
148 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Live Streaming Speech Recognition Using Deep
Bidirectional LSTM Acoustic Models and

Interpolated Language Models
Javier Jorge , Adrià Giménez , Joan Albert Silvestre-Cerdà , Jorge Civera , Albert Sanchis ,

and Alfons Juan

Abstract—Although Long-Short Term Memory (LSTM) net-
works and deep Transformers are now extensively used in offline
ASR, it is unclear how best offline systems can be adapted to work
with them under the streaming setup. After gaining considerable
experience on this regard in recent years, in this paper we show how
an optimized, low-latency streaming decoder can be built in which
bidirectional LSTM acoustic models, together with general inter-
polated language models, can be nicely integrated with minimal
perfomance degradation. In brief, our streaming decoder consists
of a one-pass, real-time search engine relying on a limited-duration
window sliding over time and a number of ad hoc acoustic and lan-
guage model pruning techniques. Extensive empirical assessment
is provided on truly streaming tasks derived from the well-known
LibriSpeech and TED talks datasets, as well as from TV shows on
a main Spanish broadcasting station.

Index Terms—Automatic speech recognition, streaming,
decoding, acoustic modeling, language modeling, neural networks.

I. INTRODUCTION

L IVE video streaming services over the Internet have in-
creased dramatically in recent years because of higher user

demand and bandwidth speeds. This has resulted in a growing
need by live video streaming platforms to provide high-quality
automatic speech transcriptions. However, the application of
state-of-the-art neural-based Automatic Speech Recognition
(ASR) models to video streaming is a highly complex and
challenging task due to real-time and low-latency decoding
constraints.

Manuscript received January 12, 2021; revised June 23, 2021; accepted
November 23, 2021. Date of publication December 10, 2021; date of current
version January 8, 2022. This work was supported in part by European Union’s
Horizon 2020 Research and Innovation Programme under Grant
761758 (X5gon), and 952215 (TAILOR) and Erasmus+ Education
Program under Grant Agreement 20-226-093604-SCH, in part by
MCIN/AEI/10.13039/501100011033 ERDF A way of making Europe under
Grant RTI2018-094879-B-I00, and in part by Generalitat Valenciana’s Research
Project Classroom Activity Recognition under Grant PROMETEO/2019/111.
Funding for open access charge: CRUE-Universitat Politècnica de València.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Lei Xie. (Corresponding author: Javier Jorge.)

The authors are with the Valencian Research Institute for Artificial
Intelligence, Machine Learning and Language Processing Group, E-46022
Valencia, Spain (e-mail: jjorge@dsic.upv.es; agimenez@dsic.upv.es;
juasilce@vrain.upv.es; jcivera@dsic.upv.es; josanna@dsic.upv.es;
ajuan@dsic.upv.es).

Digital Object Identifier 10.1109/TASLP.2021.3133216

At this time, state-of-the-art ASR systems are based on the
hybrid Hidden Markov Model (HMM) and neural network ap-
proach [1]. In particular, deep Bidirectional Long-Short Term
Memory (BLSTM) networks have proven to be a powerful
architecture for acoustic modeling in a wide range of ASR
tasks [2]–[4]. In the same way, Transformer-based architec-
tures have recently reached very promising results for lan-
guage modeling [5], though LSTM recurrent neural networks
(LSTM-RNN) are still broadly used [6]. It goes without saying
that end-to-end systems are attracting great attention, and this
includes a number of proposals for operation under low-latency
streaming decoding [7]–[9]. However, despite their simplicity
and promising prospects, it is still unclear whether or not they
will soon surpass state-of-the-art hybrid systems combining
independent models trained from vast amounts of data.

Two main challenges need to be addressed so as to properly
adapt hybrid ASR systems to the streaming setup. The first
one is due to the fact that BLSTM acoustic models can no
longer be applied in their full extent, over the whole input
signal. Instead, they need to be time-limited within a window
sliding over time in which only a small fraction of non-decoded
signal (right context) can be captured for the system to respond
quickly after the incoming audio stream. This adaptation of
BLSTM acoustic models to deal properly with the incoming
audio stream also implies to dynamically carry out acoustic
mean normalization as opposed to full normalization over the
whole signal. An additional issue to be considered is to adapt
well-known pruning techniques as acoustic look-ahead [10],
[11] to work with BLSTM acoustic models to speed up the
decoding process. The second one is that Transformer and
LSTM-RNN language models (LMs) cannot likewise be applied
as they use to be, by rescoring n-best hypotheses or lattices
in a two-pass decoding approach [12]–[14]. In all these cases,
efficient techniques are required for on-the-fly scoring under a
real-time one-pass decoding scheme.

The use of BLSTM acoustic models under streaming con-
ditions has been explored in several recent works. In [15], a
finite sliding window was applied to approximate the acoustic
posterior probability of the center frame. This approach was
improved in [16] by using a more accurate weighting scheme
of overlapping windows. Under this approach, BLSTM-based
models outperformed deep neural networks (DNNs) under the
streaming setup, also showing that a right context of limited

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9279-6768
https://orcid.org/0000-0002-3822-5526
https://orcid.org/0000-0003-2291-8296
https://orcid.org/0000-0002-0963-0143
https://orcid.org/0000-0002-2943-0990
https://orcid.org/0000-0002-9984-4072
mailto:jjorge@dsic.upv.es
mailto:agimenez@dsic.upv.es
mailto:juasilce@vrain.upv.es
mailto:jcivera@dsic.upv.es
mailto:josanna@dsic.upv.es
mailto:ajuan@dsic.upv.es

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 149

duration suffices to reach a performance similar to that of the
offline setup. In contrast to using a sliding window over the
incoming signal, a different approach consists in splitting it into
overlapping chunks with appended (past and future) contextual
observations. This approach was followed in [3], where the
so-called Context-Sensitive-Chunk (CSC) method was proposed
to speed up BLSTM training for low-latency decoding by just
adding some delay in between consecutive chunks. This method
can be accelerated by simply avoiding computations on the left
context, as done with the Latency-Controlled BLSTMs proposed
in [17], which in turn can be further improved as shown in [18].
However, in all these previous works, empirical evaluations
were not performed under genuine streaming conditions, that is,
dealing with the speech signal as an incoming audio stream and,
therefore, on-the-fly mean normalization was not considered at
all. Moreover, basic n-grams LMs were used in experiments
which greatly helped to improve the responsiveness of the
system in the evaluation of system latencies as were reported
only in the case of the CSC approach.

Regarding the use of neural LMs, to our knowledge, the
direct use of this technique during decoding was first explored
in [19], where the authors proposed the use of a Variance
Regularization term together with caching strategies for fast
decoding. Despite using feed-forward neural LMs in decoding,
empirical results showed significant relative improvements both
in speed and accuracy. Other relevant contributions addressing
one-pass decoding with neural LMs have focused on heuristics
to reduce the number of queries to the model and catching
network states [20], alternative one-pass decoding strategies
such as on-the-fly rescoring [21], improving CPU-GPU commu-
nications [22] and, more recently, combining Gated Recurrent
Units with more efficient objective functions, such as Noise
Contrastive Estimation [23]. Certainly different from these con-
tributions, other authors have explored the idea of converting
neural LMs, either recurrent or not, into n-gram models that can
thus be smoothly integrated into a conventional decoder [24],
[25]. It is worth noting, however, that these approaches were
only focused on language modeling and not on the low-latency
streaming decoding problem.

