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Abstract—This paper investigates an end-to-end neural diariza-
tion (EEND) method for an unknown number of speakers. In
contrast to the conventional cascaded approach to speaker di-
arization, EEND methods are better in terms of speaker overlap
handling. However, EEND still has a disadvantage in that it cannot
deal with a flexible number of speakers. To remedy this problem,
we introduce encoder-decoder-based attractor calculation module
(EDA) to EEND. Once frame-wise embeddings are obtained, EDA
sequentially generates speaker-wise attractors on the basis of a
sequence-to-sequence method using an LSTM encoder-decoder.
The attractor generation continues until a stopping condition is
satisfied; thus, the number of attractors can be flexible. Diariza-
tion results are then estimated as dot products of the attractors
and embeddings. The embeddings from speaker overlaps result
in larger dot product values with multiple attractors; thus, this
method can deal with speaker overlaps. Because the maximum
number of output speakers is still limited by the training set, we also
propose an iterative inference method to remove this restriction.
Further, we propose a method that aligns the estimated diarization
results with the results of an external speech activity detector, which
enables fair comparison against cascaded approaches. Extensive
evaluations on simulated and real datasets show that EEND-EDA
outperforms the conventional cascaded approach.

Index Terms—Speaker diarization, EEND, EDA.

I. INTRODUCTION

S PEAKER diarization is a task of estimating multiple speak-
ers’ speech activities from input audio (sometimes referred

to as the “who spoke when” problem) [1]. It can be placed
as a downstream task of automatic speech recognition (ASR),
in which speaker information is tagged to each transcribed
utterance [2]–[4]. It can also be used as a prior step to speech
separation and the following ASR. For example, in guided
source separation [5], speech activities are used as constraints
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to update time-frequency masks of a complex angular central
Gaussian mixture model. The speech-activity-driven speech-
extraction neural network [6] takes acoustic features and a
target speaker’s speech activity to perform fully neural speech
separation.

Classical cascaded methods treat speaker diarization as a
partition problem. Given a set of time frames, they first detect
speaker-active frames and then divide them into clusters by
using speaker embeddings extracted with a sliding window. The
number of clusters, which represents the number of speakers, is
determined in the clustering step during inference. Eigen value
analysis on the graph Laplacian of a similarity matrix calculated
from frame-wise embeddings is one way to estimate the number
of speakers explicitly [7], [8]. If agglomerative hierarchical
clustering is employed as a clustering algorithm, a threshold
value is usually preset, and the number of clusters, i.e., the
number of speakers, is dynamically determined by the threshold
value [9]. Either way, the number of clusters can be set flexibly
during inference. However, there is one fundamental problem
that it basically cannot handle speaker overlaps because each
speech frame is usually assigned to one speaker.

Some neural-network-based end-to-end methods, in com-
parison, naturally handle speaker overlap with a single net-
work. For example, the Recurrent Selective Attention Network
(RSAN) [10], [11] decodes speech activity for each speaker one
by one until a stopping condition is satisfied. However, it requires
clean speech to be trained as a mask-based speech separation
model. End-to-end neural diarization (EEND) [12]–[14], which
estimates multiple speakers’ speech activities at once from input
audio, does not require such clean speech for training. The
limitation is that the original EEND fixes the output number
of speakers; thus, knowing the number of speakers in advance
is a requirement.

In our previous study [15], we introduced an encoder-decoder-
based attractor calculation module (EDA) as part of the self-
attentive EEND model [13] to handle unknown numbers of
speakers (EEND-EDA). It calculates attractors from frame-
wise embeddings using a sequence-to-sequence method with
an LSTM encoder-decoder; thus, the number of attractors can
be flexible. In general, sequence-to-sequence methods require
a stopping criterion in their decoding process. To decide when
to stop the attractor calculation, EDA also estimates whether
each calculated attractor really corresponds to a speaker. The
diarization results are calculated as dot products between the
attractors and frame-wise embeddings. Despite being designed
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for the diarization of flexible numbers of speakers, it also has
performed better than the original EEND under fixed-number-
of-speakers conditions. Compared with other EEND extensions
for unknown numbers of speakers [16], [17], it performed the
best on various datasets including the CALLHOME and DI-
HARD III datasets [18]. Several studies have also proposed
extensions to EEND-EDA to allow online processing [19], [20].

In this paper, we revisit EEND-EDA with more comprehen-
sive discussions and formulations and propose several exten-
sions from the original EEND-EDA presented in [15]. The mod-
ifications from the original EEND-EDA study are summarized
as follows:
� We discuss the relationship between the original EEND

and EEND-EDA, which explains EEND-EDA’s better per-
formance in a fixed-number-of-speakers evaluation.

� We also propose refining the training strategy of EEND-
EDA, which resulted in a 2.41 % DER improvement on the
CALLHOME dataset from the original paper [15].

� In the history of diarization studies, it has been diffi-
cult to compare the results of cascaded approaches and
EEND-based approaches because the former ones are often
evaluated with an oracle speech activity detection (SAD),
while EENDs operate SAD and diarization simultane-
ously. To conduct fair comparisons between cascaded and
EEND-based approaches, this paper introduces SAD post-
processing to align diarization results from EEND-EDA
with external SAD results.

� We also propose an iterative inference for handling the
problem of the number of outputs of EEND-EDA being
empirically limited by its training dataset.

� We conduct thorough evaluations and analyses on simu-
lated and real datasets including CALLHOME, CSJ, AMI,
DIHARD II, and DIHARD III.

II. RELATED WORK

A. Speaker Diarization

Conventional diarization methods are typically a cascade of
four modules: 1) speech activity detection (SAD), 2) speaker
embedding extraction, 3) embedding clustering, and 4) overlap
handling as an optional process. Some methods also include
an ASR module [21], [22]. Most studies mainly focus on 2)
speech embedding extraction and 3) embedding clustering. For
speaker embeddings, i-vectors [23], [24], x-vectors [25]–[27],
and d-vectors [7], [28] have been explored. For embedding
clustering, earlier works used traditional clustering algorithms,
e.g., K-means clustering [29], [30], agglomerative hierarchical
clustering (AHC) [9], [31], [32], mean-shift clustering [23],
and spectral clustering [7], [33]. Recently, better clustering
methods have been proposed, such as variational Bayes hidden
Markov model clustering (VBx) [34], [35], auto-tuning spectral
clustering [8], or fully supervised clustering [28], [36]. They
are usually used for hard clustering, so most cascaded methods
(with some exceptions [37]) cannot deal with speaker overlap.
To make them able to treat speaker overlap, 4) overlap handling
should be considered; however, it has sometimes been excluded
from methods and evaluations even in very recent studies [7],

[8], [24], [28], [36]. Moreover, 1) speech activity detection has
often been ignored in evaluations of cascaded approaches that
use oracle speech activities [7], [8], [24], [28], [36].

