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Abstract—Abdominal auscultation is a convenient, safe and in-
expensive method to assess bowel conditions, which is essential
in neonatal care. It helps early detection of neonatal bowel dys-
functions and allows timely intervention. This paper presents a
neonatal bowel sound detection method to assist the auscultation.
Specifically, a Convolutional Neural Network (CNN) is proposed
to classify peristalsis and non-peristalsis sounds. The classification
is then optimized using a Laplace Hidden Semi-Markov Model
(HSMM). The proposed method is validated on abdominal sounds
from 49 newborn infants admitted to our tertiary Neonatal In-
tensive Care Unit (NICU). The results show that the method can
effectively detect bowel sounds with accuracy and area under curve
(AUC) score being 89.81% and 83.96% respectively, outperforming
13 baseline methods. Furthermore, the proposed Laplace HSMM
refinement strategy is proven capable to enhance other bowel sound
detection models. The outcomes of this work have the potential to
facilitate future telehealth applications for neonatal care.

Index Terms—Convolutional neural network, healthcare
industry, hidden semi-markov model, Neonatal bowel sound
classification, telehealth.

I. INTRODUCTION

BOWEL sound, i.e., peristalsis sound, denotes the gurgling,
rumbling, or growling noises from abdomen, which is
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produced by the movement of food, gas and fluids during in-
testinal peristalsis [1]. It contains valuable information of gas-
trointestinal condition. Bowel motility disorder can be reflected
as an abnormality or lack of peristalsis sound. Auscultation
of bowel sound is therefore a routine assessment in neonatal
care [2], which is particularly important to newborns who are
admitted to NICU. The assessment enables early diagnosis of
bowel dysfunctions of newborns, such as feeding intolerance
and intestinal obstruction [3], [4], and Necrotising Enterocolitis
(NEC), a potentially fatal disease affecting 6% of infants born
with under 1500 grams birth weight [5]. Extremely preterm new-
borns have immature gut and frequent dysmotility shown clini-
cally by feed intolerance bilious gastric aspirates and abdominal
distension. Most of these infants have recovering respiratory
distress syndrome needing nasal Continuous Positive Airway
Pressure (CPAP). Nasal CPAP commonly distends the gut with
gas into the stomach leading to “CPAP belly syndrome” [6]. This
is frequently associated with increased dysmotility and clinical
confusion with early NEC. Alteration of bowel sounds is a part
of assessment for ealry NEC development.

Traditionally, neonatal bowel condition has been qualitatively
assessed by placing a standard acoustic stethoscope on the
abdominal wall of the neonate. By listening to the abdominal
sounds in all four quadrants (right upper, right lower, left upper
and left lower quadrants), the bowel condition can be roughly
determined based on whether the auscultated bowel sound is
frequent, diminished, or absent. Although it is simple and easy
to perform, the assessment relies heavily on the skill and knowl-
edge of the on-site specialist and the application of the stetho-
scope is limited by the varying quality and irreproducibility of
the collected bowel sounds. With the development of digital
stethoscope (DS), a more dynamic and objective way can be
provided to monitor neonatal bowel conditions. In contrast to
the acoustic stethoscope, digital stethoscope converts acoustic
sounds to electrical signals and allows storage and transmission
of the signals for computerized process, medical crowdsourcing,
and telehealth applications. However, despite the improvements
in auscultation introduced by digital stethoscope, interpretation
of neonatal bowel sounds still imposes a heavy demand on work-
load and skilled personnel [7]. Automatically detecting and lo-
cating the bowel sounds in digital stethoscope recordings would
enable a more objective, effective, and efficient diagnosis [8].
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Automatic detection of bowel sound has been investigated
in previous studies. A Multi-layer Perceptron (MLP)-based
method for long-term abdominal sound monitoring was pre-
sented in [9]. The study explored the rationale of using time-
frequency features and wavelet-adapted parameters for bowel
sound recognition. However, the method of evaluation seemed
to suffer from data leakage as the training and testing samples
were allowed to be segmented from the same recording. A
bowel motility detection model was proposed in [10]. While
the model allowed real-time abdominal sound analysis and result
notification, it was only based on energy features which are very
sensitive to noise. Since the neonatal bowel sounds are inherently
weak, impact of noise is a major concern in this approach. The
model was later extended in [11] by adding spectral features
and introduction of Naive Bayesian and minimum statistics.
Although a decent overall accuracy was reported, the application
of this model was still limited by the bowel sound detection sen-
sitivity (35.23% in total). The feasibility of using Higher Order
Statistics for bowel sound detection was discussed in [12]. The
method was proven effective and noise robust in synthetic data,
but it performed with some limits in real-world collected data
because it misclassified all non-peristalsis as peristalsis sam-
ples. Bowel sound recognition using Support Vector Machines
(SVM) classifier was investigated in [8]. The method provided
a better-balanced sensitivity and specificity as compared to the
aforementioned studies. Yet, the model was only evaluated on
ideal laboratory data without any talking and equipment noises.
The applied value of the model in real-world scenarios is yet to
be explored.