This work takes as a starting point a novel architecture for
real-time one-pass decoding with LSTM-RNN LMs proposed
in [26]. In it, one-pass decoding was accelerated by estimating
look-ahead scores using precomputed static look-ahead tables.
Moreover, LSTM-RNN LM probabilities were efficiently com-
puted using Variance Regularization and lazy evaluation. Later
on, in [27], this architecture for real-time one-pass decoding was
extended to include BLSTM acoustic models within a time slid-
ing window, also used as a window for time-constrained, on-the-
fly acoustic feature normalization. Not surprisingly, empirical
assessment of this extended architecture under strict streaming
conditions proved it was really effective, indeed keeping the
pace with non-streaming (offline) systems. The most recent
refinement in connection to this research line has consisted in re-
placing streaming-adapted LSTM-RNN LMs with Transformer
LMs [28]. In doing so, empirical results on the well-known
LibriSpeech [29] and TED-LIUM [30] tasks have shown that
this refinement leads to top, state-of-the-art recognition rates and

latencies under streaming conditions. In short, it has been shown
that hybrid one-pass ASR systems built in this way can work
under both, offline and streaming conditions with no significant
differences in quality.

This work is intended to provide a complete, detailed refer-
ence of the main contributions made along the research line
described above, also including a number of new additional
enhancements and a new and extensive empirical evaluation un-
der streaming conditions. In particular, the following important
novel algorithmic enhancements are provided:
� The sliding window framework proposed in [16] is revis-

ited to include and adapt necessary concepts for proper
streaming decoding.

� Also for proper streaming decoding, novel methods for
acoustic feature normalization are explored.

� Along with these two streaming-oriented enhancements,
and to improve the general performance of the decoder, new
pruning techniques for fast decoding are also considered.
More precisely, a new approach for the acoustic look-ahead
is provided, together with a more efficient pruning to speed
up the use of interpolated neural LMs.

Only after including these enhancements, a fully-fledged
streaming ASR system can be effectively deployed into pro-
duction. For empirical evaluation, apart from the conventional
LibriSpeech and TED-LIUM tasks considered in previous work,
two genuine streaming tasks also posed for streaming bench-
marking: a video-based version of TED-LIUM with unseg-
mented talks, and a set of full-length videos from a Spanish
TV broadcaster.

The paper is organized describing separately the two main
components which generally speaking deserve special attention
in the deployment of a streaming decoder. In particular, the use of
deep BLSTM acoustic models for streaming is described in Sec-
tion II. On the other hand, the efficient pruning technique for fast
one-pass decoding using interpolated neural LMs is presented
in Section III. All these components are empirically assessed
in Section IV with emphasis on the key adaptation parameters
required for finding an appropriate (task-dependent) trade-off
between accuracy and latency. Finally, the main conclusions
drawn from on this research line are summarized in Section V.

II. DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS FOR

STREAMING

In this section, all the issues concerning the use of deep
BLSTM acoustic models for streaming are described. Firstly,
the sliding window framework proposed in [16] is revisited in
Section II-A to include and adapt necessary concepts for proper
streaming decoding using BLSTM acoustic models. Secondly, a
novel approximation for computing acoustic look-ahead scores
is proposed in Section II-B. Lastly, several acoustic mean nor-
malization methods for streaming are proposed in Section II-C.

A. Streaming Decoding Using BLSTM Acoustic Models

Let x∞
1 be an unbounded sequence of frames computed from

the incoming audio stream, which is being processed by appli-
cation of a sliding window of w frames shifting one frame to

150 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 1. Frame sequence at the top and just below a sliding window of w = 4
frames at all steps embracing frame t, xt.

Fig. 2. Computing the acoustic scores for b = 3 consecutive frames starting
at t, xt+b−1

t , within a sliding window of size w = 4 during two consecutive
b-step batches, Bj−1 and Bj .

the right at each step (though a step size of more than one frame
can be also used if convenient). Thus, frames t to t+ w − 1 are
covered by the sliding window at step t, Xt = xt+w−1

t . This is
illustrated in Fig. 1, where the sliding window is also depicted
at all the w − 1 preceding steps embracing frame t. Xt−1

t−(w−1).
For each acoustic state a, we assume that a BLSTM acoustic

model is available to compute the posterior probability of the
n-th frame within the sliding window at step t, pn(a | Xt).
As frame t falls into position w − i+ 1 of the sliding window
at step t− (w − i), 1 ≤ i ≤ w, it gets w different posteriors
from which its acoustic score is computed by just (weighted)
averaging:

q(xt, a) =
1

w

w∑
i=1

pw−i+1(a | Xt−(w−i)) (1)

For this score to be efficiently computed, we assume that the
recurrent state of each BLSTM does not depend on its previous
states, and hence the posterior it provides for frame t only
depends on (its position in) the window context considered. This
assumption enables fast computation of posteriors, not only by
running independent BLSTM queries in parallel, but also by
avoiding repeated posterior computations during consecutive
step batches. Fig. 2 shows how this looks like in a simple example
where the acoustic scores for b = 3 consecutive frames starting

at t,xt+b−1
t , are computed within a sliding window of sizew = 4

during two consecutive b-step batches, Bj−1 and Bj .
As shown in Fig. 2, scoring the frame subsequencext+b−1

t can
be efficiently done by keeping all precomputed posteriors for it
and just running b independent BLSTM parallel queries in Bj to
get the posteriors still required. In the example given, for each
position i (i = 1, 2, 3), we have w − i posteriors available and i
posteriors to be computed. In general, for any b ≥ 1, a carousel
may be used at each position i, 1 ≤ i ≤ min(b, w − 1), to keep
track of w − i precomputed posteriors and fill in the remaining i
from the b parallel BLSTM calls in batch Bj . Clearly, if b ≥ w,
no precomputed posteriors are involved from position w to b.

It is obvious that the window size w is a key adaptation
parameter for streaming as it controls the duration of the acoustic
context, both in the past (xt−1

t−(w−1)) and the future (xt+w−1
t+1),

that is used when scoring the current frame xt. Needless to
say, we are assuming that the most relevant acoustic context at
each frame occurs within a time window of a handful tenths
of second. Also, as we need the complete future context to be
available for (exact) scoring, time windows longer than that
may prevent the system to respond after a reasonable latency
of, say, one second. This is of course a topic to be explored
empirically. In this regard, note that we are limiting ourselves
to symmetrical time windows of fixed duration (w) and exact
scoring, as defined in (1). However, if convenient, more general
schemes for acoustic context management and scoring can be
also devised, such as asymmetrical time windows of variable
duration and approximate scoring.

As w, the batch size b is also a key adaptation parameter for
streaming though, in contrast to w, its effect is only compu-
tational. In principle, we may want b as large as possible, for
maximum parallelism, but also small enough for the additional
future context (of b− 1 frames) it requires not to become the
dominant factor in the observed system latency. This is easily
understood from Figs. 1 and 2. In Fig. 1, we have b = 1 and thus,
apart from the future w − 1 frames required to complete the
sliding window at t, Xt, no additional frame is needed to score
xt. Instead, in Fig. 2, we have b = 3, and hence 2 additional
frames are needed before running a 3-step batch of parallel
BLSTM calls. There are also other hardware-dependent factors
such as (GPU) memory bandwidth that may add up significantly
to the observed latency as the batch size increases. Therefore,
as with w, this is best studied empirically.

B. Acoustic Model Look-Ahead

The acoustic look-ahead refers to the best acoustic score
(emission and transition probabilities) that can be reached from a
given framext and an acoustic state a. More precisely, following
a similar notation to [10], the exact acoustic look-ahead l(t, a)
is defined as

l(t, a) = max
aL
0 :a0=a

L∑
τ=1

q(xt+τ , aτ) + q(aτ , aτ−1) , (2)

being L the number of remaining frames until the end of the
speech signal, and q(xt, at) = log p(at|xt)

p(at)
and q(at, at−1) =

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 151

log p(at | at−1) the emission and transition probabilities, re-
spectively.

During decoding, for a given partial hypothesis at1, an upper
bound of the acoustic score q̂(at1) is computed by adding the
acoustic look-ahead score as

q̂(at1) = q(at1) + l(t, at) (3)

where

q(at1) =

t∑
τ=1

q(xτ , aτ) + q(aτ , aτ−1) (4)

It is worth noting that q̂(at1) is an optimistic estimation of the
acoustic score, since it is not only considering the score until
instant t, but also the score of the best future path that could be
reached from that instant according to the acoustic model. This
estimated score leads to a more guided beam search, which in
turn, could lead to speed up the decoding process.

