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A Machine Speech Chain Approach for Dynamically
Adaptive Lombard TTS 1n Static and Dynamic
Noise Environments

Sashi Novitasari ¥, Sakriani Sakti

Abstract—Recent end-to-end text-to-speech synthesis (TTS) sys-
tems have successfully synthesized high-quality speech. However,
TTS speech intelligibility degrades in noisy environments because
most of these systems were not designed to handle noisy environ-
ments. Several works attempted to address this problem by using
offline fine-tuning to adapt their TTS to noisy conditions. Unlike
machines, humans never perform offline fine-tuning. Instead, they
speak with the Lombard effect in noisy places, where they dynam-
ically adjust their vocal effort to improve the audibility of their
speech. This ability is supported by the speech chain mechanism,
which involves auditory feedback passing from speech perception
to speech production. This paper proposes an alternative approach
to TTS in noisy environments that is closer to the human Lombard
effect. Specifically, we implement Lombard TTS in a machine
speech chain framework to synthesize speech with dynamic adap-
tation. Our TTS performs adaptation by generating speech utter-
ances based on the auditory feedback that consists of the automatic
speech recognition (ASR) loss as the speech intelligibility measure
and the speech-to-noise ratio (SNR) prediction as power measure-
ment. Two versions of TTS are investigated: non-incremental TTS
with utterance-level feedback and incremental TTS (ITTS) with
short-term feedback to reduce the delay without significant per-
formance loss. Furthermore, we evaluate the TTS systems in both
static and dynamic noise conditions. Our experimental results show
that auditory feedback enhanced the TTS speech intelligibility in
noise.

Index Terms—Text-to-speech, machine speech chain inference,
Lombard effect, dynamic adaptation.

I. INTRODUCTION

UMANS maintain their speech quality in various sit-
Huations by simultaneously listening to their speech, a
mechanism that is also known as the speech chain [1]. The
auditory feedback produced from the self-evaluation inside this
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speaking-while-listening process plays a critical role in speech
production [2]-[4]. Moreover, ineffective monitoring of audi-
tory feedback could cause speaking issues [5], [6]. When an error
is detected in their speech, humans adapt or tune their speech
plan according to the auditory feedback. Auditory feedback is
used not only to maintain stability between the sound output
and the acoustic goal but also to make situation-dependent
adjustments of the prosody attributes [7]. Adjustment is not only
manifested in the next utterance but also sometimes presented
as a correction of the previous utterance through a re-speaking
attempt [8].

In a noisy environment, humans dynamically adjust their
vocal effort according to the auditory feedback as a way to
maintain their speech intelligibility, a phenomenon known as the
Lombard effect [9], [10]. This adjustment affects not only speech
intensity but also other aspects such as speech pitch and speaking
rate [11]-[13]. As a response to ambient noise, intensity and
pitch tend to increase, while speaking rate tends to become
slower. Several works have reported the response latency in the
human Lombard effect to be about 90-287 ms [14]-[16].

Text-to-speech synthesis (TTS) systems have been developed
to mimic human speech production. However, unlike the human
communication system in which speech production and percep-
tion are closely connected, TTS development focuses only on
speech production, independent of speech perception. Under
clean conditions, neural TTS successfully synthesize a highly
natural speech given only a text [17]-[20]. However, in noisy
conditions, TTS speech intelligibility degrades because most
systems have not been designed to handle noisy environments.
Furthermore, since TTS only learns to speak without listening
and understanding the situation, they do not have the ability
to adapt to the situation. A widely used solution for achieving
TTS with high intelligibility in noisy places is to adapt the
system offline using Lombard speech from a particular noisy
condition [21], [22].

This paper proposes an alternative approach that is closer to
the human Lombard effect. Specifically, we propose Lombard
TTS in a machine speech chain framework to synthesize speech
with dynamic adaptation. The idea of mimicking the speech
chain mechanism by a machine was raised by Tjandra et al. [23],
where automatic speech recognition (ASR) system as speech
perception and TTS as speech production can support each other
given unpaired data (Fig. 1(a)). Unfortunately, this framework
was only proposed as a semi-supervised training mechanism.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. (a) Previous machine speech chain utilized only for semi-supervised
training method; (b) proposed machine speech chain for use in both training and
a dynamically adaptive inference method.

During inference, ASR and TTS perform separately as standard
systems, leaving the adaptation problem. In contrast, in this
work, we propose an advanced version of a machine speech
chain that applies the feedback mechanism during training and
inference of an end-to-end neural TTS.

The proposed TTS' with a machine speech chain mechanism
(Fig. 1(b)) speaks with a Lombard effect to enhance speech
intelligibility in noisy conditions dynamically based on the audi-
tory feedback. Here, we focus on auditory feedback consisting
of the ASR loss as the speech intelligibility measure and the
speech-to-noise ratio (SNR) prediction as power measurement.
Humans commonly adapt their speech based on several factors,
such as the target listeners, tasks, and environments. In this
paper, we focus only on adapting the TTS speech prosody based
on noise sounds. The prosody attributes adapted by our TTS
are speech intensity, pitch, and speaking rate or duration. This
study mainly considers a text-to-Mel-spectrogram module and
does not discuss the vocoder module in detail.

Two versions of TTS are investigated: non-incremental TTS
with utterance-level feedback and incremental TTS (ITTS) with
short-term feedback to reduce the delay without significant
performance loss. Previously, most existing works focus only
on static noises, while here, we also evaluate the TTS given
both static and dynamic noise conditions. This may be the
first deep learning framework that mimics human the Lombard
speech mechanism in a noisy environment and the first TTS
study investigating the performance in both static and dynamic
noise conditions, to the best of our knowledge. In summary, our
contributions include:

e Construction of a Lombard speech dataset for Lombard

TTS with well-known Wall Street Journal content [25].

e Construction of non-incremental TTS in a machine speech
chain framework, shown in Fig. 2(a), that takes a sentence
text as input and then improves the speech using sentence-
level auditory feedback through the re-speaking attempt. It
synthesizes the speech by assuming that the environmental
noise within the re-speaking attempts is the same.

e Construction of incremental TTS (ITTS) in a machine
speech chain framework, shown in Fig. 2(b). It incre-
mentally synthesizes the speech by progressively taking

IThe initial part of this work was presented in [24]. The previous work only
focused on non-incremental Lombard TTS in static noises. In this work, we
provide a more comprehensive and systematic description of the method, as
well as ITTS for dynamic noise conditions.
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a short text segment and feedback from the past speech
segment. By using the short-term feedback, ITTS immedi-
ately adapts to the environmental changes.

e Evaluation of the performance of both non-incremental
TTS and ITTS under static and dynamic noise conditions.

II. RELATED WORKS

A. Existing Lombard TTS

Lombard speech synthesis is designed to produce intelligi-
ble speech in the presence of noise. This system has gained
attention within the speech community, which was reflected in
the Hurricane Challenge [26], [27] for speech synthesis and
the evaluation of speech enhancement systems under noisy
conditions.

