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Deep Noise Suppression
Maximizing Non-Differentiable PESQ
Mediated by a Non-Intrusive PESQNet

Ziyi Xu , Maximilian Strake, and Tim Fingscheidt , Senior Member, IEEE

Abstract—Speech enhancement employing deep neural net-
works (DNNs) for denoising is called deep noise suppression (DNS).
The DNS trained with mean squared error (MSE) losses cannot
guarantee good perceptual quality. Perceptual evaluation of speech
quality (PESQ) is a widely used metric for evaluating speech qual-
ity. However, the original PESQ algorithm is non-differentiable,
therefore, cannot directly be used as optimization criterion for
gradient-based learning. In this work, we propose an end-to-end
non-intrusivePESQNetDNN to estimate the PESQ scores of the en-
hanced speech signal. Thus, by providing a reference-free percep-
tual loss, it serves as a mediator towards the DNS training, allowing
to maximize the PESQ score of the enhanced speech signal. We illus-
trate the potential of our proposed PESQNet-mediated training on
a strong baseline DNS. As further novelty, we propose to train the
DNS and the PESQNet alternatingly to keep the PESQNet up-to-
date and perform well specifically for the DNS under training. De-
tailed analysis shows that thePESQNetmediation further increases
the DNS performance by about 0.1 PESQ points on synthetic test
data and by 0.03 DNSMOS points on real test data, compared to
training with the MSE-based loss. Our proposed method outper-
forms the Interspeech 2021 DNS Challenge baseline by 0.2 PESQ
points on synthetic test data and 0.1 DNSMOS points on real test
data. Furthermore, it improves on the same DNS trained with an
approximated differentiable PESQ loss by about 0.4 PESQ points
on synthetic test data and 0.2 DNSMOS points on real test data.

Index Terms—Deep noise suppression, convolutional recurrent
neural network, PESQ, non-intrusive PESQ estimation.

I. INTRODUCTION

S PEECH enhancement aims at improving intelligibility and
perceived quality of a speech signal degraded by interfer-

ences, which can include both additive noise and reverberation,
has attracted a lot of research attention in the past decades
[1]–[24]. The classical solution is to estimate a time-frequency
(T-F) domain mask, or, more specifically, a spectral weighting
rule [1]–[9], which requires the estimation of the a priori signal-
to-noise ratio (SNR), and sometimes also the a posteriori SNR.
Data-driven speech enhancement approaches have shown great
success, even in the presence of non-stationary noise [10]–[12].
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In recent years, methods based on deep neural networks (DNNs)
have pushed the performance limits even further, and are sub-
sumed under the term deep noise suppression (DNS) [13]–[24].
The benefits obtained from employing DNNs to estimate T-F-
domain masks without any intermediate steps are illustrated in
[13], [16], [19]. Compared to feed-forward DNNs, convolutional
neural networks (CNNs) are structurally well-suited to preserve
the harmonic structures of the speech spectrum, and have been
successfully applied in [17], [18], [20]–[22]. Recent studies
show that the speech denoising task significantly benefits from
networks that can model long-term temporal dependencies by
employing long short-term memory (LSTM) [18], [20]–[22].
Strake et al. [22] proposed to insert a convolutional LSTM
(ConvLSTM) layer into the bottleneck of a convolutional
encoder-decoder structure instead of the fully-connected LSTM
layer, which inherits the weight-sharing property of the CNN,
thereby significantly decreasing the amount of trainable param-
eters. This network topology is dubbed as fully convolutional
recurrent neural network (FCRN), and was successfully em-
ployed in the Interspeech 2020 Deep Noise Suppression (DNS)
Challenge [23] for joint dereverberation and denoising, securing
2nd rank in the non-realtime track with a realtime model.

Most of the DNS models are trained with a mean squared
error (MSE) loss, which is minimized during the training pro-
cess. However, minimizing the MSE loss during training does
not guarantee good human perceptual quality of the enhanced
speech signal [25]–[32]. A perceptual loss, employing a percep-
tual weighting filter known from speech coding to emphasize
perceptually important time-frequency regions, has recently
been proposed in [30]. A more straightforward direction is to
adapt the perceptual evaluation of speech quality (PESQ) [33]
or short-time objective intelligibility (STOI) [34] metrics as
loss functions and to directly optimize for speech quality or
speech intelligibility, respectively [26]–[28]. However, both the
original STOI and PESQ are non-differentiable functions, which
therefore cannot directly be used as an optimization criterion
for gradient-based deep learning. Martín-Doñas et al. proposed
a differentiable PESQ approximation and combined it with
the MSE as a combined optimization criterion for narrowband
speech enhancement [28]. However, for wideband speech en-
hancement, the proposed PESQ loss does not outperform the
perceptual loss proposed by Zhao et al. [30]. Thus, obtaining a
better differentiable approximation of the original PESQ formu-
lation is still a research challenge.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-3046-1425
https://orcid.org/0000-0002-8895-5041
mailto:ziyi.xu@tu-bs.de
mailto:m.strake@tu-bs.de
mailto:t.fingscheidt@tu-bs.de


XU et al.: DEEP NOISE SUPPRESSION MAXIMIZING NON-DIFFERENTIABLE PESQ MEDIATED BY A NON-INTRUSIVE PESQNET 1573

Fig. 1. Proposed DNS model training mediated by the PESQNet.

Accordingly, Fu et al. [31] trained a reference-based (intru-
sive) end-to-end DNN model to approximate the PESQ function
(so-calledQuality-Net) without having to know any compu-
tational details of the original PESQ formulation. Afterwards,
the trained Quality-Net is fixed and used to estimate the
PESQ scores of the enhanced speech signal obtained from
the DNS model. Thus, it serves as a differentiable PESQ loss for
the training of the DNS model, aiming at maximizing the PESQ
of the output enhanced speech signal. However, as reported by
the authors of [31], the gradient from their fixedQuality-Net
can guide the DNS model in increasing the PESQ scores only
in the first few training iterations (minibatches). The reason
could be that the fixed Quality-Net has not seen the en-
hanced speech signal generated by the updated DNS model.
In consequence, the Quality-Net is fooled by the updated
DNS model leading to the phenomenon that the estimated PESQ
scores increase, while true PESQ scores decrease. Please note
another relevant prior art on differentiable perceptual losses by
Manocha et al. [32].

A first contribution of this work is an end-to-end non-intrusive
PESQNet, modeling the PESQ function, and subsequently be-
ing employed as mediator towards the training of a DNS model
as shown in Fig. 1. Compared to the Quality-Net used in
[31], our proposed PESQNet can estimate the PESQ score of
the enhanced signals without knowing the corresponding clean
speech (just like human raters in ACR listening tests). Thus, it
can serve to provide a reference-free perceptual loss. This offers
the potential to train a DNS model employing real recorded
data, where only the noisy speech mixture is available, a specific
problem that has been first addressed in [24], however, still with
insignificant improvements.