Therefore, the challenge resides in efficiently computing the
acoustic look-ahead score l(t, a) and how to speed up the search
of the best future path (see (2)). In fact, let us to refer previous
works in which exact look-ahead scores were approximated by
limiting the future context to a few frames and/or simplifying
the emission models used for look-ahead calculation [10], [11].
A major issue when acoustic look-ahead was applied over
Gaussian HMMs lied in the cost of estimating the emission
scores. However, in current hybrid systems based on neural
networks this is not a problem anymore since, for each frame,
the neural network estimates the scores for all HMM states,
and usually this is performed in batch mode using GPUs. In
current state-of-the-art hybrid system based on triphonemes the
number of different states that must be considered during the
search of an acoustic alignment (without considering the LM)
may vary between half a million and several millions, depending
on the total number of HMMs and the vocabulary size. This
makes unfeasible to directly apply exact acoustic look-ahead
estimation.

As alternative to circumvent all these drawbacks, we propose
to approximate the search space by a bigram model using HMM
states as tokens. In the bigram model we only consider those
transitions that are allowed in the original search space. Addi-
tionally, all transitions scores are set to zero, i.e., we only focus
on emission scores. Using this approach the acoustic look-ahead
can be estimated at low cost using dynamic programming, and
without the need of limiting the number of future frames or
simplifying emission models. More precisely, for a given frame
xt and state a, the proposed acoustic look-ahead approximation
l̂(t, a) is estimated as

l̂(t, a)=

{
0 t = T

max
a′∈A

q̂(a, a′)+q(xt+1, a
′)+ l̂(t+ 1, a′) t < T

(5)

where T is the total number of frames, A is the set of HMM
acoustic states, and q̂(a, a′) is a function that returns 0 if (a, a′)
is a non-zero probability bigram transition or −∞ otherwise.
During decoding, the look-ahead based acoustic score for a

hypothesis can be incrementally updated as

q̂(at1) = q̂(at−1
1)− l(t− 1, at−1)+

+ q(at, at−1) + q(xt, at) + l(t, at). (6)

In an offline setup the proposed acoustic look-ahead scores
could be precomputed before decoding without limitation on the
number of future frames. However, the streaming setup requires
an on-the-fly estimation of acoustic look-ahead scores. More
precisely, as described before and was illustrated in Fig. 2, every
b frames the BLSTM is queried with b+ w − 1 frames, and
outputs the emission score for the first b frames. In this setup,
every time the BLSTM is queried the acoustic look-ahead scores
are estimated for the first b frames of the query. In order to take
full advantage of the available data, when querying the BLSTM
we also retrieve partially averaged emission scores for the frames
of the future context, therefore, the acoustic look-ahead score
for the first frame of the batch will be estimated considering
b+ w − 2 future frames, while in the last frame of the batch only
w − 1 frames will be considered. It is worth noting, that in every
BLSTM query a computational overhead of w is introduced
when compared with an offline scenario. Consequently, the
larger the batch size, the smaller the computational overhead and
the future context limitation. However, a large batch size also
means higher latencies. Therefore, this is a trade-off that must
be taken into account when applying the proposed technique for
streaming as will be appropriately evaluated in Section IV.

C. Acoustic Feature Normalization for Streaming

Under the offline scenario, Full Sequence Normalization
(FSN) is usually performed beforehand applying mean normal-
ization to the whole speech utterance. However, since FSN is
not feasible under streaming conditions, we propose different
alternatives to carry out on-the-fly sequence normalization.

The first alternative, called Dynamic Threshold Normaliza-
tion (DTN), consists on the initialization of the mean by con-
sidering an initial delay of nnorm frames. Afterwards, the mean
is dynamically updated for every new frame. In previous works,
we proved that two seconds of initial delay should be enough to
achieve similar performance to FSN [27], [28]. Although, two
seconds of delay could be reasonable in a continuous streaming
setup, it could be not so suitable for short utterances such as
voice commands.

To overcome this limitation and taking advantage of the slid-
ing window technique introduced in Section II-A, we propose in
this work a novel normalization scheme called Weighted Moving
Average (WMA), in which mean normalization is performed
using the frames of the sliding window. In this way, WMA is
applied over a batch Bj of frames as

B̂j = Bj − μ̂j (7)

where

μ̂j =
fj−1 +

∑b+w
t=1 Bj,t

nj−1 + b+ w
(8)

being fj−1 the accumulated values of previous frames until batch
Bj−1, Bj,t the t-th frame in batch Bj , nj−1 the number of

152 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

frames until batch Bj−1, and b and w the batch and window
sizes, respectively.

The accumulated values fj and nj are updated by weighting
the contribution of previous batches using a parameter α as

fj = α · fj−1 +

b∑
t=1

Bj,t (9)

nj = α · nj−1 + b (10)

Unlike FSN, WMA dynamically adapts the normalization of
the speech signal to local changes, and differently from DTN,
without introducing an initial delay. Therefore, it can be used
without affecting the global latency even from the beginning
of the utterance. Although an initial mean could be precom-
puted from the training set, WMA has been evaluated in this
work starting from scratch on each sample and using only the
information that comes from the audio stream as expected in
streaming conditions. Similarly to the acoustic look-ahead, the
batch size has also an impact regarding the amount of frames
used to compute the mean. This impact will be evaluated during
the experimental section.

III. EFFICIENT ONE-PASS DECODING USING INTERPOLATED

NEURAL LMS

The direct use of neural LMs in one-pass decoding takes
full advantage of its ability to deal with histories of unlimited
length in contrast to n-gram LMs [14]. This makes History
Conditioned Search (HCS) decoders perfectly suited for its
use with neural LMs, as HCS technique group hypotheses by
its history allowing potentially an unlimited representation of
continuous contexts [31]. However, in practice, the integration
of neural LMs in one-pass HCS decoders for streaming presents
some relevant difficulties which need to be solved. For instance,
the very efficient computation of LM look-ahead scores and
word neural LM probabilities or the use of specific LM pruning
parameters to reduce the search space. In the following, all these
decoding issues are discussed and how they have been efficiently
addressed in this proposal.

A. Language Model Look-Ahead

There are many techniques to deal with look-ahead LM scores
as the use of cache strategies, perfect hashing and precompu-
tation of scores [32], computing look-ahead scores bottom-up
from back-off LM [33] or leveraging the LM sparseness to par-
tially compute look-ahead tables [34]. Some of these approaches
use a lower order n-gram to obtain look-ahead scores, as higher
n-gram orders are not feasible due to memory and computation
requirements. In the case of [34], 3-grams and 4-grams are also
evaluated, but in this case look-ahead scores are dynamically
computed.

In HCS-based decoders, LM look-ahead scores are dynami-
cally computed every time a word-end node is reached during
decoding. In order to do this efficiently for streaming, we pro-
pose to compute beforehand all these look-ahead scores in static
look-ahead tables. With this purpose, a heavily pruned version
of the n-gram model can be used to represent this model in a

compact structure that can be used during decoding efficiently.
This is a critical part of the search when it comes to speed, as
this score is queried many times during search to fill the search
network structure. Therefore, reducing the n-gram model to this
static structure and following a cascade structure of look-ahead
tables similar to that proposed in [34], we apply an efficient
technique to compute the look-ahead scores during decoding.
It is worth noting that this pruned n-gram does not constrain
the search space in any way, as this is only used to compute
the look-ahead scores. This allows the decoder to consider very
long word contexts in search hypotheses leveraging the benefits
of using neural LMs.

