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USEV: Universal Speaker Extraction With Visual Cue
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Abstract— A speaker extraction algorithm seeks to extract the
target speaker’s speech from a multi-talker speech mixture. The
prior studies focus mostly on speaker extraction from a highly
overlapped multi-talker speech mixture. However, the target-
interference speaker overlapping ratios could vary over a wide
range from 0% to 100% in natural speech communication, fur-
thermore, the target speaker could be absent in the speech mix-
ture, the speech mixtures in such universal multi-talker scenarios
are described as general speech mixtures. The speaker extraction
algorithm requires an auxiliary reference, such as a video recording
or a pre-recorded speech, to form top-down auditory attention on
the target speaker. We advocate that a visual cue, i.e., lip movement,
is more informative than an audio cue, i.e., pre-recorded speech,
to serve as the auxiliary reference for speaker extraction in disen-
tangling the target speaker from a general speech mixture. In this
paper, we propose a universal speaker extraction network with a
visual cue, that works for all multi-talker scenarios. In addition, we
propose a scenario-aware differentiated loss function for network
training, to balance the network performance over different target-
interference speaker pairing scenarios. The experimental results
show that our proposed method outperforms various competitive
baselines for general speech mixtures in terms of signal fidelity.

Index Terms—General speech mixture, multi-modal, scenario-
aware differentiated loss, sparsely overlapped speech, target
speaker extraction.
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I. INTRODUCTION

A T A cocktail party, human has the inherent ability to se-
lectively listen to a speaker in the presence of interference

speakers and background noises, this is also known as selective
auditory attention [1], [2], [3], [4], [5]. Decades of efforts have
been spent to emulate such attention with engineering solutions,
which is also referred to as the cocktail party problem [6]. It
is non-trivial but highly demanded in real-world applications
such as hearing aids [7], active speaker detection and verifica-
tion [8], [9], speaker localization [10], and automatic speech
recognition [11].

Speech separation represents one way to address the cocktail
party problem, which seeks to separate a multi-talker speech
mixture into individual streams, each for one speaker. The tradi-
tional approaches, e.g., non-negative matrix factorization [12],
[13], factorial hidden Markov models and Gaussian mixture
models [14], and computational auditory scene analysis [15],
[16], [17], explore the idea of spectro-temporal masking based
on harmonic and pitch analysis to filter a speaker out from
a speech mixture. The prior studies have laid the foundation
for recent progress. With the advent of deep learning, speech
separation has seen major progress [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], even with different speaker
overlapping ratios [29], [30], [31], [32], [33], [34], [35], [36],
[37]. In a neural architecture, multiple speaker streams compete
and segregate either with a masking or regression mechanism.
As the number of speakers in the speech mixture is typically
required in advance, speech separation has a limited scope of
applications.

Speaker extraction is different from speech separation. It only
extracts the speech of a target speaker from a multi-talker speech
mixture, thus invariant to the number of speakers. Speaker
extraction emulates a human’s selective auditory attention at
a cocktail party, which typically requires an auxiliary reference,
that provides the information of the target speaker [2], [38],
[39], [40], [41], [42], [43]. Therefore, the quality of the auxiliary
reference matters. A pre-recorded speech from the target speaker
has been well studied to serve as such an auxiliary reference [2],
[3], [4], [44], [45], [46], [47], [48], [49], the speaker extraction
algorithm is expected to extract only the speech that has a similar
voice signature to the pre-recorded speech.

The state-of-the-art speaker extraction algorithms perform re-
markably well on highly overlapped speech, in which the speak-
ers overlap almost 100%, e.g., WSJ0-2mix-extr dataset [2], [50].
However, in natural speech communication, a target speaker may
speak and pause intermittently, interspersed with the speech of
interference speakers, resulting in sparsely overlapped speech,
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Fig. 1. An illustration of the four target-interference speaker pairing scenarios,
namely QQ,SQ,SS,QS, that can occur within a general speech mixture clip.

i.e., the speaker overlapping ratio is only around 20% in meet-
ings [51], and several datasets have been recorded to simulate
such natural conversational speech with various speaker over-
lapping ratios, e.g., CHiME [52] and LibriCSS [53] datasets.
Speaker extraction algorithms for such sparsely overlapped
speech have less been studied.

In the task of speaker extraction, the target speaker can be
absent or present in a speech mixture [54], [55]. Target absent
(TA) refers to the scenario where the target speaker is quiet
throughout the speech mixture clip. Target present (TP) refers
to the scenario where the target speaker is present in the speech
mixture clip, and the target-interference speaker overlapping
ratio could range from 0% to 100%. Speech mixtures at a
varying speaker overlapping ratio, with either absent or present
target speaker, are referred to as general speech mixtures in this
paper.

We argue that the TA and TP categorization is too broad to be
technically meaningful as far as speaker extraction is concerned,
and advocate four possible target-interference speaker pairing
scenarios, that could occur in a general speech mixture, namely
QQ,SQ, SS,QS, in Fig. 1. QQ denotes the scenario of quiet
target speaker with quiet interference speakers; SQ denotes
that of speaking target speaker with quiet interference speak-
ers; SS denotes that of speaking target speaker with speaking
interference speakers; QS denotes that of quiet target speaker
with speaking interference speakers. A general speech mixture
clip in practice could be a random combination of any of the
four scenarios, where SS represents the scenario of highly
overlapped speech in many prior studies [3], [4], [44], [50],
while QQ,SQ,QS, and the scenario transition in between are
not well studied yet. In Fig. 2, we illustrate some examples of
the TA and TP speech clips. It is worth noting that the TA speech
clips can be in either QQ or QS scenarios, or both. But QQ
and QS scenarios can also possibly take place in the TP speech
clips.

A speaker extraction algorithm trained on highly overlapped
speech may falsely generate undesired output when the target
speaker is quiet [54], which is called the ‘false-extraction’ prob-
lem. By simply fine-tuning a system on speech mixture at a vari-
ety of overlapping ratios, one may address the ‘false-extraction’
problem to some extent. However, speech mixtures of different
overlapping ratios have different training expectations and diffi-
culties for each target-interference speaker pairing scenario, thus

Fig. 2. Illustration of some speech mixture clips. (a) is an TA example. (b) and
(c) are two TP examples.

a differentiated training strategy is needed. For example, for a
highly overlapped speech mixture with a talkative target speaker,
the algorithm just needs to focus on speech disentanglement
between speakers, otherwise, the algorithm needs to do well in
verifying whether the target speaker is active as well.

