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Abstract—This manuscript proposes a novel robust procedure
for the extraction of a speaker of interest (SOI) from a mixture
of audio sources. The estimation of the SOI is performed via
independent vector extraction (IVE). Since the blind IVE cannot
distinguish the target source by itself, it is guided towards the SOI
via frame-wise speaker identification based on deep learning. Still,
an incorrect speaker can be extracted due to guidance failings,
especially when processing challenging data. To identify such cases,
we propose a criterion for non-intrusively assessing the estimated
speaker. It utilizes the same model as the speaker identification,
so no additional training is required. When incorrect extraction
is detected, we propose a “deflation” step in which the incorrect
source is subtracted from the mixture and, subsequently, another
attempt to extract the SOI is performed. The process is repeated
until successful extraction is achieved. The proposed procedure
is experimentally tested on artificial and real-world datasets con-
taining challenging phenomena: source movements, reverberation,
transient noise, or microphone failures. The method is compared
with state-of-the-art blind algorithms as well as with current fully
supervised deep learning-based methods.

Index Terms—Blind extraction, supervised speaker identifica-
tion, target speech extraction.

1. INTRODUCTION

FREQUENT goal of speech processing is to recover a
A speaker of interest (SOI) from a mixture of speech sources
and environmental noise. This task is often solved using speech
separation methods; all sources present in the mixture are es-
timated and subsequently the SOI is identified among them.
Separation can be performed either via data-driven techniques
deriving their models from large sets of training signals [1]-
[5] or via model-based techniques utilizing general statistical
assumptions about the sources and the mixing [6]-[12].
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Both approaches have distinct advantages. The data-driven
techniques [1] employ principles of machine/deep learning
to estimate the separating models. If provided with relevant
scenario-specific training data, they achieve high separation
quality. The machine learning-based approaches primarily per-
form spectral filtering on single-channel data, which can be
supplemented by additional spatial filtering if additional chan-
nels are available. In contrast, the model-based approaches [6]
employ only general statistical models of the sources/mixing.
These approaches do not need any training data and require
only minimum information about the target scenario, i.e., they
perform the blind separation. The blind approaches are, in
theory, applicable to a wide range of tasks without any need
for adaptation. Arguably, this freedom is achieved at the cost of
lower separation accuracy since the employed statistical models
only approximate the real conditions. Many blind techniques
aim to estimate spatial filters and thus require multi-channel
mixtures.

Focusing on blind methods, separation of speech usually
proceeds in the time-frequency domain. Independent component
analysis (ICA, [13]) separates the sources based on their statisti-
cal independence. For a wide-band signal, ICA is separately ap-
plied to each frequency bin, which leads to the so called permuta-
tion ambiguity [14]. The recovered frequency components have
a random order and all components corresponding to the wide-
band source need to be identified in order to reconstruct it in the
time-domain. To alleviate this drawback, the independent vector
analysis (IVA, [7], [8]) has been proposed. It binds together the
frequency components corresponding to a single source using
higher-order dependencies among them. Non-negative matrix
factorization (NMF, [15]) attempts to factorize spectrogram
of a single-channel mixture as a product of two non-negative
components, recurring patterns and their activations. Multi-
channel NMF (MNME, [9]) extends this concept for analysis of
multi-channel mixtures. Independent low-rank matrix analysis
(ILRMA, [10]-[12]) unifies the principles of IVA and NMFE.
Spectral masking methods [16], [17] use the assumption that
only one source is dominant at each time-frequency point.

The full separation attempts to estimate all sources in the
mixture, which usually requires the knowledge of the number
of sources. This arguably limits the practicality/flexibility of
the separation (see the discussion in [18]-[20]). To alleviate,
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the recovery can be focused exclusively on the SOI, which is
referred to as target speech extraction. The extraction can thus
be interpreted as simultaneous identification and estimation of
the SOI. Again, this task can be solved using machine learning-
based approach [18], [19], [21]-[24] or blind source extraction
(BSE, [25], [26]).

The independent vector extraction (IVE) is a sub-problem of
IVA focusing on the SOI [25]-[28]. By definition, IVE meth-
ods extract an arbitrary source depending on (often random)
initialization. To extract the SOI, information identifying this
source is required. Such information can be provided via an
initialization focused on the SOI. The utilization of a video
stream was proposed to this end in [29]. Such initialization,
however, does not guarantee that the method will remain focused
on the SOI during the updates. Alternatively, the extraction can
be limited to a direction containing the SOI via the geometric
constraint [30], [31], which requires information about SOI
location. A practical alternative is to introduce a pilot signal
that is related to the SOI and directs the convergence towards
it. For example, piloting using voice activity detection was
proposed for mixtures containing a single speaker in [32]. For
mixtures of multiple speakers, pilots using supervised speaker
identification via embeddings [33], [34] have recently proven to
be very effective in [35]. The embeddings were used to tackle
the problem concerning the ambiguity of the SOI in the deep
learning-based extractors as well [18], [21].

Speaker embeddings are Deep-Neural-Network-based
(DNN) features encoding the characteristics of a speaker.
Several variants have recently been introduced, differing mainly
in the architecture of the extracting DNN. Embeddings derived
from fully-connected feed-forward DNN were proposed in [36].
Approaches utilizing the context of the data via recursive long
short-term memory (LSTM) networks were presented in [37].
The recursive modeling allows for more precise classification,
however, the training is data-demanding and time-consuming.

To alleviate those demands, non-recursive architectures cap-
turing the context have been proposed, such as time-delayed
neural networks [38] (TDNN) or feed-forward sequential mem-
ory networks [39] (FSMN). The “context layers” within these
networks process a set of frames (or feature vectors produced
by their previous layer) centered around the current frame. The
processing of the context significantly increases the number
of learnable parameters. To reduce this number, TDNN sub-
samples the set of frames, because the neighboring frames are
assumed to be correlated. In contrast, FSMN weights all frames
at an input of a layer by a trainable matrix and performs mean
time-pooling. Thus FSMN can be seen as a generalization of
TDNN in which the importance of frames is learned during
training rather than selected during design.

The traditional model of IVE is time invariant, i.e., itis suitable
for separation of immobile sources (static approach). To extract
moving sources, the time invariant methods are consecutively
applied to short intervals of data where the sources are approxi-
mately static, and their parameters are recursively updated. The
drawback of this block-wise static approach [35] lies in difficult
tuning of the block length and the recursion weight. Recently,
an alternative approach based on the constant separating vector
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(CSV) model [40] has been proposed. It allows for changes
of mixing parameters within the processed interval of data.
Compared to the block-wise static approach, the CSV-based
method exploits longer intervals of signals. Consequently, this
allows us to achieve a higher extraction accuracy. This higher
accuracy was proven theoretically in [41] and demonstrated
experimentally in [42].

In this manuscript, we propose an improvement of a guided
blind IVE-based method involving the above described advance-
ments introduced in our previous works [35], [40], [42]. It con-
sists of a combination of model-based extraction and data-driven
frame-wise identification of the SOI. The extraction is based
on an IVE algorithm endowed with the CSV mixing model.
The IVE algorithm is guided towards the SOI using piloting
exploiting speaker embeddings computed via an FSMN model.
This combination simplifies/reduces the amount of training
compared to fully data-driven techniques. The proposed method
needs only to learn how to identify the SOI while its extraction
is free of training, which makes it applicable to a wide variety of
realistic mixtures. Thanks to this decoupling of the identification
and the extraction, the identification can be trained generally,
independent of a specific mixing scenario.

The contribution of this manuscript to the basic concept is
threefold. 1) An improvement for piloting is introduced by
incorporating a non-intrusive criterion for the assessment of the
extraction performance. The assessment allows for the detection
of the cases in which an incorrect source is being extracted. 2)
These incorrect cases are treated using a deflation approach:
the unwanted source is subtracted from the mixture, and the
extraction is attempted again. This cycle continues until the
SOI is extracted. The pilot signal and the criterion share the
same pretrained FSMN model, i.e., no additional training is
required. 3) Compared to our previous works, we perform a more
detailed experimental analysis of the properties and limitations
of piloting. The proposed extractor is verified using two widely
analyzed datasets (CHiME-4 [43], the spatialized version of
wsj0-2mix [2]) and an ad-hoc dataset featuring source move-
ments. The benefits of the deflation step are demonstrated, and
the results are compared to the state-of-the-art deep-learning-
based and blind methods.

This article is organized as follows. The blind extraction
algorithmis described in Section II-B. Section II-C2 provides the
principles of piloting. The non-intrusive criterion for assessment
of extraction quality is proposed in Section II-D. The deflation is
presented in Section II-E. The proposed method is experimen-
tally evaluated in Section III, while Section IV concludes the
manuscript.

II. ALGORITHM DESCRIPTION
A. Problem Definition

A time varying mixture of d original signals observed by
d microphones can, in the short-time frequency domain, be
approximated by the mixing model

k _ Akok
x; = AJyy,

ey
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where k = 1,..., K is the frequency and £ = 1,..., L is the
frame index. x§ € C? denotes a vector of the mixed signals
recorded on d microphones, yf € C? is a vector whose ith
component corresponds to the ith original signal and A} € C%*¢
is the mixing matrix. For practical reasons, it is often assumed
that the mixing is approximately static over a small number of
subsequent frames. Let this interval be referred to as block in
this manuscript. The mixture is thus divided intot =1,...,T
equally long blocks of length L frames with a block-constant
mixing matrix AF; the index of the /th frame within the tth
block is denoted by ¢;. The mixing model for this block-wise
static approach [35] is given by

xg, =Afyy, fort=1,... . Ly;t=1,....T. (2)
Note that this model becomes fully static when 7" = 1 or maxi-
mally time-varying if ' = L.

In VA, a complete de-mixing matrix W¥ € C%*? is sought
such that it fulfills Wix; = WFAFy) =97 ~yj,ie., it
recovers all the sources present in the mixture. In contrast,
IVE seeks only one row of WFE. denoted by wff , such that it
specifically extracts the SOI. Without any loss on generality,
let the SOI be the first signal in yj, and A be partitioned as

A¥ = [aF QF]. Then, the (2) can be expressed in the form

sk
- ok o] o
zy,
where s represents the SOI and zj, are the other d — 1 sig-
nals in the mixture. Subsequently, WF can be partitioned as
[wr (BF)H]H where, B is called a blocking matrix and -*
denotes conjugate transpose.