The related works on speech enhancement applied signal
processing on speech to improve the intelligibility in noisy
conditions. The earlier works performed speech modification
through a statistical method with fixed parameters based on
known noises. The enhancement operations include modifica-
tions of duration [28], pitch, energy contour, formant sharpness,
and intensity [29]. Several works also proposed other spectral
modification approaches, such as spectral tilt, spectrum contrast
enhancement, and harmonic component preservation at in the
low-frequency region to emphasize the speech features that are
important for speech perception [30]. Spectral shaping and a dy-
namic range compression method were also studied [31]. Next,
AdaptDRC [32] was proposed for speech enhancement con-
trolled by the short-term speech intelligibility index. It enhanced
the speech content at high frequencies by also boosting the low-
energy speech content through time- and frequency-dependent
dynamic range compression and frequency-shaping. Another
work also proposed a noise-dependent AdaptDRC with the
reverberation-dependent onset enhancement and overlapping
masking reduction [33]. Although the above approaches could
be applied to both natural and synthesized speech, a noise signal
separated from the speech was required. Their experiments were
generally carried out by assuming perfect noise was available.
Speech and noise separation in real situations might be challeng-
ing, especially in dynamic noise conditions. In our proposed ap-
proach, we use a TTS to directly synthesize the Lombard speech
given the text and feedback based on synthesized speech with
the noise.

In the conventional TTS approach, Lombard speech synthesis
was commonly done using the parametric model with Hidden
Markov Model (HMM). GlottHMM [34], [35] applies a glottal
inverse filtering technique in the vocoder of HMM TTS to
improve speech intelligibility in the presence of noise. Speech
was synthesized by filtering the glottal excitation with a vocal
tract filter, where the excitation signal was generated from the
real glottal flow extracted from natural speech. A speaking style
adaptation approach has also been studied, in which the HMM
TTS system is adapted with a small amount of Lombard speech
after training with normal speech [21], [36]. The performance
of the statistical approach, however, has been limited by poor
acoustic modeling [22].
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Fig. 2.

Unrolled feedback loops of the proposed TTS with the machine speech chain mechanism. (a) Proposed non-incremental TTS performs adaptation by

taking auditory feedback of previously synthesized speech with the same text, while (b) proposed ITTS performs adaptation by generating and using the auditory

feedback progressively.

Recently, the neural network approach has also gained at-
tention for synthesizing Lombard speech in an end-to-end
manner. A recent study proposed Lombard TTS by tun-
ing a Tacotron model on the Lombard speech data [22].
The model was first pre-trained on the normal speech data.
In another study, a multi-style Tacotron TTS was proposed
with a framework that could synthesize speech in normal,
whispered, and Lombard speech styles [37]. In their exper-
iment, TTS training was done by including speech spoken
in these three styles by a single speaker in the training ma-
terial. The TTS generates the styled speech by treating the
three speaking styles as three different speakers, so the out-
put speech style is decided based on the speaker embedding
vector.

In this work, we focus on an end-to-end transformer network-
based Lombard TTS with dynamic adaptation using audi-
tory feedback that is estimated directly from noisy TTS
speech. The previous works performed offline tuning to im-
prove speech intelligibility in the presence of noise. For our
TTS, instead of relying on the presumption of a single en-
vironmental condition, we train it under several noise condi-
tions and allow this system itself to determine the speaking
style during inference through a self-evaluation and feedback
mechanism.

B. Basic Machine Speech Chain

The basic machine speech chain [23] trains sequence-to-
sequence ASR and TTS together by connecting them via
closed-loop feedback in a semi-supervised approach, shown in
Fig. 3. During inference, ASR and TTS perform separately.
The ASR and TTS are the sequence-to-sequence (seq2seq)
neural networks consisting of the encoder, decoder, and attention
module [38].

Machine speech chain training consists of two stages: super-
vised and unsupervised training. The supervised training stage
is done by training the ASR and TTS independently with a
small amount of paired speech-text data. This stage acts as a
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s | (A
%= toxt § - i |
[(ASR }--------- : [ TTS feeeoeeee- |
y= % x = text
(a) (b)

Fig.3. Basic machine speech chain feedback loop unrolled into two processes:
(a) ASR-to-TTS and (b) TTS-to-ASR.

knowledge initialization phase for both models. In the unsu-
pervised training stage, ASR and TTS are trained together via
closed-loop feedback using the unpaired speech and text data. In
this stage, ASR and TTS support each other through the mutual
use of the feedback. The feedback loop consists of two unrolled
processes:

e ASR-to-TTS. ASR transcribes a speech utterance y,
with a length 7', into a sentence text &, and then TTS
generates a speech utterance y based on ASR output
&. A training loss is calculated based on the origi-
nal speech y and TTS speech ¢ to optimize the TTS
system.

e TTS-to-ASR. Given a complete sentence text  with a
length S, TTS generates speech ¢ and ASR transcribes the
TTS speech ¢ into text &. A loss is calculated based on the
original text & and ASR output text & to optimize the ASR
system.

As explained earlier, in this work, we propose an advanced
version of a machine speech chain that applies a feedback mech-
anism during training and inference with transformer-based TTS
and ASR.
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Fig. 4.
embedding, and (d) variance adaptor [39] modules.

III. PROPOSED NON-INCREMENTAL TTS IN MACHINE SPEECH
CHAIN FRAMEWORK

A. Overview

When the environment becomes noisy, our TTS tries to
synthesize the speech with higher intensity, higher pitch, and
slower speed than the speech before the adaptation. The basic
or standard TTS is based on the MultiSpeech framework [19],
which is a multi-speaker transformer TTS with an encoder and
an autoregressive decoder [19]. To achieve dynamic adaptation,
we extended the basic structure with auditory feedback modules
(ASR-loss embedding and SNR embedding) and a variance
adaptor; an overview of this architecture is given in Fig. 4(a).
The proposed TTS generates the speech Mel-spectrogram y =
[y1, Y2, - .-, yr| with a length of T" given the character sequence
x = [x1,29,...,xg] with length S. The proposed TTS adapts
the speech prosody attributes by also taking the auditory feed-
back in SNR embedding (zsyr) and ASR-loss embedding
(zasr) as input. In inference, adaptation is done in several feed-
back iterations until ASR loss converges. The conversion of the
Mel-spectrogram into a waveform is done using a CBHG (1-D
Convolution Bank + Highway + bidirectional GRU) module
and the Griffin-Lim algorithm, similar to the Tacotron frame-
work [17].

We use a speaker recognition module implementing the
DeepSpeaker framework [40] to generate the speaker embed-
ding vector for our multi-speaker TTS, following the imple-
mentation of TTS in the basic machine speech chain frame-
work. The module generates the embedding vector zgpx =
Speaker Embedding(y) from a Mel-spectrogram to represent
the speaker identity using a convolution network-based struc-
ture. We pre-train the DeepSpeaker model, and the weight is
maintained during the TTS training for stable embedding. Inside

Architecture: (a) proposed TTS with an autoregressive transformer-based encoder-decoder structure, extended with (b) ASR-loss embedding, (c) SNR

the TTS, speaker embedding is merged with the encoder output
and the decoder input.

In this study, we construct three TTS models with different
feedback configurations to investigate the effect of auditory
feedback in the machine speech chain framework. Each system
is trained using normal speech and Lombard speech.

1) TTS With SNR Feedback: The proposed TTS synthesizes
speech based on text input and SNR feedback as embedding.
The SNR feedback represents the SNR or speech and noise
intensity ratio, which is a measure of how well the TTS speech
can be heard in a noisy environment. Commonly, SNR can be
calculated by measuring the intensities of the speech and noise
separately. However, separating speech and noise in a real-world
situation could be challenging because, for example, noises
might dynamically change. In our approach, we use machine
learning as a neural network to obtain the SNR directly from
noisy speech, where the speech and noise are mixed. Given an
SNR embedding, the proposed TTS attempts to re-synthesize
speech with a higher SNR (> 20 dB), indicating that the speech
is louder than the noise.