B. Neural LM Integration

During decoding, when word-end nodes are reached, look-
ahead table scores are replaced with those computed from the
real LM (i.e. n-grams or neural LMs). In the case of neural LM
probabilities, this is an important drawback since it involves
computational issues, reducing the speed of the decoder as they
are usually more complex models than count-based ones. For
this reason, neural LMs are typically applied in a second step
of recognition using n-best or lattice rescoring. To alleviate
this drawback we propose to apply the Variance Regularization
technique [19] reducing the complexity of the computation of
the output layer where the softmax function is computed. This
technique involves a regularization term during training that
aims to reduce the variance of the denominator of the softmax
adjusting it to a constant. This constant is kept and then used
during decoding when computing neural LM probabilities, in-
stead of computing the denominator. As opposed to LSTM-RNN
LMs which store the previous context in an internal vector,
Transformer LMs need to compute all the previous history when
a new word comes in for the attention to work properly. To deal
with long audio streams (possibly hours of continuous speech)
we should limit the history to the n previous words, where n
is a parameter provided in decoding. It is important to remark
that the Transformer LM training enforced no history restriction,
indeed there could be a training-decoding mismatch regarding
history length that may harm the performance, as sentences of
different lengths are devoted to training and the history length
is not adjusted beforehand.

C. LM Pruning Parameters

In order to further speed up the decoding process, specific
LM pruning parameters had to be incorporated to the one-pass
decoder, to reduce the search space or the number of queries
in the computation of neural LM probabilities [26]. One of
these parameters is the Language Model History Recombination
(LMHR) which defines the number of words to be considered
before performing hypothesis recombination during decoding.
LMHR parameter is needed to control the length of histories
since, in HCS decoders, hypotheses are grouped according
to their history, meaning that without enforcing any back-off
recombination previous histories of active hypotheses tend to
grow without any limitation. However, this effect that could be
considered a feature turned to be a problem when long histories

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 153

TABLE I
BASIC STATISTICS OF DEV AND TESTS SETS IN THE EVALUATION TASKS:
DURATION IN HOURS, NUMBER OF SAMPLES (SEGMENTS OR VIDEOS),

AVERAGE DURATION OF SAMPLES IN SECONDS PLUS-MINUS STANDARD

DEVIATION (dµ ± σ), AND RUNNING WORDS (RW) IN THOUSANDS (K)

are considered, as active hypotheses cluster over similar contexts
that differ only in words far from the current frame. This param-
eter aims to reduce the uncertainty of having these long and
very similar hypotheses making pruning less effective. This is
achieved by combining them when they share a given number of
words, and that is indeed what this parameter defines, the number
of previous words evaluated to combine active hypotheses. The
second pruning parameter, named Language Model Histogram
Pruning (LMHP), limits the number of hypotheses that will
query the neural LM after reaching new word-end nodes during
decoding. This is particularly effective in reducing the costly
neural LMs computation, as active hypotheses are pruned before
performing any computation. Unlike global histogram pruning
applied to thousands of hypotheses after each decoding step,
LMHP affects tens or hundreds of hypotheses.

D. LM Interpolation

It is worth stressing that the proposed one-pass HCS-based
decoder enables the use of linearly interpolated count-based
and/or neural LMs which to our knowledge is unprecedented
in streaming ASR.

IV. EXPERIMENTS

A. Evaluation Datasets

The proposed ASR system for streaming was evaluated on
LibriSpeech (LS) and TED-LIUM release 2 speech corpus. In
the case of the TED-LIUM corpus, we defined a new evaluation
task referred to as TDv, in which complete video talks were tran-
scribed without any previous segmentation in order to simulate
a streaming scenario. This is, to the best of our knowledge, the
first time that the TED-LIUM corpus is considered at the talk
level and it could be useful to assess streaming ASR systems in
future works. In order to do that, we used the complete audio
track for each talk along with the STM files provided in the
dataset to evaluate the WER. The conventional segment-based
TED-LIUM task is referred to as TDs in this work. Additionally,
we used the RTVE2018 dataset which comprises a collection of
complete TV shows drawn from diverse genres and broadcasted
by the public Spanish national television from 2015 to 2018 [35].
Table I summarizes the basic statistics for the dev and test sets of
the tasks mentioned above. In the case of RTVE2018, an internal

TABLE II
STATISTICS OF SPANISH TEXT RESOURCES USED FOR LANGUAGE MODELING.

S=SENTENCES, RW=RUNNING WORDS, V=VOCABULARY. UNITS ARE IN

THOUSANDS (K)

partition of the provided dev1 set (dev1-dev) was created for
development purposes, reserving the test set for evaluation.

B. Training Setup

In order to build the English and Spanish hybrid ASR systems,
a context-dependent feed-forward DNN-HMM with three left-
to-right states using MFCC 16 plus first and second derivatives
(48-dim) was initially trained with our own transLectures-UPV
ASR toolkit (TLK) [36]. Then, a BLSTM-HMM acoustic model
was trained following the procedure described in [4] using filter
bank 85-dimensional features and the previous DNN-HMM
alignments. The architecture of the BLSTM model has eight
bidirectional hidden layers with 512 LSTM cells per layer and
direction trained using both, TLK and TensorFlow [37]. Follow-
ing [4], we performed chunking during training by considering
a context to perform back propagation through time to a window
size of 50 frames. Additionally, SpecAugmentation was applied
by means of time and frequency distortions [38]. Finally, a final
step of sequence discriminative training was performed using
our in-house implementation of lattice-based MMI to adjust the
transition scores and the weights of the softmax layer [39].

English acoustic models were trained on 961 and 207 hours of
training speech corpus for LibriSpeech and TED-LIUM release
2, respectively. After applying a phonetic decision tree [40],
8.3 K and 10.8 K tied-states (or senones) were obtained for
LibriSpeech and TED-LIUM, respectively. On the other hand,
Spanish acoustic models were trained using the 208 hours pro-
vided in the RTVE2018 dataset plus about 3.7 k hours of internal
resources. The Spanish ASR system comprises 10 K tied-states.

Regarding the LM training, we used the approximately 800 M
words of text provided for LibriSpeech to train neural LMs, as the
ngram model is provided with the corpus (fglarge), whereas for
TED-LIUM we trained the LMs with the six provided subsets
plus the TED-LIUM training audio transcriptions with up to
230 M running words. Vocabularies were restricted to 200 K and
153 K words for LibriSpeech and TED-LIUM, respectively. In
the case of the Spanish system, text resources were obtained from
internal sources and other public repositories shown in Table II.
The vocabulary size was over 254 K words and a 1-gigaword
random subset of the LM data was selected to train the Spanish

154 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

TABLE III
PERPLEXITY (PPL) AND WEIGHT (W) FIGURES ON DEVELOPMENT SETS,

CONSIDERING SINGLE MODELS AND TWO-WAY AND THREE-WAY

INTERPOLATION OF N-GRAM (N), LSTM-RNN LM (L) AND TRANSFORMER

LM (T). INTERPOLATION WEIGHTS WERE OPTIMIZED BY MINIMIZING PPLS OF

THE INTERPOLATED MODELS

neural LMs. To train neural LMs when the vocabulary is defined
in advance, we decided to obtain the vocabulary as the intersec-
tion between the provided vocabulary and that of the training
data. In this way, the model avoids having null-word probabili-
ties for words that are in the vocabulary but not in the training
set. We take this into account when computing perplexities by
renormalizing the unknown-word score accordingly.

As LMs, we used n-grams, LSTM-RNN LMs and Trans-
former LM (TLM), combining them through a linear interpola-
tion. Count-based models were trained using SRILM [49]. Apart
from the 4-gram model provided for LibriSpeech, we trained a
4-gram Kneser-Ney smoothed LM for TED-LIUM using the
same data as [30]. To compute the static look-ahead tables, a
pruned version of these n-gram models was computed for each
task. We obtained OOV ratios of less than 0.6% in all tasks.