B. Blind Extraction: CSV-AuxIVE Algorithm

The extraction part of the proposed procedure is a blind
algorithm from [40]. Here, we overview its most important
ideas and provide some intuition on how the final update rules
were obtained. The CSV model is based on the assumption
that the separating vector w¥ is constant within all 7" blocks
(wF =wF" t =1...T). This means that the separating vector
obeys (w*)fx} = & ~ s} for each block ¢, where 5}, is the
SOI estimate. The mixing vector af and the blocking matrix BF
are still assumed to vary with respect to .

The estimation of w* stems from the following log-likelihood
function. Let sy, = [s}t sg ] be a vector of all frequency
components corresponding to the SOL. The elements of s,, are
assumed to be dependent; they thus need to be modeled by a joint
pdf ps(s¢,). The background signals zj, ...z, are Gaussian
and their frequency components are assumed to be uncorrelated.
Consequently, their higher order dependencies are zero and they
can be modeled as independent; let their density be denoted

Da (ZZ)' The log-likelihood function is then

LEW Y e<rc, {a) Yeer [{X0, Yoar) = log ps ({8}, e<k)

K

+) logp,(2f,) + log | det WE?, @
k=1

2297

where 2 Z is the estimate of the background signals. The notation
{-}r<xk describes a variable with all values of index k, e.g.,
{Wk}kSK = Wla s 7WK~

Subsequently, a contrast function is formulated using the as-
sumption that all samples are independently distributed and the
log-likelihood function (4) thus can be averaged over all blocks
and samples. Optimization of the contrast function is performed
using the auxiliary function optimization technique [44]. The
main idea is to replace the nonlinear contrast function with
an auxiliary function, which is easier to optimize and retains
the same optimal solution. Then the new auxiliary function is
alternately optimized in the original and the auxiliary variables.
Moreover, since the true model of the pg (Sgt) is unknown, a
surrogate density function suitable for speech signals is chosen
in the form f(z) o exp{—||z||}.

The update rules for finding the optimum point of the auxiliary
contrast function are obtained in the form:

K
re, = | >_|(wE)HAxE 2 forall 4y, ®)
k=1
Vi =T [o(re)xp, (x)"], ©)
Cl =B, [xf (xf)1], %)
akwk
af= 0 ®)
(Wk)HCth
6re =/ (WF)HCEwk, )
T -1 7
Vk (Wk)Hvkwk
k t k
W N N a;, (10)
(Z <o—f)2> 2

where r,,, VF are the auxiliary variables, ¢(ry,) = ré’tl is a
nonlinearity suitable for super-Gaussian signals such as speech,
CF is the sample-based covariance matrix of the mixture on
the ¢th block and E, denotes the sample-based expectation over
the frames in block ¢. Equation (8) is the orthogonal constraint
(OGC) ensuring mutual orthogonality of subspaces generated by
the SOI and the other signals and 6 is the sample-based variance

of the SOI. A normalization w" < wk/\/th:1 (Wh)HVEwk
is performed after each iteration (i.e., sequence of update rules
(5)—(10)) to enable stable convergence.

When T =1, CSV-AuxIVE corresponds to the auxiliary
function-based IVE for static sources from [27], which is de-
noted as FS-IVE in the experiments within Section III. Succes-
sive application of the static IVE to blocks t =1...T gives
the block-wise static IVE approach from [42] (BS-IVE) that
allows for dynamic mixing. To cope with the lack of data in
short blocks, BS-IVE performs the following two steps. First,
the extraction on the block ¢ is initialized by the de-mixing
vectors achieved on the block ¢t — 1, and, second, the statistics
required in the update rules (5)—(10) are computed in a recursive
manner.
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TABLE I
DESCRIPTION OF THE FSMN PRODUCING THE X-VECTORS
Layer Layer Total Input
context context X output
Context 1 ¢+ 80 161 40 x 1024
Context 2 {+4 169 1024 x 768
Context 3 {+4 177 768 x 512
Context 4 {+4 185 512 x 384
Context 5 {+4 193 384 x 256
Context 6 {+4 201 256 x 128
Fully-conn. 1 l 201 128 x 128
Pooling 0+ % 201+ Le | (Le-128) x 128
Fully-conn. 2 3 201 + L. 128 x 128
Softmax — 201 + L. 128 x N

The input sizes for the context layers are stated after the mean pooling operation.

C. Extraction Guided Towards the SOI: Piloting Using the
Supervised Speaker Identification

CSV-AuxIVE extracts an arbitrary source from the mixture
if no prior information concerning the SOI is available. This
section discusses how the supervised speaker identification via
embeddings is used to focus the extraction on the SOI. First,
our implementation of the FSMN network for computation of
the conventional sentence-wise embeddings is described. Sub-
sequently, a general concept of a pilot signal is introduced. The
pilot signal is statistically dependent on the SOL. It is submitted
to the CSV-AuxIVE with the mixture and forces the blind
algorithm to converge towards the SOI. Finally, modifications
to the FSMN network are proposed, which allow computation
of frame-wise embeddings and the design of a practically usable
pilot.

1) Network Producing the Embeddings, X-Vectors: Our im-
plementation of the embedding network stems from the FSMN!
architecture [39] and is summarized in Table I. Its input consists
of a single-channel audio signal sampled at 16 kHz. The input
features are 40 filter bank coefficients computed from frames of
a length of 400 and a frame-shift of 200 samples. Subsequently,
six Context layers are present, i.e., context of frames is weighted
by a trainable matrix; mean time-pooling is performed; and a
linear transformation is applied. The output of each layer is
weighted by the exponential linear unit (ELU). The Pooling layer
computes variances of frames. Its context length is L, = 101
during training. Overall, the size of the model is 1.8 million
parameters. The network is trained to classify N speakers via
minimization of the cross-entropy loss function.

After training, the two latest classification layers are removed
and the embeddings are extracted from the Pooling layer. This
is done to allow for classification of the speakers absent in the
training set. In the test phase, an embedding of an unknown
speaker is compared to the set of embeddings (called enroll-
ment) corresponding to the potential speakers. This comparison
is performed by Probabilistic Linear Discriminant Analysis
(PLDA, [45]). PLDA is a machine learning approach that tests

The utilized network architecture does not differ from our previous works
in [35], [42]. There we described the embedding network as TDNN with
modifications. A more detailed research of literature revealed that it is more
accurate to label the network as FSMN.
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a hypothesis that a an enrollment vector £ and test vector x
corresponds to a single speaker. The statistical distributions
necessary for this testing are derived from a training dataset
of precomputed embeddings. PLDA returns a score M (&, x),
which is high if the hypothesis is correct.

The training data for the FSMN and PLDA originate from the
development part of the Voxceleb1 database [46] and the training
part of the LibriSpeech corpus [47]. The recording of Voxcelebl
(149 k utterances, about 340 hours) contain real-world rever-
beration and noise. Librispeech (part train-360-clean, 104 k
utterances, 360 hours) is free of distortions. It was subjected
to augmentations discussed below, in order to train X-vectors
robust with respect to environmental distortions. The environ-
mental noise was taken from the simulated part of the CHiME-4
training dataset [43] and the development dataset available in
Task 1 of the DCASE2018 challenge [48].

The augmented X-vectors were trained on one unchanged in-
stance of Voxceleb1/Librispeech and three augmented instances
of the Librispeech dataset, where the following augmentations
were applied:

1) Reverberation: The utterances were convolved with arti-

ficial room impulse responses (RIRs) generated by [49].
The artificial RIRs originated from a shoe-box room of
size 8 x 7 x 3 m; four different reverberation times T,
ranging from 175 — 650 ms, were considered. The source-
microphone distance was 1 — 2 m.

2) Noise: The environmental noise was summed with the
original Librispeech utterances at signal-to-noise-ratio
(SNR) equal to 10 dB.

3) Reverberation+noise: The noise was added to the rever-
berated Librispeech dataset with SNR= 10 dB.

The PLDA was trained using the three augmented variants of

the Librispeech dataset.

In this manuscript, we denote the extracted embeddings as
X-vectors. In a narrow sense, this term is reserved for features
estimated by the TDNN [33]. However, since both topologies
are closely related, we believe such naming can be used without
ambiguity.

2) The Concept of Piloting: The pilot signal represents an
information identifying the SOI for the CSV-AuxIVE. It forces
the blind algorithm to converge towards the SOI. The pilot signal
is introduced through modification of the update step in (5).
This equation corresponds to a factor that binds together all
frequency components belonging to a single source. Without
this factor, the independence of the outputs would be achieved
in each frequency bin k separately, and the reconstruction of the
wide-band SOI would suffer the permutation problem described
in the Introduction. Modification of the equation (5) into the form

K
= \/Zk—1 |(Wk>HX]€€t‘2 + 90,

adds the dependency of all the frequency components on the
pilot signal g and consequently also the SOI. The pilot g is
independent of the mixing model parameters and thus does not
change the remaining update rules of the CSV-AuxIVE.

The signal g needs to be designed as statistically dependent
on the SOI. The term under the square root of (5) describes the

(1)
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total energy of the extracted components. Thus the frame-wise
energy of the SOI appears to be a suitable choice. Since the
actual energy is unknown and difficult to estimate, a reasonable
approximation is given by the frames of the mixture, where the
energy of the unwanted sources is low (the energy of the SOI is
dominant). We propose to compute the pilot signal g for the /th
frame (note that g is independent of CSV blocks) as

(12)

S |zE(1)]2  the SOI is dominant,
ge = .
0 otherwise,

where x%(1) is the mixture on the first microphone. Specific

pilot signals (and their respective ways how to determine the
dominance of the SOI) are introduced in Section II-C4.