We implement the SNR embedding module using convolution
network layers with an average pooling operation (Fig. 4(c)).
This generates an utterance-level embedding zg r from noisy
TTS speech features y™°*V:

258k = SN R Embedding(y"°**Y). (1)

Before training the TTS, we pre-train the SNR embedding
module (Conv + ReLU and ResBlock) as an SNR recognition
module so that the TTS can converge faster. We can initialize
the SNR recognition model as a classification or a regression
model. The SNR recognition model recognizes the average SNR
in an utterance. In SNR classification, we first define several
SNR classes. Here, the SNR recognition model generates SNR



NOVITASARI et al.: MACHINE SPEECH CHAIN APPROACH FOR DYNAMICALLY ADAPTIVE LOMBARD TTS

embedding vectors by learning to classify the SNR given noisy
speech utterances. Model optimization is done by minimizing
the cross-entropy loss:

Losssnr-crs(l,pr)

Z]l

Cll

) *logmle],  (2)

where [ is the reference SNR label, p; is the predicted SNR
probability, and C; is the number of SNR classes. On the other
hand, the SNR regression model is trained to estimate the SNR
as a real value. It is optimized using L2 loss:

(1-1)2 3)

where [ is the predicted SNR at the utterance level.

Inside the TTS encoder, SNR embedding vector zgyp iS
integrated with the TTS encoder transformer output hy,.,,, and
speaker embedding zg p - to obtain the final TTS encoder output
h€, written as

Losssnr-rec(l,1) =

h® = h{pm, + 2sPK + 2SNR- 4

On the decoder side, embedding vectors zgpx and zgnyp are
also combined with the decoder pre-net output and the positional
encoding PE to obtain the decoder intermediate input y;_;:

yi_y = prenet(y—1) + zspi + 2snr + PE. 5)

Following this, the decoder multi-head attention query, key, and
value are the encoder output and decoder input that have been
embedded with the auditory feedback.

TTS model optimization is done based on the standard trans-
former TTS loss function:

Losstrs(Y, f’)

*Z ye = Jt)?

(1= be)log(1 = by))),

(6)

— (b log(by) +

where Y = [y, b] and Y = [§, b]. b and b are the reference and
the predicted probability of stop token that marks the end of
speech.

2) TTS With SNR-ASR Feedback: The proposed TTS gener-
ates speech based on text input and auditory feedback in SNR
and ASR-loss embedding. The ASR-loss embedding, shown in
Fig. 4(b), represents the speech intelligibility measurement of
how well the noisy TTS speech can be recognized by an ASR.
ASR-loss embedding vector z4gp is generated by transcribing
anoisy TTS speech using an ASR, which is written as

p (mlyn()léy) (7)

where p, is the ASR posterior, and then calculating the loss
between the ASR hypothesis and the TTS input text. The ASR-
loss embedding module, which is a stack of convolutional lay-
ers with average pooling, produces z4sr as an utterance-level
embedding by taking Lossasr(x, p.), which is a sequence of
character-level loss in a sentence:

zasr = ASR Loss Embedding(Lossasr(x,ps)), (8)
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Here, suppose a sentence text x consists of .S characters, the s-th
character (z,) loss is calculated by

ZII

where Losssr(xs, pz,) is the character-level loss and C' is the
size of ASR output vocabulary. ASR text decoding is done by
teacher-forcing mechanism based on the TTS text input.

Inside the main part of TTS, ASR-loss embedding is com-
bined with the TTS encoder output and the decoder input along
with the speaker and the SNR embedding vectors:

Loss asr(®s, Px.) ) *log pe [c],  (9)

h® = hp, + 2sPK + 2SNR + 24SR, (10)

y,ﬁ,l = prenet(yi-1) + zspk + 2sNr + 2asr + PE. (11)

In the proposed TTS training and inference, we use a pre-
trained ASR to transcribe TTS speech. The ASR-loss embedding
module is trained directly during TTS training without a pre-
training step. TTS optimization is done by minimizing the TTS
loss in (6).

3) TTS With SNR-ASR Feedback and Variance Adaptor: In
addition to the SNR and ASR-loss embedding feedback, we
implement a variance adaptor module in the proposed TTS with
a similar approach to FastSpeech2 [39]. The variance adaptor
is intended to guide the prosody adaptation by predicting the
prosody attributes from the encoded text input and the auditory
feedback. The variance adaptor, shown in Fig. 4(d), consists of
three components: a pitch predictor, an intensity predictor, and
a duration predictor. This module is applied in the TTS encoder
and provides the following output:

h® = Var Adaptor(hf,,, + zspx + 2sNr + zasr). (12)

The decoder input follows (11). In our duration predictor, instead
of predicting the token duration as an integer to regulate the
encoder output length like in the original FastSpeech2 frame-
work, it estimates the duration as a real value similar to the other
predictors. The encoder output length in our model follows the
standard autoregressive transformer TTS.

The proposed TTS with variance adaptor is trained with the
standard TTS loss function combined with the variance predictor
losses. The variance predictor loss is calculated by the MSE loss
function:

Lossprea(v, ) (13)

138

E Z - Us )
where vy is the normalized reference value for the predictors
inside the variance adaptor and v, is the predictor output at
timestep s. The reference intensity, pitch, and duration are esti-
mated from the TTS reference output speech. The TTS training
loss function becomes

LossTTs(Y f/)

TZ ye — 1) — (bylog(by) + (1 — by) log(1 — by)))
+ LosSpred(v ol P) + LoSSpred(v G,'f)G)
+ Losspred('vD, D) (14)
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B. Training Method

The proposed TTS training method is illustrated in Fig. 5. To
enable dynamic adaptation, we train the proposed TTS using
inputs, consisting of text and auditory feedback embedding vec-
tors, and an output target, which is reference speech representing
the speech after adaptation. Auditory feedback represents the
speech condition before it is adapted into the target speech.
In training, the SNR embedding is pre-computed from clean
or noisy normal speech in the training data, while ASR-loss
embedding is computed from TTS speech generated during
training. Therefore, the speech data required for training are
the clean normal speech, the normal speech with additive noise
(noisy normal speech), and the clean Lombard speech.

For speech synthesis and adaptation with the re-speaking
mechanism, we trained the proposed TTS in one or two feedback
loops based on the type of architecture:

1) TTS training with SNR feedback: For the proposed TTS
without the ASR-loss embedding module, we apply one-
loop training using pre-computed SNR embedding and
text based on the training data.

2) TTS training with SNR-ASR feedback: For the pro-
posed TTS with the ASR-loss embedding module, we
generate speech in two feedback loops. The SNR embed-
ding vector is calculated in the first loop based on the
training data, and we use the same vector in the second
loop. The ASR-loss embedding is calculated in the second
loop based on the TTS speech generated in the first loop,
thus, the TTS can learn the ASR-loss pattern based on
the synthesized speech for a more realistic ASR feedback
processing.

We consider two target conditions: clean and noisy. In the
clean condition, the proposed TTS produces normal speech
without the Lombard effect. In the noisy condition, the proposed
TTS produces Lombard speech. We apply batch training to
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train the proposed TTS in which a batch consists of a mix of
speech samples for clean and noisy conditions. The details of
the training mechanism are described below with two feedback
loops based on the type of target condition:

1) TTS training in clean condition: Speech generation is
learned using text and clean normal speech data. Normal
speech is speech which is uttered in a clean condition
without the Lombard effect. It has alower intensity, alower
pitch, and a faster speaking rate than Lombard speech. In
the training, the SNR embedding and the output speech
reference are based on clean normal speech. Therefore,
before starting the training, we first compute the SNR
embedding from clean normal speech. In the first feedback
loop, TTS generates normal speech by taking the text, pre-
computed SNR embedding, and ASR-loss embedding in
a zero vector as the input. In the second feedback loop, we
repeat the same process but use the ASR-loss embedding
computed from the TTS speech features predicted in the
first loop.