Humans perceive the world through various simultaneous sen-
sory systems [56]. We attend to a speaker not only by reference to
a registered voice signature but also through other means such as
observing the lip movement [57] or understanding the contextual
relevance [58]. Neuroscience studies suggest that hearing is
improved by observing the lip movement in a conversation [59],
[60], leveraging on the temporal correlation between visemes
and speech [61]. A viseme is a basic unit of visual speech, which
corresponds to a set of phonemes for acoustic speech [62], [63].

Although visemes and phonemes do not have a one-to-one
correspondence, visemes do provide a fine-grained cue about
underlying phonetic units being spoken [64]. Therefore, visemes
have been widely adopted as the auxiliary reference for speaker
extraction, which performs exceptionally well to disentangle the
target speaker from high overlapped speech [38], [65], [66], [67].
Visemes also provide a high-level cue that discriminates between
speech and non-speech signals [64], thus possibly alleviating
the ‘false-extraction’ problem. We advocate that visemes are
more informative than a pre-recorded speech to discriminate
the speaking status of the target speaker at frame-level for
a general speech mixture, thus serving as a robust auxiliary
reference for speaker extraction algorithms. Next, we summarize
our contributions of this work.

1) We address a unique research problem, i.e., speaker extrac-
tion from a general speech mixture with visual auxiliary
reference, to deal with all multi-talker scenarios with one
universal solution. This study brings audio-visual speaker
extraction a step closer to solving the cocktail party prob-
lem in real-world applications.
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2) We propose to categorize a general speech mixture into
four different target-interference speaker pairing scenar-
ios, and devise a scenario-aware differentiated loss func-
tion, to moderate the training of the four scenarios. We
confirm the effectiveness through experiments on various
speaker extraction models.

3) We evaluate the state-of-the-art speaker extraction algo-
rithms on general speech mixtures and confirm the effec-
tiveness of visual reference over speech reference. We also
study the use of the dual-path recurrent neural network
architecture in the speaker extractor, instead of the dilated
temporal convolutional neural network, to capture global
temporal dependencies in speech.

The rest of the paper is organized as follows. In Section II, we
discuss related work. In Section III, we formulate the proposed
method. In Section IV, we present the experimental setup.
In Section V, we report the experimental results. Finally, we
conclude the study in Section VI.

II. RELATED WORK

The speaker extraction algorithm usually requires an auxiliary
reference to form the top-down attention on the target speaker.
Either an auditory or a visual cue may serve as a such auxiliary
reference. Next, we discuss the prior studies for three related
tasks to set the stage for our study.

A. Highly Overlapped Speech Mixture With Audio Cue

Each speaker has a unique voice signature, which can be
characterized by a speaker embedding, such as i-vector [68],
x-vector [69], and d-vector [70]. Given a speech sample, the
speaker embedding can be derived by a speaker encoder that is
trained with a speaker recognition task [71].

VoiceFilter [4] employs the d-vector encoded from a pre-
recorded speech, that serves as an audio cue, to form the top-
down attention for speaker extraction. The study explores the
discriminative power of the d-vector to find the speech track in
the multi-talker speech that has a similar voice signature to the
d-vector, and extracts that speech track. The idea of speaker
embedding is extended to the context of speaker extraction,
where the speaker encoder is jointly trained with the speaker
extractor network in a multi-task learning framework [2], [44],
[72]. The speaker extractor network is trained by a signal recon-
struction loss while the speaker encoder is trained with a speaker
recognition loss. In this way, the resulting speaker embedding
is not only discriminative between speakers, but also optimized
for speaker extraction.

These prior studies assumed that speakers highly overlap in
the multi-talker speech, and the target speaker is always present.
The case of highly overlapped speech puts the speaker extraction
algorithm in a stress test. However, it only represents one of
many possible multi-talker scenarios. There are other scenarios,
for example, the speaker of interest is absent, or the speaker of
interest is the only speaker in the speech. To work in real-world
applications, a speaker extraction model needs to perform across
all scenarios.

B. Absent Target Speaker Speech Mixture With Audio Cue

In natural speech communication, interlocutors typically take
turns to speak, resulting in speech mixtures of varying extents
of overlapping. In particular, a speaker of interest could remain
quiet throughout while some others are speaking, resulting in
TA mixture clips. There have been studies to include TA clips
into the training data to overcome ‘false-extraction’ [54], [55].
It is noted that the commonly used objective function scale-
invariant signal-to-noise ratio (SI-SDR) [73] or signal-to-noise
ratio (SDR) is undefined, or defined as a constant, for TA clips,
It was proposed [30], [54], [55], [74] to minimize the energy
of TA clips instead, at the same time maximizing the SI-SDR
or SDR for TP clips. We refer to such a loss as the scenario-
aware uniform loss in this paper, it is scenario-aware because it
differentiates TA with TP clips, it is uniform as it applies a single
loss function to each of an entire clip. These prior studies [54],
[55] focus on the case in which the target speaker is either absent
or highly overlapped with the interference speaker in a speech
clip. We consider the more realistic general speech mixtures in
this paper as illustrated in Fig. 1, where sparsely overlapped
speech is included.

A recent speech separation study [31] proposed the source-
aggregated SDR, which computes the mean over the SDR values
of each output channel, this works as long as the target speaker
is not absent in at least one output channel. Other studies [36],
[37] used the mean squared error loss on the estimated mask or
spectrogram to avoid the absent target speaker problem, while
it remains unclear whether this is better as it is not directly
optimizing the signal quality of the extracted speech waveform.
In another study of the VAD-SE network [75], a target speaker
voice activity detection (VAD) module and a speaker extraction
network [75] are jointly trained. During run-time inference, the
VAD mutes the speaker extraction output when the target speaker
is quiet. In other words, the speaker extraction performance
highly depends on the VAD accuracy.

Both the scenario-aware uniform loss [30], [54], [55], [74] and
the VAD-SE [75] network use an audio cue, i.e., a pre-recorded
speech, as the auxiliary reference. However, for a general speech
mixture, the audio cue is not only used for disentanglement but
also used to verify whether the target speaker is speaking or quiet
for every frame, which is difficult. In this paper, instead of an
audio cue, we explore the use of a visual cue, i.e., lip movement,
that doesn’t require the pre-recording of speech for the speaker
extraction task. We believe the visual cue is a more direct cue
verifying the speaking status of the target speaker compared to
the audio cue.

C. Highly Overlapped Speech Mixture With Visual Cue

In the cocktail party problem, the visual reference, if present,
is not corrupted by either acoustic noise or interference speech,
which can be employed to form the top-down attention on the
target speaker. The visual reference usually takes the form of
a single face image from the target speaker, or a sequence of
lip images of the target speaker that is synchronized with the
speech.
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Fig. 3. The proposed universal speaker extraction network, or USEV network in short. It consists of a speech encoder, a visual encoder, a speaker extractor,
and a speech decoder. The symbol � refers to frame-wise concatenation of features; the symbols ⊕ and ⊗ refer to element-wise addition and multiplication of
features. The network layers are represented by rectangles, the intermediate features are represented by 3D blocks. The lock sign in the visual encoder means that
the weights of the network layers are frozen during the USEV network training.