3) Frame-Wise Speaker Identification for Piloting: The uti-
lization of X-vectors and PLDA for piloting differs from the
conventional speaker identification in several aspects.

a) Conventionally, speaker identification operates on long
intervals/sentence-wise. However, the pilot signal in (12)
requires frame-wise information about the dominance of
the SOI, i.e., a frame-wise sequence of X-vectors. Each
X-vector then describes the identity of a speaker in a short
interval centered around the current frame. To obtain such
a sequence, the input context of the FSMN is gradually
shifted by a single frame. For each shift, an X-vector is
computed based on pooling with a shortened context (e.g.,
L. =11).

b) The identification is performed in the presence of cross-
talk. However, only the identity of the dominant speaker
is required (due to the definition of the pilot in (12)).

¢) Only the identity of the SOI is of interest; it must not be
confused with any interfering speaker. The substitution
within the set of interferers is irrelevant because the pilot
in (12) is set to zero when any unwanted source is assumed
dominant.

d) The set of the potential speakers (enrollment set) is sig-
nificantly smaller. Conventionally, hundreds of speakers
need to be distinguished. For the purposes of piloting, the
enrollment set contains X-vector for each speaker, which
can be active in the processed dataset (e.g., 18 vectors for
the wsj0-2mix dataset [2]).

The aspects a) and b) complicate the identification task,

whereas the aspects ¢) and d) simplify it.

To perform the frame-wise identification, PLDA scores
My(&, xx,) are computed. Here, £ is the enrollment X-vector
corresponding to one of the potential speakers and X, is the
X-vector computed using the context around the fth frame
within the first channel of the mixture. The speaker with the
highest M, (&, x,) is the most distinctive from the perspective
of the X-vectors and is also assumed to be dominant in the
mixture. Validity of this assumption is experimentally verified
in Section III-D1.

4) Specific Pilot Variants: Two variants of a pilot signal are
considered in this manuscript. The properties and limitations
of the proposed pilots are demonstrated experimentally in Sec-
tion III-D.
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The realizable X-vector-based pilot gXVEC is computed ac-

cording to (12), where the SOl is considered dominant in the /th
frame if

ME(&S;X&C@) > maX{MZ(SZjasz)mj =1... ‘]} and
My(€s, Xa,) > tpLpa(€s),

where £, denotes the X-vector corresponding to the SOI and
tpLpa(€5) is the lowest PLDA score, where the SOI is still
considered active. The variable £, denotes the X-vector cor-
responding to the jth potential interfering speaker from the
enrollment set containing the SOI and J other speakers. To
compute the gXVEC, the following two pieces of information are
needed: the identity of SOI (we need to know which source we
want to extract) and the enrollment set containing the X-vector
for each speaker present in the processed dataset. On the other
hand, the number of sources in the mixture or the identities of
the active interferers are not required.

An oracle pilot gO%*C is used to analyze the possibilities of the
piloting proposed via (12). The dominance of the SOI is always
determined correctly using true unobservable energies of the
sources. Due to the use of unavailable information, it cannot be
used in practice. g®R4C is computed using (12), where SOI is
considered dominant within the ¢th frame if

K

K
> IsE? > porac Y Iz,

k=1 k=1

13)

(14)

where porac 1s a free parameter reflecting the desired level of
dominance.

D. Non-Intrusive Assessment of Extraction Quality

This Section proposes a non-intrusive criterion to assess
whether the extraction of the SOI was successful. This criterion
is based on the same X-vectors and PLDA as the piloting, i.e.,
no additional training is required.

The assessment represents the entire signal through a single
PLDA score M (€5, xs), where x; is the X-vector independent
of ¢ computed from an estimate of the SOI (FSMN pooling
context is set L. = L). As in the conventional speaker identifi-
cation, this score can be seen as a measure of similarity between
the X-vector computed from the enrollment utterance of the SOI
and an unknown test X-vector. The two following observations
concerning the score hold. 1) When the SOI is truly active in
the test utterance, its PLDA score is higher than the non-active
speakers’ scores. 2) Interferences decrease the similarity/score
compared to values observed on undistorted test signals. Based
on these observations, the extraction assessment is proposed:

Assessment (of extraction quality): Having X-vectors for two
signals containing the same component corresponding to the
SOF denoted by xs, xs; if M(&s,xs) > M(€s,xs) then xs
corresponds to a superior estimate of this SOI component in the
sense of speech quality.

The extraction assessment is experimentally validated in Sec-
tion III-E. The Section shows a strong linear dependence be-
tween increments in criteria measuring quality of speech and the

2For example, the original mixture and the extracted signal.
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Algorithm 1: Deflation mechanism for CSV-AuxIVE us-
ing the extraction assessment. Variables x% and X, denote
X-vectors corresponding to the SOI estimate and the first
channel of the mixture after ¢ deflation steps.

Require: Multi-channel mixture x’g, X-vector FSMN,
enrollment set including the SOI, PLDA model
fori <« 0,i<Ido
Extract éZ’l from xZ’l using piloted CSV-AuxIVE
if M(&s,x%) > M(€s, ) then
return é’gff’ {Extracted source is the SOI estimate }

else
if 1 . Subtract § Se * from xIZ " using (15)

if M (&, xm) > M (&5, x5!) then
return xZ {Reduced mixture is not closer to the
SOI, end the deflation}
else
{Continue the deflation}
end if
end if
end for

return xk i+l

{Maximum number of steps reached}

PLDA score. The extraction assessment is used in the deflation
process as a decision mechanism. It determines whether the
extracted source is an estimate of the SOI or of an unwanted
source (and the deflation should be applied).

E. Re-Estimation of the SOI on Extraction Failure: Deflation.

The deflation provides a mechanism to extract the SOI from
mixtures in which the desired source is difficult to identify via
pilot alone. This may happen, e.g., when the SOI is the weaker
source and only a small number of frames with dominant SOI
exist to form an efficient pilot.

The deflation is summarized in Algorithm 1 and proceeds
as follows. The first signal is extracted using the piloted
CSV-AuxIVE. The extraction assessment is used to determine
whether this signal represents a better estimate of the SOI than
the original mixture. If so, the first signal is returned and the
extraction ends. Otherwise, the first signal is subtracted from
the mixture (on each CSV block) using least square projection.
Using the assessment, the reduced mixture is compared to the
original one. If the original mixture is chosen, the extraction ends
(the deflation did not bring the mixture closer to the SOI). If the
reduced mixture is selected, the piloted CSV-AuxIVE is applied
to it and the second signal is extracted. This process is repeated
until an estimate of the SOI is found or until a predefined number
I of deflation steps has been performed. It is reasonable to select
I close to the assumed number of speakers active in the mixture.
Owing to the utilization of the pilot signal, the CSV-AuxIVE
is forced to converge towards speech signals. Thus, the active
speakers are the first extracted sources in most cases.

Let x,” € €% and w" € C?~7 denote the input mixture
and the separating vector after ¢ deflation steps, respectively.
The reduced mixture xz”Jrl €%~ is obtained by the least
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Fig. 1. Source trajectories and locations for the Dynamic dataset.

square subtraction of the extracted signal éZZ = (whi)H xzz
from Xet Let at * be the mixing vector after ¢ deflation steps
computed on the ¢th block via (8). Due to the orthogonality of

* and at *, the subtraction is achieved through

1 k Z
at ( " )x Xy, ),
where D*? is a (d—i—1) x (d —
reducing the dimension of x,’ kyitl by one compared to x,
This reduction needs to be apphed to avoid rank deﬁc1ency of

the “deflated” mixture. Matrix D*? can be found via pr1nc1pa1
component analysis [50] or can simply omit one element of Xz

it

o =D (15)

1) full row-rank matrix,
ki

III. EXPERIMENTS

The following experiments pursue three goals. 1) The pos-
sibilities and limitations of piloting are investigated as a mo-
tivation for the proposed deflation. 2) The functionality of the
proposed extraction assessment is analyzed. 3) The benefits of
the deflation are demonstrated and the performance of the pro-
posed extractor is compared to results published in the literature.

A. Datasets

The experiments are performed on the following three
datasets, which contain various detrimental phenomena such
as source movements, high reverberation and noise activity,
transients or low energy of the SOI.

1) Dynamic Dataset: The first dataset is an ad-hoc simu-
lated one containing noisy recordings of two simultaneously
active moving speakers (SOI and an interfering source (IS)).
The sources are located in a room of dimensions 6 X 6 X 3 m;
reverberation times Tgo € {100, 300, 600} ms are considered. A
linear array of five omni-directional microphones with spacing
of 8 cm is placed close to the center of the room and rotated
counter-clockwise by 45°. Both sources move on a half-circle
around the array, the radius is 1.5 m for the SOI and 2 m for
the IS. SOI performs a large angular movement in the left-hand
half-plane and IS a small one in the right-hand half-plane. A
static directional noise source is located perpendicular to the
microphone array axis to the right. The situation is depicted in
Fig. 1.

The speech (sampled at 16 kHz) originates from the
test/development sets of CHiME-4; four potential speakers (FO1,
F06, M04, MO05) are considered. The cafeteria sounds used
for a directional noise originates from the QUT corpus [51].
Different utterances are concatenated to form 5 unique test
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signals of length 25 s for each speaker. The movements of SOI
and positions of the static sources are simulated using the RIR
generator [49]. One instance of the experiment (for one Ty
value) thus consists of 300 mixtures (6 speaker combinations x
2 speaker roles x 25 utterance combinations). The sources are
mixed at an input signal-to-interference-ratio of 0 dB (SIR, ratio
of energy of SOI and IS) and an input signal-to-noise-ratio of
10 dB (SNR, ratio of all speech to noise energy).

2) CHIME-4 Dataset: CHIME-4 dataset [43] contains six-
channel real-world and simulated recordings of a single speaker
active in a highly noisy environment. The dataset does not
contain cross-talk; however, the real-world part contains a lot
of microphone failures and transient noises. These non-speech
signals are occasionally extracted instead of SOI.

3) Multi-Channel Wall Street Journal - 2mix Dataset: The
multi-channel version of the Wall Street Journal - 2mix dataset
(MC-WSJO0-2mix, [2]) is currently often used to compare
speaker separation and extraction algorithms. The MC-WSJO-
2mix dataset contains 3,000 simulated mixtures recorded in a
reverberant environment using a microphone array containing
eight microphones. Each mixture contains two active speakers,
i.e., there is 6,000 extraction experiments in total. The sources
are mixed with SIR between (—5, +5) dB. Some of the record-
ings are very short; their durations range from 1.6 s to 13.9s. The
recordings are highly reverberant (T4 € (200,600) ms), and
captured in rooms with variable dimensions. The geometry of the
microphone array is varying, as well as the source-microphone
distance, which is 1.3 m with 0.4 m standard deviation. The
dataset does not contain environmental noise or source move-
ments. The 8 kHz variant of the mixtures is used.?