The CUED-RNNLM toolkit [50] was used to train LSTM-
RNN LMs with Noise Contrastive Estimation (NCE) crite-
rion [51], and the normalization constant learned from training
was used during decoding [52]. Based on the lowest perplexity
on the dev sets, we selected as final models those with 256-unit
embedding layer and two hidden LSTM-RNN layer of 2048
units.

The training of TLMs was carried out using our own cus-
tomized version of the FairSeq toolkit [53] using a 24-layer
network with 768 units per layer, 4096-unit FFN, 12 attention
heads, and an embedding of 768 dimensions. These models were
trained until convergence with batches limited to 512 tokens, 512
sentences, and 512 words per sentence. Parameters of these mod-
els were updated every 32 batches. During inference, Variance
Regularization was also applied to speed up the computation of
the TLM score.

Table III shows the perplexity of LMs on the development
sets for all tasks. When comparing single LM performance,
neural models outperformed count-based models on every task,
with enough margin, almost halving the perplexity for LS and
RTVE in the case of the LSTM-RNN. These results were further
improved with TLM, reducing the perplexity in approximately
25% for LS, 15% for TDs, 32% for TDv, and 35% for RTVE,
with respect to the LSTM-RNN LM. Model interpolation had
diverse impact depending on the combination, but in general
using all three models provided the best perplexity for each task.
Consistently with the single performance, the TLM obtains the
highest weights in the different LM combinations for LS and

Fig. 3. WER vs. window size in seconds for all tasks.

RTVE (∼85-95%), while LSTM-RNN and ngram models still
have an important weight for TED-LIUM tasks, ranging from
22% to 38% when are combined with TLM. When considering
the three-way interpolation, again LS and RTVE perplexities
show a similar behavior to that of the two-way interpolation
with high weights for the TLM, while TLM reduces its weight
in favor of LSTM-RNN and ngram in TED-LIUM tasks. TLM
history limitation was optimized for best perplexity in each case
using the same history size when TLM was interpolated with
other LMs.

C. Experiments on Acoustic Modeling for Streaming

The use of BLSTM acoustic models under streaming con-
ditions was evaluated in the following way. First, we studied
the effect of the window size presented in Section II-A in the
performance of the decoder considering that Full Sequence
Normalization (FSN) is performed beforehand. In this way, the
optimal window size was fixed for each task in order to be used in
the following experiments. Then, the impact of the acoustic look-
ahead was gauged to prove its pruning effectiveness, and the
different methods for acoustic feature normalization proposed
in Section II-C were also assessed. In all these experiments, only
count-based LMs were used in order to isolate the effect of the
proposed acoustic-related techniques on the decoding.

Fig. 3 shows Word Error Rate (WER) as a function of the
window size (w) in seconds from 0.1 (or 10 frames) to 1 s
(or 100 frames) for each task. It is worth noting that in this
experiment the acoustic models were the same and only the
window size was varied during decoding. In LibriSpeech and
the TED-LIUM tasks, more context means better performance
up to the point at which the windows size is equal to the chunk
size used during acoustic training. Beyond this point there is no
improvement by increasing the future context leading to more
fixed latency without any decrease in WER. Differently from
these tasks, RTVE obtains slight improvements after increasing
the window size up to about 1 s of future context. This different
behavior can be explained because of RTVE is composed of real

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 155

Fig. 4. WER vs. latency in seconds with or without AMLA enabled for each
task.

TV shows with heterogeneous conditions and, therefore, further
improvements can be expected considering larger contexts to
better deal with changing audio conditions. Based on these
empirical results, the optimal window sizes were fixed to 0.5
seconds for LibriSpeech and TED-LIUM tasks and, considering
that 0.6 for RTVE pays off in WER, we selected this value to
include similar fixed delays between all tasks.

In the following experiments, the trade-off between WER and
latency is evaluated as it is a critical factor in streaming systems.
In all these experiments, latency is measured as the time elapsed
between the instant at which an acoustic frame is generated and
it is fully processed by the decoder. The final latency for a sample
(segment or video) is estimated as the average of the latencies at
frame level. These measurements were run on an Intel i7-3820
CPU @ 3.60 GHz, with 64 GB of RAM and a RTX 2080 Ti
GPU card. For simplicity, the time required to transform raw
audio into filter bank was not included in our measures since
this time is negligible and complicates the procedure used to
estimate latencies.

Fig. 4 shows WER as a function of latency with or without
Acoustic Model Look-Ahead (AMLA) enabled, using b = 20.
As observed, AMLA is effective to decrease the search effort
by exploring more promising paths and, consequently, better
performance can be achieved at the same level of latency. This
is mainly observed for LibriSpeech and TED-LIUM tasks, but
not in RTVE. In RTVE, the number of active hypotheses is less
than in LibriSpeech or TED-LIUM, meaning that the reduction
in the number of active hypotheses does not compensate for the
computational overhead of AMLA.

As stated in Section II, the batch size directly impacts on both,
latency and WER when AMLA is enabled, as the set of windows
in the batch will be used to compute not only the acoustic scores,
but also the acoustic look-ahead with partial acoustic scores.
Regarding this impact, we explored batch sizes of 20 and 40 with
AMLA enabled, observing that more context to compute AMLA
scores lead to similar accuracy for segment-based tasks, such
as LibriSpeech and the conventional TED-LIUM, but slightly
better WERs in video-based tasks, such as TED-LIUM videos

Fig. 5. FSN, DTN and WMA normalization (with differentα values) schemes
evaluated on WER for segment-based tasks.

and RTVE. This is explained by the limited context of short
segments of the former tasks compared to the latter tasks. In the
case of RTVE, as very similar performance is achieved with or
without AMLA enabled, the effect of batch size seems to be neg-
ligible. Finally, as expected, higher latencies are obtained with
larger batch sizes in all tasks, as longer delays are introduced to
gather enough frames to complete the batch. According to these
results, in the remaining experiments, AMLA was enabled for
LibriSpeech and both TED-LIUM tasks, but not for RTVE.

Figs. 5 and 6 depict for segment-based and video-based
tasks, respectively, the effect in WER for the acoustic feature
normalization schemes described in Section II-C. In the case
of the WMA scheme, WER is also shown as a function of
the batch size (b) and the parameter α used to weight the
importance of frames in previous batches. As observed, FSN
and DTN provided similar WER in all tasks with the exception
of LibriSpeech where higher improvements were achieved when
FSN is applied.

Nevertheless, WMA clearly outperforms FSN and DTN when
decoding long sequences, as shown in Fig. 6 for TED-LIUM

156 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 6. FSN, DTN and WMA normalization (with differentα values) schemes
evaluated on WER for video-based tasks.

videos and RTVE tasks. The capacity of WMA to partially
forget the previous context and adapt to new acoustic conditions
seems to improve the performance of the recognition as more
acoustic variations are likely to appear in long sequences.
This is not the case of segment-based tasks shown in Fig. 5,
in which WMA did not outperform FSN, since sequences
are shorter and acoustic conditions more stable (i.e. usually
one sentence with a single speaker). When looking into the
parameter α of WMA, it is observed that values close to 1.0
(equally weighting the previous and current batches) benefit
segment-based tasks, as this is close to consider the complete
sequence for normalization. However, values of α close to 0.9
provide better results in video-based tasks.

Additionally, we assessed the impact of the batch size in the
normalization context. In this regard for normalization, unlike
AMLA, using a batch size of 40 instead of 20 provided consis-
tently better results along all tasks. Despite of this, taking the
WER-latency trade-off into consideration, a batch size of 20 was
selected in the following experiments to keep the latency as low
as possible.

Fig. 7. WER (left y-axis) and PPL (right y-axis) as a function of TLM history
limitation and different LMHR values for segment-based tasks. Solid curves
represent WER, while the dashed curve is PPL.