A second contribution of this work is to solve the problems
addressed in [31] by training the DNS model and the PESQNet
in a successful alternating protocol on epoch level. This is in-
spired from the alternating training schemes used in adversarial
trainings [35]–[37]. Thus, the PESQNet can always adapt to
the current updated DNS model and can serve as mediator

between the DNS model training and the PESQ metrics by
providing gradients, which effectively maximizes the PESQ
score of the enhanced speech signal. For the DNS model training,
a fixed PESQNet is employed to estimate the PESQ score
of the enhanced speech signal obtained from the DNS model,
which is subsequently maximized. Afterwards, the DNS model
is fixed, and the so-called PESQ loss is calculated to reflect the
difference between the estimated PESQ score from PESQNet
and its ground truth measured by the original PESQ function
[33]. Thus, the PESQNet training keeps up with the DNS
model in any learning step. Furthermore, solving the training
instability problem reported in [31] and sometimes occurring
in [24] is another core contribution of this work, along with a
comprehensive analysis and experimental evaluation.

We adopted the high-ranked FCRN proposed by Strake et al.
[23] as our DNS model. The proposed PESQNet model is
adapted from a speech emotion recognition (SER) model pro-
posed in [38], which can provide state-of-the-art emotion recog-
nition performance. An SER task is structurally similar to non-
intrusive speech quality prediction, as it also assigns one label to
an entire input speech utterance. Our proposedPESQNet is used
as mediator towards a fine-tuning on a pre-trained DNS model to
further increase the perceptual quality. In the pre-training stage
of our work, we consider both denoising and dereverberation
by employing a joint MSE-based loss function proposed in
[23], which has shown success in the Interspeech 2020 DNS
Challenge [39]. Note that our proposed learning strategy could
potentially provide benefit to any given DNS model and to any
given pre-training loss function.

The rest of the article is structured as follows: In Section II we
introduce the signal model and our mathematical notations. We
describe our employedFCRN andPESQNet in Section III. Then
the details of mediating the FCRN training with the proposed
PESQNet are explained. Next, we present the experimental
setup including the database, training protocols, baselines, and
employed quality metrics in Section IV. The results and dis-
cussion are given in Section V and our work is concluded in
Section VI.

II. SIGNAL MODEL AND NOTATIONS

We assume the microphone mixture y(n) to be composed of
the clean speech signal s(n) reverberated by the room impulse
response (RIR) h(n), and disturbed by an additive noise d(n)
(potentially containing some degree of reverberation) at the
microphone membrane as

y(n) = s(n) ∗ h(n) + d(n) = srev(n) + d(n), (1)

with srev(n) and n being the reverberated clean speech com-
ponent and the discrete-time sample index, respectively, and ∗
denoting the convolution operation. Since we perform a spec-
trum enhancement, we transfer all the signals to the discrete
Fourier transform (DFT) domain:

Y�(k) = Srev
� (k) +D�(k), (2)

with frame index � and frequency bin index k∈K=
{0, 1, . . . ,K−1}, and K being the DFT size. This procedure is
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Fig. 2. Employed DNS model as used in Figs. 1, 4, 5, and 6.

also often known as short-time Fourier transform (STFT), and
successive STFT frames overlap in time. In this work, we adopt
the FCRN proposed by Strake et al. [22] as our DNS model,
in which a magnitude-bounded complex mask M�(k) ∈ C is
estimated, with |M�(k)| ∈ [0, 1] to enhance the noisy speech
spectrum (see Fig. 2):

Ŝ�(k) = M�(k) · Y�(k). (3)

Finally, the enhanced speech spectrum Ŝ�(k) is subject to an
inverse DFT (IDFT), followed by overlap add (OLA) to recon-
struct the time-domain enhanced speech signal ŝ(n).

III. MODELS AND NOVEL TRAINING LOSS/ PROTOCOL

A. DNS Model

The DNS model employed in this work is shown in Fig. 2, with
the FCRN adopted from [22]. The input of the DNS is the noisy
speech spectrum Y�(k). The Norm box represents a zero-mean
and unit-variance normalization based on the statistics collected
on the training dataset. The dimensions of the input and the
output feature maps for each layer in the FCRN are depicted
as number of features × number of time frames × number of
feature maps, with Kin representing the number of input and
output frequency bins, while Cin and Cout denote the number
of input and output channels, respectively.

The convolutional layers are represented by Conv(N × 1, f)
operations, with f=F or f=2F being the number of filter

kernels in each layer, and (N × 1) representing the kernel size,
emphasizing that the convolutions are only performed along the
feature axis. The maxpooling and upsampling layers have a ker-
nel size of (2× 1). The stride of the maxpooling layers is set to 2.
The employed FCRN contains a convolutional encoder-decoder
(CED) structure. A fully convolutional LSTM layer denoted as
ConvLSTM(N × 1, F ) is integrated in the bottleneck of the
CED structure as shown in Fig. 2. Furthermore, two skip connec-
tions are added originating just before the encoder maxpooling,
providing a link to the decoder. They are marked by “(skip)” in
Fig. 2.

B. PESQNet

In this work, we propose an end-to-end non-intrusive
PESQNet, modeling ITU-T P862.2 PESQ. It estimates the
PESQ score of an enhanced speech utterance in the DFT domain,
and is subsequently employed to control the training of a DNS
model. The employed PESQNet shall deliver a single value
(label) for an entire utterance, just as speech emotion recognition
(SER) does. Furthermore, models used for SER are always
non-intrusive, which is suitable for our reference-free PESQ es-
timation. Accordingly, for ourPESQNet, we built upon the SER
model topology proposed in [38], which shows state-of-the-art
performance in emotion recognition. It is depicted in Fig. 3.

The dimensions of the input and the output feature maps
for each layer are depicted as number of features × number
of time frames × number of feature maps (if applicable). The
input of the proposed PESQNet is the amplitude spectrogram
|S�(k)| (or: |Ŝ�(k)|), �∈L={1, 2, . . . , L}, of an entire utterance
with L frames, which is then grouped to several feature matri-
ces (blocks indexed with b ∈ B = {1, 2 . . . , B}). Each feature
matrix (block) has the same dimensions of Kin×W×1, with
Kin and W being the numbers of input frequency bins and time
frames per block, respectively. The blocks are processed in paral-
lel by identical subnetworks with the following structure. A CNN
encoder is employed to extract quality-related features from the
input feature matrices. The convolutional layers are represented
by the Conv(h× w, f) operations, again with f representing the
number of filter kernels in each layer, and (h× w) representing
the kernel size. Then, the extracted features are processed by
multi-width convolutional kernels with kernel widths w1, w2,
w3, and w4. The max-pooling-over-time layer and the subse-
quent concatenation deliver a feature map with a fixed dimension
to the bidirectional LSTM (BLSTM) layer, which is used to
model temporal dependencies. Afterwards, four statistics (aver-
age, standard deviation, minimum, and maximum) over blocks
b are applied to the BLSTM outputs before they are processed
by the fully-connected (FC) layers denoted as FC(N), with N
being the number of output nodes. The output layer has a single
node with a gate function σ(x) = 3.6 · sigmoid(x) + 1.04 to
limit the range of the estimated PESQ score between 1.04 and
4.64, as it is determined by ITU-T P.862.2 [33].

The estimated PESQ score ̂PESQu of the utterance indexed
with u obtained from the PESQNet should be as close as
possible to its ground truth PESQu measured by ITU-T P.862.2
[33]. Thus, the loss function for PESQNet training is defined
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Fig. 3. Employed PESQNet as used in Figs. 1, 5, and 6.

as (“PESQ loss”):

JPESQ
u =

(
̂PESQu − PESQu

)2

. (4)

C. Novel PESQNet Loss Mediating Towards DNS Training

Our proposed PESQNet is utilized to control a fine-tuning
on a pre-trained DNS model to further increase the perceptual
quality.