B. Evaluation Measures and Common Settings

The extraction is evaluated in terms of the following metrics.
SIR and SDR are computed using BSS_EVAL [52]. The percep-
tual quality of the extracted sources is quantified using the “per-
ceptual evaluation of speech quality” (PESQ [53]) or “short-time
objective intelligibility measure” (STOI, [54]). These metrics
are evaluated over the entire signal lengths with the exception of
the Dynamic dataset, for which (due to source movements) the
measures are evaluated within intervals of length 1 s each and
subsequently averaged. The metrics are either stated as values
or as improvements with respect to the mixture (iSIR, iSDR,
iPESQ, iSTOI).

When the extraction algorithm fails to track a moving SOI
(the SOI moves out of the spatial focus of the method), the
desired speech vanishes from the estimated signal. To measure
this phenomenon, we also provide the standard deviation of
the “SOI Attenuation” metric, defined as >, [35[2/ >°, |sk|2,
where 8} is the estimate of s¥. For a properly extracted moving
SOI, this deviation should be close to zero and it increases if the
gain of the desired speech fluctuates.

All the experiments have been performed without any adapta-
tion of the algorithm or the FSMN network to a specific scenario.
The enrollment set always consists of 1 minute of speech for each

3We interpolate the mixtures to 16 kHz in order to be able to process it via
the FSMN network. We found that this approach gives comparable results to
retraining the network on training datasets down-sampled to 8 kHz.
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target speaker considered in the given scenario, augmented by
reverberation as described in Section II-C2. The FSMN pooling
context length is L. = 11.

C. CSV Model for Extraction of a Moving SOI

This experiment is performed on the Dynamic dataset. It
demonstrates the benefits of the CSV-model on mixtures with
moving sources and the ability of gXVEC to direct the extraction
towards a moving SOI. The deflation is not applied in these
experiments, since the mixtures are 25 s long and g*XVEC founds
sufficient number of frames to successfully guide the extraction.
The results of CSV-AuxIVE are compared to the fully static (FS-
IVE, [27]) and the block-wise static (BS-IVE, [42]) variants of
AuxIVE. The name of a method followed by subscript Ly (e.g.
BS-IVEy() denotes the number of frames within the analyzed
block.

CSV-AuxIVE and FS-IVE process the entire mixture as a
whole using 50 iterations. BS-IVE processes each block in-
dependently and applies 5 iterations to each block of length
Lt and shift Ly /4 frames. The inner statistics in BS-IVE are
accumulated using recursive forgetting with o = 0.3 (see [35]).
All these methods are initialized using the location of the SOI at
the beginning of the recording; BS-IVE initializes the extraction
at each block by the solution from the previous one. The NFFT
length is 1,024 and shift 200 samples. The threshold piorac = 2.

All criteria in Table II indicate that the pilot-guided methods
extract the SOI more precisely than the methods relying on
initialization (without any pilot). Due to the limited identification
accuracy, the performance with gXVEC is inferior to that with
gORAC (by 1.6 — 2.8 dB of iSIR). The CSV-AuxIVE achieves
superior (or at least comparable) performance compared to its
static or block-wise static counterparts. This is notable especially
when gXVEC is used. CSV-AuxIVE appears to be more robust
than BS-IVE with respect to pilot inaccuracies. The performance
of the method decreases with increasing reverberation. However,
even when Ty = 600 ms, the CSV-AuxIVE + gXVEC is able
to achieve iSIR 6.9 dB. The iSDR is low in this case, which
means that the suppression of interference/noise introduces
some distortions into the estimated SOI. However, this scenario
is very challenging for spatial filtering due to the low direct to
reverberation ratio (the SOI distance is 1.5 m) and rather high
movement speed of the sources.

The important parameter of CSV-AuxIVE/BS-IVE is the
length of block L, which influences the compromise between
adaptivity to movement and the amount of available data. Exces-
sively long blocks (FS-IVE or BS-IVEg) yield high iSIR and
iPESQ but also increase Attenuation compared to the suitable
block length (BS-IVEq). Using long blocks, the methods are
unable to adapt well to the source movements and the SOI
moves out of their spatial focus (the sound vanishes for certain
time intervals).* The increased Attenuation is observable for the
CSVgqp as well; the increase of iSIR/iPESQ is, however, not

“Note that the Attenuation describes the vanishing of the SOI well for Tgg <
300 ms but fails to capture this phenomenon for more reverberant scenario.
We can observe that this fact is due to the reverberation of the SOI, which is
still present in the estimate even when the location (direct path) of the SOI lies
outside of the spatial focus of the methods.
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TABLE II
DYNAMIC DATASET: THE EXTRACTION PERFORMANCE OF THE CSV-AUXIVE (CSV), THE STATIC (FS-IVE) AND THE BLOCK-WISE STATIC
(BS-IVE) IVE TECHNIQUES

Unprocessed mixture
input PESQ [-] input SDR [dB] input SIR [dB]
100ms 300ms 600ms | 100ms 300ms 600ms | 100ms 300ms 600ms
.15 120 127 | 1.10 1.12 1.14 | 1.10 1.12 1.14
Processed using suitable block length
. iPESQ [-] iSDR [dB] iSIR [dB] Attenuation
Method Ly Pilot |55 s 600ms [ T00ms 300ms 600ms | T00ms 300ms 600ms | T00ms 300ms 600ms
FS-IVE 2000 - 032 0.05 -001| 6.84 -095 -3.73 | 1533 697 404 | 042 0.7 0.10
FS-IVE 2000 gORAC| 061 022 0.11 | 805 274 -0.17 [19.72 1331 972 | 032 0.19 0.12
FS-IVE 2000 gXVEC| 051 0.14 004 | 729 131 -237 |1846 11.16 6.61 | 033 0.18 0.10
Proposed CSV_ 200 - 049 0.1 002 | 789 021 2881703 760 460 | 036 0.15 0.10
Proposed CSV 200 gORAC| 087 027 0.13 |11.52 3.58 0.16 | 2201 1329 9.64 | 025 0.13 0.10
Proposed CSV 200 gXVEC| 076 020 0.06 | 10.24 223 -1.80 | 2046 11.38 6.85 | 028 0.14 0.10
BS-IVE 200 - 0.09 0.00 -0.07 | 299 -1.07 -3.39 | 1250 653 4.17 | 032 0.18 0.14
BS-IVE 200 gORAC| 039 0.16 0.05 | 811 3.54 047 | 1934 1354 992 | 026 0.17 0.14
BS-IVE 200 gXVEC| 022 0.04 -0.05| 533 0.61 -249|1569 925 569 | 028 0.17 0.13
Processed using excessively long/short blocks
Proposed CSV 800 gXYEC[ 0.52 0.5 0.03 [ 705 1.I1 -253 1811 10.68 6.17 [ 032 0.17 0.10
BS-IVE 800 gXVEC| 042 0.11 000 | 6.67 1.24 -222 1811 1035 591 | 031 0.19 0.13
Proposed CSV 50 gXVEC| 0.60 0.14 0.02 | 1047 1.80 -1.83 |17.63 847 445 | 0.16 0.11 0.10
BS-IVE 50 gXVEC| 0.04 -0.03 -0.10 | 277 -047 -3.01 [ 11.83 7.63 4.85 | 023 0.15 0.12
present. The prolongation of inner blocks does not bring the ad- 100
. . . . . ——L =21:0dB —©—L =21: 10 dB —g—L =21: Inf dB
vantage of more available data. Application of an '1nsufﬁc1ently 90 | |- oL =11:0¢B ~@-L =11: 10cB ~B L =11:Inf dB
short block (50 frames) allows for good adaptation (low SOI e L =70 0B @ L =710 0B oL =7: InfdB ]
Attenuation), but the overall IS suppression is deteriorating (low < 80r
iSIR). > 70
© C
3 60p
D. Properties and Limitations of Piloting < 508
This Section analyzes the accuracy of the frame-wise speaker 40
identification. Subsequently, the influence of inaccurate pilot on £
the extraction accuracy is investigated and the causes of pilot 0 5 10 15 20
failures are discussed. SIR[dB]
1) The Frame-Wise Dominant Speaker Identification: As a
Fig. 2. Accuracy in the task of the dominant speaker identification; each

ground truth in this task, we use the true identity of the speaker
with the highest energy in the mixture. This energy is computed
using the same context of frames as the pooling context of
FSMN (L. € {7,11,21}, i.e., {9, 14,26} ms). The accuracy of
the identification is thus computed by a comparison of regions
determined by the X-vectors and the oracle information ob-
tained using the true energies. The most reverberant part (79 =
600 ms) of the Dynamic dataset is revisited. Multiple variants
of this dataset are considered, each changing the input SIR
€ {-5,0,5,10,20} dB and the input SNR € {0, 10,00} dB.
Markers in Figs. 2 and 3 correspond to the averaged accuracy
over all mixtures in one such variant.

Let us first verify the assumption that the source with the
highest PLDA score is also the dominant one in the mixture.
Considering L. = 11 and the noiseless case, Fig. 2 confirms our
assumption with the accuracy ranging from 59%-77%. By def-
inition of the pilot in (12), the identity of the interfering speaker
is irrelevant for gXVEC, The classification is thus simplified to
a binary task whether the SOI or an arbitrary other source is
dominant. Fig. 3 shows that the accuracy of SOI dominance
identification is 69%-77%. The presence of noise decreases
the accuracy to 63%—-73%. The results of the extraction in the
previous Section indicate that such accuracy leads to a functional

marker corresponds to a different SNR.

