTLT

I DNN-TVLT w/o VTLT & Softmax

M2M

F2F |
F2M |
M2F |

1
0 0.25 0.5

0.75 1

(c) Comparison b/w the proposed model w/o VTLT and w/o VILT &
Softmax

Fig. 7. Preference scores on naturalness of converted speech, in which the
proposed method is compared to the one without each module or constraint.
95% confidence intervals are shown.

gl Sl S Ny
DNN-TVLT S S o T - s, :

DNN-TVLT C :
w/o VTLT . I I I : I
M2M F2F M2F F2M
Intra-gender Cross-gender
Fig. 8.  Visualization of several examples of predicted matrices., They cor-

respond to a time frame of vowel ‘a’. The top matrices are predicted by
DNN-TVLT i.e. including the estimation of warping parameters. The bottom
ones are predicted by DNN-TVLT without VTLT i.e. predicting a general matrix
only. Note that DNN-TVLT w/o VTLT is trained from scratch, excluding the
estimation of warping parameters.

=X + bt, (28)

therefore,

dt = ’!jt — Lt = bt = G(ZBt) (29)

In addition, in the case of intra-gender conversion (o ~ 0.0),
linear transformation matrix is close to identity matrix (they are
equal if a = 0.0). Hence, for the further investigation of our
proposal, experimental comparison between the DNN-TVLT
and differential-based approach (DNN-DIFF) was conducted.
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Residuals : " ‘ 5

VTLT matrices

male-to-male male-to-female

Fig. 9. Visualization of examples of residuals and VTLT matrices: A and

AEO‘). They are predicted by DNN-TVLT and the sum of them: A; + Aga) ,is
the same matrix as shown in Fig. 8. Note that they correspond to a time frame
of vowel ‘a’.

B DNN-TVLT DNN-DIFF
M2M
FoF
F2M
M2F
0 0.25 0.5 0.75 1
(a) Naturalness
B DNN-TVLT DNN-DIFF
M2M
FoF
F2M
M2F
0 0.25 0.5 0.75 1
(b) Similarity to the target
Fig. 10.  Preference scores between the proposed method (DNN-TVLT) and

spectral-differential-based method (DNN-DIFF) on naturalness and similarity
to the target of converted speech. 95% confidence intervals are shown.

The experimental results are shown in Fig. 10. The results
show that while in the case of intra-gender conversion they are
comparable, the DNN-TVLT outperforms the DNN-DIFF in the
case of cross-gender conversion. Considering the relationship
between the prediction of spectral differentials and the inter-
pretation of physical differences between speakers, the effect
of the proposed method is apparent, which explicitly models
physical differences not only between intra-gender speakers but
also between cross-gender speakers.

E. Comparison With LSTM-Based Models

In this section, in order to investigate incorporation of our
proposal with a more sophisticated architecture, LSTM-based
models were implemented and experimental evaluations were
carried out. The experimental settings were the same as that

2989

using the ATR dataset, except for the model architectures. The
architectures of LSTM-based models, which were a LSTM-
based baseline (LSTM) and a LSTM-based one with the linear
modeling (LSTM-TVLT), were implemented as followings. In
the LSTM, the two latter dense layers in the FFNN (Table I)
were replaced by uni-directional LSTM layers. In other words,
the first two layers were dense layers, and this implementation
was inspired by the conventional LSTM-based model [49]. In
the LSTM-TVLT, the layers of each sub-network were replaced
two uni-directional LSTM layers. In addition, two dense layers
before the inputs of sub-networks were added, i.e. shared layers,
as well in the LSTM. The numbers of units of the two shared
layers were 2048, and the other numbers of units in the LSTM
and LSTM-TVLT were the same as shown in Table I.

Table III shows subjective absolute scores. Naturalness of
the converted speech was evaluated by mean opinion scores
(MOS) ranging from 1 (“completely unnatural”) to 5 (“com-
pletely natural”). Similarity between the converted and target
speech was evaluated by the same/different paradigm [50]. In the
similarity test, subjects were asked to listen to two audio pairs
and to judge if they were the same speaker or not, ranging from
1 (“different, absolutely sure”) to 4 (“same, absolutely sure”).
In the experimental results, the DNN-TVLT and LSTM-TVLT
was almost comparable to LSTM. In the case of female-to-
female conversion, the DNN-TVLT outperformed the LSTM
and the LSTM-TVLT. The reason would be the less amount of
training data, since LSTM is powerful but generally requires
more amount of data to be trained adequately. For examples,
our models were trained from 50 utterances but conventional
LSTM-based models have been trained or pre-trained from
about 600 utterances [12], [49]. Although the LSTM-TVLT was
expected to be good in this situation, it was almost comparable
to the LSTM. The results did not indicate any advantages of
the incorporation. Table IV shows model sizes of them. The
models using LSTM, which are “LSTM” and “LSTM-TVLT,”
have much more parameters than the others. Considering the
subjective results, DNN-TVLT has an advantage of model size
over LSTM. However, the two techniques are different in what
is expected. Our proposal, the linear modeling of feature con-
version process, is expected to be complements of insufficient
amount of data and LSTM architecture is expected to capture
information across the time direction. The incorporation of them
in a sophisticated way would need to be further investigated.