FaceFilter [76] makes use of a single face image and explores
the general relationship between the facial appearance and the
voice signature, such as age, gender, and ethnicity. The network
encodes the face image into a speaker embedding to form the
attention on the target speaker.

Many audio-visual speaker extraction algorithms use the
visemes encoded from a sequence of lip images of the target
speaker as the visual cue. The conversation [57], and Time-
domain speaker extraction network (TDSE) [66] are such ex-
amples, where they pre-train a visual encoder on a visual speech
recognition task [77]. The visual encoder encodes a sequence
of lip images, that are synchronized with the target’s speech,
into a sequence of lip embeddings, also known as visemes. The
lip embeddings, that are time-aligned with speech frames, are
then used to model the temporal synchronization and interaction
between the lip movement and speech.

The visemes are shown effective in disentangling a target
speaker from highly overlapped speech, but have not been
studied for the general speech mixtures. In this paper, we employ
the visemes to form the top-down attention on the target speaker.

III. UNIVERSAL SPEAKER EXTRACTION NETWORK WITH

VISUAL CUE

Let x(τ) be a multi-talker speech clip, consisting of the target
speaker’s speech s(τ) and interference speaker’s speech bi(τ),

x(τ) = s(τ) +

I∑
i=1

bi(τ), (1)

where i ∈ {1, . . ., I} denotes the index of interference speakers.
The task of target speaker extraction aims to recover ŝ(τ) that
is close to s(τ) from x(τ).

A. Network Architecture

We now formulate a Universal Speaker Extraction network
with a Visual cue, named USEV (pronounced as ‘use v’) net-
work, as depicted in Fig. 3. The network is universal because

it is expected to perform for a speech clip with all possible
target-interference speaker pairing scenario combinations.

We adopt the time-domain approach for the network design,
which is originally proposed in the time-domain speech sep-
aration network (Conv-TasNet) [78], to avoid the phase esti-
mation problem arising from the frequency-domain approach.
The USEV network has four components: 1) The speech en-
coder transforms the time-domain speech samples x(τ) into a
sequence of speech embeddings X(t). 2) The visual encoder
encodes the target’s lip images sequence into a sequence of
visual embeddings V (t). 3) The speaker extractor estimates a
mask M(t), which only lets the target speaker pass in X(t).
4) The speech decoder renders the masked speech embeddings
Ŝ(t) into time-domain speech samples ŝ(τ).

1) Speech Encoder: The speech encoder consists of a 1-
dimensional (1D) convolution conv1D followed by a rectified
linear activation relu. The speech encoder behaves like a fre-
quency analyzer to convert the time-domain speech samples
x(τ) into a spectrum-like frame-based embedding sequence
X(t) in the latent space,

X(t) = relu(conv1D(x(τ), 1, N, L)) ∈ RN×T (2)

where the conv1D has input channel size 1, output channel size
N , kernel size L, and stride L/2. The output X(t) is a T frame
embedding sequence of dimension of N , where t ∈ {1, . . ., T}.

2) Visual Encoder: The visual encoder seeks to encode the
target’s lip images sequence into a sequence of visual embed-
dings V (t) ∈ RN×T , representing the target speaker’s visemes,
and in sync with the target’s speech. We design the visual encoder
with a structure similar to the visual encoder in MuSE [67],
which consists of a 3-dimensional (3D) convolution conv3D,
an 18 layer residual convolutional neural network resnet18, 5
repeated visual temporal convolutional network V -TCN , and
an up-sampling layer.

The conv3D and resnet18 are pre-trained from visual speech
recognition task [77], that are denoted by a lock sign in Fig. 3.
With the pre-trained weights fixed during speaker extraction
training, we seek to retain the pre-trained knowledge to encode
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Fig. 4. The architecture of the V -TCN in the visual encoder. It consists of a
linear layer linear1 with input and output sizes N and N ∗ 2, respectively; a
group convolution layer conv1D∗ with input channel sizeN ∗ 2, output channel
size N ∗ 2, and group size N ∗ 2, kernel size 3; and a linear layer linear2 with
input and output sizesN ∗ 2 andN , respectively. Each of the linear1, linear2,
and conv1D∗ layers are preceded with a relu and a layer normalization LN .

visemes that synchronize with the phonetic sequence of the
target’s speech.

The visual features extracted from the pre-trained conv3D
and resnet18 are different from the speech embeddings [79],
that are not optimized for speaker extraction directly. We design
an adaptation network with 5 repeated V -TCN similar to the
reentry model [5], with non-shared network weights, to adapt
the visual embeddings towards the speaker extraction task. The
architecture of a V -TCN is shown in Fig. 4. The 5 V -TCN
is followed by an up-sampling layer to match the temporal
resolution of the visual embeddings to the same as the speech
embeddings X(t).

3) Speaker Extractor: In computational auditory scene anal-
ysis [80], the selective filter is well studied to emulate the
human’s selective auditory attention in attentive listening, which
is usually modeled as a receptive mask. The speaker extractor in
the USEV network adopts the masking method [2] to estimate
a mask M(t) which only lets the target speaker pass in the
speech embeddings X(t). The masked speech embeddings Ŝ(t)
are obtained by element-wise multiplication between X(t) and
M(t),

Ŝ(t) = X(t)⊗M(t) ∈ RN×T (3)

where X(t) is the output of the speech encoder.
The speaker extractor requires a reference to form the top-

down auditory attention on the target speaker. The visual em-
beddings V (t) are trained just for that by providing the tar-
get speaker’s visemes, that are synchronized with the target’s
speech. The inputs to the speaker extractor are the speech
embeddings X(t) and the visual embeddings V (t). The studies
on the reentry model [5], TDSE [66], and MuSE [67] suggest
that, by concatenating the time-aligned visual embeddings with
their corresponding speech embeddings, the speaker extractor
is able to effectively estimate the mask M(t). We adopt the
concatenation approach at the start of the speaker extractor.

Before the concatenation operation, X(t) is passed through a
layer normalization LN , followed by a bottleneck linear layer
linear1 [78] with input and output sizes N and B respectively.

The concatenated embeddings are passed through a linear pro-
jection layer linear2 with B +N and B as the input and output
sizes respectively.

In view that a speech utterance is usually encoded into a
long sequence of speech embeddings. It is important to effec-
tively model the long-term dependencies in the mask estimation
process. Dilated temporal convolutional neural network (TCN)
with a large receptive field has been widely used, such as
WaveNet [81], Conv-TasNet [78], and TDSE [66]. However,
the TCN has a fixed receptive field, and thus has difficulty in
learning the long-term dependencies.