Deep learning has shown great promise in many biomedical
applications [13], [14]. Significant research is still underway
to realize the full potential of deep learning in biomedicine
and addressing its potential challenges [15]. It was applied in
the latest study on automated detection of bowel sounds [1].
The method used a human voice recognition algorithm based
on Mel Frequency Cepstrum Coefficient (MFCC) features and
Long-Short Term Memory (LSTM) [16] neural network was
applied to bowel sound detection. This novel attempt was theo-
retically justified and experimentally proven feasible. However,
audio recordings were segmented into 0.1-second pieces for
processing in this work. It seems less likely for LSTM to extract
useful time dependency in such short segments.

Despite the progresses made, none of the existing methods
have proven feasible and effective for detection of neonatal
bowel sound. There are no current benchmarks for objective
neonatal peristalsis detection and characterisation. Due to the
weakness of neonatal intestinal peristalsis, the interference of
irregular breath and heart sound, and the various environment
and equipment noises in NICU [17], abdominal sounds recorded
from newborns are usually of poor quality, which presents
unique challenges to identify and characterize bowel sounds.

In this work, we propose an effective method to automati-
cally identify and locate bowel sounds in neonatal abdominal
auscultatory recordings, which is a key step towards bowel
condition diagnosis. Specifically, our method leverages both
Deep Learning (DL) and Laplace Hidden semi-Markov Model
(HSMM) for the neonatal bowel sound classification. Here,

the DL model provides the probabilistic outputs based on the
high-order semantic information present in the acoustic signals,
whereas the HSMM uses these probabilistic outputs and tem-
poral patterns to provide the optimized linear sequence labeling
information. This complementary components altogether result
in the improvement of classification performance significantly.
Evaluation on real neonatal bowel sound dataset shows that our
method produces a superior result (89.81%) compared to the
second-best method (86.86%) in terms of accuracy. To the best
of our knowledge, this is the first study on automated “neonatal”
bowel sound detection.

In summary, the main contributions of this paper are as
follows:

1) design of a novel CNN architecture to classify the neonatal
bowel sounds into two classes (P and NP), which, we
believe, is the first study;

2) optimize the probabilistic outputs of the proposed CNN
model to improve the performance further using the
Laplace HSMM model; and

3) demonstrate the superiority of the proposed approach
(CNN model+Laplace HSMM) against several well-
established popular ML methods and other DL methods
using popular evaluation measures.

The rest of this paper is organized as follows. Section II
describes our neonatal bowel sound detection method in detail.
Section III presents the experimental results. Discussion is given
in Section IV. Section V concludes the entire work.

II. METHODS

This section presents our methods for data collection, sig-
nal processing, neonatal peristalsis sound detection, and model
evaluation. Specifically, the peristalsis sound detection method
consists of two modules: CNN for initial sound segment classi-
fication and a Laplace HSMM for classification optimization.

A. Data Acquisition and Annotation

A total of 49 newborn infants admitted to our tertiary NICU for
management of prematurity were recruited for the study during
the period from February 2018 to September 2018. The newborn
infants were selected based on the following inclusion criteria:
1) preterm or term infants on full feeds > 120 mL/kg/day;
2) infants not critically unwell, tolerating full enteral feeds
and without any known diagnosis of bowel disease; 3) infants
on continuous positive pressure ventilation (CPAP). Newborn
infants who were intubated, ventilated, on mechanical ventila-
tion, requiring any inotropes, or having significant chromosomal
anomalies were excluded from this study. Informed consent
was obtained from each study participant’s parent. The study
received human ethics approval from Western Sydney Local
Health District Human Research Ethics Committee on 12 Apr
2018 (LNR/17/WMEAD/516).

The 3MTMLittmann digital stethoscope (Model 3200 with
Bluetooth, 3 M, USA) [18] was used for abdominal sound
auscultation in this study. We used the diaphragm mode which
amplifies the sounds from 20–2000 Hz, but emphasizes the
sounds between 100–500 Hz. For each recruited infant, who was
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Fig. 1. Abdominal sound auscultation device and position. (a) 3M Littmann
Electronic Stethoscope Model 3200. (b) Diaphragm of the digital stethoscope.
(c) The right lower quadrant abdominal wall.

placed supinely on the bed, an uninterrupted 60-second abdomi-
nal sound recording was captured by applying the diaphragm of
the digital stethoscope on the abdominal wall in the right lower
quadrant (RLQ). The rationale behind this is that the abdominal
sound from the RLQ area is less interfered by the heart and
lung sound. Fig. 1 shows the used digital stethoscope and the
auscultation position.

The recorded abdominal sounds were transmitted to a research
laptop via Bluetooth for visual interpretation and annotation.
Annotation was created and validated on ELAN [19], a research
tool specially designed for annotating audio and video data, by
our neonatologists to indicate the onset and duration of bowel
sound, heart sound, and various NICU noises in a recording.
Simultaneous ultrasound was performed to guide annotation.