100

—+—Lc=21: 0dB —e—Lc=21: 10dB —E—Lc=21: Inf dB
920 —+—Lc=11:OdB —e—Lc=11:1OdB—E—LC=11:Inde
o LC=7: 0dB @~ LC=7: 10dB g LC=7: Inf dB

Accuracy [%]

-5 0 5 10 15 20
SIR[dB]

Fig.3.  Accuracy in the task of the SOI dominance identification; each marker
corresponds to a different SNR.

gXVEC which improves the performance of CSV-AuxIVE by

iSIR = 2.3 dB over its non-piloted counterpart. Utilization of
gORAC Jeads to another increase by 2.8 dB. The influence of
inaccurate pilot on extraction performance is further investigated
in Section III-D3.
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TABLE III
DYNAMIC DATASET: THE EXTRACTION PERFORMANCE OF PILOTED
CSV-AUXIVE (L1 = 200) WITH RESPECT TO X-VECTOR CONTEXT L.
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TABLE IV
DYNAMIC DATASET: THE EXTRACTION PERFORMANCE WITH RESPECT TO
SPOKEN LANGUAGE (ENGLISH OR NORWEGIAN); THE LANGUAGE
DEPENDENCE OF gXVEC

Context iSDR [dB] iSIR [dB]
Le 100ms 300ms 600ms | 100ms 300ms 600ms
7 10.25 2.24 -1.83 | 2048 1140 6.71
11 10.24 223 -1.80 | 2046 11.38 6.85
21 10.07 2.04 -1.84 |20.14 10.87 6.64
90

——En.: 0dB —©—En.: 10 dB —B—En.: InfdB
-+-No..0dB =@ =No.: 10dB = H =No.: Inf dB

Accuracy [%]

SIR[dB]

Fig. 4. Accuracy in the task of the SOI dominance identification with respect
to language of speakers in the enrollment set; L. = 11 and each marker
corresponds to a different SNR.

It might seem surprising that accuracy of SOI dominance
identification is high despite the low SIR. This is caused by a low
occurrence of frames with a dominant SOI (for SIR= —5 dB,
only 28.5% of frames). The classifier is thus often correct when
it assigns the frame to the easily classifiable interfering source
with high energy.

A short context of the pooling layer L. is required for the
frame-wise identification. However, it deteriorates the accuracy
due to the increased variability of the X-vectors (less data is
available for the pooling). Figs. 2 and 3 indicate that this accuracy
is, as expected, highest for L, = 21 and monotonically deterio-
rates with decreasing L.. On the other hand, Table III shows
that the long context L. = 21 achieves the worst extraction
performance; the piloting is no longer well localized in time.
As a compromise, context L. = 11 is utilized throughout this
manuscript.

2) Language Dependence of the SOI Identification: The
blind CSV-AuxIVE algorithm is language independent. How-
ever, piloting using gXVEC is based on deep-learning and thus
is designed to work on English language present in the training
dataset. Its accuracy might deteriorate if applied to an unseen
language. To quantify, this scenario compares the SOI identi-
fication/extraction achieved on English with results yielded on
unseen Norwegian. It analyzes a slightly modified version of the
Dynamic dataset. The original English speakers are replaced by
four Norwegian (2 male and 2 female) originating in the NST
speech database [55].

The results in Fig. 4 corroborate that X-vectors are slightly
language dependent; the accuracy for Norwegian speakers is
lower by about 4.5%. However, this does not influence the
extraction performance much. The metrics in Table IV indi-
cate that the non-piloted extraction is slightly less accurate for

! iPES iSDR [dB iSIR [dB
Method | Pilot | Lang. 550 680ms T00ms éOOIllS T00ms [6003ns
CSVa0o| - | Eng | 049 002 | 7.89 -2.88[17.03 4.60
CSVa00 |gORAC| Eng. | 0.87 0.13 | 11.52 0.16 |22.01 9.64
CSVano |gXVEC | Eng. | 0.76  0.06 | 1024 -1.80 | 20.46 6.85
CSVaoo| - | Nor. | 042 -0.01 | 737 -3.12 | 15.05 262
CSVa00 |gORAC| Nor. | 0.81 0.11 | 12,54 0.80 | 2242 9.70
CSVa00 |gXVEC | Nor. | 0.74 0.02 | 11.14 -1.52 | 20.86 6.02

The subscript L denotes the number of frames within the analyzed block.

TABLE V

MC-WSJ0-2MIX, 4 CHANNELS: THE NUMBER OF CASES, WHEN
CSV-AUXIVE: 1) EXTRACTS AN UNWANTED SOURCE DUE TO INSUFFICIENT
PILOTING (ISDR < —2 dB), 2) EXTRACTS NO SOURCE (2 dB < ISDR <
—2dB), 3) SUCCESSFULLY EXTRACTS THE SOI (1ISDR > 2 dB)

Pilot/deflation Unwanted | No source SOI
source extracted extracted
extracted
No pilot 2986 616 2398
XVEC 697 753 4550
gXVEC 4 deflation 58 1016 4926
gORAC 24 253 5723

the Norwegian dataset. This decrease does not stem from the
language as such but it is caused by longer silences between
Norwegian sentences. When the SOI is quiet, the non-piloted
extractor tends to converge to an arbitrary active source. The
utilization of a pilot completely removes this difference. The
results for CSV-AuxIVE piloted via gXVEC are comparable
for both datasets (difference is maximally 1 dB in iSIR and
iSDR); the proposed method can thus be considered language
independent in this experiment.

3) Limitations of the Embedding-Based Piloting in Low SIR
Scenarios: By definition in (12), the pilot is non-zero/active
when the SOI is dominant in a subset of frames. This con-
dition becomes difficult to fulfill when SIR is low. Let us
demonstrate using mixtures in the Dynamic dataset. Considering
three levels of SIR={20,0, —5} dB; the SOI is dominant in
93.2%, 48.3% and 28.5% of frames, respectively. For alow SIR,
the potential support is limited, which weakens the guidance
provided by the pilot. gXVE® suffers from a further reduc-
tion of the support, because it incorrectly identifies a subset
of the dominant frames. An extreme case of the pilot being
equal to zero for all frames leads to non-piloted extraction
(which, moreover, tends to extract the dominant interfering
source).

The deflation approach provides a mechanism to alleviate
these limitations. Let us demonstrate via an extraction exper-
iment on MC-WSJO-2mix dataset [2]. The dataset contains
3,000 mixtures of two active speakers. Since each speaker can
assume the role of the SOI, 6,000 independent extractions can
be performed. Let us observe in Table V the number of cases
when CSV-AuxIVE successfully extracts a source, but it is an
unwanted source due to insufficient guidance. We assume this
happens when the iSDR is less than —2 dB. The non-piloted
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Fig. 5.  MC-WSJ0-2mix, 4 channels: iSDR distributions achieved by CSV-

AuxIVE endowed with various forms of guidance.

CSV-AuxIVE fails in 2,986 cases. It has no way to focus on a
specific SOI and, in addition, fails to process some of the mix-
tures (output SDR is close to 0 dB). gXVEC reduces the fail rate by
about 77 % to 680 cases; in 440 of these mixtures, the SOI is the
weaker source (input SDR< 0 dB). The deflation significantly
reduces the number to 58 cases, which is comparable to the
utilization of g®RA€ (which does not suffer from the erroneous
classification of frames).

The distributions of iSDR achieved in this task are shown
in Fig. 5. The CSV-AuxIVE without a pilot has a symmetric
distribution of iSDR because it cannot focus on specific SOIL.
Utilization of gXVEC shifts the distribution towards the positive
iSDR. However, many cases of negative iSDR remain, corre-
sponding to unsuccessful piloting. For some cases, the piloting
prevents extraction of an unwanted source, but fails to guide
the extraction towards the SOI. Therefore, CSV-AuxIVE+gXVEC
yields a slightly increased number of cases with no extracted
source compared to CSV-AuxIVE without a pilot (see Table V).
The deflation manages to remedy almost all failed piloting cases
and further shifts the distribution to the positive values. However,
part of these remedied cases does not lead to successful extrac-
tion of the SOI; their output iSDR is equal to O dB. This effect is
caused by an overly conservative behavior in the assessment of
the extraction quality (see Section III-E for further discussion). It
recognizes that an unwanted source was extracted and performs
the deflation of the mixture. However, the reduced mixture is
not recognized as a better estimate of the SOI than the original
mixture. Consequently, the original mixture is returned as the
SOI estimate. The utilization of an accurate gORC causes a
successful extraction of the SOI for most of the mixtures.

The influence of the incorrectly classified frames in the pilot
on the final SDR is shown in Fig. 6. In this experiment, we pilot
the extraction on the MC-WSJ0-2mix dataset by g®R*C. We
gradually replace 10% of frames with dominant SOI by 10% of
frames corresponding to the unwanted source. The frames with
comparable energy are swapped first; the frames with a highly
dominant source are swapped as the last ones. It can be seen that
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Fig.6. MC-WSJO-2mix, 4 channels: SDR achieved by the CSV-AuxIVE using
oracle pilot, whose frames corresponding to SOI are gradually interchanged with
frames dominated by the interfering source.

the substitution of about 20% of frames does not significantly
influence the performance. When all frames are substituted, i.e.,
the pilot contains only frames corresponding to the interfering
source, CSV-AuxIVE achieves highly negative SDR because it
is in all cases guided towards the interfering source.

The accuracy of SOI dominance identification in g
66.3% on the MC-WSJO-2mix dataset, which yields an SDR of
6 dB. Comparing the results with Fig. 6, such accuracy should
yield an SDR of about 8 dB. The modeling of errors by distorting
the gORAC thus appears to be slightly more optimistic than the
results achieved using the realizable gXVEC.

XVEC is

E. Non-Intrusive Assessment of Extraction Quality

This section verifies whether the PLDA score can be used to
select a superior SOI estimate within several available variants.
The superiority is measured using the standard objective and
perceptual metrics (SIR, SDR, PESQ, STOI).

We use two datasets: the simulated development part of
the CHiME-4 dataset contains 1,640 mixtures of speech (pro-
duced by 4 speakers) and noise, whereas MC-WSJ0O-2mix
contains 3000 mixtures of two utterances (produced by 18
speakers). The non-piloted CSV-AuxIVE with uniform initial-
ization is applied to these recordings and stopped consecu-
tively after {0,5,10,15,20,25} iterations for the CHIME-4
and {0,15,30,50} iterations for MC-WSJO-2mix. For each
utterance and each stop, the PLDA score M (&5, x:) and the
metrics are evaluated. Subsequently, the differences with respect
to the previous stop are computed because the goal is to find the
relationship between the change of M (&, xs) and the change
in the metrics.