1) DNS Pre-Training: First, however, in the pre-training
stage of our work, we consider a joint denoising and derever-
beration by employing an MSE-based loss function as proposed
in [23], which has shown good success in the Interspeech 2020
DNS Challenge [39]. This joint loss function consists of two
MSE-type loss terms. The first loss term is an utterance-wise
loss aiming at joint dereverberation and denoising by utilizing
the clean speech spectrum S�(k) as target, and is defined as

J joint
u =

1

Lu ·K
∑
�∈Lu

∑
k∈K

∣∣Ŝ�(k)−S�(k)
∣∣2, (5)

Fig. 4. DNS pre-training setup. The blue arrows indicate the gradient flow
back-propagated for the DNS model pre-training.

with Lu being the set of frame indices of the utterance indexed
with u, and Lu=

∣∣Lu

∣∣ being its number of frames. The second
utterance-wise loss term only focuses on denoising by employ-
ing the reverberated clean speech spectrum Srev

� (k) as target,
following

Jnoise
u =

1

Lu ·K
∑
�∈Lu

∑
k∈K

∣∣Ŝ�(k)−Srev
� (k)

∣∣2. (6)

Afterwards, the two loss terms (5) and (6) are combined in the
joint loss function as:

JMSE
u = β · J joint

u + (1− β) · Jnoise
u , (7)

with β ∈ [0, 1] being the weighting factor to control a weaker or
a stronger dereverberation, where β = 0 lets (7) become the
conventional MSE loss for pure denoising. The pre-training
setup for DNS employing (7) is illustrated in Fig. 4, where
the upper gray box illustrates the microphone signal model,
including the room impulse response (RIR), while the lower part
contains the computation of loss (7). The blue arrows indicate
the gradient flow from the MSE loss (7) back-propagated to the
DNS for pre-training. The details of the employed DNS model
are illustrated in Fig. 2.

2) PESQNet Pre-Training: Afterwards, the DNS is fixed and
the PESQNet is trained to adapt to the current pre-trained DNS
employing (4). This is illustrated in the PESQNet pre-training
setup in Fig. 5, where the green arrows indicate the gradient flow
back-propagated for the PESQNet pre-training. The details of
the employed PESQNet are illustrated in Fig. 3.

3) Fine-Tuning: In the fine-tuning stage as it is shown in
Fig. 6, the pre-trained PESQNet is applied to the output of the
pre-trained DNS, estimating the PESQ scores of the enhanced
speech. Thus, it serves as a differentiable PESQ loss for the
training of the DNS, aiming at maximizing the PESQ of the
output enhanced speech signal. Accordingly, we can define a
“PESQNet loss”

JPESQNet
u =

(
̂PESQu − PESQmax

)2

(8)

for utterance u, with PESQmax=4.64, which is minimized dur-
ing DNS training. Furthermore, we explicitly consider joint
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Fig. 5. PESQNet pre-training setup. The deep noise suppression is fixed, and
the green arrows indicate the gradient flow back-propagated for the PESQNet
model pre-training.

dereverberation and denoising also in the fine-tuning by combin-
ing the joint MSE-based loss (7) with the novel reference-free
PESQNet loss (8). Thus, the total loss function employed during
fine-tuning of the DNS is defined as

J total
u = α · JMSE

u +(1−α)·JPESQNet
u , (9)

with α ∈ [0, 1] being the weighting factor. By choosing α close
to 0, the novel reference-free psychoacoustic loss JPESQNet

u will
dominate the DNS fine-tuning, and is supposed to deliver a better
perceptual speech quality.

One major contribution of this work is to solve the issues
addressed in [31], where the fixed PESQNet was reported
to be fooled by the updated DNS (estimated PESQ scores
increase while true PESQ scores decrease) after training for
several minibatches. In [31], this was mainly caused by the
fixed Quality-Net not having seen the enhanced speech
signal generated by the updated DNS. Accordingly, we propose
to train the DNS and the PESQNet alternatingly on an epoch
level to keep the PESQNet up-to-date, and most importantly: it
specifically adapts to the DNS in its current learning step. In this
novel alternating training protocol, the DNS and the employed
PESQNet are trained with the loss (9) and (4), respectively, as
illustrated in Fig. 6.

In Fig. 6, the alternating training for the DNS and the
PESQNet is controlled by the switch in upper and lower posi-
tion, respectively. The middle part containing the total loss J total

u

(9) computation denotes the DNS training controlled by a fixed
PESQNet. The lower part shows the PESQNet training adapt-
ing it to the current fixed DNS, employing JPESQ

u (4). The blue
and green arrows indicate the gradient flow back-propagated
for DNS and PESQNet training, respectively. The detailed
structures of the DNS as well as the employed PESQNet are
illustrated in Figs. 2 and 3, respectively.

Fig. 6. PESQNet and DNS training setup. After the pre-trainings, the DNS
and the PESQNet are trained alternately, controlled by the switch in upper
and lower position, respectively. The total loss J total

u (9) in the center controls
the DNS training mediated by a fixed PESQNet. The lower part shows the
PESQNet training adapting it to the current fixed DNS, employing JPESQ

u (4).
The blue and green arrows indicate the gradient flow back-propagated for DNS
and PESQNet training, respectively.

IV. EXPERIMENTAL SETUP AND DATABASES

A. Dababase and Preprocessing

We perform a two-step training, which includes pre-training
and fine-tuning steps. During pre-training, the dataset DWSJ0

comprises a 105-hours training set Dtrain
WSJ0 and an 18-hours val-

idation set Dval
WSJ0, which are synthesized with the clean speech

from WSJ0 speech corpus [40] and noise from DEMAND [41]
and QUT [42] comprising 35 different noise files shared in train-
ing and validation. We normalized the clean speech active speech
level to −26 dBov and simulated five SNR conditions ranging
from 0 to 20 dB with a step size of 5 dB, according to ITU-T P.56
[43]. Please note that no reverberation effects are considered in
preparation of the pre-training dataset. Furthermore, a small test
set Dtest

WSJ0 is prepared by mixing the clean speech from eight
unseen speakers with four unseen types of noise taken from
DEMAND [41] and QUT [42], including SNRs ranging from 0
to 10 dB with a 5 dB step size. The Dtest

WSJ0 dataset is only used
to evaluate the PESQNet performance after pre-training.

The fine-tuning dataset contains files randomly chosen from
the official Interspeech 2021 DNS Challenge (dubbed DNS3)
training material [44]. This DDNS3 dataset contains 100 hours
of training material Dtrain

DNS3 and 10 hours of validation material
Dval

DNS3, where SNRs are sampled uniformly between 0 and
40 dB. The RMS level of the mixture is set to a value uniformly
sampled between −38 and −18 dBov. The organizers also
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provided both recorded and synthetic RIRs in the dataset [45].
However, we do not use their provided RIRs, since the time shift
caused by the provided RIRs is unknown, so that the training
input and the corresponding target are not time-aligned, which is
problematic for training a complex mask-based DNS. Thus, we
reverberated 50% of the files in DDNS3 by convolving the clean
speech component with our simulated RIRs. The employed RIRs
are simulated using the mirror method [46] with the room size
uniformly sampled from (length, width, height) ∈ ([3, 10] m,
[3, 10] m, [2.5, 3.5] m) and an absorption coefficient uniformly
sampled between 0.1 and 0.3 for all room surfaces. The micro-
phone is assumed in the center of the simulated room and the
source is randomly placed at a source-to-microphone distance
uniformly sampled between 0.1 m and 1 m. Accordingly, the
estimated RT60s lie between 0.28 and 1.66 s.