2) TTS training in noisy condition: Speech generation is
learned using text, noisy normal speech, and clean Lom-
bard speech with high SNR and low ASR loss in the
corresponding noisy condition. Clean Lombard speech is
a speech under the Lombard effect but without noise in
the audio. In our experiment, the clean Lombard speech
is a synthetic Lombard speech generated by modifying
the prosody of normal speech (intensity, pitch, dura-
tion) into Lombard speech using SoX audio manipula-
tion toolkit [41], [42]. Noises were not included in the
resulting audio. The detail is discussed in Section V. In
the training loop, we use SNR embedding generated from
noisy normal speech in the training data and the text as the
input and the Lombard speech as the target. The ASR-loss
embedding generation and utilization method are the same
as those in the clean condition case. In the first loop,
ASR-loss embedding is a zero vector. In the second loop,
the ASR-loss embedding is generated from TTS speech
features generated in the previous loop.

IV. PROPOSED INCREMENTAL TTS IN MACHINE SPEECH
CHAIN FRAMEWORK

A. Overview

The proposed ITTS in the machine speech chain framework
synthesizes the speech incrementally with the auditory feedback
(Fig. 2(b)). Our ITTS incremental unit is fixed to W words. It
is a complex task to incrementally synthesize a well-performed
speech based on short text. ITTS has to decide on the speech
output based on a short information sequence, while speech has
a continuous representation and heavily depends on context.
A general approach to improving performance is to introduce
contextual look-back words and look-ahead words in the input
text window [43]-[45].

Incremental speech synthesis and adaptation are done by
generating and utilizing auditory feedback incrementally or
progressively. In the first incremental step, ITTS synthesizes the
first W words of speech. Then in the second incremental step,
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Fig. 6. (a) Proposed PCD-ITTS structure with (b) power context embedding
module.

we compute the feedback embedding from the first incremental
step’s speech and use it to synthesize the next W words of
speech. For the third incremental step and beyond, we repeat
the same process by taking the previous step’s output as the
feedback.

ITTS not only has to speak more loudly when noises begin but
also continue to speak loudly while the noise remains. SNR in-
formation, which contains the environmental information, only
reveals the ratio between the speech intensity and noise intensity,
and it might be insufficient to continuously induce ITTS to
speak with the Lombard effect. Therefore, we construct two
ITTS systems based on how the system treats the intensity-based
context.

1) Power-Context Dependent ITTS (PCD-ITTS): The pro-
posed ITTS architecture, shown in Fig. 6(a), is based on the
non-incremental TTS structure with SNR embedding, ASR-loss
embedding, and variance adaptor (see Sec. III-A3). In addition
to SNR and ASR-loss embeddings, ITTS also takes a power-
context embedding (Fig. 6(b)) that contains the intensity infor-
mation of the previous speech output. By using the intensity cues
along with the auditory feedback, we aim to help ITTS control
the speech better. This not only helps to control the intensity but
also the Lombard speech in overall.

Power-context embedding takes ITTS speech without noise
from the previous incremental step and then outputs an embed-
ding vector representing the intensity information. This module
consists of the convolution network layers. Before ITTS training,
we pre-train the power-context embedding as a speech intensity
or power recognition model.

Inside the ITTS, feedback embeddings are used to compute
the encoder output A, written as

5)
(16)

% = ZSPK 1+ ZSNR + ZASR,
h¢ = Var Adaptor(FNN ([h{,,, + 2z, zrow])),
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and also the decoder first transformer layer input

y§—1 = FNN([prenet(ys—1) + PE+ z,zpow]), (17)

where zpow is the power context embedding vector. To produce
accurate embedding, we pre-train all feedback components for
incremental tasks.

2) Power-Context Independent ITTS (PCI-ITTS): PCI-ITTS
architecture is similar to PCD-ITTS but without the power
context embedding. The SNR and ASR-loss embedding vectors
are also generated from the noisy speech segment in the previous
step and are utilized as feedback to generate the speech segment
in the current step.

B. Intensity Post Adaptation

The proposed ITTS has an adaptation delay when adapting
to the environment. ITTS synthesizes a speech segment in an
incremental step by looking at the speech generated in the
previous step. This implies the adaptation is delayed by one
incremental step. In an environment with increasing noise, the
unadapted speech segment could have low audibility.

To remedy this problem, we apply a straightforward additional
intensity modification after the ITTS synthesizes the speech
segment, done incrementally on the M-ms unit for each ITTS
incremental step (Fig. 7). First the system plays the M/ -ms speech
segment and then it estimates the SNR of that segment, which has
been fused with noises. The SNR of the latest speech segment
is then used to improve the next M-ms speech part and so
on. Intensity modification is done when the SNR is below a
pre-defined threshold.

C. Training Method

The proposed ITTS is trained with a similar method as the
proposed non-incremental TTS, but with two differences. First,
the feedback loop is done once. The SNR embedding vector
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is pre-computed from the speech data in the training materials,
while the ASR-loss embedding vector is computed based on the
ITTS speech segment generated in the earlier incremental step.
Second, the speech synthesis in noise to produce the Lombard
speech is learned through two cases. The first case is when
the pre-computed auditory feedback is generated from noisy
normal speech. In this case, ITTS tries to learn how to change the
speech prosody attribute from normal to Lombard speech, and
the training method is similar to the non-incremental version.
The second case is when the pre-computed auditory feedback
is generated from noisy Lombard speech. Here, ITTS learns
how to maintain or improve the prosody attributes while the
environment is still noisy.

V. DATASET

Our systems are constructed using normal speech, normal
speech with additive noise (noisy normal speech), and Lombard
speech datasets. Since the availability of Lombard speech data
is limited, we constructed a synthetic Lombard speech dataset
by observing the natural Lombard speech and modifying the
normal speech into Lombard speech.

Our experiment was based on the Wall Street Journal (WSJ)
corpus [25]. TTS training was done based on three static noise
conditions containing noises from (1) clean, (2) SNR 0 dB, and
(3) SNR -10 dB conditions, where SNR is relative to normal
speech of 44.44 dB in WSJ. The proposed TTS with a variance
adaptor was also trained using the character-level prosody at-
tribute labels. These labels were generated by first extracting a
character-level speech timing using Montreal forced-alignment
toolkit [46]. The details of the data we constructed from WSJ
and then utilized for model training are given below.

A. Normal Speech

The WSJ dataset consists of multi-speaker English speeches
recorded by reading news text in a clean condition, sampled
at 16 kHz. We utilized the SI-284, dev93, and eval92 sets as
the training, development, and evaluation sets. The SI-284 set
consists of 81 hours of speech. The average speech intensity
in WSJ utterances was 44.44 dB. A speech utterance length is
7.88 sec and 17 words on average.

B. Normal Speech With Additive Noise

We combined the WSJ normal speech with noisy sounds to
train our system. The noises were white? and restaurant babble?
noises with SNR levels of 0 dB and -10 dB relative to the
WSIJ speech. This dataset was mainly utilized to train the SNR
recognition model and ASR.