The differences plotted in Figs. 7 and 8 indicate the existence
of a linear dependence. The Pearson correlation coefficient
reaches a value of 0.83 for STOI. From another perspective, the
assessment can also be perceived as a binary classifier: given
the increase/decrease of M (&, x:), we want to predict the
respective change in the objective criterion. Tables VI and VII
show that the classification accuracy is 72.7 % and 75.5 % for
SIR on speech-noise and speech-speech mixtures, respectively.
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Fig. 7. CHiME-4 (simulated development part): dependency between the

improvements of the objective criteria and the improvements of PLDA score
on speech-noise mixtures.
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TABLE VI

CHIME-4 (SIMULATED DEVELOPMENT PART, SPEECH-NOISE MIXTURES): THE
EVALUATION OF THE PROPOSED EXTRACTION ASSESSMENT SERVING AS A
BINARY CLASSIFIER OF THE SPEECH-QUALITY METRICS

[ SIR | SDR [ PESQ | STOI |

[ Correlation coefficient [-] [ 064 ] 074 ] 058 [ 0.82 ]
Accuracy[%] 72.7 | 70.4 70.4 69.2
False positives [%] 5.7 15.3 16.3 20.2
Significant false positives [%] 0.3 1.2 0.8 1.6
False negatives [%] 21.6 14.2 13.3 10.5
Significant false negatives [%] 7.9 2.7 1.7 0.8

Significant cases denote samples in which the erroneous increase/decrease in
SIR/SDR is larger than 1 dB, 0.01 in STOI or 0.05 in PESQ.

TABLE VII

MC-WSJ0-2MIX (SPEECH-SPEECH MIXTURES): THE EVALUATION OF THE

PROPOSED EXTRACTION ASSESSMENT SERVING AS A BINARY
CLASSIFIER OF THE SPEECH-QUALITY METRICS

[ SIR [ SDR | PESQ | STOI |

[ Correlation coefficient [-] [ 0731077 ] 063 [ 0.83 ]
Accuracy|[%] 75.5 | 75.6 717 76.5
False positives [%] 10.3 12.5 12.5 14.3
Significant false positives [%] 5.5 6.4 5.8 11.0
False negatives [%] 14.3 11.9 15.8 9.1
Significant false negatives [%] 8.4 4.9 7.9 6.1

Significant cases denote samples in which the erroneous increase/decrease in
SIR/SDR is larger than 1 dB, 0.01 in STOI or 0.05 in PESQ.

There are two types of error: 1) False positives (M (&5, Xxs)
increases, but the metrics decrease) are more severe and poten-
tially lead us to select an interfering source. Fortunately, the
number of cases with significant deterioration is not very high.
A decrease worse than 1 dB in SIR happens only in 5.5% of
cases for speech-speech mixtures. 2) False negatives (M (€5, Xxs)
decreases, but criteria increase) potentially lead us to a selection
of an inferior estimate. An 8.4% proportion of the cases exhibits
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a significant decrease in SIR for speech-speech mixtures. These
cases cause the overly conservative behavior of the deflation
described in Section III-D3.

The proposed assessment is functional in both speech-noise
and speech-speech mixtures. However, the number of significant
incorrect cases is larger for the speech-speech mixtures, where
the active sources are more similar and can be confused more
easily.

F. Extraction Via Deflation on Public Datasets

The following experiments provide comparison between re-
sults achieved by the proposed method and the results reported
in the literature. The experiments also show benefits brought by
deflation.

1) Extraction of the SOI From Noisy Recordings With Tran-
sients and Microphone Failures: Piloting and deflation should
not be necessary on CHiME-4 data since the recordings con-
tain only one active speaker. However, the real-world part of
CHiME-4 is sometimes distorted by transients and microphone
failures. These signals behave like sources that are strongly
non-Gaussian, which have wide areas of attraction in contrast
functions of blind algorithms. Therefore, they can be extracted
instead of speech. The piloting and deflation used in our method
provide effective solutions for this phenomenon.

The enhancement via piloted CSV-AuxIVE is compared with
two enhancers known to be very successful on the CHIME-4
data: Beamformlt [56], a weighted delay-and-sum beamformer,
which is used as a front-end algorithm in the original CHiME-
4 baseline system. The Generalized Eigenvalue Beamformer
(GEV) is a front-end solution proposed in [57], [58]. The latter
represents one of the most successful enhancers for CHIME-4.
It relies on voice activity detection (VAD) via deep networks
trained specifically for the CHiME-4 data. We utilize the feed-
forward topology of the VAD (the training procedure was kindly
provided to us by the authors of [57]) and re-train the network
using the training part of the CHiME-4 data.

Since the true references of the sources are not available for the
real-world part of CHiME-4, the experiments are evaluated using
the WER of the original baseline recognizer from [59]. All of the
proposed methods are initialized by the relative transfer function
estimator from [60]. CSV-AuxIVE performs 5 iterations in the
STFT domain with an FFT length of 512, hop-size of 200 (the
shift of the FSMN network) and applied Hamming window; the
sampling frequency is 16 kHz. The length of the CSV-AuxIVE
block is 2 seconds (L = 160 frames). The enrollment set for
piloting contains 8 speakers; respective speech signals originate
from the simulated development part of CHIME-4.

The results in Table VIII indicate that the WER of CSV-
AuxIVE’® is lowered by using piloting and further using de-
flation. This is in agreement with the discussion presented
in Section III-D3: namely, the piloting significantly reduces
the number of diverged cases and the deflation allows for re-
estimation of the SOI when the piloting fails. The proposed

5Slightly different WER of CSV-AuxIVE was reported in [40]; it is caused
by a different FFT frame-shift and the number of performed iterations.
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TABLE VIII
WER [%] YIELDED ON THE REAL-WORLD PART OF THE CHIME-4 DATASETS
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TABLE IX
MC-WSJO0-2mix: SDR [DB] YIELDED USING MACHINE-LEARNING (ML),
BLIND SOURCE SEPARATION (BSS) AND BLIND SOURCE EXTRACTION (BSE)

Mix Beam- SV CSV
h 5' form- | GEV CSvV +pilot +pilot Approach Chan. Tr. Sepa- | Spk. | SDR
cho. It prio +defl. num. data ration id. [dB]
Dev. 9.8 5.8 4.6 5.8 5.4 5.4 [hrs.]
Test [| 19.9 11.5 8.1 9.9 9.5 9.3 Mixture - - - - 0.2
. . . . MCWF 2 - Orac. Orac. 9.0
M I h ‘ from channel 5.
ixture results are achieved using data from channel 5 MCWE 7 - Orac. Orac. 34
TasNet [3] 2 50 ML ML 8.4
FD-SpkBeam [18] 2 50 ML ML 7.9
. TD-SpkBeam-Orig. [18] 2 50 ML ML 11.5
method yields lower WER values compared to BeamformlIt but TD_S%kBeam_Ext. 220 5 350 ML ML T 129
is still outperformed by GEV. Nevertheless, GEV is a technique TLRMA [11] 3 - BSS | Orac. | 590
specifically tailored to CHiME-4 due to dataset-specific VAD GCC-NMF [15] 2 - BSS [ Orac. | 2.7
and is limited to enhancement of recordings without cross-talk. MESSL [12% < 2 - BSS | Orac. | 33
I h d techni . ith d . li Prop. CSV+g 2 - BSE Orac. 5.4
n contrast, the proposed technique is, wit out.a aptation, appli- TLRMA + ML spk. ident. 5 - BSS ML T 54
cable to both speech enhancement and extraction. Even without FS-TVE+gXVEC {defl. 2 - BSE ML | 45
piloting, CSV-AuxIVE achieves results approaching those of Prop. CSV-+g*VFC t-defl. 2 - BSE | ML | 41
GEV without a need for training. IGLR(I)Véfg [; 1 3 - ng 8fac- Z)g
. . L [17] - B rac. .
2 ) Extraction of the SQI From Cross Talk in a Reverberant Prop. CSV 1 gORAC 7} - BSE | Ormc T 96
Environment: The following experiment compares the perfor- TLRMA +ML spk. ident. i - BSS ML 73
mance of the proposed method on the MC-WSJO-2mix dataset FS-IVE+gXVEC+defl. 4 - BSE | ML | 77
to the results reported in the literature. The competing methods Prop. CSV+g"VFC4-defl. 4 - BSE | ML | 78

can be divided into three groups: 1) Oracle methods representing
ideal extractors. These methods cannot be used in practice
as they utilize information that is normally not available. 2)
Methods based on machine learning (ML), which rely on the
existence of a scenario-specific training dataset. 3) Blind source
separation/extraction methods, which exploit spatial informa-
tion extracted from the multi-channel mixture.

For ML-based methods, we consider extraction approaches
that identify the SOI and solely recover this source from the
mixture. For blind approaches, the literature usually presents
methods performing the complete separation (BSS). Here, all
sources in the mixture are estimated (the number of sources
must be known), and the SOI is subsequently identified among
them. This can be done either in an oracle manner using the
true reference during evaluation or using ML-based speaker
identification (to this end, we use the same FSMN network as
for piloting; the X-vector pooling context L. = L). In contrast,
the piloted CSV-AuxIVE extracts (BSE) only the SOI and does
not require the number of interfering sources.

The oracle approaches are represented by the 1) multi-channel
Wiener filter (MCWF), which uses the oracle covariance matrix
of the target speech and constitutes the upper boundary for the
extraction based on spatial filtering. The machine learning-based
separation is represented by: 2) TasNet from [3], which is based
on a convolutional topology performing full separation in the
time domain; subsequently, the SOI is selected via speaker
identification. 3) The frequency (FD) and time domain (TD)
variants of SpeakerBeam [18], [22], which perform speaker
extraction based on an enrollment utterance. Blind methods
are represented by 4) masking-based binaural MESSL [16], 5)
binaural GCC-NMF [15] based on non-negative matrix factor-
ization, 6) consistent ILRMA from [11], 7) GLOSS [17] using
sparsity-based spectral masking and single-channel post-filter
and 8) static auxiliary function-based independent vector ex-
traction FS-IVE [27].