B. Preprocessing

Each annotated abdominal sound recording was sliced into
overlapping segments by applying a 6-second length rectangular
window function. In our ablative study in section III-E, segment
length of 6 s yielded the best results. The step between the onsets
of successive windows was set to 0.1 s. The 6-second segment
length is long enough to provide useful insights for neonatolo-
gists to understand the bowel condition and also short enough
for achieving a precise location of bowel sound in a recording.
After segmentation, a total of 16,401 abdominal sound segments
were obtained. Those segments containing bowel sound were
labeled as P (peristalsis), whereas the others were labeled as
NP (non-peristalsis). The numbers of P and NP segments were
14,410 and 1,991, respectively.

We calculated the MFCC features to represent each abdominal
sound segment. MFCC is commonly used in automatic human
speech recognition [20]. It takes into account human perception
sensitivity at appropriate frequencies by converting the conven-
tional frequency (f ) to Mel Scale (M(f)). The conversion rule
is shown in (1).

M(f) = 1125 ln(1 + f/700) (1)

The reason we use MFCC on abdominal sound is that the auscul-
tation is highly dependent on medical expert perception. Repre-
senting abdominal sound with MFCCs facilitates development
of an automated model to interpret the abdominal sounds in the
similar way auscultated by medical experts. More importantly,

TABLE I
THE HYPER-PARAMETERS USED IN CALCULATION OF MFCCS

Fig. 2. Architecture of the proposed convolutional neural network with
11 layers, where Conv1D(x, y) denotes the 1D convolutional layer with
number of filters as x and the kernel size as y. Similarly, Dropout(0.1),
MaxPooling1D(2), and Dense(x) denote the dropout rate as 0.1, max
pooling size as 2, and number of units in dense layer as x, respectively.

it has been proven that abdominal sounds are very similar to
human speech in terms of the predictablility of the changes of
spectrum versus time [1].

The hyper-parameters setting in calculation of MFCC can be
found in Table I. A mean operation is performed to summa-
rize the calculated coefficients in each time-frame to obtain a
sequence of 24 MFCC values in one dimension, which will be
the input to the proposed bowel sound detection model. This
segment length produced the best results in our ablative study
of various sequence lengths described in Section III-D.

C. Convolutional Neural Network-Based Classification

Convolution is useful in learning high-level representations
of data, which is commonly applied in time series, image, and
video data [21]. In this work, we propose a CNN to distinguish
peristalsis from non-peristalsis sound. The architecture of the
proposed model is shown in Fig. 2. Our proposed model accepts
an MFCC sequence of length 24 as input. The most important
part of CNN is the single channel convolution block, in which
convolution of kernel size of 8 and number of filters of 256 at first
applied to the input sequence to extract high-level features. We
choose 8 as the best kernel size in our work from the empirical
study (refer to Table VI). The convolution block is specially
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TABLE II
HYPER-PARAMETER SETTINGS USED FOR TRAINING THE DEEP LEARNING (DL)

MODELS IN OUR WORK

designed to capture the burst characteristic of bowel sound. It
has been proven that the bursting bowel sound can lead to an
extremely uneven energy distribution in an abdominal sound
recording along the time axis [22]. Since the mel-frequency
cepstrum (MFC) is a representation of the short-term power
spectrum, the uneven energy distribution will also be reflected in
MFCC accordingly. Hence, by applying the convolutions with an
appropriate kernel capturing subtle energy changes in successive
time frames, our proposed CNN model can learn useful energy
patterns to effectively characterize bowel sound. A total of 4
Convolutional layers are included in our proposed model. Each
convolution operation is followed by a ReLU activation to enable
non-linear transformation. Dropout is used to overcome the
problem of over-fitting and Max Pooling layer is applied to
reduce the dimension and achieve the spatial invariant feature
maps. Furthermore, inspired by the recent CNN architecture
proposed by Anders et al. [23], which has suggested to use
Convolutional layers after Max pooling layer, we adopt a similar
approach to order in our work to capture the discriminating
semantic information. The learned patterns achieved through
several intermediate layers (e.g., Conv1D, Max pooling, etc.)
impart hierarchical semantic information related to the input
sequence, MFCC. Eventually, the network estimates a prob-
ability distribution over peristalsis and non-peristalsis classes
with the Softmax function [24]. The detailed hyper-parameters
used in our work are presented in Table II. To tune the hyper-
parameters in this study, we first find the best optimizer in
terms of higher classification accuracy keeping other param-
eters fixed (e.g., train/validation=0.3, lr=0.01, decay=1e-03,
number of epochs=200 and batch size=32), which are chosen
randomly. After the identification of the best optimizer with the
highest classification accuracy, we proceed to select the best
learning rate (lr) keeping other remaining parameters fixed. We
continue this process repeatedly and, finally, find all optimal
hyper-parameters in this study.

All of our experiments are performed in leave-one-patient-out
CV (LOPOCV) approach, where one subject is considered as
testing split and remaining as training split. To train the DL
models, we design a validation set by further splitting training set
into training and validation splits with 70/30 ratio. With the help
of the validation accuracy and losses, we tune the DL models.
Based on such trained model, we, finally, evaluate the testing
accuracy of the testing subject and repeat this process. To train
other machine learning models, we evaluate the testing accuracy
by using the LOPOCV approach alone and repeat this process.
Both approaches (DL and non-DL) produce the testing accuracy

Fig. 3. Sample train/validation accuracy and loss curve produced by our
proposed CNN model for bowel sound classification.

for the comparison purpose. Our proposed model produces the
best-fit convergence during bowel sound classification (refer to
Fig. 3).