C. Natural Lombard Speech

To learn how human vocalization changes in noisy conditions,
we recorded natural Lombard speech with a single male speaker

2Generated using white-noise-generator toolkit ([Online]. Available: https:/
github.com/jannispinter/white-noise- generator)
3From the noise sounds in AURORA-2 corpus [47]
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TABLE I
STATISTIC OF THE NATURAL LOMBARD SPEECH SPOKEN BY A SINGLE
MALE SPEAKER

Noise Noise Speech
source Intensity | Intensity Pitch Speaking rate
condition (dB) (dB) (Hz) (words/sec)
Clean - 56.92 124.63 2.05
SNRO 44.44 59.73 132.56 1.99
SNR-10 54.44 63.68 143.23 1.93

who read the WSJ dev93 and eval92 set transcriptions in noisy
conditions. The noises in the recording were the same noises
generated for our normal speech dataset with additive noise.
The noise level is considered constant within an utterance. Given
only the noise signals, the speaker read aloud the WSJ text as if it
were aimed at someone in a noisy condition. Then, we estimated
prosody attributes from the normal and the Lombard speech in
phoneme-level detail, and the averages of these values can be
seen in Table I. For comparison, we also recorded the normal
speech in the clean environment as well as in the dynamic noise
environments with the same speaker.

D. Synthetic Lombard Speech

Next, based on the prosody attribute changes observed in the
recorded Lombard speech, we constructed synthetic Lombard
speech of a full set of WSJ data. Synthetic Lombard speech was
made by modifying the original WSJ speech pitch, duration, and
intensity.* First, since the WSJ speech consists of multi-speaker
data, to maintain the speaker characteristics, we modified the
speech pitch and duration based on the attribute shift between
the clean and noisy conditions based on the statistic as shown
in Table I. The modification was done by, first, aligning the
Lombard speech and the normal speech in our recording data,
and then estimating the attribute shifts at phoneme-levels. Next,
we estimate the pitch and duration of normal WSJ speech at
phoneme-level. Then, based on the database of the prosody
shifts in the recording data, the target noise, and the value of the
WSIJ normal speech prosody attributes, we estimate the target
pitch and the duration and modify the corresponding normal
speech using SoX commands. After that, we modified the speech
intensity into a target SNR of 20 dB relative to the noise level.
The maximum intensity of the resulting Lombard speech was
75 dB to avoid clipping. This dataset was utilized as the target
Lombard speech in the TTS training.

VI. EXPERIMENT

A. Experiment Setting

1) TTS Model: Our TTS model consists of a transformer-
based encoder and autoregressive decoder. The TTS input was
the character sequence, and the output was the 80 dimensions of
the Mel-spectrogram. The encoder character embedding layer
consists of 256 units, followed by an encoder pre-net that con-
sists of three convolution layers. In the decoder part, the decoder

4The speech pitch, duration, and intensity were modified using the SoundEx-
change (SoX) toolkit ([Online]. Available: http://sox.sourceforge.net/).
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pre-net consists of three linear layers. For both the encoder and
decoder, the transformer module consists of six transformer
blocks with a dimension of 512, eight attention heads, and a
feed-forward inner dimension size of 2048.

The ITTS model configuration, as well as the feedback com-
ponents architecture, was the same as for the non-incremental
TTS. The ITTS incremental unit was three words with the
previous ten words as the look-back input and the next two words
as the look-ahead input. In the training material, the speech
segment length in an incremental unit was 1.40 sec on average.
Word sequence was converted into a character sequence before
given to the ITTS.

2) ASR Model: Our ASR takes a sequence of speech Mel-
spectrogram input to predict its character level transcription.
The model configuration follows a similar configuration to the
big model proposed in Speech-Transformer [48]. It consisted of
twelve encoder layers and six decoder layers. The transformer
dimension was 512 with the feed-forward inner dimension
of 2048. The attention module consisted of multi-head self-
attention with four heads. We prepared two ASR systems to
evaluate the TTS in the ASR objective measure. One was trained
in a clean condition only and the other one was trained under
multiple conditions (mixed clean and noisy speech data). The
multi-condition training ASR was also used to compute the TTS
ASR feedback. ASR feedback for non-incremental TTS was
generated using a standard utterance-level ASR.

In the ITTS, we utilized the ASR trained on short speech
segments in which we treat a speech segment as an utterance.
The segment length in ASR training was randomized in a range
from one to five words.

3) SNR Recognition Model: The SNR recognition model
consisted of four stacks of convolution and residual blocks and a
linear layer. As mentioned earlier, we experimented on two SNR
recognition tasks: classification and regression. The difference
between those models lies in the output layer size. The SNR
classification model output layer dimension was three based on
the number of SNR classes: SNR 0 dB, SNR -10 dB, and clean
(no noise). The SNR regression model output layer dimension
was one, and the SNR level was output as a real number scaled
in the range of -1 to 1.

The SNR recognition model for the non-incremental TTS was
trained torecognize the average SNR of a noisy speech utterance.
For the ITTS, we also trained the model on short speech seg-
ments. Here, the speech segment length was randomized among
lengths of one to five words.

4) Power Recognition Model: The speech power recognition
model was first trained for the intensity regression task. It
consisted of four stacks of convolution and residual blocks and a
linear layer. Before ITTS training, this module was trained to do
short speech intensity recognition, where the speech length was
randomized among lengths of one to five words. The training
label was the speech intensity scaled in the range of -1 to 1.

5) Intensity Post Adaptation: The intensity post adaptation
incremental unit was 200 ms. We modified the speech intensity to
reach SNR 20 dB in noisy conditions using the SoX toolkit. SNR
estimation was done using the SNR regression model trained on
short speech segments. This model is the same model utilized
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as the SNR embedding module in the proposed ITTS. In this
paper, we do not take the computation time into account in the
speech performance evaluation.

B. Non-Incremental TTS in Static Noise Conditions

1) Overall Comparison: In this study, we focused on evalu-
ating TTS speech intelligibility in clean and noisy conditions,
and the results in ASR character error rate (CER) are shown
in Table II. All TTS systems generated speech using speaker
embedding extracted from the normal natural speech in our
recording data. The clean condition testing was done using TTS
speech without noise, and the noisy condition testing was done
using noise signals of the corresponding SNR condition. SNR
levels here are the initial SNR conditions before adaptation. The
proposed TTS with ‘SNR (cls)’ generated SNR feedback based
on SNR classification, while the system with ‘SNR (reg)’ was
based on SNR regression. We allow the proposed TTS to refine
the speech in five feedback iterations at most, and we present
the speech that achieved the lowest ASR loss. We compared
our proposed systems with several baselines: (1) the standard
TTS trained using normal speech from a clean condition, in
which the speech in noisy testing was merged with the noise
without any modification; (2) the rule-based modification into
the Lombard speech, in which the original output of the standard
TTS was modified by the same method as that used in the
synthetic Lombard WSIJ speech construction; (3) the standard
TTS that was fine-tuned to Lombard speech [22]; and (4) the
standard TTS trained on normal and Lombard speech. Note that
these systems did not have feedback components and were also
trained based on static noise conditions. The topline speech is
the natural clean and Lombard speech produced by a human. We
also included synthetic modifications from the natural human
speech.

From the baseline results, we found that the speech CER
of the standard TTS from clean condition training could be
reduced by post-processing the speech prosody into Lombard
speech-like. We also obtained further improvement by fine-
tuning the standard model using Lombard speech data. However,
by incorporating SNR and ASR feedback together, the proposed
models were able to outperform the fine-tuned baseline models
and more closely approached the CER of topline human speech.
In this experiment, the best TTS performance was achieved by
the proposed TTS with SNR classification-based feedback, ASR
feedback, and a variance adaptor.