[ Prop. CSV+gXVEC [

~
'

[ BSE [ ML [ 60 ]

The column “Tr. data” quantifies the volume of the required scenario-specific training
data.

These methods are evaluated in terms of SDR implemented
in the BSS_EVAL toolbox [52]. CSV-AuxIVE operates in the
STFT domain with an FFT length of 1,000, hop-size of 100 (the
shift of the FSMN network), and an applied Hamming window;
the sampling frequency is 8 kHz. The length of the CSV-AuxIVE
block is 2 seconds (Lp = 160 frames). The demixing filters
are initialized with a vector of ones, because the locations of
the sources and the topology of the microphone array are un-
known. The enrollment set contains 18 speakers; the X-vectors
are computed using unused sentences from the original WSJO
dataset. The publicly available implementation® of consistent
ILRMA [11]isused. ILRMA (using 100 iterations) and MCWF’
were applied in the STFT domain with window length of 1024
and hop-size 512 samples. The results for TasNet were taken over
from [18]; for MESSL and GCC-NMF, they were found in [2].
The other results originate from their respective references.

Restricting the methods to two channels, the results presented
in Table IX show that the ML-based spatial+spectral filtering
outperforms the blind spatial filtering by a large margin. The
supervised methods are even comparable to oracle MCWF using
two/four microphones. This is possible due to the existence of a
strictly matching training part of the MC-WSJ0-2mix dataset. In
this setting, CSV-AuxIVE with gXVE® and deflation outperforms
MESSL and GCC-NMF, but is outperformed by ILRMA.

The two-channel setting is, however, arguably unfair for blind
methods relying solely on spatial diversity of the sources. Uti-
lization of four channels increases the SDR for all blind methods.

[Online]. Available: https://github.com/d-kitamura/ILRMA
"Different results of MCWF reported in [2] are caused by a short STFT length
of 256 used there.
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Using gXVEC, deflation and 4 microphones, CSV-AuxIVE? is
comparable to ML-based FD-SpeakerBeam and outperforms
blind ILRMA performing full separation followed by ML-based
speaker identification. Using g®RAC, CSV-AuxIVE achieves
results comparable to GLOSS. The results confirm that CSV-
AuxIVE coincides with FS-IVE if the mixed sources are static.
The best performance overall is achieved by the variants of
TD-SpeakerBeam, which approach the oracle MCWF using 4
channels.

Concerning the benefits of deflation, the failures of g
(discussed in Section III-D3), caused by a weak SOI activity
and limited classification accuracy, deteriorate significantly the
average SDR. Considering 4 microphones, CSV-AuxIVE using
gXVEC yields SDR lower by 3.6 dB compared to CSV-AuxIVE
using g®RAC, The deflation partly alleviates this issue and in-
creases the average SDR by 1.8 dB.

XVEC

IV. CONCLUSION

This manuscript presents a novel method for target speech
extraction from realistic mixtures. It consists of a combination
of blind extraction using CSV-AuxIVE method and data-driven
identification of the SOI. Due to decoupling of the extraction
and the identification, the training required by the method is
simpler compared to fully data-driven approaches. Moreover,
the proposed method is applicable to a wide variety of realistic
extraction scenarios without any adaptation. The guidance of
the blind technique towards the SOI is ensured through two
techniques: the piloting and the successive deflation of the
multi-source mixture. Evaluation of the proposed approach leads
to the following conclusions: 1) The presented frame-wise SOI
identification applied to mixtures exhibits accuracy of 67% in
highly reverberated and noisy scenarios (Ts0 = 600 ms and
SIR = 0 dB). 2) This accuracy is sufficient to form an efficient
pilot able to guide the extraction in most scenarios. However,
the embedding-based piloting fails when the mixture contains a
small number of frames where the SOI is dominant, such as
when the activity of the SOI is short and has a low energy
level. These cases can be remedied using successive deflation
of the mixture along with the re-estimation of the SOI. 3) The
proposed non-intrusive assessment of extraction quality can
successfully be used as a decision mechanism to determine
whether the deflation should be applied. It is strongly correlated
with the objective/perceptual criteria used to evaluate quality of
speech; the Pearson coefficient between PLDA score and STOI
improvements reaches a value of 0.83. 4) The procedure as a
whole is language independent. The accuracy of the speaker
identification deteriorates slightly for an unseen language, but
this has negligible effect on the extraction. 5) The CSV-AuxIVE
achieves more precise extraction compared to a blind block-wise
static approach for mixtures of moving sources. On mixtures of
static sources, the piloted CSV-AuxIVE is comparably accurate
to competing blind approaches performing full separation fol-
lowed by the ML-based/oracle speaker identification. In contrast

8We placed examples of the extraction on our web-page: https:
/lasap.ite.tul.cz/demos/blind-extraction- of- target- speech-source- guided-
by-piloting-and-deflation/
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to full separation approaches, CSV-AuxIVE does not require
to know the number of speakers. 6) The proposed approach
achieves a lower performance compared to the state-of-the-
art machine learning-based algorithms, as observed on widely
known CHiME-4 and MC-WSJ0-2mix datasets. On the other
hand, it does not require any scenario-specific training data.

REFERENCES

[1] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Trans. Audio, Speec, Lang. Process.,
vol. 26, no. 10, pp. 1702-1726, Oct. 2018.

[2] Z.-Q.Wang,J.LeRoux, andJ. R. Hershey, “Multi-channel deep clustering:

Discriminative spectral and spatial embeddings for speaker-independent

speech separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., 2018, pp. 1-5.

Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time-frequency

magnitude masking for speech separation,” IEEE/ACM Trans. Audio,

Speech,Lang. Process., vol. 27, no. 8, pp. 1256-1266, Aug. 2019.

[4] M. Togami, “End to end learning for convolutive multi-channel wiener

filtering,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2021,

pp- 8032-8036.

C. Boeddeker et al., “Convolutive transfer function invariant SDR training

criteria for multi-channel reverberant speech separation,” in Proc. [EEE

Int. Conf. Acoust., Speech, Signal Process., 2021, pp. 8428-8432.

[6] E. Vincent, T. Virtanen, and S. Gannot, Audio Source Separation and
Speech Enhancement. Hoboken, NJ, USA: Wiley, 2018.

[7]1 T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation

exploiting higher-order frequency dependencies,” IEEE Trans. Audio,

Speech, Lang. Process., vol. 15, no. 1, pp. 70-79, Jan. 2007.

R. Scheibler and M. Togami, “Surrogate source model learning for deter-

mined source separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., 2021, pp. 176—180.

K. Sekiguchi, Y. Bando, A. A. Nugraha, M. Fontaine, and K. Yoshii,

“Autoregressive fast multichannel nonnegative matrix factorization for

joint blind source separation and dereverberation,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2021, pp. 511-515.

D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,

“Determined blind source separation unifying independent vector analysis

and nonnegative matrix factorization,” IEEE/ACM Trans. Audio, Speech,

Lang. Process., vol. 24, no. 9, pp. 1626-1641, Sep. 2016.

D. Kitamura and K. Yatabe, “Consistent independent low-rank matrix

analysis for determined blind source separation,” EURASIP J. Adv. Signal

Process., vol. 2020, no. 1, pp. 1-35, 2020.

T. Nakashima, R. Scheibler, M. Togami, and N. Ono, “Joint dereverbera-

tion and separation with iterative source steering,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2021, pp. 216-220.

A. Hyvirinen, J. Karhunen, and E. Oja, Independent Component Analysis.

Hoboken, NJ, USA: Wiley, 2001.

H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise

method for solving the permutation problem of frequency-domain blind

source separation,” IEEE Trans. Trans. Speech, Audio Process., vol. 12,

no. 5, pp. 530-538, Sep. 2004.

S. U. Wood, J. Rouat, S. Dupont, and G. Pironkov, “Blind speech separa-

tion and enhancement with GCC-NMF,” IEEE/ACM Trans. Audio, Speech,

Lang. Process., vol. 25, no. 4, pp. 745-755, Apr. 2017.

M. 1. Mandel, R. J. Weiss, and D. P. W. Ellis, “Model-based expectation

maximization source separation and localization,” IEEE Trans. Audio,

Speech, Lang. Process., vol. 18, no. 2, pp. 382-394, Feb. 2010.

B. Laufer-Goldshtein, R. Talmon, and S. Gannot, “Global and local

simplex representations for multichannel source separation,” IEEE/ACM

Trans. Audio, Speech,Lang. Process., vol. 28, pp. 914-928, 2020.

M. Delcroix et al., “Improving speaker discrimination of target speech

extraction with time-domain speakerbeam,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2020, pp. 691-695.

M. Ge, C. Xu, L. Wang, E. S. Chng, J. Dang, and H. Li, “Multi-

stage speaker extraction with utterance and frame-level reference sig-

nals,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2021,

pp. 6109-6113.

M. Delcroix, K. Zmolikova, T. Ochiai, K. Kinoshita, and T. Nakatani,

“Speaker activity driven neural speech extraction,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2021, pp. 6099-6103.

[3

—

[5

=

[8

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]


https://asap.ite.tul.cz/demos/blind-extraction-of-target-speech-source-guided-by-piloting-and-deflation/
https://asap.ite.tul.cz/demos/blind-extraction-of-target-speech-source-guided-by-piloting-and-deflation/
https://asap.ite.tul.cz/demos/blind-extraction-of-target-speech-source-guided-by-piloting-and-deflation/

2308

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

K. Zmolikova et al., “Speakerbeam: Speaker aware neural network for
target speaker extraction in speech mixtures,” IEEE J. Sel. Topics Signal
Process., vol. 13, no. 4, pp. 800-814, Aug. 2019.

J. Han, X. Zhou, Y. Long, and Y. Li, “Multi-channel target speech extrac-
tion with channel decorrelation and target speaker adaptation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2021, pp. 6094—6098.
Q. Wang et al., “VoiceFilter: Targeted voice separation by speaker-
conditioned spectrogram masking,” in Proc. Interspeech, 2019,
pp. 2728-2732.

C. Xu, W. Rao, E. S. Chng, and H. Li, “SpEx: Multi-scale time domain
speaker extraction network,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 28, pp. 1370-1384, 2020.

