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Abstract—This paper deals with a score–audio music retrieval
task where the aim is to find relevant audio recordings of Western
classical music, given a short monophonic musical theme in sym-
bolic notation as a query. Strategies for comparing score and audio
data are often based on a common mid-level representation, such as
chroma features, which capture melodic and harmonic properties.
Recent studies demonstrated the effectiveness of neural networks
that learn task-specific mid-level representations. Usually, such su-
pervised learning approaches require score–audio pairs where the
score’s individual note events are aligned to the corresponding time
positions of the audio excerpt. However, in practice, it is tedious to
generate such strongly aligned training pairs. As one contribution,
we show how to apply the Connectionist Temporal Classification
(CTC) loss in the training procedure, which only uses weakly
aligned training pairs. In such a pair, only the time positions of the
beginning and end of a theme occurrence are annotated in an audio
recording, rather than requiring local alignment annotations. We
evaluate the resulting features in our theme retrieval scenario and
show that they improve the state of the art for this task. As a main
result, we demonstrate that with the CTC-based training procedure
using weakly annotated data, we can achieve results almost as
good as with strongly annotated data. Furthermore, we assess our
chroma features in depth by inspecting their temporal smoothness
or granularity as an important property and by analyzing the
impact of different degrees of musical complexity on the features.

Index Terms—Alignment, audio, chroma features, CTC loss,
deep learning, music retrieval, musical themes.

I. INTRODUCTION

MUSIC data is available in many different modalities,
for example, in the form of audio or video recordings,

symbolic representations, or as graphically encoded sheet mu-
sic [1]. In particular, audio recordings and symbolic scores are
important in many music information retrieval (MIR) tasks. One
of the typical score–audio retrieval applications is a scenario,
where a symbolic score is given as a query, and the task is to
identify relevant audio recordings [2]–[6]. In this paper, we use
monophonic musical themes in symbolic encodings as queries.
For a given query, the aim is to find a relevant recording (i.e.,
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Fig. 1. Illustration of a weakly aligned score–audio pair as the input to a convo-
lutional neural network during training, and an enhanced chroma representation
as the post-processed output of the network after training. Music example: First
movement of Beethoven’s Fifth Symphony, first theme.

a recording where this theme is played) in an audio database
of Western classical music [5], [6]. A famous theme is, for
example, the beginning of Beethoven’s Fifth Symphony, which
is shown in Fig. 1 in a score representation and as a waveform
of a performance. One important aspect is that the queries are
monophonic, but the themes usually appear with additional
musical voices in the audio recordings.

Typical cross-modal retrieval strategies (e.g., for score–audio
retrieval) employ a common mid-level representation to com-
pare the different modalities. In traditional music processing,
chroma features are widely used as mid-level representation [1],
[7], [8]. These features, which capture the energy in the twelve
bands corresponding to the pitch classes of the chromatic scale,
are robust to a certain degree against changes in instrumenta-
tion and timbre. In general, computing chroma features with
traditional signal processing techniques involves many design
choices. As our main contribution, we learn a task-specific
chroma representation from training data.
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Several studies have shown the benefits of deep-learning
models to compute enhanced mid-level representations [9]–
[12]. These learned features have proven their effectiveness
in many scenarios, such as audio–audio retrieval [13]–[15],
chord recognition [11], [12], [16], or melodic pitch tracking [9],
[17], [18]. Usually, training deep neural networks (DNNs) for
these tasks requires aligned training pairs of audio recordings
and corresponding annotations where, for each time position
(or frame) of the audio recording, one has an annotation (or
class label) to be learned by the model. We denote such pairs
as “strongly aligned.” For example, recordings with strongly
aligned chord annotations have been used to train DNNs for
computing chroma-like mid-level features for chord recogni-
tion [11], [12]. In general, strongly annotated datasets are crucial
for learning meaningful music representations [19], [20]. How-
ever, creating strongly aligned training pairs is labor-intensive,
and, for many music scenarios, data of this kind is hardly
available. Rather than providing local alignments, it is much
easier to annotate global correspondences, i.e., the beginning and
end time positions of an annotated segment. We denote globally
corresponding training pairs without local alignment as “weakly
aligned.” Fig. 1 illustrates such a weakly aligned score–audio
pair for our Beethoven example, where the beginning and end
time positions of a theme occurrence are annotated in an audio
recording without local alignment in between.