D. Experiments on Language Modeling for Streaming

As shown in Table III, the TLM provided the best performance
measured in terms of PPL for all tasks. This is in line with
previous results reported in [5]. For this reason, the following
experiments are focused on performing a comprehensive evalu-
ation of the TLM behavior in streaming conditions.

As introduced in Section III, the previous history of word
sequences should be limited in order to keep the performance of
the streaming decoder. This enforces a limitation in the number
of words to consider when computing the LM probabilities
that matches the history limitation of the TLM. In addition,
the LMHR parameter controls the LM previous context to
decide whether hypothesis recombination is performed. Both
parameters are interrelated in streaming decoding as shown in
the following experiments.

Figs. 7 and 8 plot WER as solid curves (left y-axis) and
PPL as a dashed curve (right y-axis), as a function of the TLM
history limitation in number of words using different LMHR
values for all tasks. To better understand the values of the

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 157

Fig. 8. WER (left y-axis) and PPL (right y-axis) as a function of TLM
history limitation and different LMHR values for video-based tasks. Solid curves
represent WER, while the dashed curve is PPL.

LMHR parameter, for instance, a LMHR of 3 would indicate
that hypothesis recombination is performed at 4-gram level.

Similarly to previous experiments related to acoustic mod-
eling, segment-based tasks in Fig. 7 show a different trend
compared to video-based tasks in Fig. 8. Fig. 7 shows that
LMHR curves behaved similarly when increasing the TLM
history limitation. This limit reached the best operating point
in 60 words for LibriSpeech and TED-LIUM matching up with
the lowest perplexity in both cases. The best performance was
achieved with LMHR values of 12 and 9 for LibriSpeech and
TED-LIUM, respectively, while higher values provided slightly
higher WERs. This would indicate that for these segment-based
tasks, longer histories have very similar contexts that make
pruning less effective.

In the case of the video-based tasks, Fig. 8 shows that PPL and
WER figures increase beyond a TLM history of about 40 words.
It is worth noting that in both TED-LIUM tasks the trained TLM
was the same, that is, it was trained from full sentences not
complete videos. This would explain why the PPL increased on
video-based tasks when more than 60 words were considered

for the TLM history. This fact was also reflected in WER, since
the best results were consistently achieved using a LMHR value
of 9 for both TED-LIUM tasks. The aforementioned optimum
operating point of 60 words became on 40 words in video-based
tasks as the speech input now is not as structured as in the
segment-based tasks, and the beginning and end of sentences can
be mixed during decoding, a situation that was not considered
when training the TLM.

Regarding the RTVE task, a more stable behavior was ob-
served in performance using a broader range of the TLM history.
In this case, the performance only degraded when very high
values of TLM history of about 140 words were considered.
This might be explained by the fact that this LM was trained
with a huge variety of text resources with very different sentence
lengths and contexts. However, the performance degradation
as a result of longer histories highlights the need of training
specific models that take into account intra and inter sentence
contexts considering complete videos or documents. Finally, the
LM seemed not to play a crucial role in the RTVE task as can be
interpreted by the very similar performance achieved by different
LMHR values with a slight improvement when using a LMHR
value of 9 and a TLM history of 40 words.

As introduced in Section III-C, the LMHP parameter limits
the number of active hypotheses that can query the neural LM
to obtain its probability score reducing in this way the computa-
tional cost. However, the LMHP has a direct impact on WER as
it limits the number of hypotheses to be considered during the
rescoring step in decoding.

Figs. 9 and 10 depict WER as a function of latency for
segment-based and video-based tasks, respectively. The val-
ues of the parameter LMHP represent the number of active
hypotheses, being LMHP=Inf an unlimited number of active
hypotheses. As shown, the use of the LMHP pruning technique
achieved an overall reduction in the system latency as can be
observed by the left-shifting of the LMHP curves in almost all
the LMHP values with respect to an unlimited number of active
hypotheses. On the other hand, higher LMHP values translate
into better WERs.

Nonetheless, the trade-off between WER and latency is very
task dependent. In LibriSpeech, a LMHP value of 20 allows low
latencies (about 0.7 seconds) but this limits the best WER to
about 6.0%. However, allowing more LM queries (e.g. 40) leads
to latencies about 0.9 seconds and WERs of about 5.8%. This
behavior is different for TED-LIUM in both versions, where a
LMHP value of 20 means an important increase in WER and
not so much improvement in latency. This would mean that
more queries in this case seems to help the decoder during the
search to find best paths. Beyond this LMHP value, competitive
WERs were obtained for low latencies getting better results
when coming closer to latencies of about one second. In the
RTVE task, a LMHP value of 20 provided a very good operating
point when latency is closed to 0.8 seconds. Again, in this task
the LM did not provide much information so limiting the number
of queries only helped the performance of the system in terms of
speed. This is specially helpful in this kind of long-recognition
tasks where using conservative parameters allows us to discard
a high number of active hypotheses during the search speeding

158 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 9. WER vs. latency in seconds varying LMHP values for segment-based
tasks.

up the decoding. These results show how the streaming decoder
can be adapted very easily to our needs just adjusting the LMHP
parameter in order to obtain the desired trade-off between WER
and latency.

As described in Section III-D, a relevant feature of the pro-
posed streaming decoder is its capability to interpolate on-the-fly
count-based and neural LMs. Extensive experiments were car-
ried out with the aim of evaluating the performance of different
LM interpolations combining n-grams, LSTM-RNN LMs and
TLMs.

Figs. 11 and 12 show WER as a function of latency applying
different combination of LMs for all tasks. Similarly to previous
experiments, different behaviors depending on the task can be
observed in these figures. In LibriSpeech, the single use of the
TLM provided the best result when considering the trade-off
between WER and latency. This could be the expected behavior
based on the interpolation weights reported in Table III for the
TLM (86-96%). The slight improvements in PPL achieved by the
interpolation seemed not to have an influence on WER within
the considered range of latencies. In the case of TED-LIUM,

Fig. 10. WER vs. latency in seconds varying LMHP values for video-based
tasks.

the weights were distributed in a different way, since n-gram
and LSTM-RNN LMs weights were from about 22% to 38%
when combined one-on-one with TLM and 30-40% when all
the LMs were combined. In this case, while the combination
of TLM with n-gram or with LSTM-RNN provided similar
performance, the combination of the three LMs consistently
provided the best WERs for all the considered range of latencies
and for both, segment-based and video-based tasks. In RTVE,
no significant differences were found in performance across
different LM combinations. As in LibriSpeech, the TLM weight
in the interpolation was between 85-94% for RTVE and this
seemed to be the reason why the LM interpolation did not have
a significant effect on WER.

As a final experiment, the performance of the streaming
decoder was evaluated on the test set of all tasks using the hyper-
parameters optimized on the development sets in the previous
experiments. Hyperparameters were optimized aiming at mini-
mizing WER while the average latency was close to 1 s. Table IV
reports WER and latency figures on the test sets comparing them
with the best WER reported in previous works. In the case of
CSC [3] and LC [17], the setup recommended by the authors was

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 159

Fig. 11. WER vs. latency in seconds considering different interpolation
schemes with TLM for each segmented task.

TABLE IV
WER AND LATENCY IN SECONDS ON THE TEST SETS USING THE OPTIMIZED

STREAMING SYSTEMS FOR ALL THE EVALUATION TASKS COMPARED TO

PREVIOUS WORKS

Fig. 12. WER vs. latency in seconds considering different interpolation
schemes with TLM for each video task.

properly adapted to our framework. As observed, our streaming
decoder offers competitive WERs even compared with offline
decoders, demonstrating its applicability to real-world streaming
applications.

Regarding latency figures, segment-based tasks, such as LS
and TDs, showed a greater variability. This is explained by the
fact that pruning was not so aggressive in these tasks in order
to minimize WER, leading to latency peaks in some samples in
which the decoder could not catch up before the sample ends.
However, pruning was easier to adjust to stabilize latency in
video-based tasks, as observed in TDv and RTVE.