Z. Koldovsky and P. Tichavsky, “Gradient algorithms for complex non-
Gaussian independent component/vector extraction, question of conver-
gence,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 1050-1064,
Feb. 2019.

R. Ikeshita and T. Nakatani, “Independent vector extraction for fast joint
blind source separation and dereverberation,” IEEE Signal Process. Lett.,
vol. 28, pp. 972-976, 2021.

R. Scheibler and N. Ono, “Independent vector analysis with more mi-
crophones than sources,” in Proc. IEEE Workshop Appl. Signal Process.
Audio Acoust., 2019, pp. 185-189.

R. Ikeshita, T. Nakatani, and S. Araki, “Overdetermined independent
vector analysis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2020, pp. 591-595.

Y. Liang, S. M. Naqvi, and J. A. Chambers, “Audio video based fast
fixed-point independent vector analysis for multisource separation in a
room environment,” EURASIP J. Adv. Signal Process., vol. 2012, no. 1,
2012, Art. no. 183.

A. Brendel, T. Haubner, and W. Kellermann, “A unified probabilistic view
on spatially informed source separation and extraction based on indepen-
dent vector analysis,” IEEE Trans. Signal Process., vol. 68, pp. 3545-3558,
2020.

A.Brendel, T. Haubner, and W. Kellermann, “Spatially guided independent
vector analysis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2020, pp. 596-600.

F. Nesta, S. Mosayyebpour, Z. Koldovsky, and K. Palecek, “Audio/video
supervised independent vector analysis through multimodal pilot de-
pendent components,” in Proc. 25th Eur. Signal Process. Conf., 2017,
pp. 1150-1164.

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust DNN embeddings for speaker recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2018, pp. 5329-5333.

D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. McCree, “Speaker
diarization using deep neural network embeddings,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2017, pp. 4930-4934.

J.Jansky, J. Malek, J. Cmejla, T. Kounovsky, Z. Koldovsky, and J. Zdansky,
“Adaptive blind audio source extraction supervised by dominant speaker
identification using X-vectors,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2020, pp. 676—680.

E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-dependent
speaker verification,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2014, pp. 4052—4056.

G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-
dependent speaker verification,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2016, pp. 5115-5119.

V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network
architecture for efficient modeling of long temporal contexts,” in Proc.
16th Annu. Conf. Int. Speech Commun. Assoc., 2015, pp. 3214-3218.
S.Zhang, C.Liu, H. Jiang, S. Wei, L. Dai, and Y. Hu, “Feedforward sequen-
tial memory networks: A new structure to learn long-term dependency,”
2015, arXiv:1512.08301v2.

J. Jansky, Z. Koldovsky, J. Mdlek, T. Kounovsky, and J. Cmejla, “Auxil-
iary function-based algorithm for blind extraction of a moving speaker,”
EURASIP J. Audio, Speech,Music Process., vol. 2022, no. 1, pp. 1-16,
2022.

V. Kautsky, Z. Koldovsky, P. Tichavsky, and V. Zarzoso, “Cramér-Rao
bounds for complex-valued independent component extraction: Deter-
mined and piecewise determined mixing models,” IEEE Trans. Signal
Process., vol. 68, pp. 5230-5243, 2020.

J. Malek, J. Jansky, T. Kounovsky, Z. Koldovsky, and J. Zdansky, “Blind
extraction of moving audio source in a challenging environment supported
by speaker identification via x-vectors,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2021, pp. 226-230.

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer,
“The 4th CHiME speech separation and recognition challenge,” Ac-
cessed on: Sep. 9, 2021. [Online]. Available: http://spandh.dcs.shef.ac.
uk/chime_challenge/chime2016/

N. Ono, “Stable and fast update rules for independent vector analysis
based on auxiliary function technique,” in Proc. IEEE Workshop Appl.
Signal Process. Audio Acoust., 2011, pp. 189-192.

S. Ioffe, “Probabilistic linear discriminant analysis,” in Proc. Eur. Conf.
Comput. Vis., 2006, pp. 531-542.

A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale
speaker identification dataset,” 2017, arXiv:1706.08612v2.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2015, pp. 5206-5210.

“DCASE 2018 challenge,” Accessed on: Sep. 9,2021. [Online]. Available:
http://dcase.community/challenge2018/index

E. A. Habets, “Room impulse response generator,” vol. 2, Technische
Universiteit Eindhoven, Eindhoven, Netherlands, Tech. Rep. 2.4, 2006.
I. Jolliffe, “Principal component analysis,” in Encyclopedia of Statistics in
Behavioral Science. New York, NY, USA: Springer, 2005.

D. B. Dean, S. Sridharan, R. J. Vogt, and M. W. Mason, “The QUT-
NOISE-TIMIT corpus for the evaluation of voice activity detection
algorithms,” in Proc. 11th Annu. Conf. Int. Speech Commun. Assoc.
2010, pp. 3110-3113.

E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 4, pp. 1462-1469, Jul. 2006.

A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, ‘“Perceptual evaluation of speech quality (PESQ)—A new
method for speech quality assessment of telephone networks and
codecs,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2001, vol. 2, pp. 749-752.

C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time-frequency weighted noisy speech,”
1EEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2125-2136,
Sep. 2011.

G. Andersen, “NST norwegian ASR database,” Accessed on: Sep.
29, 2021. [Online]. Available: https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-13/

X. Anguera, C. Wooters, and J. Hernando, “Acoustic beamforming for
speaker diarization of meetings,” IEEE Trans. Audio, Speech, Lang. Pro-
cess., vol. 15, no. 7, pp. 2011-2022, Sep. 2007.

J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network based
spectral mask estimation for acoustic beamforming,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2016, pp. 196-200.

J. Heymann, L. Drude, and R. Haeb-Umbach, “Wide residual BLSTM
network with discriminative speaker adaptation for robust speech recog-
nition,” in Proc. 4th Int. Workshop Speech Process. Everyday Environ.,
2016, Art. no. 79.

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Comput. Speech Lang., vol. 46, pp. 535-557,
Nov. 2017.

S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” IEEE
Trans. Signal Process., vol. 49, no. 8, pp. 1614-1626, Aug. 2001.

Jiri Malek (Member, IEEE) was born in Czechia
in 1983. He received the Ph.D. degree in techni-
cal cybernetics from the Technical University of
Liberec, Liberec, Czechia, in 2011. Since 2011, he
has been an Assistant Professor with the Faculty of
Mechatronics, Technical University of Liberec,
Liberec, Czechia. His main research interests include
enhancement/separation of audio signals and robust
automatic speech recognition. He is a Reviewer for
journals and conferences focused on digital signal
processing, including the IEEE TRANSACTIONS ON

AUDIO, SPEECH AND LANGUAGE PROCESSING, IET Signal Processing, or
ICASSP.


http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/
http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/
http://dcase.community/challenge2018/index
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-13/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-13/

MALEK et al.: TARGET SPEECH EXTRACTION: INDEPENDENT VECTOR EXTRACTION GUIDED BY SUPERVISED SPEAKER IDENTIFICATION 2309

Jakub Jansky was born in Czechia, in 1989. He
received the M.S. degree in application of software
engineering from the Faculty of Nuclear Sciences and
Physical Engineering, Czech Technical University
in Prague, Prague, Czechia, in 2014. Since 2014,
he has been working toward the Ph.D. degree with
the Faculty of Mechatronics, Technical University
of Liberec, Liberec, Czechiam. Since 2014, he has
been also a Research Assistant with the Faculty of
Mechatronics, Technical University of Liberec. His
main research interests include blind source separa-
tion, independent vector analysis, and sparse reconstruction.

Zbynek Koldovsky (Senior Member, IEEE) received
the M..S. and Ph.D. degrees in mathematical modeling
from the Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University, Prague,
Czech Republic, in 2002 and 2006, respectively.
Since 2020, he has been a Full Professor with the
Institute of Information Technology and Electron-
ics,Technical University of Liberec, Liberec, Czech
Republic, and the Leader of Acoustic Signal Analysis
and Processing Group. He is currently the Associated
Dean for Science, Research and Doctoral Studies with
the Faculty of Mechatronics, Informatics and Interdisciplinary Studies. His main
research interests inlclude blind source separation based on advanced mixing
models applied in independent component/vector analysis and extraction. He
was the General Co-Chair of the 12th Conference on Latent Variable Analysis
and Signal Separation, Liberec, Czech Republic, and as a Technical Co-Chair
of the 16th International Workshop on Acoustic Signal Enhancement, Tokyo,
Japan. Since 2019, he has been a Member of the IEEE SPS Committee Audio
and Acoustic Signal Processing. He was the Area Chair for the area of Analysis
of Speech and Audio Signals of Interspeech 2021 and 2022.

Tomas Kounovsky was born in Czechia, in 1991. He
received the M.S. degree in Information technology in
2016 from the Faculty of Mechatronics, Informatics,
and Interdisciplinary Studies, Technical University
of Liberec, Liberec, Czechia, where he is has been
working toward the Ph.D. degree since 2016. He
is a Member of the Acoustic Signal Analysis and
Processing Group led by Prof. Zbynek Koldovsky.
Hisresearch interests include audio signal processing,
mainly speech enhancement, and source separation.

Jaroslav Cmejla received the M.S. degree in in-
formation technology in 2016 from the Faculty
of Mechatronics, Informatics and Interdisciplinary
Studies, Technical University of Liberec, Liberec,
Czechia, where he has been working toward the
Ph.D. degree. He is a Member of the Acoustic Signal
Analysis and Processing Group led by Prof. Zbynek
Koldovsky. His research interests include audio signal
processing and blind source separation. His current
works are related to the blind source extraction prob-
lem.

Jindrich Zdansky was born in Ceska Lipa, Czechia,
in 1978. He received the M.S. degree in applied
electronics from the Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, Prague,
Czechia, in 2002, and the Ph.D. degree in applied
cybernetics from the Institute of Information Technol-
ogy and Electronics, Technical University of Liberec,
Liberec, Czechia 2006. Since 2005, he has been a
Member of the Speech Processing Group with the
Technical University of Liberec, Liberec, Czechia.
His main research interests include audio signal pro-

cessing, voice-to-text, and speaker diarization technologies.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