D. Laplace Hidden Semi-Markov Model Refinement

Abdominal sound changes over time, but the change is not
completely random because peristalsis is a naturally durative
process. For example, it is less likely to find a sudden pause
within a continuous peristalsis or to find a transient peristalsis
which just lasts for 0.1 s. Therefore, for an abdominal sound
recording, if we arrange all segments in time order, the transition
between the segment states, i.e. peristalsis or non-peristalsis,
should be subject to certain probability distribution. Motivated
by this fact, a HSMM is applied to model the segment transition
process to refine the bowel sound classification result. HSMM is
an extension to Hidden Markov Model (HMM) [25]. They both
have been proven to be useful in modeling repetitive events by
considering the timing and the temporal order of events [26].
As compared to HMM, HSMM allows a hidden state to have
a duration distribution, which is more suitable to be applied on
abdominal sound with durative peristalsis.

The HSMM modeling process is presented in Fig. 4. Segments
from an abdominal sound recording arranged in time order
serve as the observation sequence. Labels of the segments are
predictions from the CNN model. The HSMM states denote the
potential true labels. Duration of a state represents the number
of observations produced while in the state. The refinement is
achieved by estimation of the HSMM state sequence.

Formally, let O1:T = O1, . . . , OT denote the observation se-
quence, whereOn ∈ [0, 1] is the predicted probability of then-th
segment belonging to class P. LetS1:N = (j1, d1), . . . , (jN , dN )
denote the HSMM state sequence, in which jn ∈ {P,NP} and
dn represent the state label and duration of the n-th hidden state,
respectively. The objective function is defined as

argmax
S1:N

P (S1:N | O1:T , λ), (2)
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Fig. 4. Overview of the HSMM modeling process. Peristalsis and non-
peristalsis segments are represented by the yellow and grey blocks, respectively.
Bnp and Bp denotes the emission probability of the hidden NP and P states,
respectively. Pnp and Pp denotes the duration probability of the hidden NP and
P states, respectively.

where λ denotes the model parameters including initial proba-
bility, transition probability, emission probability, and duration
probability.

The initial state distribution is determined based on the per-
centages of class P and NP being the first state in the training
recordings. It is given by

πj =

{
Supp(Pini)

n , j = P

1− πP , j = NP
, (3)

where Supp(Pini) denotes the number of training recordings
with class P as the initial state and n represents the amount
training recordings.

The types of the HSMM states are assumed to change in every
transition. So, the state transition probability is given by

aij = 1, i �= j& i, j ∈ {P,NP}. (4)

We use the Laplace distribution to provide a continuous
modeling of the state emission probabilities. As a result, we
are able to capture them for both P and NP events that are
continuous in bowel sound. Here, we have observed experimen-
tally that emission probabilities could be properly modelled by
Laplace distribution, based on this dataset. For a given state
j ∈ {P,NP}, the emission probability distribution is:

bj (x|μ, σ) = 1

2σ
exp

(
−|x− μ|

σ

)
, (5)

where σ denote the standard deviation, x the output of the
corresponding class node in the softmax output layer of the CNN
andμ is the mean value. We setμ = 1 if j = P , otherwiseμ = 0.
As compared to the conventional discrete emission probabilities,
which are learned from training confusion matrix, the Laplace
distribution provide the results improvements for the network
output (x). Experimental evidences can be found in Section III-F.
To be distinguished from the conventional practice, we refer to
the modified HSMM as Laplace HSMM.

The duration probability of each state is learned from the
training data. We use pj(d) to represent the probability of state j
having durationd, where j ∈ {P,NP}. Algorithm II-D presents
the learning process, in which the duration frequency counting
is performed in lines 10-17. Laplace smoothing is performed in
lines 23-27 to avoid discontinuous duration probabilities.

We use the Viterbi algorithm [27] for the maximum likelihood
estimation of the hidden state sequence S1:N . The algorithm
is popularly used in HMM. We modify it as follows to be
compatible with the Laplace HSMM. Firstly, we define δj(t)
as the highest probability of a hidden state sequence of length
n, which accounts for the observations of length t and ends in
state j:

δj(t) = max
S1:n−1

P (S1:n | O1:t, λ) , Sn = (j, dn). (6)

Then we have

δj(1) = πjpj(1)bj (O1) , (7)

and

δj(t) = max
d

max
i

{
δi(t− d)aijpj(d)

t∏
τ=t−d+1

bj (oτ )

}
, (8)

where oτ is the outcome of the Laplace distribution function that
took the output of the CNN at timestep τ as its input. Finally,
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TABLE III
THE HAND-ENGINEERED FEATURES FOR BOWEL SOUND DETECTION

the most likely HSMM state sequence can be obtained from
backtracking the following equation

max
S1:N

P (S1:N | O1:T , λ) = max
j

δj(T ). (9)

E. Performance Evaluation

We utilize leave-one-patient-out cross validation (LOPOCV)
to evaluate the proposed model. For each round of LOPOCV,
abdominal sound segments from one patient are used as test
data while segments from the remaining 48 patients are used for
training.