DPRNN [82] is a dual-path recurrent neural network for
speech separation, which has a dynamic receptive field to capture
global dependencies. DPRNN segments a long sequence of
embeddings into short chunks and applies intra- and inter-chunk
operations with an interlacing structure. In view of its success,
we use the dual-path structure [82] in the context of audio-visual
speaker extraction. which consists of a segmentation layer, R
repeated DPRNN blocks, and an aggregation layer in the speaker
extractor.

After the linear projection layer linear2, the 2-dimensional
(2D) vector is passed through a segmentation layer, which is
segmented into chunks with a window sizeK and hop sizeK/2.
K is selected such that K ≈ √

2T [82]. The resultant P chunks
are concatenated to form a 3D tensor, where P = 2×T

K + 1.
After segmentation, the 3D tensor is passed through R re-

peated DPRNN blocks with non-shared network weights, each
with a chain of intra-chuck processing and inter-chuck process-
ing with residual connections. The intra-chunk processing has an
intra-bidirectional long short-term memory intra-BLSTM, with
input and hidden sizeB andB × 2 respectively, which is applied
to the intra-chunk sequence (K dimension) of the 3D tensor. The
intra-BLSTM is followed by a linear layer linear3with input and
output sizes B × 4 and B respectively, and a LN . Similar to the
intra-chunk processing, the inter-chuck has a similar network
architecture and parameters, except that the inter-BLSTM is
applied to the inter-chunk sequence (P dimension) of the 3D
tensor.

The aggregation layer is an inverse operation of the segmen-
tation layer, which transforms the 3D tensor back to 2D. It is
followed by a parametric rectified linear activation prelu, a
linear layer linear5 with input and output sizes B and N , and
a relu layer.

4) Speech Decoder: The speech decoder renders the masked
speech embeddings Ŝ(t) into time-domain speech samples ŝ(t).
It consists of a linear layer linear6 and an overlap-and-add
operation OnA,

ŝ(τ) = OnA(Linear6(Ŝ(t), N, L), L/2) (4)

where the OnA operation has a frame shift of L/2.

B. Scenario-Aware Differentiated Loss

In time-domain source separation or extraction algorithms,
SDR is widely used as the objective function [83], [84], [85],
which performs very well in the case of highly overlapped sound
sources. However, for TA mixture clips, the SDR is a constant
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Fig. 5. An illustration of the scenario-aware differentiated loss. We segment
an extracted speech clip according to the different target-interference speaker
pairing scenarios (QQ,SQ,SS,QS) and apply separate loss functions for
different segments.

value. The scenario-aware uniform loss studies [30], [54], [55],
[74], which the loss function is shown in (5), point to a direction
that, by adding an ε at the numerator, the SDR loss reduces to
a form that minimizes the energy of the TA speech clips, at the
same time, still maximizes the SDR for TP speech clips.

LUni = −10 log10

( ||s||2 + ε

||ŝ− s||2 + ε

)
(5)

where ε is a small value of 1e−8. We omit the subscript (τ)
for the clean s(τ) and extracted speech ŝ(τ) in the formula for
brevity.

In reality, a TP speech clip could be a combination of
QQ,SQ, SS,QS scenario segments. Such a multi-scenario clip
is called a heterogeneous clip, as shown in Figs. 1 and 2, while a
single scenario clip is called a homogeneous clip. It is understood
that we have different expectations for each of the scenarios,
e.g., low energy silence outputs for QS and QQ scenarios, and
high SDR outputs for SS and SQ ones. On the other hand,
the difficulty of training for different scenarios is expected to
be different, e.g., SS scenario is more complex than SQ, and
QS is more complex than QQ. Therefore, it is best that we
measure the output speech quality of each scenario differently.
However, the loss functions, either SDR or energy loss, are
segmental in nature. A single uniform loss reflects the average
loss quantity indiscriminately over the entire heterogeneous clip,
that doesn’t seek to optimize for each scenario, which could
result in unbalanced training between scenarios. We argue that a
scenario-specific loss for each scenario-homogeneous segment
should be more appropriate.

Furthering the study of scenario-aware uniform loss, we pro-
pose a training strategy with a scenario-aware differentiated loss
to deal with the four scenarios as summarized in Fig. 5. During
training, the speaker extraction network takes the entire speech
clip as input and the scenario labels as the supervision signals.
We segregate the extracted speech clip into the respective sce-
nario segments according to the labels, i.e., QQ,SQ, SS,QS.

For the SQ and SS segments, where the target speaker is
acoustically active, we apply the SDR as the loss LS between
the ground-truth and the extracted speech,

LS = −10 log10

( ||s||2
||ŝ− s||2 + ε

+ ε

)
(6)

For the QQ and QS segments where the target speaker is
acoustically inactive, we apply the energy of the segments as
the loss LE ,

LE = 10 log10(||ŝ||2 + ε) (7)

We define the total scenario-aware differentiated loss LDiff

as a weighted sum of the 4 differentiated loss values as follows,

LDiff = αLQQ
E + βLSQ

S + γLSS
S + δLQS

E (8)

whereα, β, γ, δ are the weights for the loss, also called the hyper-
parameters.

With the scenario-aware differentiated lossLDiff , we are able
to optimize the network with a scenario-specific loss for each
scenario-homogeneous segment, yet having an overall objective
across the entire heterogeneous clip, i.e., a random combination
of different scenarios. The weights inLDiff moderate the contri-
butions of the individual scenarios towards the overall objective.

One may argue that we may optimize the homogeneous clips
i.e., clips of a single scenario, scenario by scenario as in [54].
It is noted that such a training strategy will not take care of
the temporal transition between scenarios. The scenario-aware
differentiated loss LDiff for an entire heterogeneous clip is
necessary.

The labels of QQ,SQ, SS,QS scenarios and the segmen-
tation process are only required during training, and not during
inference. The training on heterogeneous clips with the proposed
loss LDiff allows for optimization of the network for unknown
speaker pairing scenarios at run-time.

It is worth mentioning that we do not normalize the extracted
speech during inference, because this may potentially amplify
the unwanted noise in the QQ and QS scenarios. We choose
the SDR loss over the SI-SDR loss for (6) in the proposed
scenario-aware differentiated loss, because the SDR loss is
scale-sensitive, thus keeping the extracted speech at the same
scale as the ground truth clean speech. It is noted that the SI-SDR
loss is scale-invariant [73], thus the scale of the extracted speech
may run away without a proper normalization.

C. Training Procedure

The overall training of the USEV network consists of three
stages.