Neural-network-based methods that directly produce diariza-
tion results from audio are emerging [10], [11]. One strength of
such methods is that they require no extra modules for SAD or
overlap handling. For some methods, models have been trained
for speech separation, and diarization results have been obtained
as byproducts [10], [11]. Such models have been trained on the
basis of clean speech (or time-frequency masks calculated from
clean speech); thus, they cannot be trained on real mixtures like
DIHARD datasets [38], [39]. However, EEND-based models
are trained to output multiple speakers’ speech activities; they
do not require clean speech for training and real mixtures can
be used. The original EEND [12]–[14] can output diarization
results for a fixed number of speakers. To extend the EEND
for an unknown number of speakers, two approaches have been
investigated. One is an attractor-based approach [15], [19], and
the other is a speaker-wise conditional EEND (SC-EEND) [16],
[17]. In this paper, we investigate the attractor-based EEND
because it showed better performance compared to SC-EEND.

B. Speech Processing Based on Neural Networks for
Unknown Numbers of Speakers

While some methods have achieved promising results with a
fixed number of output speakers in diarization [12], [13], [40]
and speech separation [41]–[44] contexts, it is challenging to
make them able to deal with unknown numbers of speakers.
The difficulty of neural-network-based speech processing for
unknown numbers of speakers is that we cannot fix the output
dimension.

One possible approach is to determine the maximum number
of speakers to decode. In this case, the number of outputs is
set to a sufficiently large value. Some methods treat a flexible
number of speakers by outputting null speech activities if the
number of outputs is smaller than the network capacity [45].
However, this approach did not work well with EEND (see [16]).
In other methods, the number-of-speaker-wise output branches
are trained independently, and the most probable is used during
inference [46]. In this case, we have to know the maximum
number of speakers. One of the strengths of EEND is that it
can be finetuned using a target domain dataset from a pretrained
model, but we usually cannot access the maximum number of
speakers of the target domain beforehand. Therefore, a method
that does not require that the maximum number of speakers be
defined would be preferable.

Another approach is to decode speakers one by one until a
stopping condition is satisfied, like SC-EEND [16]. For speech
separation, RSAN [10], [11] and one-and-rest permutation in-
variant training (OR-PIT) [47] can be used. The key difference
between speech separation and diarization is whether or not
the residual output can be defined. RSAN uses a mask-based
approach, in which each time-frequency bin is softly assigned to
each speaker so that the process finishes when all the elements of
the residual mask become zero. OR-PIT is time-domain speech
separation by which residual output is determined as a mixture
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that contains other speakers rather than the target speaker. Both
require clean recordings to determine oracle masks or signals.
However, they are not always accessible in the diarization con-
text, in which only multi-talker recordings and speech segments
are provided.

In this paper, we adopted an attractor-based approach like
deep attractor networks (DANet) [45], [48]. While the number
of speakers [48] or maximum number of speakers [45] is fixed
for the original DANet, in this paper, we calculated a flexible
number of attractors without defining them.

C. Neural-Network-Based Representative Vector Calculation

There have been several efforts to calculate representative
vectors from a sequence of embeddings in an end-to-end train-
able fashion. For example, Set Transformer [49] enables set-
to-set transformation, which can be used to calculate cluster
centroids from a set of embeddings. However, the number of
outputs has to be known in advance, so it cannot be used for
our purpose. Meier et al. proposed an end-to-end clustering
framework [50], in which clustering for all possible number
of clusters K ∈ {1, . . . ,Kmax} is performed and the result of
the most probable number of clusters is used. The framework
performs the clustering of a flexible number of clusters in an
end-to-end manner, but the maximum number of clusters is
limited by Kmax. EDA in this paper, in comparison, determines
a flexible number of attractors from an input embedding without
prior knowledge of the number of speakers. Thus, we can use
datasets of the different maximum number of speakers during
pretraining and finetuning.

III. METHOD

In this section, we first introduce the conventional EEND in
Section III-A followed by an explanation of a natural extension
of the method called attractor-based EEND in Section III-B. We
also provide novel inference techniques in Section III-C.

A. Conventional End-to-End Neural Diarization

End-to-end neural diarization (EEND) [12], [13] is a method
for estimating multiple speakers’ speech activities simultane-
ously from an input recording. Given frame-wiseF -dimensional
acoustic features (xt)

T
t=1, where t ∈ {1, . . . , T} is a frame

index, EEND estimates speech activities (yt)
T
t=1. Here, yt :=

[y1,t, . . . , ys,t, . . . , yS,t]
T denotes speech activities ofS speakers

at t defined as

ys,t =

{
0 (Speaker s is inactive at t)

1 (Speaker s is active at t)
. (1)

EEND assumes that ys,t is conditionally independent given the
acoustic features, namely,

P (y1, . . . ,yT | x1, . . . ,xT ) =

T∏
t=1

S∏
s=1

P (ys,t | x1, . . . ,xT ) .

(2)

With this assumption, speaker diarization can be regarded as a
multi-label classification problem and can thus be easily mod-
eled using a neural network fEEND as

(p1, . . . ,pT ) = fEEND (x1, . . . ,xT ) , (3)

where pt := [p1,t, . . . , pS,t]
T ∈ (0, 1)S is the posterior proba-

bilities of S speakers’ speech activities at frame index t. The
estimation of speech activities (ŷt)

T
t=1 is

ŷ1, . . . , ŷT = arg max
y1,...,yT

P (y1, . . . ,yT | x1, . . . , xT ) , (4)

= (11 (ps,t > 0.5)) 1 ≤ s ≤ S
1 ≤ t ≤ T

, (5)

where 11(cond) is an indicator function that returns 1 if cond is
satisfied and 0 otherwise. Note that the threshold value in (5) is
always set to 0.5 in this paper for simplicity.

The conventional EEND is implemented as a composition of
an embedding part g : RF×T → RD×T and a classification part
h : RD×T → (0, 1)S×T , i.e.,

fEEND = h ◦ g. (6)

The first embedding part g converts input acoustic features into
D-dimensional frame-wise embeddings. It is implemented with
N -stacked encoders, each of which converts a flexible length
of embedding sequence (e

(n−1)
t )Tt=1 into the same length of

embedding sequence (e
(n)
t )Tt=1 as

e
(n)
1 , . . . , e

(n)
T = g(n)

(
e
(n−1)
1 , . . . , e

(n−1)
T

)
, (7)

e
(0)
t = xt (1 ≤ t ≤ T ), (8)

where g(n) is the n-th encoder layer. As examples of encoders,
bi-directional long short-term memories (BLSTM) [12] and
Transformers [13] are exploited in the conventional studies. In
this paper, we used Transformer encoders but without positional
encodings to prevent the outputs from being affected by the
absolute position of the frames. Hereafter, for simplicity, we
use et to denote the embeddings from the last encoder, i.e.,
et := e

(N)
t for t ∈ {1, . . . , T}.