2) Effect of SNR and ASR-Loss Embedding on TTS Perfor-
mance: Using the best proposed system, we analyzed how the
SNR and ASR-loss embedding affected the TTS performance.
To clarify this, we experimented on the various embedding co-
efficients to scale the SNR and ASR-loss embedding when they
were combined into TTS encoder output h® and the decoder’s
first transformer layer input i ;. From the results shown in
Fig. 8, SNR feedback alone is shown to be sufficient to improve
the speech intelligibility in noise, but it did not result in the
best performance in our setting. Using only ASR feedback
could result in the best TTS speech when the condition is
clean. This shows that ASR feedback also contributed to speech
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TABLE II
AVERAGE TTS SPEECH INTELLIGIBILITY (CER %) AT DIFFERENT SNR LEVELS IN BABBLE- AND WHITE-NOISE CONDITIONS USING CLEAN- AND
MULTI-CONDITION TRAINING ASR. SNR LEVELS DENOTE THE SNR CONDITION BEFORE ADAPTATION WAS PERFORMED

System Clean condition training ASR Multi-condition training ASR
Clean | SNRO | SNR-10 || Clean | SNR 0 | SNR -10
Baseline TTS
Standard TTS (Clean) 18.92 118.72 106.25 18.32 70.54 77.07
+ Rule-based modification 18.92 | 102.96 104.69 18.32 43.25 55.79
+ Fine-tuning (SNR 0 + SNR -10) 13.58 68.53 94.75 14.82 21.99 37.41
Standard TTS (Clean + SNR 0 + SNR -10) 11.04 114.36 102.83 12.89 56.57 70.41
Proposed TTS
TTS in speech chain framework 11.04 | 114.36 102.83 12.89 56.57 70.41
+ SNR (cls) 10.21 83.15 101.41 11.58 22.82 42.00
+ SNR (cls) + ASR 10.76 52.51 87.72 12.55 16.11 25.62
+ SNR (cls) + ASR + variance adaptor 10.47 55.70 92.75 11.99 14.70 24.96
+ SNR (reg) + ASR + variance adaptor 12.63 66.84 86.41 13.52 18.57 31.19
Topline (human natural speech)
Normal speech 5.77 92.56 98.98 7.43 22.17 58.81
+ Rule-based modification 5.77 58.40 67.78 7.43 13.24 15.15
Lombard speech 5.77 25.38 59.25 7.43 11.46 20.46
mmm Clean  mmm SNRO  mmm SNR-10 each inference iteration, TTS continuously received ASR-loss
45 embedding and SNR embedding based on the speech that needs
to be improved, from which the TTS obtained the current in-
L telligibility information, leading to better speech performance
¥ 25 Bl along with the increased number of loops. Humans during
(uj conversation, by comparison, might speak with the Lombard
[ | | N | - effect in several trials so that their speech could be heard over
5 the noise. Our results reveal that a machine can also dynamically
ASR coeff. 1 1 1 05 0 adapt in several loop iterations, similar to a re-speaking attempt.
SNR coeff. 0 0.5 1 1 1

Fig. 8.  Effect of auditory feedback on the TTS speech intelligibility based on
the embedding coefficients.

mmm Clean  wmm SNRO  mmm SNR-10

50

30

CER(%)

10

1 2 4 8

feedback loops

Fig. 9. Proposed TTS speech intelligibility in different numbers of feedback
loop iterations.

enhancement. But when the environment becomes noisy, SNR
feedback becomes critical to the system. Here the optimum per-
formance is when the SNR embedding and ASR-loss embedding
coefficients are equal to one, indicating that both feedbacks are
crucial to the Lombard effect by TTS.

The number of feedback loop iterations also affected our
system. Interestingly, the training loop consisted of only two
iterations, but in inference, a higher number of loops resulted
in better speech intelligibility as shown in Fig. 9. Here, for

3) Speech Prosody Attributes: We analyzed the improve-
ment in speech prosody attributes in our Lombard TTS as well
as in human Lombard speech. Here, we focus on improving
speech intensity, pitch, and duration. The value of TTS speech
prosody attributes are shown in Table III with a visualized
example in Fig. 10. The results show that our proposed TTS
produced speech with a higher intensity and longer duration in a
noisy environment than the normal speech. The adaptation also
included an increase in the pitch compared to the normal speech,
which is also shown in Fig. 11. We also evaluated the FO mean
squared-error (MSE) to compare the TTS and human speech in
Table IV. The best MSE was achieved by the proposed TTS with
‘SNR (reg)’ feedback, ASR feedback, and a variance adaptor,
showing that it created synthesized Lombard speech pitch that
is closer to human Lombard speech.

The systems with SNR and ASR feedback show a higher
improvement than the system with SNR feedback only. They
produce speech with higher intensity, pitch, and duration or
a slower speaking rate. Here TTS with ‘SNR (reg)’ resulted
in more dynamic intensity and pitch than the TTS with ‘SNR
(cls).” This could be related to the model’s output precision in
representing the SNR, which is discussed in section VI.C in more
detail. In Table II, TTS with ‘SNR (cls),” ASR feedback, and
variance adaptor show higher intelligibility because its Lombard
speech was louder than that from TTS with similar auditory
feedback using ‘SNR (reg).’

Interestingly, our proposed TTS Lombard speech was louder
than the human Lombard speech, but human speech had better
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TABLE III
AVERAGE VALUE OF TTS PROSODY ATTRIBUTES
Intensity Pitch Speaking rate
System (dB) (Hz) (words/sec)
Clean | SNRO [ SNR -10 | Clean | SNRO | SNR -10 | Clean [ SNR 0 [ SNR -10
Baseline TTS
Standard TTS (Clean) 43.58 120.98 3.37
+ Fine-tuning (SNR 0 + SNR -10) 66.30 122.62 3.05
Proposed TTS
TTS + SNR (cls) 45.59 61.01 61.10 123.79 | 123.31 123.09 3.14 3.07 3.07
TTS + SNR (cls) + ASR + variance adaptor 43.77 67.28 67.37 116.80 | 123.69 123.86 3.35 2.99 3.00
TTS + SNR (reg) + ASR + variance adaptor 54.32 62.65 64.20 122.81 | 124.88 125.15 2.93 2.80 2.79
Topline (human natural speech)
Normal/Lombard speech [ 5692 [ 5973 [ 63.68 [] 124.63 [ 13256 [ 14323 [ 205 | 199 [ 193
TTS+SNR (cls) = Noise Normal speech Lombard speech

Fig. 10.

Hz 160 | Lombard speech

~ = = Human

—— TTS + SNR (cls)

—— TTS + SNR (cls) +
ASR + variance adaptor

=1 = TTS + SNR (reg) +

ASR + variance adaptor

140

120

~i Normal speech
-~ -~

100 Sa ~ = Human
0.05 0.1 0.15 0.2 0.25 sec = Standard TTS (Clean)

Fig. 11.  Normal and Lombard speech pitch of the word “ruling” produced
by human and TTS. The Lombard speech was produced in a babble noise with
an intensity of 60.35 dB. Natural speech was spoken by a male speaker. TTS
speech was generated using a speaker embedding of the same speaker.

TABLE IV
FO MSE BETWEEN TTS SPEECH AND NATURAL SPEECH
System [ Clean | SNRO | SNR -10

Baseline TTS
Standard TTS (Clean) 0.231 0.283 0.380
+ Fine-tuning (SNR 0 + SNR -10) 0.216 ‘ 0.278 ‘ 0.368

Proposed TTS
TTS + SNR(cls) 0.256 0.318 0.406
TTS + SNR(cls) + ASR + variance adaptor 0.239 0.296 0.369
TTS + SNR(reg) + ASR + variance adaptor 0.214 0.266 0.367

Intensities of the normal speech and Lombard speech produced by human and TTS in the babble-noise condition. The speech transcription is the same.

intelligibility. Here human spoke more slowly with a higher pitch
than TTS. This shows that the simultaneous enhancement of
these three attributes is necessary. Our proposed TTS speech
was shorter than human speech, perhaps due to the speaking
rate difference between the speech in WSJ training materials
and our natural Lombard speech data. In natural speech, the
Lombard effect is not simply a temporal envelope expansion
from normal speech and it produce more pronounced amplitude
modulations in noise [49], which is not limited to intensity, pitch,
and duration enhancement. This might also be the reason for
the performance difference between human and TTS speech,
since our TTS was trained using Lombard speech with a focus
on prosody improvement. Speech naturalness might have also
contributed to intelligibility.