1) Baseline Methods: We compare our method with multi-
ple machine learning algorithms using hand-engineered signal
features derived from the related literature, including jitters and
shimmers [30]–[33], higher order statistics [12], [34], wavelet
subband energies [35], spectral centroids [11], spectral subband
energies [11], [36], and MFCCs [1]. A total of 121 features
were extracted, as summarized in Table III. The parameters of
the feature extraction methods were fine-tuned to adjust to the
experimental abdominal sound recordings and the extracted fea-
tures were normalized to zero mean and unit variance. To reduce
the risk of over-fitting, feature selection was applied to select
the best 20 features for training and evaluation. Specifically, we
followed the feature selection method proposed in [37], which
implements the following processing steps:
� Remove features with more than 60% missing values.
� Remove features with a single unique value.
� Remove collinear features with a correlation of 0.98.
� Rank features based on their importance scores calculated

by a Gradient Boosting Decision Tree (GBDT).

TABLE IV
PARAMETERS OF THE COMPARED MACHINE LEARNING MODELS

The compared machine learning algorithms are K-Nearest
Neighbors (KNN), Linear SVM, Radial Basis Function (RBF)
SVM, Decision Tree (DT), Random Forest (RF), MLP, Ad-
aBoost, Naive Bayes (NB), and Quadratic discriminant analysis
(QDA). The model parameters were determined experientially,
which are summarized in Table IV.

2) Evaluation Metrics: We used classification accuracy
(ACC), area under the receiver operating characteristics (ROC)
curve (AUC) [38], macro-averaged F1 (MA_F1), and weighted
F1 (WT_F1) as the evaluation metrics of overall model perfor-
mance. Specifically, MA_F1 is the unweighted average of F1
score of each class, whereas WT_F1 is F1 average weighted by
the number of instances of each class. Besides, recall (REC),
precision (PRE), and F1 scores (F1) for each class are also
measured to allow inspection of the model performance on
individual classes. The metrics used in this study are formally
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TABLE V
BOWEL SOUND DETECTION RESULTS WITH LEAVE-ONE-PATIENT-OUT CROSS VALIDATION

1(x, y) denotes that the Gamma and Cost parameters of the SVM are set to x and y, respectively.

defined with the following equations:

ACC =
TP + TN∑ , (10)

AUC =

∫ 1

x=0

ROC(x)dx, (11)

MA_F1 =
F1P + F1NP

2
, (12)

WT_F1 =
F1P × Supp(P ) + F1NP × Supp(NP )∑ , (13)

PRE =
TP

TP + FP
, (14)

REC =
TP

TP + FN
, (15)

F1 = 2× PRE ×REC

PRE +REC
, (16)

whereTP ,TN ,FP , andFN denote true positive, true negative,
false positive and false negative, respectively, and

∑
represents

the amount of instances in the data set. ROC(.) denotes the curve
plot of true positive rate (y-axis) versus false positive rate (x-
axis). F1P and F1NP denote the F1 scores of class P and NP,
respectively, whileSupp(P ) andSupp(NP ) denote the number
of instances of class P and NP, respectively.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate
the effectiveness of our bowel sound detection model. We also
show that the proposed Laplace HSMM strategy can introduce
general improvements to achieve a more accurate bowel sound
detection.

A. Comparative Results

The comparative results are presented in Table V. It can be
observed that the proposed CNN + HSMM method achieved the

best scores on 7 out of 10 metrics in total, with the remaining 3
metrics being comparable to the best performing baselines. This
suggests that the proposed method is effective in neonatal bowel
sound detection and has introduced significant improvements to
current methods.

The RBF SVM 1 obtained the second best overall classifica-
tion accuracy and the highest recall rate of peristalsis samples.
However, this is at the cost of misclassification of more than
half the non-peristalsis samples with the recall value being just
0.4530. By contrast, the corresponding recall of the proposed
method is 0.7624, which is significantly better. In practice,
accurately recognizing the segments without bowel sound is
very important because it helps to avoid unnecessary tests and
treatments, and reduce risks for patients. The best recall of non-
peristalsis samples was achieved by RBF SVM 2, but meanwhile
the model obtained the lowest ACC, AUC, MA_F1, WT_F1, and
peristalsis recall. This means that the model could hardly detect
peristalsis samples.

Given that the experimental dataset is very imbalanced, with
88% of samples being peristalsis, the overall accuracy can
not provide enough insights of the true model performance.
A decent accuracy value can be easily obtained by classifying
all samples as the dominated class. Therefore, the AUC score
is more critical in measuring the model overall performance
because it is very sensitive to class imbalance. It is worth to
note that our model is the only one which achieves an AUC
score close to 0.84, outperforming the second best by nearly 5%.
Besides, the MA_F1, WT_F1, and the individual class metrics
also suggest that the proposed method outperformed the baseline
algorithms.