Then, the classification part h in (6) converts the embeddings
(et)

T
t=1 to posteriors of speech activities (pt)

T
t=1 in (3). It is

implemented by using a fully connected layer and an element-
wise sigmoid function σ(·) that takes a tensor as an argument:

[p1, . . . ,pT ] = h(e1, . . . , eT ;Wcls, bcls) (9)

= σ
(
W T

cls [e1, . . . , eT ] + bcls1
T
D

)
∈ (0, 1)S×T ,

(10)

where (·)T denotes the matrix transpose, 1D is D-dimensional
all-one vector, and Wcls ∈ RD×S and bcls ∈ RS are the weight
and bias of the fully connected layer, respectively.

EEND outputs posteriors of multiple speakers simultaneously
but without any conditions to decide the order of the speakers.
Such a network is optimized by using a permutation-free objec-
tive [41], [51], which was originally proposed for multi-talker
speech separation. It computes the loss for all possible speaker
assignments between predictions (pt)

T
t=1, as introduced in (3),
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and groundtruth labels (yt)
T
t=1, and it picks the minimum one

for backpropagation as follows.

Ldiar =
1

TS
min

φ∈Φ(S)

T∑
t=1

H
(
yφt ,pt

)
, (11)

where Φ(S) is a set of all possible permutations of the sequence
(1, . . . , S), φ := (φ1, . . . , φS) is the permuted sequence, yφt :=
[yφ1,t, . . . , yφS ,t]

T ∈ {0, 1}S is the permuted groundtruth labels
using φ, and H(·, ·) is the binary cross entropy defined as

H (yt,pt) :=

S∑
s=1

{−ys,t log ps,t − (1− ys,t) log (1− ps,t)} .

(12)

Compared with cascaded approaches, EEND has two signif-
icant strengths. One is that the cascaded approaches conduct
diarization by dividing frame-wise speaker embeddings, so they
require SAD as pre-processing and overlap detection and as-
signment as post-processing. In contrast, EEND estimates each
speaker’s speech activities independently, so no extra modules
for speech activity detection and overlap detection are needed.
The other strength is that the EEND model can be adapted to the
desired domain’s dataset, while cascaded approaches typically
tune only probabilistic linear discriminant analysis (PLDA) pa-
rameters to optimize intra- and inter-speaker similarity between
speaker embeddings [9], [18], [52].

B. Attractor-Based End-to-End Neural Diarization

The limitation of the conventional EEND is in the classifica-
tion part h in (6); the number of output speakers S is fixed by
the fully connected layer as in (10). One possible way to treat a
flexible number of speakers with this fixed-output architecture
is to set the number of outputs to be large enough. However,
as discussed in Section II-B, it requires knowing the maximum
number of speakers in advance, and it has been already verified
that such a strategy results in poor performance (see [16]). It is
also a problem that the calculation cost of the permutation-free
loss increases if we set a large number of speakers to be out-
put. Therefore, a significant research question is how to output
diarization results for a flexible number of speakers.

In this paper, we extend the conventional EEND to handle
a flexible number of speakers. We assume that the embedding
part g in (6) is implemented in the same manner as the con-
ventional EEND described in Section III-A. Given frame-wise
D-dimensional embeddings {et}Tt=1, our goal is to produce
posteriors for a flexible number of speakers in the classification
part h. To achieve this goal, we propose a method to calculate
a flexible number of speaker-wise attractors from embeddings
and then calculate diarization results on the basis of attractors
and embeddings. The proposed method is depicted in Fig. 1.

1) EDA: Encoder-Decoder-Based Attractor Calculation:
EDA converts frame-wise embeddings into speaker-wise at-
tractors using a sequence-to-sequence method with an LSTM
encoder-decoder. The LSTM encoder henc takes the frame-wise
embeddings as input and updates its hidden state henc

t and cell

Fig. 1. EEND with encoder-decoder-based attractor calculation (EEND-
EDA).

state cenc
t as

henc
t , cenc

t = henc (et,henc
t−1, c

enc
t−1

)
(t = 1, . . . , T ) . (13)

The hidden and cell states of the encoder are initialized with
zero vectors, i.e., henc

0 = cenc
0 = 0. The LSTM decoder hdec

estimates speaker-wise attractors as

hdec
s , cdec

s = hdec
(
0,hdec

s−1, c
dec
s−1

)
(s = 1, 2, . . . ) . (14)

We treat the hidden state at each step hdec
s =: as ∈ (−1, 1)D as

speaker s’s attractor, whose dimensionalityD is the same as that
of the frame-wise embeddings et. The hidden and cell states of
the decoder are initialized by the final hidden and cell states of
the encoder as

hdec
0 = henc

T , (15)

cdec
0 = cenc

T , (16)

which is shown as a right arrow from the LSTM encoder to the
LSTM decoder in Fig. 1. In general applications of a sequence-
to-sequence method, e.g., speech recognition or machine trans-
lation, the output is sentences, i.e., a sequence of words, so the
order of output is fixed. However, EDA cannot determine the
order of output speakers in advance because this order is deter-
mined by minimizing cross entropy as in (11). Even if the order
could be predetermined, it would not be possible to determine
the optimal attractor outputs. Thus, the well-known strategy of
teacher forcing, for which the optimal outputs with their order
have to be known in advance, cannot be used. Furthermore, the
s-th attractor can correspond to any speaker that is not contained
in the first (s− 1) attractors. To make this attractor calculation
procedure fully order-free, we input a zero vector as input at each
step as in (14). Using zero vectors as inputs provides flexibility
to change the number of output speakers across pretraining and
finetuning rather than using, for example, trainable parameters.
This is why we chose an LSTM-based encoder-decoder rather
than Transformer encoder-decoder, which requires input queries
rather than zero vectors.

Here, the input order to the EDA encoder affects the output
attractors because EDA is based on a sequence-to-sequence
method. To investigate the effect of the input order, we tried
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two types of input orders: chronological and shuffled orders.
In the chronological order setting, embeddings are input in the
order of frame indexes as in (13). In the shuffled order setting,
we use the following instead of (13):

henc
t , cenc

t = henc (eψt
,henc

t−1, c
enc
t−1

)
(t = 1, . . . , T ) , (17)

where (ψ1, . . . , ψT ) is a randomly chosen permutation of
(1, . . . , T ).