We use the preliminary synthetic test set from the first In-
terspeech 2020 DNS Challenge (DNS1) [39] for development
(dubbedDdev

DNS1), which contains 150 noisy speech mixtures with
and without reverberation. Please note that we use this dataset
Ddev

DNS1 for instrumental performance measurement, whereas the
preliminary synthetic test set from the DNS3 challenge [44]
contains target signals of singing and emotions (e.g., crying,
yelling, and laughing). For more details, please check [44].
Accordingly, it would be inadequate to evaluate the speech
enhancement performance employing instrumental metrics such
as PESQ [33] and STOI [34], which are designed for speech
signals only.

For the final evaluation, we prepare both synthetic and real
test datasets. The synthetic test set contains all synthetic speech
files of the official preliminary test set of the ICASSP 2020
DNS Challenge (dubbed DNS2) [45]. This synthetic test dataset
denoted as Dtest

DNS2 is used for instrumental performance mea-
surements, which contains 100 noisy speech mixtures. Please
note that some of these noisy mixtures contain reverberation. To
further evaluate our proposed methods in real implementations,
we use the preliminary test set from DNS3 [44] denoted asDtest

DNS3
as our real test set, which contains 448 noisy mixtures recorded
in real scenarios.

In this work, signals have a sampling rate of 16 kHz and we
apply a periodic Hann window with frame length of 384 with a
50% overlap, followed by an FFT with K = 512. The number
of input and output frequency bins in Figs. 2 and 3 is set to
Kin = 260. The last 3 frequency bins are redundant and only
used for compatibility with the two maxpooling and upsampling
operations in the employed DNS model shown in Fig. 2, and
are dropped for subsequent processing. Since we perform a
complex mask-based speech enhancement, the number of input
and output channels in Fig. 2 represented by Cin and Cout are
set to 2, reflecting the real and the imaginary parts.

B. Training Protocols

1) DNS Pre-Training: Firstly, we pre-train the DNS model
using Dtrain

WSJ0 with the loss (7). The DNS pre-training setup is
illustrated in Fig. 4, where the blue arrows indicate the gradient
flow back-propagated for the DNS model pre-training. Since no
reverberation effects are considered in the pre-training stage,

S�(k) = Srev
� (k) holds in Fig. 4. Accordingly, we set β = 0 in

(7). For our employed FCRN shown in Fig. 2, the number of
filter kernels is set to F = 88, and the kernel size is chosen
as N = 24. Employing this setting, the FCRN model has 5.2
million trainable parameters. In both pre-training and fine-tuning
for our DNS, we employ a truncated backpropagation-through-
time (BPTT) training with a sequence length (unrolling depth
of BPTT) equal to the number of time frames belonging to the
current input utterance. Furthermore, a batch size of 3 utterances
is employed. For the DNS pre-training, we employ the Adam
optimizer with the initial learning rate of 10−4. The learning rate
is halved once the validation loss measured on Dval

WSJ0 does not
improve for a consecutive five epochs. We stop the training after
the learning rate is decreased below 10−5, and the DNS model
which provides the lowest validation loss is saved.

2) PESQNet Pre-Training: Secondly, the PESQNet is pre-
trained on the same dataset with the enhanced speech spectrum
Ŝ�(k) generated by the pre-trained and fixed FCRN as illustrated
in Fig. 5. The training targets are the corresponding ground truth
PESQ scores of the enhanced speech signals measured with the
original ITU-T P.862.2 PESQ function [33], as illustrated in
the lower part in Fig. 5. As in DNS pre-training, we have S�(k)
= Srev

� (k) in Fig. 5. For our employedPESQNet shown in Fig. 2,
the widths of the convolutional kernels are set to wi = 2i−1,
i ∈ {1, 2, 3, 4}. The number of time frames for the input feature
matrices shown in Fig. 3 is set toW = 16. This setting results in a
PESQNet model with 3.8 million trainable parameters. In both
pre-training and fine-tuning of our PESQNet, we employ the
same truncated BPTT training scheme as used for DNS training.
The Adam optimizer is employed with an initial learning rate of
2·10−4. The learning rate is halved once the validation loss does
not improve for five consecutive epochs. We stop the training
when the learning rate is smaller than 10−5 and the model with
the lowest validation loss is saved.

3) Novel FCRN and PESQNet Fine-Tuning: We propose a
novel two-stage fine-tuning protocol on the dataset DDNS3 from
DNS3. In the first stage, which is basically a domain adaptation,
we fine-tune the pre-trainedFCRNwith the loss (7) on theDtrain

DNS3
dataset and subsequently, still in the first stage, we fine-tune
the PESQNet on the same dataset with the enhanced speech
spectrum generated by the fixed fine-tuned FCRN, again with
loss (4). During fine-tuning, 50% of the files in DDNS3 contain
reverberation, therefore, we setβ = 0.9 in (7) for joint denoising
and dereverberation as proposed by [23]. The initial learning
rates for the training of the DNS and the PESQNet are set
to 2·10−5 and 5·10−5, respectively. Both of the two trainings
are stopped when the respective learning rate is smaller than
10−6. Other settings are exactly the same as employed in its
corresponding pre-training.

In the second-stage (final) fine-tuning, we alternatingly fine-
tune the DNS with the fixed PESQNet serving as mediator
towards ITU-T P.862.2, and fine-tune the PESQNetwith a fixed
DNS.

A cycle of our novel alternating training protocol is defined
as follows: We first train the FCRNwith a fixed PESQNet using
the total loss (9) on one epoch of training data fromDtrain

DNS3. This
is illustrated in Fig. 6 with the switch in the upper position. Then,
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Algorithm 1: FCRN and PESQNet Second-Stage Fine-
Tuning.

1: Initialization:
2: Epoch index τ = 1
3: Initialize FCRN with pre-trained weights from the

first-stage fine-tuning.
4: Initialize PESQNet with pre-trained weights from the

first-stage fine-tuning.
5: while τ ≤ τmax do
6: if mod(τ, 2) �= 0 then || odd τ
7: Train DNS with a fixed PESQNet, employing the

total loss (9).
8: else if mod(τ, 2) = 0 then
9: Train PESQNet adapting to the fixed updated DNS,

employing the PESQ loss (4).
10: end if
11: τ ← τ + 1
12: end while

we fix the FCRN, and train the PESQNet also on one epoch of
training data from the same dataset using the PESQ loss (4), with
the enhanced speech obtained from the current fixed FCRN. This
is shown in Fig. 6 with the switch changed to the lower position.
This training protocol is dubbed as 〈1−1〉, where “1” denotes
training with one epoch of data fromDtrain

DNS3. In this second-stage
fine-tuning, the DNS and the PESQNet are trained with in total
25 epochs of data, with epoch index τ ∈ {1, 2, . . . , 25}. Here,
the DNS is trained with a fixed PESQNet on epochs with odd
index number, e.g., τ ∈ {1, 3, 5, . . . , 25}, while the PESQNet
is trained adapting to the fixed updated DNS on epochs with
even index number. This alternating training protocol is also il-
lustrated in Algorithm 1, with the modulo operation “mod(τ, 2)”
to distinguish between epochs with odd or even indices τ . The
maximum epoch index τmax is set to 25. We fix the learning
rates for the training of the DNS and the PESQNet to 10−6 and
2·10−6, respectively. The DNS model with the lowest validation
loss as well as its corresponding PESQNet are saved.