The proposed TTS in the machine speech chain framework
successfully improved the speech intelligibility in noisy condi-
tions. However, a high adaptation delay still occurs because the
feedback is processed at the utterance level. Thus, if the envi-
ronment becomes noisier in the middle of an utterance, TTS has
to wait for the utterance to finish to begin the adaptation. In the
next experiment, we focus on ITTS with machine speech chain
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TABLE V
AVERAGE TTS SPEECH INTELLIGIBILITY (CER%) IN BABBLE- AND WHITE-NOISE CONDITIONS BASED ON MULTI-CONDITION TRAINING ASR. SNR EMBEDDING
IN THE PROPOSED SYSTEMS WAS GENERATED USING SNR CLASSIFICATION (CLS) OR REGRESSION (REG)

Svstem Static Noise Dynamic Switch Noise Dynamic Smooth Noise
y Clean, SNR 0, Clean, SNR 0,
Clean | SNR O | SNR -10 SNR 0, Clean, SNR 0, Clean,
SNR -10 SNR -10 SNR -10 SNR -10
Baseline Non-incr tal TTS
Standard TTS (Clean) 1832 | 70.54 77.07 53.64 4977 4739 45.11
+ Fine-tuning (SNR 0 + SNR -10) 14.82 21.99 37.41 20.30 20.33 19.41 18.74
Proposed Non-incremental TTS
TTS + SNR (cls) + ASR + var.adaptor (speak 5x) 11.99 14.70 24.96 61.94 70.98 28.09 17.88
TTS + SNR (reg) + ASR + var.adaptor (speak 1x) 14.76 3291 56.42 27.88 26.60 28.48 28.22
+ intensity post adaptation 14.76 21.43 27.23 20.32 20.57 20.22 19.70
TTS + SNR (reg) + ASR + var.adaptor (speak 5x) 13.52 18.57 31.19 16.95 18.70 18.00 17.57
+ intensity post adaptation 13.52 16.16 22.37 14.54 14.62 13.94 12.97
Proposed Incremental TTS (ITTS)
PCI-ITTS + SNR (reg) + ASR + variance adaptor (speak 1x) 18.96 38.26 60.64 34.90 32.00 34.02 33.69
PCD-ITTS + SNR (reg) + ASR + variance adaptor (speak 1x) || 14.42 | 23.32 41.89 26.96 28.13 23.48 22.53
+ intensity post adaptation 14.42 20.59 31.05 20.64 17.30 20.10 20.99
Topline (human natural speech)
Normal speech 7.43 22.17 58.81 32.10 32.93 15.04 14.97
+ Rule-based modification 7.43 13.24 15.15 2241 23.25 12.37 12.60
Lombard speech 7.43 11.46 20.46 22.92 17.77 - -
to start the adaptation with a short delay, i.e., approximately one —— Speech Noise Adaptation delay
sec or three words in our setting. T
100
C. ITTS in Dynamic Noises 75
We evaluated our systems under two types of dynamic noise @B
conditions: (1) switch noise and (2) smooth noise, as well as 30
in the static noise condition. In switch noise, noise intensity 25
changed without transition, while in smooth noise conditions the y (\
noise intensity changed gradually. The baseline, the proposed 0La
non-incremental TTS, and the proposed ITTS intelligibility 2 4(Sec) 6 8
measured in ASR CER are shown in Table V.
First, we evaluated the proposed non-incremental TTS intel- 100 PCD-ITTS + post intensity adaptation
ligibility in dynamic noises. We ran our TTS to speak five times
at most, assuming that the noise conditions in all re-speaking 75
attempts were the same. From the results, the non-incremental @B)
TTS with SNR classification feedback could not perform well 30
in dynamic switch noise. Meanwhile, the system with SNR 25 ﬂ
regression feedback was more robust; it synthesized a highly t ‘
intelligible speech in dynamic noises. This is because the SNR (e 7 " 3 3
regression model could recognize the SNR in dynamic noise (sec)
conditions more accurately as a real value than the SNR clas-
Fig. 12. PCD-ITTS speech intensity with and without the intensity post

sification model. SNR classification categorized the dynamic
noises into pre-defined classes, which might not represent the
actual SNR level. For this factor, in further experiments, we
focus only on systems with SNR regression feedback.

In the proposed incremental speech synthesis without the in-
tensity post adaptation, PCD-ITTS produced a more intelligible
speech than the PCI-ITTS. This indicates that power context
embedding in PCD-ITTS is critical to maintaining speech in-
telligibility. When we manually inspect the utterances made
under the static noise conditions, we hear an intensity fluctuation
in the PCI-ITTS speech. For example, PCI-ITTS speaks with
a Lombard effect at the initial incremental step more loudly
than the noise, resulting in an SNR of 20 dB. In the next
step, it produces a speech segment with a reduced intensity,
since the SNR might suggest a less noisy condition. Meanwhile,

adaptation with a 200-ms incremental unit in the dynamic switch noise condition.

the PCD-ITTS tracks the previous speech intensity so that the
system has better control of the speech.

When intensity post adaptation was not applied in all systems,
PCD-ITTS in static noises performed closely to or better than the
proposed non-incremental TTS that spoke only once. However,
in dynamic noise, PCD-ITTS suffered from adaptation delay
for one incremental step (Fig. 12), resulting in the unadapted
speech part having a low speech intelligibility. The average
speech segment length produced by our system in an incremental
step was 1.11 sec on average. By applying an intensity post
adaptation, we were able to reduce the adaptation delay and
thus improved the PCD-ITTS intelligibility.
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TABLE VII
SUS INTELLIGIBILITY EVALUATION RESULTS IN CER (%) (x : STATISTICALLY
DIFFERENT FROM THE BASELINE IN THE SAME ENVIRONMENT)

Static Dynamic | Dynamic
Noise Switch Smooth . Objective | Subjective
System SNRO | SNR-10 | Noise | Noise System Noise H (ASR) | (Human)
Baseline Non-incremental TTS Baseline Non-incremental TTS
Standard TTS(Clean) 49.69 ‘ 38.07 65.13 ‘ 71.93 Clean 21.76 6.74
+ Fine-tuning (SNRO + SNR -10) | 83.56 71.07 89.97 92.10 Fine-tuning (SNR 0 + SNR -10) Static 35.31 10.80
Proposed TTS + SNR (reg) + ASR + variance adaptor Dynamic 27.69 7.44
Non-incremental TTS 87.57 76.08 91.76 92.17 Proposed TTS + SNR (reg) + ASR + variance adaptor
Incremental TTS (PCI-ITTS) 82.62 65.87 79.00 76.44 Clean 14.72 4.94 %
Incremental TTS (PCD-ITTS) 89.95 77.04 84.31 82.71 Non-incremental TTS Static 16.94 578 %
+ intensity post adaptation 93.00 82.85 94.46 94.58 Dynamic 14.29 4.94 %
Topline (} natural speech) Clean 17.73 6.05
Normal speech 60.31 47.57 76.06 88.88 Incremental TTS Static 26.26 8.58 %
+ Rule-based modification 90.48 86.99 84.34 93.84 (PCD-ITTS + intensity post adaptation) | Dynamic 24.14 7.92

D. Short-Term Objective Intelligibility Measure

Next, we evaluated our TTS speech intelligibility based on the
short-term objective intelligibility (STOI) measure [50]. STOI
estimates the temporal envelope correlation between the speech
signal disturbed by noise and the reference speech signal before
being disturbed. A higher correlation indicates a higher speech
signal intelligibility. We estimated the noisy speech STOI by
using the noisy speech as the disturbed speech and the speech
before integration with the noise signal as the reference speech.
The noisy condition evaluated here are the static noises and the
dynamic noises consisting of transitions from clean, SNR 0 dB,
and then SNR -10 dB. The SNR conditions here reflect the SNR
before the adaptation was performed, which has a magnitude
relative to that of normal speech with an intensity of 44.44 dB.