The diarization results pt in (3) are calculated on the basis of
the dot product of the frame-wise embeddings and speaker-wise
attractors (⊗ in Fig. 1):

pt = σ
(
ATet

)
∈ (0, 1)S , (18)

where A := [a1, . . . ,aS ] are the speaker-wise attractors. The
posteriors are optimized by using (11) in the same manner as
the conventional EEND. This posterior calculation no longer
depends on the fully connected layer, which determines the
output number of speakers as in (10); therefore, EDA-based
diarization can vary the output number of speakers.

Comparing (10) and (18), the conventional EEND can also
be regarded as using fixed attractors Wcls (with bias bcls). In
comparison, EDA calculates attractors from an input sequence
of embeddings, which makes attractors adaptive to the embed-
dings. This makes EEND-EDA more accurate even under the
fixed-number-of-speakers condition (see Table III).

2) Attractor Existence Probability: As in (14), we can obtain
an infinite number of attractors. To decide when to stop the
attractor calculation, we calculate the attractor existence proba-
bilities from the calculated attractors by using a fully connected
layer followed by sigmoid activation:

qs = σ
(
wT

existas + bexist
)
, (19)

where wexist ∈ RD and bexist ∈ R are trainable weights and bias
parameters of the fully connected layer, respectively.

During training, we know the oracle number of speakers S,
so the training objective of the attractor existence probabilities
is based on the first (S + 1)-th attractors using the binary cross
entropy defined in (12):

Lexist =
1

S + 1
H (l, q) , (20)

where

l := [1, . . . , 1︸ ︷︷ ︸
S

, 0]T, (21)

q := [q1, . . . , qS+1]
T . (22)

The total loss is defined as the weighted sum of Ldiar in (11) and
Lexist in (20) with the weighting parameter α ∈ R+ as

L = Ldiar + αLexist. (23)

In this paper, we use α = 1. This multi-task loss aims to opti-
mize frame- and speaker-wise posteriors withLdiar and attractor
existence probabilities with Lexist.

While (23) was used for the network optimization in our
previous study [15], we found that the optimization of Lexist

inhibits the minimization of Ldiar during the training of a model

with a flexible number of speakers, which is more important
for improving diarization accuracy. Therefore, when a flexible
number of speakers’ dataset is used for training, we use Lexist

to update only the fully connected layer parameterized by wexist

and bexist in (19). This can be implemented by cutting the graph
before the fully connected layer to disable backpropagation to
the preceding layers.

During inference, we cannot access the oracle number of
speakers; thus, it is estimated using qs in (19) as follows.

Ŝ = min {s | s ∈ Z+ ∧ qs+1 < τ} , (24)

where τ ∈ (0, 1) is a thresholding parameter, which is set to
0.5 in this paper. We then use the first Ŝ attractors to calculate
posteriors as in (18).

C. Inference Methodology

1) SAD Post-Processing: Diarization methods, especially
cascaded ones, are sometimes evaluated with oracle speech seg-
ments. When evaluated in such a way, the comparison between
cascaded methods and EEND-methods becomes hard, mainly
because EEND-based methods perform SAD and diarization
simultaneously. One reason evaluations of cascaded approaches
are mainly based on oracle speech segments is to consider
speaker errors and SAD errors separately. It is reasonable to
use oracle speech segments to focus on reducing speaker errors.
However, such segments are not accessible in real scenarios,
and the existence of SAD errors may worsen the clustering
performance, which directly affects the diarization accuracy.
Thus, we believe that SAD errors should also be considered
in the context of cascaded methods. However, it is hard to say
how accurate the SAD should be for a fair comparison between
cascaded and EEND-based methods. Therefore, to align with
the the cascaded methods, we introduce SAD post-processing
for evaluating EEND. With this method, we can conduct a fair
comparison between cascaded and EEND-based methods with
the same SAD. Note that it can be used to improve the diarization
performance by eliminating false alarm speech and recovering
missed speech when an accurate external SAD system is given.

The SAD post-processing algorithm is described in Algo-
rithm 1. Here, we assume that we have SAD results z1, . . . , zT
in addition to frame- and speaker-wise posteriors p1, . . . ,pT .
We first estimate speech activities as usual by using (5) (line 1).
However, this estimation is not always consistent with SAD
results. Thus, we first filter false alarms (FA) by using SAD
results. For each frame (line 2), if it is estimated that some
speakers are active while the speech activity should be zero
(line 3), we update the estimations with a zero vector (line 4).
This procedure will always improve DER if z1, . . . , zT are the
oracle speech activities. We also recover missed frames (MI)
if no speaker is estimated as active while the speech activity
is one (line 5). For each of such frames, we treat the speaker
with the highest posterior as an active speaker (line 6–line 7).
Including the oracle SAD as input will also improve the DER
because missed-frame errors are replaced by correct estimation
or at least speaker errors.
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2) Iterative Inference: Even if the model is trained to output
a flexible number of speakers, the output number of speakers
is empirically limited by the maximum number of speakers
in a recording observed during pre-training (see Table VII).
How to output the results of more than N speakers even if the
model is trained on at most N -speaker mixtures is still an open
question. In this paper, we propose an iterative inference method
to produce results for more thanN speakers by applying EEND
decoding with iterative frame selection.

Preliminarily, we first reveal the characteristics of the EEND
models that consist of stacked Transformer encoders and EDA.
A Transformer encoder involves neither recurrence nor convo-
lutional calculation, and we do not use positional encoding in
this paper; thus, the embedding part g in (6) is an order-free
transformation. EDA contains an LSTM encoder-decoder, but
if the order of the input sequence to EDA is shuffled, we
can say that EDA does not depend on the input order, so the
EDA’s classification part h in (6) is also an order-free function.
Therefore, EEND-EDA does not depend on the order of the input
features, which makes it possible to process features that are not
extracted at equal intervals along the time axis, as in EEND
as post-processing [53]. The proposed iterative inference also
utilizes this characteristic.

Algorithm 2 shows the algorithm of iterative inference. In the
algorithm, two processes are iteratively conducted: decoding
and silence frame selection. Each process at the n-th iteration is
described as follows.

1) Decoding (line 3): Acoustic features xt of the selected
frames T are fed into EEND, and the corresponding
posteriors p(n)

t ∈ (0, 1)S
(n)

are obtained as(
p
(n)
t

)
t∈T
← fEEND

(
(xt)t∈T

)
, (25)

where S(n) ∈ {0, . . . , Smax} is the number of decoded
speakers. The posteriors of the frames that are not in T
are set to zero as

p
(n)
t ← [0, . . . , 0︸ ︷︷ ︸

S(n)

]T (t ∈ {1, . . . , T} \ T ) . (26)

Fig. 2. Iterative inference in the case of Smax = 3.