To explore the influence of the hyperparameter α in (9) on
the DNS second-stage fine-tuning, we employ α ∈ {0, 0.5, 1}.
Please note that for the hyperparameter setting α = 1, the DNS
training is not controlled by our proposed PESQNet. In this
case, the loss functions used in the first-stage and the second-
stage fine-tuning are exactly the same. Thus, this training serves
as a “placebo” setup intended to prove that the perceptual quality
improvements for α<1 are not just caused by the extra second-
stage fine-tuning with much lower learning rate.

Our proposed alternating training protocol resembles the al-
ternating training schemes used in adversarial trainings, which
are known to have issues in training stability [47], [48]. Such
instable training can usually be observed by a fluctuating or
increasing loss measured even on the training dataset Dtrain

DNS3.
To further stabilize the second-stage fine-tuning, we employ a
simple accumulating of gradients during the DNS fine-tuning,
where the gradients obtained from every minibatch of train-
ing data within one epoch are accumulated and averaged for

the final weight update at the end of the epoch. Please note
that this gradient accumulation is only applied to the DNS
second-stage fine-tuning, not for the PESQNet second-stage
fine-tuning. Compared to the DNS pre-training and the first-
stage fine-tuning, the weights of the DNS model employing
gradient accumulation are only updated once per epoch.

C. Baselines

1) DNS Trained With MSE-Based Loss: As one of the base-
lines, we employ the MSE-based loss (7) proposed in [23] to train
our DNS. Strake et al. [23] trained the same DNS model shown
in Fig. 2 with this MSE-based denoising and dereverberation
loss in the DNS1 Challenge [39] and achieved a second rank in
the non-realtime track, although their model (as ours) in their
work are actually realtime-capable.

Indeed, this strong baseline DNS is exactly the one obtained
from our first-stage fine-tuning, since up to this stage even
datasets match exactly. Accordingly, by comparing to this base-
line, we intend to exploit how much perceptual speech quality
could be gained by employing the additional second-stage fine-
tuning mediated by our proposed PESQNet. This baseline is
denoted as “FCRN [23]” in the following discussions.

2) Microsoft DNS3 Challenge Baseline: As another refer-
ence, we take the baseline provided by Microsoft [49] in the
DNS3 Challenge [44]. Braun et al. proposed a level-invariant
normalized loss function to train a recurrent neural network
(RNN) for a complex mask-based speech enhancement. The
proposed loss function is supposed to avoid signals with high
active levels dominating the training process. Furthermore, data
augmentation techniques are employed by considering different
SNR levels, speech active levels, and also filtering effects caused
by acoustics or recording devices.

Please note that we directly employ the realtime-capable,
fully-trained DNS3 baseline as provided by the challenge or-
ganizers [44] without any re-training since we anyway evaluate
on DNS Challenge data. Thus, a fair comparison can be made
between our work and the DNS3 baseline [49], based on the
DNS3 challenge rules specified in [44]. Furthermore, we call it
“DNS3 Baseline [44]” in this work.

3) Baseline From Our Previous Work: In our previous work
[24], we had proposed to use this end-to-end non-intrusive
PESQNet to advantageously employ real recordings in DNS
training. This is achieved by a “weakly” supervised training
with both synthetic and real data on minibatch level. In [24],
the novelty was to focus on employing real training data in
training a speech enhancement DNN without using GAN-type
losses. However, the training of [24] without employing gradient
accumulation was sensitive w.r.t. instabilities, thus, very lim-
ited performance improvement was achieved for real test data,
and even no PESQ improvement was achieved for synthetic
test data. Solving the instability problem reported in [31] and
sometimes occurring in [24], is a core contribution of this work,
along with a much more extensive analysis and experimental
evaluation. Therefore, we adopt our previous work as another
baseline to show the benefits obtained from the novel 〈1−1〉
epoch-wise training protocol employing gradient accumulation.
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Our previous work is represented as “FCRN/PESQNet [24]” in
the following result tables.

4) Components Loss Baseline: In [50], a components loss
(CL) was proposed for training a mask-based speech enhance-
ment neural network, which offers separate controls over preser-
vation of the speech component quality, suppression of the noise
component, and preservation of a natural sounding residual noise
component. The experimental results of [50] show improved
and balanced performance compared to the conventional MSE
loss, the approximated differentiable PESQ loss proposed in
[28], and the perceptual weighting filter loss proposed in [30],
which is based on code-excited linear predictive (CELP) speech
coding. We fine-tune the pre-trained DNS model employing CL
on Dtrain

DNS3. This baseline method is called “FCRN/CL [50]” in
the following analysis of the results.

5) Differentiable PESQ Loss Baseline: In [50], the CL has
already shown better performance than the differentiable PESQ
loss proposed in [28]. However, we also report on the differen-
tiable PESQ loss [28] as an additional baseline. Please note that
in the original publication [28], the differentiable PESQ loss
is implemented for narrowband speech signals. However, the
code provided by the authors of [28] has an option for wideband
implementation. After the DNS model pre-training, we fine-tune
it with the wideband differentiable PESQ loss onDtrain

DNS3. We call
this baseline “FCRN/DiffPESQ [28]” in this work.

D. Quality Metrics

To evaluate the performance of the DNS model, we employ
measurements with instrumental metrics such as PESQ [33],
STOI [34], segmental SNR improvement ΔSNRseg [51], and
speech-to-reverberation modulation energy ratio (SRMR) [52].
PESQ and STOI are measured on the enhanced speech signal
reflecting the perceptual speech quality and intelligibility, re-
spectively. For the noisy mixtures without reverberation, we
measure the ΔSNRseg according to [51] to explicitly evaluate
the denosing effects. SRMR is measured only on the noisy
mixtures under reverberated conditions to evaluate the derever-
beration effects. Furthermore, we also measured DNSMOS [53]
on the enhanced speech, which is obtained from a non-intrusive
network specifically trained to predict human subjective rating
scores for DNS tasks according to ITU-T P.808 [54]. All of the
abovementioned metrics should be as high as possible.

The performance of thePESQNet is reported by the mean ab-
solute error (MAE) and the linear correlation coefficient (LCC)
as used in [55]. Both of the metrics are calculated based on the
estimated PESQ score from thePESQNet and its corresponding
ground truth measured according to ITU-T P.862.2 PESQ [33].
An accurately estimated PESQ score is reflected by a low MAE
and a high LCC.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. PESQNet Performance

Since the proposed PESQNet will serve to mediate towards
the 2nd-stage fine-tuning of the DNS, an accurately estimated
̂PESQu employed in the total loss (9) is crucial in guiding the

Fig. 7. Scatter plot for the predicted PESQ scores ̂PESQu by PESQNet,
measured onDtest

WSJ0, after pre-training of first theFCRN and then thePESQNet
on Dtrain

WSJ0. The enhanced speech signal ŝ(n) used for predicting PESQu is
obtained from the corresponding pre-trained FCRN.