1) The conv3D and resnet18 layers in the visual encoder
are pre-trained together with a LSTM back-end on a visual
speech recognition tasks.1 The conv3D and resnet18 lay-
ers are then kept frozen during subsequent USEV network
training.

2) The entire USEV network is pre-trained on highly over-
lapped speech clips, with the SDR loss as shown in (6).
This allows the USEV network to focus on theSS scenario
as it is the most difficult scenario among the four [54].

3) The entire USEV network is trained on the general speech
mixture clips, with the scenario-aware differentiated loss
as shown in (8).

1The conv3D and resnet18 structures follow [86], and their pre-trained
weights on visual speech recognition task are taken from https://github.com/
lordmartian/deep_avsr

https://github.com/lordmartian/deep_avsr
https://github.com/lordmartian/deep_avsr


3038 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

IV. EXPERIMENTAL SETUP

A. Dataset

1) Highly Overlapped Speech Mixtures (VoxCeleb2-Mix
Dataset): We use the VoxCeleb2 [87] dataset to simulate a
highly overlapped speech dataset, denoted as VoxCeleb2-mix.
The dataset is used for model pre-training.

The VoxCeleb2 dataset is an audio-visual dataset derived
from YouTube videos. It has over 1 million videos from 6, 112
celebrities. The videos are pre-processed with face detection and
tracking algorithms. The resulting face tracking sequences are
used as auxiliary references both for training and testing. We
sample the audios at 16 kHz, the videos are synchronized with
the audios and sampled at 25 FPS.

To create the VoxCeleb2-mix dataset, we randomly select
320,000 videos from 3,200 speakers in the original train set to
create a training set (160,000 speech mixture clips), and 36,237
videos from 118 speakers in the original test set to form a test
set (3,000 speech mixture clips). In either case, we only include
videos that have at least 4 seconds of duration. To simulate a
highly overlapped speech clip, an interference speech is mixed
with the target speech at a Signal-to-Noise ratio (SNR) randomly
set between 10 dB to −10 dB. Between the two mixing speech
clips, the longer clip is truncated to the length of the shorter one
to maximize the overlap. In addition, a noise from the WHAM!
noise dataset [88] is also mixed with the target speech at an SNR
randomly set between 15 dB to −5 dB.

2) General Speech Mixtures (IEMOCAP-Mix Dataset): We
use the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [89] dataset to simulate the general speech mixture clips,
named IEMOCAP-mix dataset. It is used to train and evaluate
the contrastive baselines and the proposed USEV network.

The IEMOCAP dataset is an acted, multi-modal dataset. It
consists of 12 hours of 150 dyadic conversations, each conversa-
tion has 2 speakers, with a total of 10 speakers in the dataset. The
speakers’ faces are always visible throughout, either speaking or
not. We sample the audios at 16 kHz, the videos are synchronized
with the audios and sampled at 25 FPS.

We first obtain video clips with clean utterances from the
conversations. The utterances are then used to simulate the
general speech mixture clips that cover all scenarios as described
in Fig. 1.

From the original IEMOCAP dataset, we detect and track the
faces in the videos following the VoxCeleb2 procedure [87], and
obtain 300 face tracking videos. Based on the available speaker
diarization label in the IEMOCAP dataset, we mute the audio
when the face in the video is not speaking. In this way, each face
tracking video consists of alternating quiet and speech segments,
where a speech segment is always associated with the face in
the video. We randomly select 240, 30, and 30 face tracking
videos to simulate IEMOCAP-mix training, validation, and test
sets respectively. A speaker may appear in multiple sets, but the
speech does not. We split a face tracking video into multiple
utterances by using a random quiet position between adjacent
utterances as the delimiter.

To simulate the general speech mixture clips, we drop the
utterances that are shorter than 3 seconds. We use a random seg-
ment from a target speaker’s utterance, and mix it with random

segments from 1 or 2 interference speaker’s utterances at an SNR
ratio between 10 dB to −10 dB. Each speech clip could contain
speech under one or more of the four scenarios as described
in Fig. 1. In this way, the dataset covers all four scenarios. We
simulate 400,000, 10,000, and 6,000 speech mixture clips for
IEMOCAP-mix training, validation and test sets. The average
length of the speech mixture clips is 5 seconds.

Besides the clean IEMOCAP-mix dataset simulated, we sim-
ulated a noisy version of the IEMOCAP-mix dataset, by adding
noise from the WHAM! noise dataset [88] to the clean version of
the IEMOCAP-mix dataset with an SNR randomly set between
15 dB to −5 dB.

3) Composition of IEMOCAP-Mix: A general speech mix-
ture contains speech under one or more of the four scenarios,
namely QQ,SQ, SS,QS. We record the start and endpoints of
the scenarios in each speech clip. With such scenario labels, the
training data are ready for network training with the scenario-
aware differentiated loss, while the test data can be used for
reporting evaluation performance by scenarios. We report the
total duration in hours for the 4 scenarios in the last four columns
of Table I.

As a general speech mixture could also be categorized as TA
and TP speech clips, we report the total number of TP speech
clips in groups by the target-interference speaker overlapping
ratio, i.e., 0%, (0,20]%, (20,40]%, (40,60]%, (60,80]%, and
(80,100]% in Table I. The target-interference speaker overlap-
ping ratio is defined as the ratio of the duration of the over-
lapped segment SS to the total duration of non-silence speech
SS+SQ+QS, i.e., (SS duration)/(SS+SQ+QS duration). We
also report the total number of TA speech clips, the TA speech
clips have no target speaker, therefore the target-interference
speaker overlapping ratio does not apply. To simulate real-world
data, we allow multiple target-interference speaker pairing sce-
narios to take place in a single speech clip.

B. USEV and Contrastive Baselines

We select two time-domain target speaker extraction networks
as the contrastive baselines, namely SpEx+ [44] and TDSE [66].
The SpEx+ network employs a pre-recorded speech as the
auxiliary reference, that shows the state-of-the-art performance.
The TDSE network represents the recent advances of using
the target’s visemes as the auxiliary reference. The USEV net-
work is a departure from the SpEx+ and TDSE networks. It
is worth noting that the original SpEx+ and TDSE networks
are trained and evaluated for highly overlapped speech in the
previous works, which is neither a universal nor realistic acoustic
scenario. We train the SpEx+, TDSE, and USEV network on
general speech mixture clips, and seek to address all possible
multi-talker scenarios in cocktail party, which represents an
important step toward real-world applications.

To compare the proposed scenario-aware differentiated loss in
(8) with the scenario-aware uniform loss [74], we develop con-
trastive baselines with the scenario-aware uniform loss function
for the SpEx+, TDSE, and USEV networks respectively.