With the posteriors p
(n)
t for t ∈ {1, . . . , T}, diarization

results Ŷ (n) = (ŷ
(n)
1 , . . . , ŷ

(n)
T ) are computed using (5).

Note that Ŷ (n) corresponds to the speech activities of
the ((n− 1)Smax + 1)-th through ((n− 1)Smax + S(n))-
th speakers.

2) Silence frame selection (line 4): Given the diarization
results decoded at the n-th iteration, we select the frames
in which no speaker is active to update T as

T ←
{
t
∣∣∣ t ∈ T ,∥∥∥ŷ(n)

t

∥∥∥
1
= 0

}
. (27)

The above processes start with the initial value of T as the
set of all frames {1, . . . , T} (line 1), and last until T becomes
the empty set or when it is assumed that all the speakers are
decoded (line 5–line 6). Here, we assume that all the speakers
are decoded if the number of output speakers S(n) is smaller
than the maximum output of EEND Smax.

After the iterative process is finished, the final results Ŷ are
obtained by concatenating the results calculated at each iteration
(line 7). With iterative inference, the number of speakers to be
decoded is no longer limited by the training dataset. The iterative
inference workflow when Smax = 3 is also illustrated in Fig. 2.

3) Iterative Inference With DOVER-Lap (Or Iterative Infer-
ence+): Despite iterative inference being able to produce more
than Smax speakers’ speech activities, it has a potential problem
in that the speech activities of two speakers decoded at dif-
ferent iterations never overlap. For example, the (Smax + 1)-th
speaker’s speech activities never overlap with those of the first



HORIGUCHI et al.: ENCODER-DECODER BASED ATTRACTORS FOR END-TO-END NEURAL DIARIZATION 1499

Smax speakers. This is because the frames in which the first Smax

speakers are active will not be processed in the second iteration.
To ease this problem, we introduce DOVER-Lap [54], which is
the extension of DOVER [55]. Both of them are methods for
combining multiple diarization results on the basis of majority
voting, but unlike DOVER, DOVER-Lap take speaker overlap
into account. We used a modified version of DOVER-Lap pre-
sented in [18], in which the speaker assignment strategy when
multiple speakers were ranked equally was slightly different
from the original DOVER-Lap [54]. Note that we did not use
a hypothesis-wise weighting of DOVER-Lap, which is also
introduced in [18].

The algorithm of iterative inference incorporated with
DOVER-Lap is shown in Algorithm 3. In this paper, we refer
to this inference as iterative inference+. The difference from the
iterative inference in Algorithm 2 is that we limit the number
of speakers to decode at the first iteration with Slimit(≤ Smax)
(line 5–line 6). After the decoding step at the first iteration using
(25), (26), and (5), we choose at most the first Slimit speakers’
speech activities from Ŷ (1) := (ŷs,t)s,t as

Ŷ (1) ← (ŷs,t) 1 ≤ s ≤min
(
S(1), Slimit

)

1 ≤ t ≤ T
. (28)

The other procedures are the same as those in Algorithm 2, and
finally, we obtain Slimit-wise diarization results YSlimit (line 10).

In iterative inference+, Slimit is varied from 1 to Smax (line 1),
which results in Smax diarization results for each recording. We
then combine them by using DOVER-Lap to obtain the final
result Ŷ (line 11). With this procedure, the k-th speaker’s speech
activities can be overlapped with those of the max(1, (k −
Smax + 1))-th to (k + Smax − 1)-th speakers.

TABLE I
DATASETS OF SIMULATED MIXTURES

IV. EXPERIMENTS

A. Datasets

1) Simulated Datasets: To train the EEND-EDA model, we
created simulated speech mixtures from single-speaker record-
ings of the following corpora.
� Switchboard-2 (Phase I & II & III)
� Switchboard Cellular (Part 1 & 2)
� NIST Speaker Recognition Evaluation (2004 & 2005 &

2006 & 2008)
Note that these corpora are compatible with the Kaldi CALL-
HOME x-vector recipe1.

We used the following simulation protocol to create multi-
talker mixtures from single-speaker recordings:

1) Select N speakers,
2) For each speaker, randomly sample speech segments and

concatenate them with silences that are interlaid between
speech segments,

3) For each of the N long recordings created, randomly
select a room impulse response and convolve it with the
recording,

4) Mix the N long recordings and a noise signal with a
randomly determined signal-to-noise ratio.

The detailed algorithm for creating simulated mixtures can
be found in [12]. In the second process, we assume that the
occurrence of an utterance is a Poisson process, so the duration
of the silence between speech segments follows the exponential
distribution 1

β exp(− x
β ), where β is the mean value. β can be

used to control the overlap ratio of the mixtures. To obtain a
similar overlap ratio among various numbers of speakers, we
varied β according to the number of speakers as summarized in
Table I.

2) Real Datasets: For real datasets, we employed five multi-
talker datasets below.
� CALLHOME [56]: A dataset that consists of telephone con-

versations whose average duration is two minutes. We used

1[Online]. Available: https://github.com/kaldi-asr/kaldi/tree/master/egs/
callhome_diarization/v2

https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
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TABLE II
DATASETS OF REAL RECORDINGS

the splits provided in the Kaldi x-vector recipe1, which are
denoted as Part 1 and Part 2, respectively. Two- and three-
speaker subsets were used in the fixed-number-of-speakers
evaluations, which are denoted as CALLHOME-2spk and
CALLHOME-3spk.

� CSJ [57]: A dataset that consists of monologues and di-
alogues of Japanese speech. In this paper, we used the
dialogue part of the dataset. The average duration of the
recordings is about 13 minutes. Following [58], we used
54 dialogue recordings out of 58.

� AMI headset mix [2]: A meeting dataset that consists
of 100 hours of multi-modal meeting recordings. Each
meeting session is about 30 minutes. We used head-
set mix recordings, which were obtained by mixing
the headset recordings of all the participants. We used
the split and reference RTTMs provided in the VBx
paper [35].

� DIHARD II [38]: A dataset used in the second DIHARD
challenge. We used single-channel audio, which is used
for tracks 1 and 2. The dataset consists of recordings from
11 domains (including telephone data) with an average
duration of about 7 minutes.

� DIHARD III [39]: A dataset used in the third DIHARD
challenge. It also consists of recordings from 11 domains
(including telephone data) with an average duration of
about 8 minutes. The test set has two evaluation conditions
called core and full. The core set is a subset of the full set,
in which the recordings are selected to balance the duration
of each domain. In terms of the number of speakers, the
full set contains more recordings of two speakers than the
core set.