TABLE I
PERFORMANCE OF THE PESQNet MEASURED ON DTEST

WSJ0, AFTER
PRE-TRAINING ON DTRAIN

WSJ0 . PERFORMANCE IS MEASURED USING THE MEAN

ABSOLUTE ERROR (MAE) AND THE LINEAR CORRELATION COEFFICIENT

(LCC), BETWEEN THE GROUND TRUTH PESQ AND PREDICTED PESQ SCORES.
THE ENHANCED SPEECH SIGNAL ŝ(n) USED FOR PREDICTING PESQu IS

OBTAINED FROM THE CORRESPONDING PRE-TRAINED FCRN

DNS to further increase the perceptual quality. Therefore, we
have to put focus on the performance of the PESQNet after the
pre-training and after the 1st-stage fine-tuning.

1) PESQNet Pre-Training Performance: After the
PESQNet’s pre-training illustrated in Fig. 5 with Dtrain

WSJ0,
we measure its performance on Dtest

WSJ0. Please note that we do
not consider reverberations in the pre-training and the following
performance evaluation.

In Fig. 7, we present the scatter plot with the predicted PESQ
score ̂PESQu obtained from the pre-trained PESQNet and its
ground truth PESQu measured by ITU-T P.862.2 PESQ [33].
Noisy speech utterances and their enhanced version from the
corresponding pre-trained DNS are represented by red and blue
markers, respectively. We can see that the PESQ scores of the
enhanced speech utterances are slightly more challenging to
predict than the noisy ones, which is reflected by more blue
markers distributed away from the diagonal line. The measured
MAE and LCC in Table I confirm our observation, where we
achieve 0.16 MAE and 0.97 LCC for the noisy speech, which
is slightly better than the values measured on enhanced speech.
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Fig. 8. Scatter plot for the predicted PESQ scores ̂PESQu by PESQNet,
measured onDdev

DNS1, after first-stage fine-tuning of first the FCRN and then the
PESQNet onDtrain

DNS3 [44]. The enhanced speech signal ŝ(n) used for predicting
PESQu is obtained from the corresponding first-stage fine-tuned FCRN. The
performance is reported on both reverberation conditions.

However, we can generally see that the pre-trained PESQNet
is quite reliable, especially from the high LCC (around 0.96)
and the low MAE (around 0.19) averaged over both noisy and
enhanced speech, shown in Table I.

2) PESQNet 1st-Stage Fine-Tuning Performance: After the
1st-stage fine-tuning of PESQNet with Dtrain

DNS3, we evaluate
its performance on Ddev

DNS1. Please note that we consider the
conditions with and without reverberation in the fine-tuning and
the subsequent performance evaluation.

In Fig. 8, we present the scatter plot with the same metrics
used in Fig. 7 for the noisy and the enhanced speech utterances,
however, under both reverberation conditions. We can see that
the distribution of the markers is more dispersive and farther
away from the diagonal when compared to the ones in Fig. 7.
This is supposedly caused by the increased diversities in the
training and the test datasets, w.r.t. noise types, languages,
reverberations, SNRs, and speech active levels, leading to a
more challenging task. In Table II, the MAE values measured
on the enhanced speech are around 0.1 points higher than that
in Table I. Furthermore, we can see that an overall performance
degradation on both noisy and enhanced speech reflected by
around 0.1 points lower LCC values compared to the ones in
Table I. However, in general, the fine-tuned PESQNet is still
reliable by offering an LCC above 0.85, averaged over the noisy
and the enhanced speech under both reverberation conditions.
Furthermore, the performance of the PESQNet is very balanced
over both reverberation conditions reflected by the similar LCC
values, which is important for mediating towards the 2nd-stage
fine-tuning of the DNS.

TABLE II
PERFORMANCE OF THE PESQNet MEASURED ON DDEV

DNS1, AFTER
FIRST-STAGE FINE-TUNING ON THE DNS3 TRAINING SET DTRAIN

DNS3 [44].
PERFORMANCE IS MEASURED USING THE MEAN ABSOLUTE ERROR (MAE)

AND THE LINEAR CORRELATION COEFFICIENT (LCC), BETWEEN THE GROUND

TRUTH PESQ AND PREDICTED PESQ SCORES. THE ENHANCED SPEECH

SIGNAL ŝ(n) USED FOR PREDICTING PESQ(ŝ) IS OBTAINED FROM THE

CORRESPONDING FIRST-STAGE FINE-TUNED FCRN. THE PERFORMANCE IS

REPORTED ON BOTH REVERBERATION CONDITIONS

B. DNS 2nd-Stage Alternating Fine-Tuning Results

1) Hyperparameter Optimization and Analysis: To explore
the influence of the hyperparameter α in (9), we employ α ∈
{0, 0.5, 1} in the DNS 2nd-stage fine-tuning. Afterwards, we
evaluate the performance of our trained DNS models and the
baseline methods on the synthetic dataset Ddev

DNS1. The perfor-
mance is reported separately on the conditions with and without
reverberation as shown in Table III. The best results are marked
in bold font and the second best are underlined.

It can be seen that among all the baseline methods, the DNS
model trained with the MSE-based loss (7) proposed in [23],
which is denoted as “FCRN [23],” shows the best performance
under both reverberation conditions by offering three 1st-ranked
metrics. Under both reverberation conditions, it also offers
slightly better PESQ scores compared to the baseline from our
previous work [24], where real recordings are employed in DNS
training. Our previous work denoted as “FCRN/PESQNet, [24]”
achieves two 1st-ranked metrics and one 2nd rank and signifi-
cantly outperforms the DNS3 baseline [49] in speech quality
measured by PESQ. Under both reverberation conditions, the
components loss baseline “FCRN/CL [50]” offers around 0.1
points higher PESQ scores compared to the DNS3 baseline [49],
but does not perform so well on DNSMOS. Furthermore, the
CL baseline “FCRN/CL [50]” offers the worst dereverberation
effects reflected by the lowest SRMR scores among all the
baseline methods. The reason could be that the employed CL
does not explicitly consider dereverberation effects in the loss
formulation. The DNS3 baseline [49] shows limited overall
performance compared to the baselines of “FCRN [23]” and
“FCRN/PESQNet [24]” which are reflected by around 0.2 and
0.24 points lower PESQ scores under the conditions without and
with reverberation. This is supposedly caused by the weaker
noise attenuation and dereverberation reflected by the lower
ΔSNRseg and SRMR scores. The baseline “FCRN/DiffPESQ
[28]” offers quite low performance compared to the other em-
ployed baseline methods. Similar observations are reported in
[30] and [50], where the wideband implementation [28] is used
as a baseline. This underlines that, at least for wideband PESQ,
a better-suited differentiable approximation is needed for the
application as a loss function.