In addition, there is a gap between the MOS scores of listed
systems in Table IIT and those of recent systems such as devel-
oped in VCC2020 [25]. The main difference would be vocoding
methods, i.e. they have used neural vocoders [51], [52], [53],
[54], [55], [56], [57]. When such neural vocoders which have
already trained from a large amount of external data, are used
in our system, the quality of the finally outputted speech will be
improved. However, this paper is placed in the different context,
where VC models are built from a limited amount of training
data, and it focuses on feature conversion. Hence using neural
vocoders is beyond the scope of this paper although it will im-
prove the performance of the system. In order to cope with both
high quality and low data requirement, waveform generation
with limited amount of training data should be investigated.
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MEAN OPINION SCORES (1-TO-5) ON NATURALNESS AND SIMILARITY SCORE (1-TO-4) BASED ON THE SAME/DIFFERENT PARADIGM

TABLE III
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Nat. FFNN DNN-TVLT LSTM LSTM-TVLT
male2male (N) 4.82+0.080 2.824+0.17 3.18£0.16 3.0£0.17 2.94 +0.16
male2male (S) 3.82 + 3.82 2.19+0.13 2144+0.14 2.15+0.15 2.1340.15
female2female (N) 4.84 £0.085 2.68£0.15 3.03+0.15 3.06£0.16 2.83+0.16
female2female (S) 3.98£0.021 2.00+£0.14 2.22+£0.14 2.16+0.13 2.16+0.14
male2female (N) 4.87+0.067 2.62£0.14 2.77+£0.16 2.30+0.16 2.50+0.15
male2female (S) 3.97+0.031 1.824+0.13 1.78+£0.13 1.86+0.14 1.65=£0.12
female2male (N) 4.84+0.085 2.68+0.15 3.03£0.15 3.06+0.16 2.83£0.16
female2male (S) 3.98 £0.021 2.0+0.14 2224014 216£0.13 2.16+0.14

“NAT.” indicates natural speech. “(N)” and “(S)” mean naturalness and similarity scores, respectively.

The models were trained from 50 utterances of th atr dataset.

TABLE IV
MOoDEL S1ZES OF FENN, DNN-DIFF, DNN-TVLT, LSTM, AND LSTM-TVLT

Methods Nb. trainable parameters
FENN (for 50 utters.) 8.59 M
FFNN (for 100 utters.) 8.59 M
DNN-DIFF (for 50 utters.) 8.59 M
DNN-TVLT (for 50 utters.) 717 M
DNN-TVLT (for 100 utters.) 8.12 M
LSTM (for 50 utters.) 71.54 M
LSTM-TVLT (for 50 utters.) 103.9 M

VI. CONCLUSION

We have proposed a new voice conversion framework based
on DNN for time-variant linear transformations, which exploits
an attribute of VC i.e. homo-domain mapping. By using our
knowledge of speech as a prior, the conversion performance
versus the amount of training data is improved. In this paper,
a constraint of time-variant linear transformation has been in-
troduced to the feature conversion process. The local linear
transformation in cepstral space as the conversion process is
a common assumption in GMM or NMF-VC. In addition, the
proposed method can explicitly consider the physical difference
of speakers, namely VTL transformation, into the model. The
experimental evaluation results have indicated that our proposal
works well and improves the conversion performance. Observa-
tions of the predicted parameters of linear transformation have
also shown that an implicit VTL transformation-like function
was learned, and that the explicit constraint boosted the per-
formance. The relationship between the proposed method and
the spectral differentials-based method against the background
of physical difference of speakers has been also investigated,
and it has been experimentally confirmed that the proposed
method outperforms the differential-based one in the case of
cross-gender conversion.

In this paper, the incorporation with LSTM have also been
investigated but a straight-forward implementation have not
worked well, in terms of the quality of outputted speech.
Further investigation is required, in particular to evaluate the
trajectory of predicted parameters of linear transformation. It
is also important to apply our proposal to non-parallel VC or
many-to-many VC. In this paper, our proposal is experimentally
evaluated in a parallel training scheme, but the idea of the
introduction of top-down knowledge itself would be useful in a
non-parallel training scheme. The non-parallel training reduces
the cost of data collection since there is no need to align the

contents of utterances in the input and output data. It also avoids
time-alignment and thus improves the conversion performance.
However, the non-parallel training is a more difficult task since
it requires implicit phonetic correspondence of input and out-
put during training. Therefore, it requires a huge amount of
training data or external modules to achieve good performance.
Our linear modeling of conversion process would be useful to
mitigate the difficulty of the non-parallel training. There are two
reasons. First, the linear modeling of conversion process could
be an alternative to increasing the amount of training data. Next,
in the non-parallel training, where a target feature phonetically
corresponding to a given source feature is lacked, our proposal
would be useful since it can guide the conversion models in
terms of their conversion process. We will apply our proposal
to such more difficult tasks. Although it is not in the context
of feature conversion, high quality waveform generation with
limited amount of training data is also important to boost the
quality of voice conversion.
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