Their statistics are summarized in Table II. Note that the record-
ings in CSJ, AMI, DIHARD II, and DIHARD III were sampled
at 16 kHz, so we downsampled them to 8 kHz to be aligned with
those of the simulated datasets. We also note that the recordings
of the CSJ corpus are in stereo, so we mixed them to create
monaural recordings.

B. Training

For the embedding part g in (6) of the proposed EEND-
EDA, we used four-stacked Transformer encoders with four
attention heads without positional encodings, each of which
outputs 256-dimensional frame-wise embeddings. The inputs
for the model were log-scaled Mel-filterbank-based features. We
first extracted 23-dimensional log-scaled Mel-filterbanks with a
frame length of 25 ms and frame shift of 10 ms. Each of them
was then concatenated with those of the preceding and following
seven frames, followed by subsampling with a factor of 10. As
a result, a 345 (= 23× 15) dimensional acoustic feature was
extracted for each 100 ms.

In this paper, we evaluated EEND-EDA for both fixed-
numbers-of-speakers and unknown-numbers-of-speakers con-
ditions; thus, a model was trained for each purpose. For the
fixed-number-of-speakers evaluation, the model was first trained
on the Simkspk training set for 100 epochs and evaluated on the
Simkspk test set. We also adapted the model to CALLHOME-
kspk for another 100 epochs to evaluate the model on real record-
ings. We usedk ∈ {2, 3} in this paper. For the unknown-number-
of-speakers evaluation, the model that was trained on Sim2spk
was finetuned by using the concatenation of Sim{1,2,3,4}spk or
Sim{1,2,3,4,5}spk for 50 epochs. The model was also adapted
to each target dataset for another 500 epochs.

For network training using simulated mixtures, we used the
Adam optimizer [59] with the Noam scheduler [60] with 100,000
warm-up steps. For adaptation, we also used the Adam optimizer
but with a fixed learning rate of 1× 10−5. For efficient batch
processing during training, we split each recording into 500
frames when using Simkspk and 2000 frames when using the
adaptation sets. The batch size for training was set to 64. Note
that an entire recording is fed into the network without splitting
during inference.

C. Evaluation

As an evaluation metric, we used diarization error rates
(DERs) defined as

DER =
TMI + TFA + TCF

TSpeech
, (29)

where TSpeech, TMI, TFA, and TCF denote the duration of total
speech, missed speech, false alarm speech, and speaker con-
fusion, respectively. Following the prior work in [12], [61],
we used 0.25 sec of collar tolerance at each speech boundary
for the Simkspk, CALLHOME, and CSJ evaluation. For AMI,
DIHARD II, and DIHARD III, we allowed no collar tolerance
and used a subsampling factor of 5 during inference, which
results in acoustic features extracted every 50 ms, to obtain more
fine-grained results. We emphasize that speaker overlaps were
NOT excluded from the evaluations.

We also report Jaccard error rates (JERs) in addition to DERs.
To calculate JER, first, the optimal assignment between refer-
ence and system speakers is calculated. JER is the average score
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TABLE III
DERS (%) FOR TWO-SPEAKER EVALUATIONS. 0.25 S OF COLLAR TOLERANCE

WAS ALLOWED

of each reference speaker defined as

JER =
1

Sref

Sref∑
s=1

T
(s)
FA + T

(s)
MI

T
(s)
Union

, (30)

whereSref is the number of reference speakers, andT (s)
MI andT (s)

FA
are the duration of the missed and false alarm speech calculated
between speech activities of the s-th reference speaker and the
paired system speaker, respectively. T (s)

Union is the time duration
in which at least one of the s-th reference speakers of a paired
system speaker is active.

V. RESULTS

A. Fixed Numbers of Speakers

1) Two-Speaker Experiment: First, we evaluated our method
under the two-speaker condition. In this case, the model was first
trained on Sim2spk and then adapted to CALLHOME-2spk Part
1. For the EEND-based methods, we used the model trained on
Sim2spk to evaluate the simulated datasets and the one adapted
to CALLHOME-2spk Part 1 to evaluate CALLHOME-2spk
Part 2 and CSJ. For EEND-EDA, we used the first two output
attractors for speech activity calculation.

Table III shows the results of the two-speaker evaluation.
We observed that the proposed method with the shuffled order
setting achieved the best DERs. Despite EEND-EDA being de-
signed to deal with flexible numbers of speakers, it outperformed
the conventional EENDs, i.e., BLSTM-EEND and SA-EEND,
which output diarization results for fixed numbers of speakers.
This is because the conventional EEND can be regarded as a
fixed-attractor-based method, while EEND-EDA is an adaptive-
attractor-based method as described in the last paragraph of
Section III-B. This flexibility of attractors makes the proposed
method more accurate even in fixed-number-of-speakers eval-
uations. In terms of the order of the input to EDA, shuffled
sequences always performed better than chronologically ordered
sequences. It indicates that the global context is more important
than the temporal context to calculate attractors.

2) Three-Speaker Experiment: We also evaluated the method
under the three-speaker condition. We first trained the model
on Sim3spk and then adapted it to CALLHOME-3spk Part 1.
We validated the performance on Sim3spk using the model
trained on Sim3spk and that on CALLHOME-3spk Part 2 using
the model adapted to CALLHOME-3spk Part 1. We used the
first three attractors to evaluate EEND-EDA’s performance.

TABLE IV
DERS (%) FOR THREE-SPEAKER EVALUATIONS. 0.25 S OF COLLAR

TOLERANCE WAS ALLOWED

As shown in Table IV, EEND-EDA with sequence shuffling
performed best on both simulated and real datasets.

3) Effect of Input Order: For a better understanding of EDA,
we tried various types of sequences as inputs to the models,
each of which was trained on chronologically ordered sequences
and shuffled sequences. We evaluated matched and unmatched
conditions of orders, and we also evaluated the effect of reducing
the sequence length by subsampling or using the last 1/N part of
the sequences. Table V shows the results on Sim2spk (β = 2).
The EEND-EDA that was trained on chronologically ordered
sequences performed well on chronologically ordered sequences
but did poorly on shuffled sequences. It was also affected by
subsampling, while it was slightly influenced by using the last
1/N part. These results indicate that the length of each utterance
is an important factor to decide the output attractors for the
model trained on chronologically ordered sequences. On the
other hand, when the model was trained on shuffled sequences, it
was not that affected by the order of sequences nor subsampling.
However, when the last 1/N of the sequences were used, its
performance degradation was worse than the model trained on
chronologically ordered sequences. These results indicate that
EDA trained on shuffled sequences captured the distribution of
embeddings; thus, subsampling did not affect the performance
that much, while using the last 1/N , i.e., biased sampling,
degraded the DERs.