1) SpEx+: The SpEx+ network has a similar architecture to
the USEV network, except that the SpEx+ has a speaker
encoder, which encodes the audio cue, in place of a
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TABLE I
A SUMMARY OF THE NUMBER OF SPEECH CLIPS FOR DIFFERENT TARGET-INTERFERENCE SPEAKER OVERLAPPING RATIOS, AND TOTAL DURATION FOR 4

TARGET-INTERFERENCE PAIRING SCENARIOS IN THE SIMULATED IEMOCAP-MIX DATASET

visual encoder. In addition, the speaker extractor of the
SpEx+ consists of repeated stacks of TCN blocks instead
of repeated DPRNN blocks in USEV. We re-implement
the SpEx+ by using scenario-aware uniform loss as the
training objective, which is referred to as SpEx+(S). We
also re-implement another variant of the SpEx+ network
by using the scenario-aware differentiated loss as the train-
ing objective, which is referred to as SpEx+(D). Both the
SpEx+(S) and SpEx+(D) serve as the contrastive baselines
of the USEV network.

2) TDSE: The TDSE network has a similar architecture to
the USEV network, except that the speaker extractor in the
TDSE consists of repeated stacks of TCN blocks instead
of repeated DPRNN blocks in USEV. We re-implement
the TDSE by using scenario-aware uniform loss as the
training objective, which is referred to as TDSE(S). We
also re-implement another variant of the TDSE network by
using the scenario-aware differentiated loss as the training
objective, which is referred to as TDSE(D).

3) USEV: The USEV network with the scenario-aware differ-
entiated loss is denoted as USEV(D). We also implement a
variant of the USEV network with scenario-aware uniform
loss, i.e., USEV(S) for comparison.

C. Implementation Details

The SpEx+, TDSE, and USEV networks have the same train-
ing procedure. They are pre-trained on highly overlapped speech
clips first (VoxCeleb2-mix dataset), then trained and evaluated
on the general speech mixture clips (IEMOCAP-mix dataset).

For pre-training on the VoxCeleb2-mix dataset, we use the
adam optimizer with an initial learning rate of 0.001. The
learning rate is decreased by 2% for every epoch, we train the
networks for 30 epochs. During pre-training, the speech clips
are truncated to 6 seconds to fit into the GPU memory.

For training on the IEMOCAP-mix dataset, we use the adam
optimizer with an initial learning rate of 0.0001. The learning
rate is decreased by 2% for every epoch, the training stops when
the best validation loss does not improve for 8 consecutive
epochs. During training, the speech clips are truncated to 6
seconds to fit into the GPU memory, during inference, the full
speech clips are evaluated.2 For the SpEx+ and TDSE networks,
the L, B, N , and R are set to 40, 256, 256, and 4 according
to [66]. For the USEV network, the L, B, N , R, and K are set
to 40, 64, 256, 6, and 100 according to [82].

2The codes for the data generation and the USEV network are available at
https://github.com/zexupan/USEV.

D. Evaluation Metrics

We use SI-SDR (dB) or power (dB/s) to evaluate our proposed
method, which the two metrics are shown as follows:

SI-SDR = 10 log10

( ||<ŝ,s>s
||s||2+ε ||2

||ŝ− <ŝ,s>s
||s||2+ε ||2 + ε

+ ε

)
(9)

Power = 10 log10

( ||ŝ||2
Ts

+ ε

)
(10)

where Ts is the duration of ŝ in seconds.

V. RESULTS

We report three groups of experiments on the IEMOCAP-mix
dataset. First, we empirically study the hyper-parameters set-
tings and the training strategy, which are reported in Section V-A.
Second, we present 3 comparative studies, that are reported in
Section V-B. We compare the visual cue with the audio cue
in experiment 1, the scenario-aware differentiated loss with the
scenario-aware uniform loss in experiment 2, and the DPRNN
structure with the TCN structure in experiment 3. Third, we
study how the quality of the visual cue affects the speaker
extraction performance of the USEV and TDSE networks, which
are reported in Section V-C.

A. System Tuning

1) Weights for the Scenario-Aware Differentiated Loss: We
evaluate the USEV(D) on the clean and noisy IEMOCAP-
mix validation set to empirically find the appropriate weights
α, β, γ, δ for the differentiated loss in Table II. We compare the
SI-SDR for the SQ and SS scenario segments, and the power of
the QQ and QS scenario segments. It is worth mentioning that
the proposed scenario-aware differentiated loss for training is
scale-sensitive, thus the extracted speech for the systems are on
the same scale. When comparing between systems, the higher
the better for the SI-SDR, and the lower the better for the power.

In Table II, systems 1 to 4 are trained and evaluated on the
clean IEMOCAP-mix dataset, and systems 5 to 7 are trained
and evaluated on the noisy IEMOCAP-mix dataset. It is seen
that systems 3 and 7 achieves reasonably low power for the
QQ and QS scenarios and high SI-SDR for the SQ and SS
scenarios for clean and noisy dataset respectively. We therefore
set α, β, γ, δ to be 0.005,1,1,0.005 respectively as in system 3
and 7 for future system evaluations. It is worth noting that the
selected weights are optimized for the IEMOCAP-mix dataset,
for which the total duration of the four scenario segments are
shown in Table I. If the total duration of the four scenario

https://github.com/zexupan/USEV
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TABLE II
EXPERIMENTS OF USEV(D) WITH DIFFERENT HYPER-PARAMETERS ON THE

CLEAN AND NOISY IEMOCAP-MIX VALIDATION SET RESPECTIVELY. WE

REPORT THE SI-SDR (DB) FOR THE SQ AND SS SCENARIO SEGMENTS, AND

THE POWER (DB/S) OF THE QQ AND QS SCENARIO SEGMENTS. THE HIGHER

THE BETTER FOR THE SI-SDR AND THE LOWER THE BETTER FOR THE POWER.
N.A. REPRESENTS NOT APPLICABLE

TABLE III
EXPERIMENTS OF USEV(D) WITH DIFFERENT TRAINING STRATEGY ON THE

NOISY IEMOCAP-MIX VALIDATION SET. WE REPORT THE SI-SDR (DB) FOR

THE SQ AND SS SCENARIO SEGMENTS, AND THE POWER (DB/S) OF THE QQ
AND QS SCENARIO SEGMENTS. THE HIGHER THE BETTER FOR THE SI-SDR

AND THE LOWER THE BETTER FOR THE POWER

segments changes when another dataset is used, these weights
need to be adjusted accordingly.

2) Training Strategy: We evaluate the USEV(D) on the noisy
IEMOCAP-mix validation set to empirically find the appropriate
training strategy as shown in Table III. We compare the SI-SDR
for the SQ and SS scenario segments, and the power of the
QQ and QS scenario segments. The higher the better for the
SI-SDR and the lower the better for the power. Systems 9 and 10
are trained and evaluated on the noisy IEMOCAP-mix dataset.
System 7 in Table III is the same as system 7 in Table II.