B. Ablative Study of Different Kernels

In this subsection, we studied the efficacy of different kernels
(2, 4, 8, and 16) based on fixed-sized input sequence of 24 and
segment length of 6 s in our proposed CNN model. Detailed
experimental results of classification performance of each kernel
are presented in Table VI. While observing the table, we notice
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TABLE VI
ABLATIVE STUDY OF FOUR DIFFERENT CHANNELS (2, 4, 8, AND 16) USED IN

OUR WORK. NOTE THAT WE USE LAPLACE HSMM ON TOP OF THE RESULT

PRODUCED FROM EACH DEEP LEARNING MODEL

Fig. 5. LSTM model used to compare our proposed CNN model.

Fig. 6. CNN-LSTM model used to compare with our proposed CNN model.

that the best kernel size is 8 in our work. This work reveals that
lower kernel size is unable to capture the semantics of signal
information accurately, whereas the higher kernel size could
repeat the discriminating information, which, in result, degrades
the classification performance.

C. Comparison With Other DL Methods

Since there are no well-established benchmark datasets and
DL models to classify neonatal bowel sound features, we com-
pared our method against two different variants of DL methods:
LSTM (Fig. 5) and CNN-LSTM (Fig. 6) using fixed-sized input
sequence of 24 and segment length of 6 s. Experimental results,
which are obtained after Laplace HSMM, are presented in Ta-
ble VII. While observing the table, we notice that our proposed
CNN model outperforms other two versions of DL models.

TABLE VII
COMPARISON OF OUR METHOD AGAINST TWO DL MODELS

TABLE VIII
COMPARATIVE STUDY OF 5 DIFFERENT SEQUENCE LENGTH WITH OUR

METHOD

Furthermore, we compared our method against two baseline
methods (LSTM and CNN-LSTM) using statistical analysis.
First, we performed the normality test using Jarque-Bera (JB)
test, which showed that our data were not normally distributed.
Therefore, we used nonparametric Wilcoxon signed rank test
to assess the statistical significance [39] of our results com-
pared to two baseline methods separately. While comparing the
performance of our method against LSTM and CNN-LSTM
at subject-level (for 49 subjects), we found that our method
achieves significantly higher weighted PRE, weighted REC,
WT_F1 and ACC, with the p-value of 1.181e-3, 4.727e-3, 1.56e-
3, and 4.727e-3 respectively, compared to LSTM and with p-
values of 1.9e-4, 1.516e-05, 7.739e-06, respectively, compared
to CNN-LSTM. Therefore, our proposed method produces an
encouraging result against the baselines.

D. Ablative Study of Varying Sequence Lengths

In this subsection, we studied the relationship between se-
quence length and classification performance in our work. For
this, we utilized 5 different sequence lengths (8, 16, 20, 24,
and 26) with the fixed segment length of 6 s and evaluated
our model. The experimental results, which are obtained after
Laplace HSMM, are presented in Table VIII. The experimental
results show that the best sequence length is 24. Therefore, we
stipulate that the sequence length of 24 is sufficient to capture
the discriminating information for bowel sound classification.

E. Ablative Study of Varying Segment Length

In this subsection, we studied the relationship between sound
segment length and classification performance. For this, we con-
sidered 4 different segments length (2, 4, 6, and 8 seconds) based
on fixed-size input sequence of 24 and evaluated on the bowel
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TABLE IX
COMPARATIVE STUDY OF 4 DIFFERENT SEGMENT LENGTHS (2, 4, 6, AND 8)

WITH OUR METHOD

TABLE X
COMPARISON OF IMPROVEMENTS BY HSMM WITH CONVENTIONAL AND

LAPLACE-BASED EMISSION MATRIX

sound dataset. The evaluation results, which are obtained after
Laplace HSMM, are presented in Table IX. The experimental
result shows that 8 s segments impart marginal improvement
over 6 s segment for some performance metrics such as overall
accuracy (0.9036 vs 0.8981). Nevertheless, 8 s segment length
results in sharp decline in performance for NP class compared to
6 s segment length. Thus, throughout the whole work, we prefer
6 s segment length, which yields the balanced performance for
both classes (P and NP) without compromising overall accuracy.
From this result, we suspect that the lower-sized segments less
than 6 s and higher-sized segments greater than 6 s are unable to
efficiently capture the more semantic information representing
the bowel sound.

F. Ablative Study of Laplace HSMM Refinement

The Laplace HSMM refinement strategy is one of the major
contributions of this work. We have implemented the following
experiments to provide more insights into the strategy.

1) Comparison With Conventional HSMM Practice: HMM,
HSMM, and their extensions are widely used to improve time se-
ries classification [40], [41]. In conventional HMM and HSMM
practices, an observation is normally referred to a predicted class
label and the emission probability matrix is learned from training
results. In this work, we define an observation as the probability
of the segment belonging to class P, and we propose to use the
Laplace distribution to model the emission probability.