Table VI shows the STOI measurement of our system’s Lom-
bard speech under the noisy condition. As expected, the standard
TTS trained using normal speech from the clean condition
has the lowest STOI. The proposed non-incremental TTS and
PCD-ITTS with intensity post adaptation show an improvement
in STOL Interestingly, PCD-ITTS had a better STOI than the
non-incremental TTS, but for intelligibility in ASR CER this re-
lationship was reversed. Our analysis suggests that this is related
to the speech intelligibility as signal and sentence. PCD-ITTS
speech signals before and after disturbance with noises show a
high correlation, implying the speech signal is audible in noises,
for example, because the speech is very loud. But its comprehen-
sibility as a sentence is not as high as the non-incremental TTS.
This is because the proposed non-incremental TTS was allowed
to synthesize the speech by using a complete sentence’s text and
sentence-level feedback with the re-speaking. PCD-ITTS with
intensity post adaptation achieved a close ASR CER and higher
STOI to the non-incremental TTS, even though PCD-ITTS did
not perform re-speaking. This illustrates how speech adaptation
within a short time improved the speech intelligibility in incre-
mental speech synthesis.

E. Subjective Evaluation

In the next experiment, we evaluated our system through a
subjective evaluation on speech intelligibility and naturalness.
First, a speech intelligibility test was carried out by asking the
human listener to write a transcription of noisy speech. In this
test, we used semantically unpredictable sentence (SUS) [51] as

the TTS input text. SUS is a syntactically correct but semanti-
cally unpredictable sentence. This ensures that the listener does
not guess the unintelligible speech based on the sentence context.
Then the second test, a speech-naturalness evaluation, was done
through a mean opinion score (MOS) test by asking the listener
to score the speech naturalness on a scale of 1-5 points. The
speech signals were also mixed with noises. The sentences used
in the MOS test were the normal sentences obtained from the
WSJ evaluation set. The intelligibility and MOS tests were done
through crowd-sourcing with 61 participants for the intelligibil-
ity test and 138 participants for the MOS test. All participants
were located in the United States.

In this work, we mainly focused on improving TTS speech in-
telligibility. In related work, it has been suggested that speech in-
telligibility and naturalness do not always imply each other [52],
and thus improvement in intelligibility might not necessarily
improve naturalness. In overall, our subjective evaluation results
revealed that the proposed systems achieved a significant im-
provement in speech intelligibility while also preserving speech
naturalness. The details are below.

1) Speech Intelligibility: The SUS intelligibility test results
in CER are shown in Table VII, and they are also visualized in
Fig. 13. We conducted a statistical t-test to show the significance
of the improvement in the proposed system by comparing this
system to the fine-tuned baseline system in the same envi-
ronment. The significance level was 0.05. In Table VII, the
systems with a statistically different result against the baseline
are marked with a star “x”. TTS speech was generated based on
three noisy conditions: (1) clean, (2) static noise from the SNR
-10 dB condition, and (3) dynamic smooth noise consisting of
noise transitions from clean, SNR 0 dB, and then SNR -10 dB
noises. We also present the ASR CER as the objective measure.
Here, the PCD-ITTS was applied with intensity post adaptation
to overcome the adaptation delay. We did not use the intensity
post adaptation in the non-incremental system to see how our
basic framework would perform, with the speech improvement
solely done within the TTS. Based on the evaluation results,
in the clean condition, the proposed non-incremental TTS was
more intelligible than the other systems, while the PCD-ITTS
and the baseline TTS performed similarly. In the static noise
condition, all proposed systems were also more intelligible than
the baseline. In the dynamic noise condition, the proposed non-
incremental TTS showed the best intelligibility performance.
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Fig. 13.  SUS intelligibility and MOS naturalness scores.

TABLE VIII
MOS EVALUATION RESULTS (* : STATISTICALLY DIFFERENT FROM THE
BASELINE IN THE SAME ENVIRONMENT)

[ System [ Noise [[ MOS |
Baseline Non-incremental TTS

Clean 3.80
Fine-tuning (SNR 0 + SNR -10) Static 3.56
Dynamic 3.74
Proposed TTS + SNR (reg) + ASR + variance adaptor
Clean 3.82
Non-incremental TTS Static 3.70
Dynamic 3.74
Clean 3.69
Incremental TTS Static 3.61
(PCD-ITTS + intensity post adaptation) | Dynamic 3.75

2) Speech Naturalness: The MOS scores are shown in Ta-
ble VIII and in Fig. 13. We performed a Mann-Whitney U statis-
tical test whose results show that the presented systems have sta-
tistically similar MOS scores, indicating that they preserved the
naturalness. Here the proposed non-incremental TTS achieved
the highest average score in general. PCD-ITTS naturalness was
lower than that of the proposed non-incremental TTS. When
we inspected the audio, the naturalness degradation was mostly
caused by speech discontinuities in the ITTS speech, which often
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occur in incremental speech synthesis. But by incorporating
feedback into the system, our ITTS achieved higher average
scores under noisy conditions than did the non-incremental
baseline system that also speaks once and loudly. This also
demonstrates that auditory feedback has a positive impact on
online speech synthesis, similar to human real-time speech
production

VII. CONCLUSION

We constructed a dynamically adaptive machine speech chain
inference framework to support TTS under noisy conditions.
We proposed two TTS systems with auditory feedback: non-
incremental TTS and incremental TTS (ITTS). Our proposed
systems with auditory feedback and a variance adaptor suc-
cessfully produced highly intelligible speech that surpassed a
standard TTS with a fine-tuning method and achieved results
closer to human performance. The non-incremental TTS in the
machine speech chain framework achieved the best performance
by refining the speech utterance more than once. On the other
hand, our ITTS in the machine speech chain framework was able
to produce highly intelligible speech by performing dynamic
adaptation within an utterance according to the environmental
changes with a short delay, thus enabling the TTS to more closely
resemble the human speech chain and thus improve the speech
quality. Our experimental results reveal that dynamic adaptation
with auditory feedback could be an essential tool for optimal
speech generation by machines, and not only for human speech
production. Our current system focuses on the Lombard effect
with prosodic adaptation in a known noisy environment.

The proposed systems still have performance limitations
compared to human natural speech. To improve this, in future
work, we would like to collect multi-speaker natural Lombard
speech data for a better Lombard speech analysis in the synthetic
Lombard speech construction, since Lombard effect is speaker-
and gender-dependent [53]. We also intend to carry out TTS
training using the natural Lombard speech data. Furthermore, we
intend to consider a better speech modification approach than the
current prosody modification with SoX. We currently generate
the Mel-spectrogram using the proposed TTS with the Griffin-
Lim vocoder, therefore, we could also expect more improvement
using an advanced neural vocoder, such as WaveRNN [54] or
HiFi-GAN [55], which we plan to investigate in future work. In
the next task, we are also interested in TTS with dynamic spectral
adaptation and amplitude modulations in Lombard speech as
well as TTS adaptation in an unseen noise condition.
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