4) Embedding Visualization: For intuitive understanding of
the behavior of EDA, we visualized the embeddings et and at-
tractors as within a two-speaker mixture from Sim2spk (β = 2)
in Fig. 3(b). They were projected to two-dimensional space
by using principal component analysis (PCA). We observed
that the embeddings of two speakers were well distinguished
from those of silence frames, and those of overlapped frames
were distributed between the areas of the two speakers. For
EEND-EDA, two attractors were calculated for each of the two
speakers successfully as in Fig. 3(b). In Fig. 3(a), in comparison,
the fixed attractorsWcls of the conventional EEND were not well
separated compared with the attractors calculated using EDA.

To understand the characteristics of attractors from EDA, we
also visualized the inter-mixture relationship of attractors. For
visualization, we first chose an anchor speaker and then selected
mixtures that contained the anchor speaker. We calculated two
attractors from each mixture by using EEND-EDA and mapped
them onto a two-dimensional space using PCA. The speaker
assignment from the calculated attractors to speaker identifiers
was based on the groundtruth labels. Fig. 4 shows the attractors
of two-speaker mixtures that contain the same anchor speaker.
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TABLE V
DERS FOR SIM2SPK (OVERLAP RATIO: 34.4 %) USING VARIOUS TYPES OF SEQUENCES

Fig. 3. Visualization of embedding and attractors within each recording. For
conventional EEND, weights of last fully connected layer Wcls were visualized
instead of attractors. (a) Conventional EEND [13] (b) EEND-EDA.

Fig. 4. Visualization of attractors across recordings. Selected speakers’ attrac-
tors are marked by dots, and their interference speakers’ attractors are marked
by crosses. Colors of crosses correspond to speaker identities within each figure.
Each pair of attractors from same mixture are connected with gray line.

It clearly shows that the each anchor speaker’s attractors were
not distributed near each other.

From these results, the embeddings and attractors were calcu-
lated only to separate speakers in each mixture. We can also say
that the attractors were not suited for speaker identification. This
also supports the idea that attractors are adaptively calculated
from input embeddings. A similar observation on attractors from
DANet [48] in speech separation was provided in Section V
of [62] that attractors cannot be used for speaker identification
or tracing.

5) Evaluation on the Mismatched Number of Speak-
ers: We also evaluated two-speaker EEND-EDA on three-
speaker datasets, and three-speaker EEND-EDA on two-speaker
datasets. We used the model trained on Sim2spk or Sim3spk for
the evaluation on the simulated datasets, and used the model

TABLE VI
DERS (%) OF CROSS EVALUATIONS OF TWO- AND THREE-SPEAKER

EEND-EDA. 0.25 S OF COLLAR TOLERANCE WAS ALLOWED

adapted to CALLHOME-2spk or CALLHOME-3spk for the
evaluation on the real datasets. The order of the embeddings
is shuffled before being fed into EDA. The results are shown in
Table VI. It is clearly observed that the DERs degraded when the
number of speakers during training and inference was different.
It is worth mentioning that three-speaker EEND-EDA did not
work well on the two-speaker datasets; this indicates that the
larger number of speakers during training does not serve the
smaller number of speakers during inference.

B. Unknown Numbers of Speakers

1) Simulated Mixtures: To train EEND-EDA to output flex-
ible numbers of speakers’ results, we finetuned the model from
the two-speaker model for at most 50 epochs using Sim1spk
to Sim4spk or Sim1spk to Sim5spk. Table VII shows the
step-by-step improvement of the model. Note that the results
on the top row correspond to our previous paper [15]. First,
disabling backpropagation from the attractor existence lossLexist

to update only wexist and bexist improved the DERs for Sim1spk
to Sim4spk. However, we observed that the model still did
not perform well on Sim5spk, which was not included in the
training set. Adding Sim5spk to the training set solved the
problem as shown in the third row, which shows DERs that
improved for Sim5spk from 23.08 % to 13.70 %. This indicates
that EEND-EDA’s number of output speakers was empirically
limited by its training datasets, even though it does not limit
the number of output speakers with its network architecture.
Increasing the number of training epochs further improved the
DERs as shown in the last row. We also showed the DERs
computed by SA-EEND [13] trained on a flexible number of
speakers’ dataset in the last two rows. In each case, the model’s
output number of speakers was set to the maximum number
of speakers in the dataset, i.e., four or five, and the model
was trained to output null speech activities if a recording of a
fewer number of speakers was input. EEND-EDA outperformed
SA-EEND in all datasets. Hereafter, we use the EEND-EDA
model of the fourth row (k ∈ {1, . . . , 5}, 50 epochs, usingLexist

to update onlywexist and bexist during training) and the SA-EEND
model of the sixth row (k ∈ {1, . . . , 5}, 50 epochs).



HORIGUCHI et al.: ENCODER-DECODER BASED ATTRACTORS FOR END-TO-END NEURAL DIARIZATION 1503

TABLE VII
STEP-BY-STEP IMPROVEMENT ON SIMULATED DATASETS. FOR SIM2SPK AND SIM3SPK, WE USED β = 2 AND β = 5, RESPECTIVELY. IN LEXIST COLUMN, WE SHOW

WHICH PARAMETERS WERE UPDATED USING LEXIST DURING TRAINING. RESULTS ON TOP ROW CORRESPOND TO ORIGINAL SETTING [15]

TABLE VIII
DERS (%) OF CALLHOME. 0.25 S OF COLLAR TOLERANCE WAS ALLOWED. TDNN-BASED X-VECTOR RESULTS WERE OBTAINED WITH KALDI RECIPE. DERS

OF SINGLE-SPEAKER REGIONS ARE REPORTED IN BRACKETS. AHC: AGGLOMERATIVE HIERARCHICAL CLUSTERING, VB: VARIATIONAL BAYES RESEGMENTATION

[34], VBX: VARIATIONAL BAYES HMM CLUSTERING [35]

TABLE IX
CONFUSION MATRICES FOR SPEAKER COUNTING ON CALLHOME PART 2.
X-VECTOR-BASED RESULTS WERE OBTAINED WITH ORACLE SAD, WHILE

EEND-BASED RESULTS WERE OBTAINED WITHOUT EXTERNAL SAD

2) CALLHOME: Since the CALLHOME dataset does not
include an official dev/eval split, we used the split provided in
the Kaldi recipe and performed cross-validation. For comparison
with the prior work on EEND, we also report the results obtained
for Part 2 of the dataset using the model adapted to Part 1. For

TABLE X
DERS AND JERS (%) FOR AMI HEADSET MIX. NO COLLAR TOLERANCE WAS

ALLOWED

TABLE XI
DERS AND JERS FOR DIHARD II EVAL. NO COLLAR TOLERANCE WAS

ALLOWED
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TABLE XII
DERS AND JERS FOR DIHARD III EVAL. NO COLLAR TOLERANCE WAS ALLOWED

TABLE XIII
BREAKDOWN RESULTS OF DIHARD III EVAL FOR EACH NUMBER OF

SPEAKERS WITH ORACLE SPEECH SEGMENTS

SAD post-processing described in Section III-C1, we used the
TDNN-based SAD provided in the Kaldi ASpIRE recipe2 and
oracle speech segments.