The USEV(D) in system 7 is pre-trained (PT) on highly over-
lapped speech first (VoxCeleb2-mix dataset), and further trained
(FT) on the general speech mixtures (IEMOCAP-mix dataset).
We conduct two experiments to justify this training procedure.
In system 9, USEV(D) is pre-trained on the VoxCeleb2-mix
dataset, but it is not further trained on the IEMOCAP-mix
dataset. It is seen that system 9 has lower SI-SDR for the
SQ and SS scenarios, and higher power for the QQ and QS
scenarios, as compared to system 7 which is further trained on
the IEMOCAP-mix dataset. This could be due to the fact that
system 9 is only trained on highly overlapped speech.

In system 10, we do not pre-train the USEV(D) on the
VoxCeleb2-mix dataset, but rather train it directly on the
IEMOCAP-mix dataset from scratch. System 10 significantly
lags behind system 7 on the SQ and SS scenarios in terms

of SI-SDR, where the target speaker is highly overlapped with
the interference speakers or noise. We note that the SQ and SS
scenarios are two very challenging scenarios among the four, the
pre-training on highly overlapped speech is effective because it
well prepares the network for the two scenarios.

B. Comparative Studies

The SpEx+(S), TDSE(S), and USEV(S) adopt the uniform
loss as the training objective, while the SpEx+(D), TDSE(D),
and USEV(D) adopt the differentiated loss. For a fair comparison
between the two loss functions, we report the performance on an
entire speech clip with a single evaluation metric, i.e., SI-SDR
for TP speech lips or power for TA speech clips in Table IV.

In Table IV, we first categorize the speech clips into two
categories: i) TA speech clips: speech clips with the absent target
speaker. ii) TP speech clips: speech clips with the present target
speaker. We report the average power of TA speech clips, the
lower the better. For TP speech clips, we report the SI-SDR by
their target-interference speaker overlapping ratios. The average
SI-SDR is also reported in the last column, the higher the better
for the SI-SDR.

In addition, we report the results using differentiated metrics
in terms of QQ,SQ, SS,QS scenarios in Table V, to examine
the performance over individual scenarios. The models reported
in Table IV and Table V are both trained on the IEMOCAP-mix
dataset, but are evaluated using different metrics, i.e., a single
SI-SDR or power over an entire speech clip in Table IV, and
differentiated metrics for every scenario segment in Table V.

1) Visual vs Audio Cue: We compare the use of visemes with
the use of a pre-recorded speech as the auxiliary reference on
the IEMOCAP-mix test set. The SpEx+ network employs a pre-
recorded speech as the audio cue, while the TDSE and USEV
networks employ the visemes as the visual cue. The pre-recorded
speech used for the SpEx+ is the target’s other clean speech
utterance that is not present in the speech mixture, the reference
utterance is about 5 seconds long on average.

The SpEx+(S), TDSE(S), and USEV(S) are trained using the
uniform loss. As shown in Table IV, for both clean and noisy con-
ditions, the TDSE(S) and USEV(S) outperform the SpEx+(S)
in terms of average SI-SDR, and the TA power. As shown in
Table V, for both clean and noisy conditions, the TDSE(S) and
USEV(S) outperform the SpEx+(S) for all scenarios. Results
show that when the uniform loss is used, the visemes outperform
the pre-recorded speech as the auxiliary reference.

The SpEx+(D), TDSE(D), and USEV(D) are trained using
the differentiated loss. The weights of the differentiated loss are
selected the same as system 7 in Table II. As shown in Table IV,
for both clean and noisy conditions, the TDSE(D) and USEV(D)
consistently outperform the SpEx+(D) in terms of average SI-
SDR, and the TA power. As shown in Table V, for both clean
and noisy conditions, the USEV(D) and TDSE(D) outperform
the SpEx+(D) for all scenarios, except for theSQ scenario under
noisy conditions. Results show that when the differentiated loss
is used, the visemes outperform the pre-recorded speech as the
auxiliary reference.
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TABLE IV
COMPARATIVE STUDY AMONG VARIANTS OF THE SPEX+ [54], TDSE [66], AND USEV NETWORKS ON IEMOCAP-MIX TEST SET. WE REPORT THE AVERAGE

POWER (DB/S) OF TA SPEECH CLIPS, THE SI-SDR (DB) FOR TP SPEECH CLIPS BY TARGET-INTERFERENCE OVERLAPPING RATIOS, AND THE AVERAGE SI-SDR
(DB) FOR TP SPEECH CLIPS. THE HIGHER THE BETTER FOR THE SI-SDR AND THE LOWER THE BETTER FOR THE POWER

TABLE V
COMPARATIVE STUDY AMONG VARIANTS OF THE SPEX+ [54], THE TDSE [66], AND USEV NETWORKS ON IEMOCAP-MIX TEST SET. WE REPORT THE SI-SDR
FOR THE SQ AND SS SCENARIO SEGMENTS, AND THE POWER OF THE QQ AND QS SCENARIO SEGMENTS. THE HIGHER THE BETTER FOR THE SI-SDR AND THE

LOWER THE BETTER FOR THE POWER

2) Differentiated Loss vs Uniform Loss: We compare the
use of differentiated loss with the uniform loss on the base-
lines and our proposed USEV network in disentangling the
general speech mixture clips from the IEMOCAP-mix test
set.

As shown in Table IV, for both clean and noisy conditions, the
SpEx+(D) performs better in terms of SI-SDR evaluation, but
the SpEx+(S) performs better in terms of TA power. Further look
into Table V, for both clean and noisy conditions, the SpEx+(D)
performs better for the SQ and SS scenarios, but the SpEx+(S)
has lower power for the QQ and QS scenarios. For the SpEx+
network, the uniform loss focuses more on muting the network
for inactive target speaker scenarios, while the differentiated loss
focuses more on the signal extraction quality for active target
speaker scenarios, this could be caused by the large weights

used for the SQ and SS scenarios used by the differentiated
loss function.

As shown in Table IV, for both clean and noisy conditions,
the TDSE(D) outperforms the TDSE(S) in terms of the SI-SDR
evaluation, but the TDSE(S) performs better for TA power. As
shown in Table V, for both clean and noisy conditions, the
TDSE(D) outperforms the TDSE(S) for scenarios, except for
the SQ scenario under noisy conditions.

As shown in Table IV, for both clean and noisy conditions,
the USEV(D) outperforms USEV(S) in terms of the SI-SDR
evaluation, but the USEV(S) performs better for TA power. As
shown in Table V, for both clean and noisy conditions, the
USEV(D) outperforms USEV(S) for all scenarios.