For our proposed 2nd-stage fine-tuning employing α = 0 in
(9), our trained DNS offers the best performance among all the
evaluated methods with four 1st-ranked and three 2nd-ranked
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TABLE III
INSTRUMENTAL QUALITY RESULTS ON THE DEVELOPMENT SET DDEV

DNS1, EMPLOYING SYNTHETIC DATA. EVALUATION IS PERFORMED SEPARATELY ON THE

CONDITIONS WITHOUT AND WITH REVERBERATION AND IS USED FOR THE OPTIMIZATION OF HYPERPARAMETER α IN (9). DNSMOS IS ADOPTED FROM [53].
BEST RESULTS ARE IN BOLD FONT, AND THE SECOND BEST ARE UNDERLINED. PROPOSED METHOD WITH∗

metrics. In particular, this setting can offer the best speech per-
ceptual quality reflected by the highest PESQ scores under both
reverberation conditions. Interestingly, during the 2nd-stage
fine-tuning with our proposed 〈1−1〉 training protocol, only
employing the perceptually-related lossJPESQNet

u (8) provided by
our proposed PESQNet (with α = 0 in (9)) is enough to guide
the DNS in increasing the PESQ scores. Further increasing α
towards 1 decreases the influence of the perceptually-related loss
in (9), resulting in a gradual performance decrease of the speech
quality measured by both PESQ and DNSMOS. Please note that
for the hyperparameter setting α = 1, the loss functions used in
the 1st-stage and the 2nd-stage fine-tuning are exactly the same.
Thus, a very similar performance is expected compared to the
MSE-based reference method “FCRN [23],” which is confirmed
in Table III. This setting with α = 1 serves as a “placebo” setup
intended to prove that the perceptual quality improvements for
α<1 are not just caused by the extra second-stage fine-tuning
with much lower learning rate. Finally, we select the hyperpa-
rameter setting α = 0 for our proposed DNS training protocol
but still report the other settings in the following.

To illustrate the progress of the 2nd-stage fine-tuning for
our DNS and the PESQNet, we plot the training performance
measured on a subset of the Dtrain

DNS3 in Fig. 9 with the horizontal
axis representing the epoch index τ . The performance of the
DNS is measured by the total loss J total = JPESQNet (9), (8),
due to α = 0, represented by the blue curve. The corresponding
performance of the PESQNet is measured by the MAE be-
tween the predicted and the ground truth PESQ scores, shown
by the green curve. The initial performance of the DNS and
the corresponding PESQNet before the 2nd-stage alternating
fine-tuning is represented by the markers at τ = 0. The DNS is
trained with a fixedPESQNeton epochs with odd index number,
e.g., τ ∈ {1, 3, . . . , 25}, while the PESQNet is trained adapting
to the fixed updated DNS on epochs with even index number.
Please note that an inaccurately estimated PESQ score, which
is close to PESQmax, can lead to a low loss value of J total (9).
Meanwhile, a more precisely estimated PESQ score obtained
from the updated PESQNet may result in an increased J total.

Fig. 9. DNS and PESQNet training loss performance measured on a subset of
Dtrain

DNS3 during 2nd-stage alternating fine-tuning. The performance J total(τ)
(9) of the DNS is shown by the blue curve with α = 0. The performance of the
PESQNet is measured by the green curve MAE(τ).

Fig. 10. Averaged true ITU-T P.862.2 PESQ scores measured on a subset of
Dtrain

DNS3 during 2nd-stage alternating fine-tuning. In the employed total loss
(9), α is set to 0.

This explains the large performance variation at τ = 2, where
the PESQNet is trained with a significant improvement and
subsequently leads to the increase of J total, which then again
decrease over the epochs. Most important, however, we can see
that the performance of our DNS and the PESQNet improves
alternatingly during the 2nd-stage fine-tuning.
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TABLE IV
INSTRUMENTAL QUALITY RESULTS ON THE TEST SET DTEST

DNS2, EMPLOYING

SYNTHETIC DATA. DNSMOS IS ADOPTED FROM [53]. BEST RESULTS ARE IN

BOLD FONT, AND THE SECOND BEST ARE UNDERLINED. PROPOSED METHOD

WITH∗

Furthermore, in Fig. 10, we plot the averaged true PESQ
scores measured on the same dataset used in Fig. 9 during
the 2nd-stage fine-tuning. Compared to the initial PESQ per-
formance of the DNS (marker at τ = 0), each epoch of the
DNS training mediated by the proposedPESQNet can achieve a
better PESQ score. The PESQ improvement obtained from each
learning step of DNS training is small, which is supposedly due
to the small learning rate1 used in the 2nd-stage fine-tuning,
however, it accumulates over the epochs. Please note that the
DNS before the 2nd-stage fine-tuning is exactly the baseline
(FCRN [23]) trained with the MSE-based loss, which offers
the best performance among all the baselines, especially on
PESQ scores. Accordingly, employing a small learning rate for
the 2nd-stage fine-tuning can supposedly further increase the
PESQ score without harming the performance on other metrics.
Furthermore, we can infer from Fig. 10 that further PESQ im-
provement could be achieved with more training epochs for the
2nd-stage fine-tuning. This also proves that the perceptually re-
lated loss (8) provided by our PESQNet can be advantageously
employed for improving the perceptual quality of the DNS, and
potentially of any DNS network topology.

2) Performance Evaluation on Synthetic Test Data: We eval-
uate our 2nd-stage fine-tuned DNS on both synthetic and real test
data. First, we look at the instrumental quality results measured
on synthetic test data Dtest

DNS2, with results shown in Table IV.
The DNS fine-tuned with our novel 〈1−1〉 training protocol with
α=0 offers the best or the second-best results in all three imple-
mented metrics. Especially, our proposed method can offer the
highest PESQ score among all the evaluated methods. Compared
to the baseline DNS trained with the MSE-based loss (7) denoted
as “FCRN [23],” which has a PESQ score of 3.25, we further
increase PESQ by about 0.1 points with the additional 2nd-stage
fine-tuning employing the proposed PESQNet. Furthermore,
our 2nd-stage fine-tuned DNS outperforms the DNS3 baseline

1We found that increasing the learning rate for the DNS and PESQNet
alternating training will not lead to a more significant PESQ improvement
but may result in a destabilized training with a strongly fluctuating training
loss. Thus, with a high learning rate, we only achieve a marginal performance
improvement on the enhanced speech quality.

Fig. 11. DNS and PESQNet loss measured on Dtest
DNS2 during 2nd-stage

alternating fine-tuning. The performance J total(τ) (9) of the DNS is shown
by the blue curve with α = 0. The performance of the PESQNet is measured
by the green curve MAE(τ).

Fig. 12. Averaged true ITU-T P.862.2 PESQ scores measured on Dtest
DNS2

during 2nd-stage alternating fine-tuning. In the employed total loss (9),
α is set to 0.

[49] and the CL baseline, denoted as “FCRN/CL [50],” by at
least 0.2 PESQ points. Our proposed method also delivers the
2nd-ranked DNSMOS, which is only slightly lower than our
previous work [24] and is 0.13 and 0.05 points higher than the
DNS3 baseline and the “FCRN [23],” respectively. Meanwhile,
our proposed method offers much better speech quality than
the “FCRN/DiffPESQ [28]” baseline, reflected by 0.37 and 0.39
points higher PESQ and DNSMOS scores, respectively.