V. CONCLUSION AND FUTURE WORK

In this work an improved decoder based on the conventional
hybrid ASR approach was proposed by adapting state-of-the-art
models to the streaming setup. In particular, deep BLSTM
acoustic models were adapted to the streaming conditions by
using a sliding window of future context. Other techniques such

160 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

as on-the-fly normalization of acoustic features and the improve-
ment of pruning techniques related to acoustic and language
models were also addressed.

The proposed decoder was evaluated by carrying out a
comprehensive experimentation on well-known academic
datasets and real-world challenging tasks. As reported, this
decoder presented a very competitive performance being easily
adapted to the task by tuning the desired trade-off between
WER and latency.

Even so, the streaming setup opens some interesting chal-
lenges to be further investigated. For instance, in our experiments
the same acoustic models were used independently from the
window size employed at decoding time in order to alleviate the
computational cost of training acoustic models. In order to ad-
dress this mismatch between training and decoding conditions,
the same window size in both training and decoding is desirable
to better capture the nature of the task (i.e., segment-based or
video-based). Moreover, according to the requirements of the
latency, the window size could be dynamically adjusted in the
decoding phase. On the other hand, real streaming tasks involve
the recognition of long recordings across sentences, in this sense
it would be very interesting to evaluate the performance of TLMs
taking into account larger contexts.

REFERENCES

[1] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning
Approach. New York NY, USA: Springer, 2014.

[2] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural Netw.,
vol. 18, no. 5/6, pp. 602–610, 2005.

[3] K. Chen and Q. Huo, “Training deep bidirectional LSTM acoustic model
for LVCSR by a context-sensitive-chunk BPTT approach,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 24, no. 7, pp. 1185–1193,
Jul. 2016.

[4] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schlüter, and H. Ney, “A com-
prehensive study of deep bidirectional LSTM RNNs for acoustic modeling
in speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2017, pp. 2462–2466.

[5] K. Irie, A. Zeyer, R. Schlüter, and H. Ney, “Language modeling with deep
transformers,” in Proc. InterSpeech, 2019, pp. 3905–3909.

[6] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring
the limits of language modeling,” 2016, Accessed: Dec. 14 2021. [Online].
Available: https://research.google/pubs/pub45446/.

[7] N. Moritz, T. Hori, and J. Le Roux, “Streaming automatic speech recogni-
tion with the transformer model,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 6074–6078.

[8] H. Miao, G. Cheng, C. Gao, P. Zhang, and Y. Yan, “Transformer-based
online CTC/attention end-to-end speech recognition architecture,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2020, pp. 6084–6088.

[9] T.-S. Nguyen, N.-Q. Pham, S. Stueker, and A. Waibel, “High performance
sequence-to-sequence model for streaming speech recognition,” in Proc.
InterSpeech, 2020, arXiv:2003.10022.

[10] D. Nolden, “Progress in decoding for large vocabulary continuous speech
recognition,” Ph.D. dissertation, RWTH Aachen Univ., Aachen, Germany,
Apr. 2017.

[11] B. Chen, J.-W. Kuo, and W.-H. Tsai, “Lightly supervised and data-driven
approaches to mandarin broadcast news transcription,” Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., vol. 1, pp. I- 777, 2004.

[12] X. Chen, X. Liu, A. Ragni, Y. Wang, and M. Gales, “Future word contexts
in neural network language models,” in Proc. Autom. Speech Recognit.
Understanding, 2017, pp. 97–103.

[13] A. Ogawa, M. Delcroix, S. Karita, and T. Nakatani, “Rescoring N-best
speech recognition list based on one-on-one hypothesis comparison using
encoder-classifier model,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2018, pp. 6099–6103.

[14] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neu-
ral network based language modeling in meeting recognition,” in Proc.
InterSpeech, 2011, pp. 2877–2880.

[15] A. Mohamed et al., “Deep bi-directional recurrent networks over spec-
tral windows,” in Proc. Autom. Speech Recognit. Understanding, 2015,
pp. 78–83.

[16] A. Zeyer, R. Schlüter, and H. Ney, “Towards online-recognition with
deep bidirectional LSTM acoustic models,” in Proc. InterSpeech, 2016,
pp. 3424–3428.

[17] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass, “Highway
long short-term memory RNNs for distant speech recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2016, pp. 5755–5759.

[18] S. Xue and Z. Yan, “Improving latency-controlled BLSTM acoustic mod-
els for online speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2017, pp. 5340–5344.

[19] Y. Shi, W. Zhang, M. Cai, and J. Liu, “Efficient one-pass decoding with
NNLM for speech recognition,” IEEE Signal Process. Lett., vol. 21, no. 4,
pp. 377–381, Apr. 2014.

[20] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent neu-
ral network language model inference for first pass speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2014,
pp. 6354–6358.

[21] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass decoding with
recurrent neural network language model for speech recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2014, pp. 6364–6368.

[22] K. Lee, C. Park, I. Kim, N. Kim, and J. Lee, “Applying GPGPU to recurrent
neural network language model based fast network search in the real-time
LVCSR,” in Proc. InterSpeech, 2015, pp. 2102–2106.

[23] K. Lee, C. Park, N. Kim, and J. Lee, “Accelerating recurrent neural network
language model based online speech recognition system,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2018, pp. 5904–5908.

[24] E. Ar1soy, S. F. Chen, B. Ramabhadran, and A. Sethy, “Converting neural
network language models into back-off language models for efficient
decoding in automatic speech recognition,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 22, no. 1, pp. 184–192, May 2014.

[25] M. Singh, Y. Oualil, and D. Klakow, “Approximated and domain-adapted
LSTM language models for first-pass decoding in speech recognition,” in
Proc. InterSpeech, 2017, pp. 2720–2724.

[26] J. Jorge, A. Giménez, J. Iranzo-Sánchez, J. Civera, A. Sanchis, and A.
Juan, “Real-time one-pass decoder for speech recognition using LSTM
language models,” in Proc. InterSpeech, 2019, pp. 3820–3824.

[27] J. Jorge et al., “LSTM-based one-pass decoder for low-latency stream-
ing,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2020,
pp. 7814–7818.

[28] P. Baquero-Arnal et al., “Improved hybrid streaming ASR with transformer
language models,” in Proc. InterSpeech, 2020, pp. 2127–2131.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2015, pp. 5206–5210.

[30] A. Rousseau, P. Deléglise, and Y. Esteve, “Enhancing the TED-LIUM
corpus with selected data for language modeling and more TED talks,” in
Proc. LREC, 2014, pp. 3935–3939.

[31] H. Ney and S. Ortmanns, “Progress in dynamic programming search for
LVCSR,” Proc. IEEE, vol. 88, no. 8, pp. 1224–1240, Aug. 2000.

[32] A. Cardenal-López, F. J. Diéguez-Tirado, and C. García-Mateo, “Fast
LM look-ahead for large vocabulary continuous speech recognition using
perfect hashing,” Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
vol. 1, pp. I-705–I-708, 2002.

[33] L. Chen and K. K. Chin, “Efficient language model look-ahead probabil-
ities generation using lower order LM look-ahead information,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2008, pp. 4925–4928.

[34] D. Nolden, H. Ney, and R. Schlüter, “Exploiting sparseness of backing-off
language models for efficient look-ahead in LVCSR,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2011, pp. 4684–4687.

[35] E. Lleida et al., “RTVE2018 database description,” Cátedra RTVE - Uni-
versidad Zaragoza, 2018. [Online]. Available: http://catedrartve.unizar.es/
reto2018/RTVE2018DB.pd.

[36] M. del Agua et al., “The translectures-UPV toolkit,” in Proc. Adv. Speech
Lang. Technol. Iberian Lang., 2014, pp. 269–278.