We show the number-of-speakers-wise results of cross-
validation in Table VIII. We also show the results for only
evaluated single speaker regions in brackets. For this purpose,
we chose up the most probable speakers from each time frame
of the EEND-EDA results for fair comparison with x-vector-
based methods. EEND-EDA outperformed the state-of-the-art
x-vector-based methods in total DERs. One reason is that EEND-
EDA can handle speaker overlap, but it showed a competitive
DER (5.29 %) even when speaker overlaps were excluded from
the evaluation. Considering the number of speakers in a mix-
ture, EEND-EDA did especially better than the x-vector-based
methods with VBx clustering when the number of speakers was
small (#Speakers=2,3,4), while it was worse or on par when the
number of speakers was large (#Speakers=5,6,7). One reason
is that the pretraining was based on mixtures with at most five
speakers, and another reason is that mixtures of a larger number

2[Online]. Available: https://github.com/kaldi-asr/kaldi/tree/master/egs/
aspire/s5

of speakers are rare in the CALLHOME dataset. Compared to
SA-EEND, EEND-EDA achieved better DERs on all the cases.
Table VIII(b) shows the results on CALLHOME Part 2. It clearly
shows that EEND-EDA outperformed the other EEND-based
methods [16], [17] by over two percent of absolute DER.

Table IX shows confusion matrices for the speaker counting
of x-vector (TDNN) + AHC, x-vector (ResNet101) + AHC +
VBx [35], SC-EEND [16], and EEND-EDA on CALLHOME
Part 2. Our method achieved a higher speaker counting accuracy
than the other methods by a large margin.

3) AMI Headset Mix: We next evaluated our method on the
AMI headset mix, which has a different domain from the pre-
training data (telephone conversation vs. meeting). We trained
the model on the training set for 500 epochs and evaluated it
on the dev and eval sets. The oracle speech segments were also
used for SAD post-processing.

The results are shown in Table X. EEND-EDA outperformed
the x-vector-based methods on both the dev and eval sets with
the oracle SAD. Note that the x-vector-based methods tuned the
PLDA parameters on the dev set, so the superiority of EEND-
EDA was smaller on the dev set than the eval set. EEND-EDA
also outperformed SA-EEND with and without the oracle SAD.
We also note that the average duration of the recordings in the
AMI headset mix test set is over 30 min. The performance of
EEND-EDA showed that EEND-EDA generalized well to such
long recordings while using 200 s segments during adaptation.

4) DIHARD II & DIHARD III: Finally, we evaluated our
method on the DIHARD II and III datasets, which contain
recordings from multiple domains. In this evaluation, we used
iterative inference with and without DOVER-Lap, each of which
are described in Section III-C2 and Section III-C3, respec-
tively, to deal with large numbers of speakers. For SAD post-
processing, we used oracle segments and the system used in the
Hitachi-JHU submission to the DIHARD III challenge [18].

The results are shown in Tables XI and XII. We can see
that iterative inference with DOVER-Lap (iterative inference+)
consistently improved DERs. Compared with the x-vector-based

https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire/s5
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methods, EEND-EDA performed best on DIHARD III full,
while the x-vector-based methods were better on DIHARD II
and DIHARD III core.

We show the number-of-speakers-wise DERs and JERs on
DIHARD III in Table XIII. Our method performed better when
the number of speakers was small and worse when the number
of speakers was large. This is why EEND-EDA performed well
on DIHARD III full and worse on DIHARD II and DIHARD
III eval. We also observed that the proposed iterative inference+
improved the performance, especially in terms of JERs on a large
number of speaker cases, but it was still worse than the x-vector
method. Handling a large number of speakers with EEND is left
for future work.

VI. CONCLUSION

In this paper, we proposed an end-to-end speaker
diarization method for unknown numbers of speakers using
an encoder-decoder-based attractor calculation module called
EEND-EDA. In EEND-EDA, frame-wise embeddings are
firstly calculated from an input acoustic feature sequence, then
speaker-wise attractors are calculated from the embeddings
using EDA, and finally diarization results are obtained by the dot
product of the embeddings and attractors. We also proposed to
improve the performance of the diarization by shuffling the order
of the embeddings before input to EDA and limiting the scope
of backpropagation of the attractor existence loss. To conduct
fair comparisons between EEND-based methods and cascaded
methods under the same SAD condition, we introduced SAD
post-processing for EEND-based methods. We also proposed
iterative inference to cope with the problem of EEND-EDA’s
number of outputs being empirically limited by its training
dataset. The evaluations on both simulated and real datasets
showed that the proposed EEND-EDA performed well in both
fixed-number-of-speakers and flexible-number-of-speakers
evaluations.

One possible future direction of this research is to train
EEND-EDA with simulated data of a larger number of speak-
ers. Preparing a large amount of data in advance for training
increments the storage usage. Therefore, we will need a method
to prepare simulated mixtures on the fly during training as
recently studied in [64]. In addition, to create a simulated
mixture, we first create N recordings each of which contains
one speaker, and then mix them to be an N -speaker mixture.
To control the overlap ratio, we increased the value of β as
the number of speakers in the mixture increased, but this leads
to an increase in the duration of silence in the mixture. An
investigation of a better simulation protocol is also left for future
work.

Even if EEND-EDA is trained with datasets of a large number
of speakers, it would still limit the maximum number of speakers
by the datasets as shown in Table VII. One reason is that EEND-
EDA decides the number of speakers by using a neural network
trained in a fully supervised manner. One of our later works
has shown that unsupervised clustering can be introduced into
EEND-EDA to remove the limitation on the output number of
speakers caused by the training dataset [65].

Another direction is the network architecture. Currently, EDA
employs a vanilla LSTM encoder-decoder, but an attention-
based LSTM or Transformer encoder-decoder may be possible
alternatives. Transformer encoders to extract frame-wise em-
beddings from input features can be also replaced with other
architectures such as Conformers [66] or time-dilated convolu-
tional neural networks [64].
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