As observed in [24], the baseline from our previous work
(FCRN/PESQNet [24]) cannot offer PESQ improvement on
synthetic test data compared to the DNS trained with the MSE-
based loss (7) [23] due to the instable training problem. Now
we solved this issue with the novel 〈1−1〉 training protocol
with gradient accumulation and significantly improve the PESQ
performance compared to our previous work [24] and the same
DNS trained with only the MSE-based loss [23].

As before, in Figs. 11 and 12, we plot the performance of
our DNS and the PESQNet as well as the averaged true PESQ
scores measured on Dtest

DNS2 during the 2nd-stage fine-tuning for
α=0. In Fig. 11, the performance of our DNS and the pro-
posed PESQNet alternatingly improves during the fine-tuning,
which is reflected by the decreasing J total(τ) (9) (blue curve)
and MAE(τ) (green curve), respectively. At the end of the
2nd-stage fine-tuning (markers at τ = 25), both the DNS and the
PESQNet perform better compared to their initial performance



XU et al.: DEEP NOISE SUPPRESSION MAXIMIZING NON-DIFFERENTIABLE PESQ MEDIATED BY A NON-INTRUSIVE PESQNET 1583

Fig. 13. Spectrograms of the speech filefileid_67 taken from the synthetic
test data Dtest

DNS2, from top to bottom: the noisy speech, the corresponding clean
speech, and the enhanced speech obtained from the “DNS3 Baseline [49],” the
“FCRN [23],” and our proposed method with α = 0.

at τ = 0. This is also reflected in Fig. 12 by the averaged
true PESQ scores, where each epoch of DNS fine-tuning (on
epochs with odd index number) can deliver a better PESQ score.
From both Figs. 11 and 12, we can see that the progress of the
2nd-stage fine-tuning is very stable and smooth, which is due
to the contribution of our newly proposed alternating training
protocol with gradient accumulation. Furthermore, from the
curves in Figs. 11 and 12, it can be inferred that the performance
of our DNS and the PESQNet could be improved until epoch
25, and potentially one could achieve an even higher PESQ score
employing a longer 2nd-stage fine-tuning with more epochs.

In Fig. 13, we plot the spectrograms of a speech file from
the synthetic test data Dtest

DNS2, and (from top to bottom) from
the noisy speech signal, the corresponding clean speech signal,
and the enhanced speech signals obtained from “DNS3 Baseline
[49],” “FCRN [23],” and our proposed method with α = 0.
Firstly, compared to the clean speech spectrogram, we can ob-
serve the speech component distortion in the spectrogram for the
DNS3 baseline [49], e.g., in the regions marked with rectangles.
Meanwhile, “FCRN [23]” and our proposed method have much
less speech component attenuation in the same regions of the

TABLE V
PERCEPTUAL QUALITY MEASURE DNSMOS [53] ON THE TEST SET DTEST

DNS3,
EMPLOYING REAL RECORDINGS. BEST RESULTS ARE IN BOLD FONT, AND

THE SECOND BEST ARE UNDERLINED. PROPOSED METHOD WITH∗

spectrograms. Therefore, these two methods can provide a better
enhanced speech signal towards the corresponding clean speech
signal. Secondly, however, they are also obvious different in
the spectrograms for “FCRN [23]” and our proposed method.
Our proposed method can provide less distortions on the speech
component, e.g., in the regions marked with ovals, resulting in
a better overall enhanced speech quality.

3) Performance Evaluation on Real Test Data: We measure
the perceptual quality employing DNSMOS [53] on real test
data Dtest

DNS3 for our 2nd-stage fine-tuned DNS in Table V. On
real data, the other intrusive metrics from Tables III and IV are
not applicable. Our proposed method with α=0 offers the best
perceptual quality reflected by the highest DNSMOS score com-
pared to all the baselines. Interestingly, compared to the baseline
from our previous work [24], which focuses on improving the
performance on real recordings by using real data during training
employing PESQNet, our proposed framework trained with
only synthetic data can still gain 0.02 DNSMOS points. This is
supposedly due to the contribution from the stabilized 2nd-stage
fine-tuning, as shown in Figs. 9 and 10, employing our novel
〈1−1〉 training protocol with gradient accumulation. Thus, from
all the experimental evidence, we successfully solved the unsta-
ble training problem addressed in [31] and [24] by using our
novel alternating training protocol with gradient accumulation.
Furthermore, from the stabilized performance improvement on
synthetic test data shown in Figs. 11 and 12, we can also infer
that the perceptual quality improvement on real test data could be
more significant employing an extended 2nd-stage fine-tuning
with more epochs.

As expected, our fine-tuned DNS mediated by the PESQNet
(α=0) outperforms the same DNS trained with the MSE-based
loss (7) [23] by 0.03 DNSMOS points. This is supposedly due to
the contribution of the perceptually related loss component in the
total loss (9), which is offered by our non-intrusive PESQNet.
Our proposed method also outperforms the DNS3 baseline by
0.09 DNSMOS points on real test data. The perceptual quality
improvements are more significant compared to the DiffPESQ
loss [28] and the components loss [50] with increases of 0.23 and
0.11 DNSMOS points, respectively. Still, one could ask “why
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do you only gain 0.03 DNSMOS points w.r.t. the FCRN [23]?”
The answer is: A PESQNet loss has only limited predictive
power to increase a DNSMOS metric. If the DNSMOS DNN
predictor would have been available to us, it could have been
used in place of thePESQNet, and a more significant DNSMOS
improvement on real data would have been achieved. With our
proposed training framework, however, we claim to have shown
a way how to effectively make use of real data in DNS training.

4) Complexity Issues: Note that our proposed PESQNet is
only employed during DNS training, not during DNS inference.
Therefore, our proposed method doesn’t introduce any addi-
tional computational efforts during DNS inference for speech
enhancement. Considering the OLA, 17.9 million FLOPS are
necessary to obtain one frame of the enhanced time-domain
speech signal. The average time to process one frame of the
speech signal is 11.4 ms (measured on an Intel Core i5
quad core machine with 3.4 GHz clock). Considering the
frame shift of 12 ms, this results in a realtime factor of r = 0.95.

VI. CONCLUSION

This work illustrated the benefits obtained from training a
deep noise suppression (DNS) neural network mediated by
an end-to-end non-intrusive PESQNet. The employed non-
intrusive PESQNet can estimate the perceptual evaluation of
speech quality (PESQ) scores of the enhanced speech signal
and serves to provide a reference-free perceptual loss mediating
the DNS training to maximize the PESQ score of the enhanced
speech signal. We illustrate the potential of our proposed method
by training a complex mask-based fully convolutional recurrent
neural network (FCRN) for the DNS task. As an important
novelty, we propose to train the FCRN and the PESQNet al-
ternatingly with a novel training protocol employing gradient
accumulation to keep the PESQNet up-to-date. Detailed analy-
ses suggest that the FCRN trained mediated by our proposed
PESQNet employing the novel alternating training protocol
can further increase the PESQ performance by about 0.1 PESQ
points on synthetic test data and by 0.03 DNSMOS points on
real test data, both compared to training with the MSE-based
loss. We excel the Interspeech 2021 DNS Challenge baseline by
0.2 PESQ points on synthetic test data and about 0.1 DNSMOS
points on real test data. Our proposed method also outperforms
the same DNS trained with an approximated differentiable
PESQ loss by about 0.4 PESQ points on synthetic test data and
0.2 DNSMOS points on real test data.
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