[37] M. Abadi et al., “TensorFlow: a system for large-scale machine learning,”
in Proc. 12th USENIX Conf. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[38] D. S. Park et al., “SpecAugment: A simple data augmentation method for
automatic speech recognition,” in Proc. InterSpeech, 2019, pp. 2613–2617.

https://research.google/pubs/pub45446/
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pd
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pd

JORGE et al.: LIVE STREAMING SPEECH RECOGNITION USING DEEP BIDIRECTIONAL LSTM ACOUSTIC MODELS 161

[39] A. Giménez, J. Andrés-Ferrer, and A. Juan, “Discriminative bernoulli
HMMs for isolated handwritten word recognition,” Pattern Recognit. Lett.,
vol. 35, pp. 157–168, 2014.

[40] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying for high
accuracy acoustic modelling,” in Proc. Workshop Hum. Lang. Technol.
Conf., 1994, pp. 307–312.

[41] S. Lison, and J. Tiedemann,“OpenSubtitles2016: Extracting Large Parallel
Corpora from Movie and TV Subtitles,” in Proc. 10th Int. Conf. Lang.
Resour. Eval., 2016.

[42] UFAL MEDICORP, “UFAL Medical Corpus v.1.0,” 2017, Accessed:
Dec. 14, 2021. [Online]. Available: https://ufal.mff.cuni.cz/ufal_medical_
corpus.

[43] Wikimedia Foundation, “Wikipedia,” Accessed: Dec. 14, 2021. [Online].
Available: https://www.wikipedia.org/

[44] C. Callison-Burch et al., “Findings of the 2012 workshop on statistical
machine translation,” in Proc. WMT, 2012, pp. 10–51.

[45] Common Crawl, “News crawl corpus (WMT workshop) 2015,” Ac-
cessed: Dec. 14, 2021. [Online]. Available: http://www.statmt.org/wmt15/
translation-task.html

[46] “Eldiario.es,” 2020, Accessed: Dec. 14, 2021. [Online]. Available: https:
//www.eldiario.es/

[47] “ElPeriodico.com,” 2020, Accessed: Dec. 14, 2021. [Online]. Available:
https://www.elperiodico.com/

[48] “CommonCrawl 2014,” Accessed: Dec. 14, 2021. [Online]. Available:
http://commoncrawl.org/

[49] A. Stolcke, “SRILM - an extensible language modeling toolkit,” in Proc.
InterSpeech, 2002, pp. 901–904.

[50] X. Chen, X. Liu, Y. Qian, M. J. F. Gales, and P. C. Woodland, “CUED-
RNNLM - an open-source toolkit for efficient training and evaluation
of recurrent neural network language models,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2016, pp. 6000–6004.

[51] A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural
probabilistic language models,” Proc. 29th Int. Conf. Mach. Learn.,, vol. 2,
2012, arXiv:1206.6426.

[52] X. Chen, X. Liu, Y. Wang, M. J. F. Gales, and P. C. Woodland, “Improving
the training and evaluation efficiency of recurrent neural network language
models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2015,
pp. 5401–5405.

[53] M. Ott et al., “Fairseq: A fast, extensible toolkit for sequence modeling,”
in Proc. NAACL-HLT, 2019, pp. 48–53.

[54] K. J. Han, J. Pan, V. K. N. Tadala, T. Ma, and D. Povey, “Multistream CNN
for robust acoustic modeling,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2021, pp. 6873–6877.

[55] W. Zhou, W. Michel, K. Irie, M. Kitza, R. Schlüter, and H. Ney, “The
RWTH ASR system for TED-LIUM release 2: Improving hybrid HMM
with specAugment,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2020, pp. 7839–7843.

[56] K. J. Han, J. Huang, Y. Tang, X. He, and B. Zhou, “Multi-stride
self-attention for speech recognition,” in Proc. InterSpeech, 2019,
pp. 2788–2792.

[57] J. Jorge et al., “MLLP-UPV and RWTH aachen spanish ASR systems
for the IberSpeech-RTVE 2018 speech-to-text transcription challenge,” in
Proc IberSpeech, 2018, pp. 257–261.

Javier Jorge received the B.Sc. degree in computer
science, in 2014, the M.Sc. degree in artificial in-
telligence, pattern recognition, and digital imaging,
in 2015, and is currently working toward the Ph.D.
degree with the Universitat Politècnica de València,
Spain, financed by Grant FPU14/03981 from the
Spanish Ministry of Education, Culture and Sport.
He is a Co-Author of several articles presented at
international conferences, and is actively involved
in R&D projects (X5gon, Multisubs). His current
research interests include streaming speech recogni-

tion, specifically decoding with acoustic and language modeling adapted to this
environment.

Adrià Giménez received the Ph.D. degree in com-
puter science from Universitat Politècnica de Valèn-
cia (UPV), Valencia, Spain, in 2014. He is currently
a Postdoctoral Researcher with UPV. He is currently
a Member of the UPV’s Machine Learning and Lan-
guage Processing Research Group (MLLP). He has
authored or coauthored more than 30 articles in inter-
national journals and conferences, and he has been ac-
tively involved in three EU research projects and sev-
eral Spanish research projects. His current research
focuses on deep learning for speech recognition.

Joan Albert Silvestre-Cerdà is currently a Ph.D. As-
sistant Professor of computer science with the Univer-
sitat Politècnica de València, Valencia, Spain, - cam-
pus d’Alcoi, and a Member of the Machine Learning
and Language Processing (MLLP) Research Group,
integrated into the Valencian Research Institute on
Artificial Intelligence (VRAIN). He has more than
ten years of research experience on machine learning
and natural language processing applications, mainly
in the area of automatic speech recognition, with an
special focus on the development of technologies and

solutions that can be deployed into real-life production environments. During
this time period, he has coauthored more than 20 articles published in inter-
national journals and conferences, and has participated in ten publicly-funded
EU/Spanish research projects.

Jorge Civera received the Ph.D. degree from Univer-
sitat Politècnica de València (UPV), Valencia, Spain,
in 2008. He is currently an Associate Professor of
computer science with the Universitat Politècnica
de València (UPV), and has been a Member of the
Machine Learning and Language Processing (MLLP)
Research Group since 2014, and also part of the Va-
lencian Research Institute for Artificial INtelligence
(VRAIN). He has participated in 30 research projects
and has authored or coauthored more than 75 articles
in international journals and conferences. He is also

an Advisor for three Ph.D. thesis on different MLLP topics. His most recent work
include his participation in the EU research projects transLectures, EMMA, and
X5gon.

Albert Sanchis received the Ph.D. degree in 2004. He
is currently a Ph.D. Associate Professor of computer
science with the Universitat Politècnica de Valèn-
cia (UPV), Valencia, Spain. He is a Member of the
UPV’s Machine Learning and Language Processing
Research Group (MLLP). He is a Co-Author of more
than 60 articles in international journals and confer-
ences. He has participated in six EU research projects
and more than ten Spanish research projects. He is
also an Advisor for three Ph.D. theses on different
MLLP topics. His most recent work includes the

participation in the EU projects transLectures, EMMA and X5gon. He is also
leading a Spanish government-funded project on fostering open education and
parliamentary openness by providing multilingual access to video resources.

Alfons Juan received the Ph.D. degree from Univer-
sitat Politècnica de València, Valencia, Spain, in 2000.
He is currently a Full Professor of computer science
with the Universitat Politècnica de València, where
he has been leading a Research Group on Machine
Learning and Language Processing (MLLP), since
2014. He has participated in more than 30 research
projects and has authored or coauthored more than
150 articles in international journals and conferences.
He is also an Advisor for 13 Ph.D. theses on different
MLLP topics. His most recent work includes the

participation in the EU projects transLectures, EMMA, and X5gon.

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://www.wikipedia.org/
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html
https://www.eldiario.es/
https://www.eldiario.es/
https://www.elperiodico.com/
http://commoncrawl.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