We experimentally compared the performances of HSMM
with conventional and Laplace-based emission matrix. Specifi-
cally, the conventional emission matrix E is obtained by

Eij =
Cji × 100∑n

i=1 Cji
, i, j ∈ {P,NP} (17)

where C denotes the confusion matrix of the training data. Ta-
ble X summarizes the improvements of CNN after applying the
two different types of HSMMs. With the conventional HSMM,
the overall accuracy, AUC score, macro F1, and weighted F1 of

Fig. 7. The impact of standard deviation on Laplace-based HSMM. The ACC
and AUC values are from our CNN model after refinement.

CNN increased by 0.0061, -0.0011, 0.0089, and 0.0086, respec-
tively. By contrast, with the Laplace-based HSMM, the same
metrics increased by 0.0497, 0.043, 0.0728, 0.0446, respectively.
The significant gaps prove the superiority of the Laplace-based
emission matrix.

The improvement introduced by the conventional HSMM is
very limited. One explanation is that the emission probabilities,
learned from the training confusion matrix, are highly concen-
trated because the model training performance is usually good.
That means, a hidden NP or P state usually has an over 80%
chance to produce a corresponding NP or P observation. There
will be a great penalty if HSMM assign a hidden state to an
observation with different label. In fact, this is a dilemma. If the
training stops too early, the classification results from CNN will
be less reliable and the refinement will be meaningless. If the
training stops too late, the emission probabilities will be con-
centrated. It is very difficult to control the training performance
to an optimal level.

2) Ablative Study of Laplace HSMM: An ablative analysis
was performed to quantify the improvement introduced by the
proposed Laplace HSMM strategy. We compared the CNN clas-
sification performances with and without HSMM refinement.
The results are summarized in Table XI. It can be observed
that, after refinement, all 10 performance metrics of CNN got
improved. The improvements ranged from 0.54% to 12.89%,
where the most significant ones were made on the precision
rate of non-peristalsis samples and the recall rate of peristalsis
samples. This means a large portion of misclassified peristalsis
samples were corrected. The results strongly suggest that the
proposed Laplace HSMM strategy has introduced comprehen-
sive improvements to CNN. It helps CNN to achieve a more
accurate and more reliable automatic neonatal bowel sound
classification.

3) The Impact of Laplace Parameter: The Laplace distribu-
tion is a parametric function. In this subsection, we investigated
the variations of the proposed HSMM performance with the
changes of the standard deviation value σ of the Laplace distri-
bution. The result is visualized in Fig. 7. Although there are some
fluctuations, general increasing trends can be observed for both
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TABLE XI
ABLATIVE ANALYSIS OF LAPLACE HSMM WITH CNN

Fig. 8. General improvements introduced by the proposed Laplace HSMM strategy.

ACC and AUC scores whenσ increases from 0.1 to 5. Afterward,
the model performance maintains at a relative stable level. The
reason behind is that a small σ leads to concentrated emission
probabilities, thus limiting the refinement. With the increase of
σ, the Laplace distribution becomes more spread and various
hidden state combinations are allowed to be examined.

4) Generalization Performance: Although the Laplace
HSMM is initially proposed to improve the performance of CNN
model, it can be applied to other bowel sound classification
algorithms for result refinement. In this part, we investigated
the generalization performance of the proposed Laplace HSMM
strategy by applying it to the baselines. The results are sum-
marized in Fig. 8. It is worth to note that, both the ACC and
WT_F1 scores of all 13 baselines gained different levels of
increases after refinement by the proposed Laplace HSMM.
The most significant one is AdaBoost, with the ACC score
rising from 0.8371 to 0.8913 and the WT_F1 score rising from
0.8511 to 0.8877. Out of the total 13 baselines, 8 baselines
gained improvements on the AUC score, and 11 baselines gained
improvements on the MA_F1 score, respectively. KNN and RF
are the only two baselines not being improved on both AUC
and MA_F1 scores. The reason can be found in Table V. The
two baselines performed poorly on identifying non-peristalsis
samples. This might confuse the HSMM model which might
treat the predicted non-peristalsis samples as noises and then
label them as peristalsis.

Despite the occasional cases, the overall result still provides
the strong evidences that the proposed Laplace HSMM is able
to introduce general improvements to help deliver a better and
more reliable neonatal bowel sound classification.

IV. DISCUSSION

This paper proposed a methodology based on CNN and
Laplace HSMM to detect bowel sound on infants for the first
time. The experimental results have proven the effectiveness
of the proposed method and demonstrated its superiority as
compared to the baselines. Furthermore, we have also shown that
the proposed Laplace HSMM refinement strategy can be flexibly
applied to existing methods without changing their original
structures to help provide a better bowel sound classification
performance.