In Table IV, the uniform loss consistently performs better
than the differentiated loss in terms of power for TA speech
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Fig. 6. The histogram of the power by the SpEx+(S), SpEx+(D), TDSE(S), TDSE(D), USEV(S), and USEV(D) on the noisy IEMOCAP-mix test sets. The lower
the better for the power of the QQ and QS scenario, and the power of the SQ and SS scenario are expected to be similar to that of the clean target speech, which
is on average 10 dB/s.

clips. This is because the uniform loss puts a high weight of 1
on the TA speech clips during training, as opposed to 0.005
for the differentiated loss (QQ and QS). It is worth noting
that the TA speech clips are only a subset of all QQ and QS
scenario segments. If we compare the overall power of the QQ
and QS scenarios in Table V, the differentiated loss consistently
outperforms the uniform loss in terms of power for TDSE and
USEV models.

We also present the power distribution of the models on the
noisy IEMOCAP-mix test sets in Fig. 6, It is seen that for theSQ
andSS scenarios in which the target speaker is active, all models
perform similar, with most of the extracted speech signals have
a power value that is close to that of the clean target speech,
which is on average 10 dB/s. For the QQ and QS scenarios in
which the target speaker is inactive, it is seen that the USEV(D)
and TDSE(D) have more samples with lower power compared
to the USEV(S) and TDSE(S), showing that the differentiated
loss outperforms the uniform loss for audio-visual models.

3) DPRNN vs TCN: We compare the DPRNN with TCN
in the speaker extractor when the visual cue is employed as
the auxiliary reference. The TDSE network employs a repeated
stack of TCN in the speaker extractor to estimate the receptive
mask, while the USEV network employs a repeated DPRNN
block to estimate the receptive mask.

As shown in Table IV, when the uniform loss is used for
network training, the USEV(S) outperforms the TDSE(S) for
clean conditions, but the TDSE(S) outperforms the USEV(S)
for noisy conditions. As shown in Table V, for clean conditions,
the USEV(S) performs better for the QQ and SQ scenarios, but
the TDSE(S) performs better for the SS and QS scenarios, for
noisy condition, the TDSE(S) performs better than the USEV(S)
for all scenarios.

As shown in Table IV, when the differentiated loss is used for
network training, the USEV(S) outperforms the TDSE(D) for

clean conditions, but the TDSE(D) outperforms the USEV(D)
for noisy conditions. As shown in Table V, the USEV(D) outper-
forms the TDSE(D) in all scenarios except for the SS scenario
under clean condition, the TDSE(D) outperforms the USEV(D)
in all scenarios except for theSQ scenario under noisy condition.

The USEV tends to perform better when the overlapping
ratio is small and the TDSE tends to perform better when
the overlapping ratio is large. Overall, the USEV and TDSE
networks achieve comparable results on both clean and noisy
IEMOCAP-mix test sets. However, the USEV network has 6.8
million fewer parameters compared with the TDSE network
due to the smaller size of the DPRNN blocks as shown in
Table V. In addition, when the kernel size L in the speech
encoder of the two networks is set the same, which is 40 in this
paper, the training of the USEV network is 4 times faster than
that of the TDSE network. The TDSE and USEV network have
more network parameters compared with the SpEx+ network
due to the large visual encoder module. The no. of network
parameters reported for the TDSE and USEV networks do not
include the face detection and tracking module.

C. Effect of Visual Occlusion

When face detection and tracking algorithms fail to detect the
target speaker or the lip is occluded for some reason, the visual
cue is absent or incomplete. We simulate the above scenario,
referred to as visual occlusion, by setting a random duration of
the lip images sequence to zero signals for each speech clip in
the clean IEMOCAP-mix dataset, while keeping the audio signal
intact. We study the impact of such visual occlusion on the audio-
visual models, namely the TDSE(S), TDSE(D), USEV(S), and
USEV(D), and present their results in Table VI.

The models are first pre-trained on the VoxCeleb2-mix
dataset, where there is no occlusion in the training data. In the
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TABLE VI
COMPARATIVE STUDIES AMONG VARIANTS OF THE TDSE [66], AND USEV NETWORKS ON IEMOCAP-MIX TEST SET FOR A VISUAL CUE WITH OCCLUSION. THE

VALUES REPORTED ARE THE AVERAGE OVER ALL VISUAL OCCLUSION SETTINGS IN ITS GROUP, FOR MODELS THAT ARE TRAINED ON IEMOCAP-MIX TRAINING

DATA WITH AND WITHOUT OCCLUSION (OCCL.)

Fig. 7. Comparative studies among the TDSE(S), TDSE(D), USEV(S), and USEV(D) with partially occluded visual reference. The models are trained on the
IEMOCAP-mix training data with visual occlusion. We report the performance in QQ,SQ,SS,QS scenarios separately as a function of the effective visual cue,
i.e., the ratio of the effective visual duration to the total length of the speech clip. For each model, the lower the better for power in (a) QQ scenario and (d) QS
scenario, and the higher the better for SI-SDR in (b) SQ scenario and (c) SS scenario.

training stage with the IEMOCAP-mix dataset, if the occlusion
data are not involved (Train Occl. ✗), none of the models
perform well on occlusion evaluations. If the occlusion data are
involved in the training stage on the IEMOCAP-mix dataset
(Train Occl.

√
), all models improve, with USEV(D) achieving

the highest average SI-SDR value of 11.04 dB. The USEV
tends to perform better when the overlapping ratio is small and
the TDSE tends to perform better when the overlapping ratio
is large, overall they achieve comparable performance for the
visual occlusion analysis.

We also evaluate the models with the different effective visual
cue and report the results in Fig. 7 for the four scenarios,
to observe the trend of model performance with the different
effective visual cue. We define the effective visual cue (%) as
the ratio of the non-occluded visual duration to the total length of
the speech clip. The average performance for each 5% interval
of the effective visual cue is plotted, e.g, the first point is the
average performance for 0-5% effective visual cue, and the last
point is 96-100% effective visual cue. It is observed that the
performance of SQ, SS,QS scenarios improves as the effective
visual duration increases. When the effective visual cue reaches
20%, the USEV(D) performs reasonably well across all sce-
narios, when it goes beyond 50%, the USEV(D)’s performance
starts to saturate.

VI. CONCLUSION

In this paper, we propose a categorization of a general speech
mixture into four target-interference speaker pairing scenarios

namelyQQ,SQ, SS,QS. We also proposed a universal speaker
extraction network with a visual cue to disentangle the general
speech mixture with a scenario-aware differentiated loss func-
tion. The experiments show that the proposed differentiated loss
function is effective. This paper marks an important step towards
solving a realistic cocktail party problem.
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