While these results are promising, there is still room for
improvements. Firstly, the proposed method learns to distinguish
peristalsis from non-peristalsis from MFCC only. Although the
effectiveness of MFCC has been proven, whether it is the best
choice is still unknown because it does not contain much time
domain and subband-specific information which might also
present differences between peristalsis and non-peristalsis sam-
ples. Therefore, it is worth to investigate the advantages of other
potential features. In fact, an investigation of the features listed
in Table III has been performed. For each round of LOPOCV,
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TABLE XII
FREQUENTLY SELECTED FEATURES

1SSC denotes the spectral subband centroid.
2SB_EN denotes the spectral subband energy.

feature selection is performed on training data to find out the top
20 most representative features. Although the best feature list
exhibits some inter-subject variations, we can still summarize
the frequenters, as shown in Table XII. It is clear that MFCC,
Skewness, Kurtosis, and Spectral Subband Centroids and Ener-
gies are commonly determined as representative features. The
finding has provided us a good direction to work on. However, to
design a practical model that can make the best of each of these
features is still challenging, which will be our future work.

Secondly, the experimental abdominal sounds were collected
in NICU with a commercial DS without noise cancellation
function. They are very noisy, containing rub noise, alarm noise,
monitor noise, and talk noise. This may be one possible reason
of why most of the baselines failed to give a good performance
even if the used features have been proven effective in adult
bowel sound detection. We did not specially handle the noise
problem because the neonatal abdominal sound is very weak.
The sound recording might lose important information while
the noise is suppressed. Although the proposed method has
been proven to be able to achieve a promising result on these
noisy recordings, having good quality data is still necessary.
This will allow our model to allocate more learning capacities to
catch the key differences between peristalsis and non-peristalsis
samples instead of wasting resources on reducing the influence
of noise. Moreover, the presence of noises can also impose a
great challenge for the follow-up analysis, in which we need to
further determine whether the peristalsis sound is disease related
or not. Therefore, in our next study, we will use a more advanced
DS and denoising methods to reduce the noise interference.

Thirdly, the abdominal sound segments are highly imbal-
anced, with nearly 88% being peristalsis samples. This explains
why the proposed method reported a precision rate of just 0.5589
for non-peristalsis samples, given that the recall rates for both
classes were quite good. Even though just a small portion of
peristalsis samples were misclassified, there was still a large
impact to the precision of non-peristalsis samples. Moreover,
the imbalance problem limited the available data because class
balancing by downsampling had to be performed to reduce

model training bias. The model complexity is thus limited.
Our team of neonatologists are currently working to solve the
problem by continuously collecting data. Although this will be
a very time-consuming process, it will bring a lot of benefits, not
only to our current work but also to our future study of pathology
of bowel sound.

Fourthly, the proposed method was developed only based on
the abdominal sounds recorded from the right lower quadrant.
Whether the abdominal sounds from the other three quadrants
(right upper, left upper and left lower) help to deliver a more
accurate peristalsis detection and how to develop a mode to
effectively analyze the abdominal sounds from all four quadrants
are still to be explored.

This work has shown how automatic analysis of neonatal
bowel sound can be done from DS collected abdominal sounds.
DS auscultation will have been a mainstream methodology for
diagnosis of bowel condition in the foreseen future. Although
point-of-care ultrasound can provide more detailed information
on bowel peristalsis, bowel wall thickness and bowel vascu-
larity [42], it can be only performed by medical professionals
within hospital settings. By contrast, DS auscultation is much
more convenient without imposing constraints on professional
knowledge and geographical locations. It facilitates the devel-
opment and application of telehealth. One can use DS to record
bowel sound in home environment and send out the recording
with the help of smartphones and high-speed networks for
remote auscultation. The proposed bowel sound detection model
is one of the major contributions of this study, which can greatly
improve the efficiency of the bowel condition tele-diagnosis
process. The current work is a preliminary step towards auto-
mated classification of different types of peristalsis sounds and
pathological bowel conditions. With this model, clinicians can
directly listen to their sounds of interest, instead of going over
every detail. The ability to use other biological sounds such as
heart and lung sounds [43] with the proposed methodologies
could be explored.

Automated detection of peristalsis sounds is an important step
towards automated detection of neonatal bowel conditions from
abdominal sounds. The next steps will be to differentiate and
characterise various types of bowel sounds, validate the results
against other modalities such as ultrasound and develop diag-
nostic models to detect bowel dysfunctions, toward developing
a clinical decision support system.

V. CONCLUSION

This paper presented an effective neonatal bowel sound
detection method, which uses CNNs to perform an initial
classification which is then refined with Laplace HSMM. The
proposed deep learning model enables automatic learning of
useful patterns to distinguish peristalsis from non-peristalsis.
The Laplace HSMM refinement strategy optimizes the predicted
events by considering their hidden time dependency. Abdominal
sounds recorded from 49 newborn infants admitted to our tertiary
NICU were used as experimental data. The results showed that
the proposed method can accurately identify peristalsis and non-
peristalsis sounds with an overall accuracy of around 90% and
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an AUC score of around 84%. In addition, the Laplace HSMM
refinement strategy has been proven to be able to introduce
general improvements to other bowel sound detection models
to help perform a more reliable detection.

This work opens opportunities for further research to develop
continuous acoustic monitoring or “mapping” to quantitate pat-
terns of bowel acoustic signatures that may allow pre-clinical
detection of NEC and Septicaemia.
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