To utilize such weakly aligned training data, we use the
Connectionist Temporal Classification (CTC) loss to train a
neural network. Graves et al. [21] originally introduced this
loss for labeling unsegmented feature sequences with recurrent
DNNs in the context of speech recognition. In the CTC training
procedure, a kind of local alignment is computed as part of the
loss function rather than having alignment annotations in the
training data. We train a neural network with the CTC loss to
compute enhanced audio chroma features (see Fig. 1), which are
as close as possible to the chroma representations of the symbolic
themes. The features are then used in our theme-based retrieval
application. In systematic retrieval experiments, we examine if
the chroma variant computed by the CTC-based approach, only
employing weakly aligned training data, is able to outperform
baseline chroma variants from the literature and chroma variants
derived from training approaches that employ strongly aligned
training data. Our network architecture is inspired by a convo-
lutional neural network that was originally used to compute a
pitch salience representation, which is a time–frequency rep-
resentation and is used to measure the saliency of frequencies
over time for tasks such as melody or multi-pitch tracking [9].
In our adaption of this so-called deep salience model, we aim to
compute chroma features measuring the saliency of theme-like
melodic structures.

This article is a substantially extended version of a previously
published conference paper [22]. As a main result, in line
with [22], we demonstrate that the CTC-based features improve
the state of the art for our theme-based retrieval application. As
a major contribution beyond [22], we compare our CTC-based
results (using weakly annotated data) with results obtained by
a standard training strategy (using strongly annotated data). We
show that the retrieval quality achieved with our CTC-based
model is almost as high as with a model that we trained with
strongly aligned data. We conclude that one can save a lot of

tedious annotation work and access much more training data
easily by using the CTC loss. To get a deeper understanding
of these results, we present several quantitative and qualitative
analyses of our CTC-based chroma representation. We show
that different features have distinct properties in terms of
temporal granularity (or smoothness) and that these properties
have an impact on the retrieval results. We also investigate how
the musical texture (such as monophonic, homophonic, and
polyphonic) affects the retrieval results.

In modern MIR research, reproducibility is an important
aspect [23]. To make our results transparent and accessible, we
provide a website with various tools and interfaces.1 First, we
make all details of our retrieval results available on an interactive
web interface. Second, we provide pre-trained models and code
to apply them. Third, our training data is publicly accessible [24].

The remainder of the paper is organized as follows. In Sec-
tion II, we review related work on score–audio retrieval, deep
salience and deep chroma models, as well as on musical ap-
plications of the CTC loss. Then, in Section III, we discuss
methodological aspects of our study, including our dataset, our
retrieval procedure, the adapted neural network architecture,
the CTC loss used to train our network, and our approach to
derive chroma features. Next, in Section IV, we present an
evaluation of our CTC-based features in the context of our
retrieval application. As a further main contribution, we analyze
in Section V the effect of our CTC strategy by comparing it with
standard approaches to train neural networks. Furthermore, in
Section VI, we analyze the features’ temporal granularity. Then,
in Section VII, we come back to our retrieval application and
analyze the impact of musical complexity on the retrieval results.
In Section VIII, we conduct a small experiment to verify the
generalizability of our approach to other datasets. Finally, we
conclude with Section IX.

II. RELATED WORK

In the following, we discuss related work on theme-based
retrieval, which is our motivating scenario for learning enhanced
chroma features. Then, we review deep salience and deep
chroma models as used in previous work, as well as musical
applications of the CTC loss.

A. Score–Audio Retrieval

In cross-modal music retrieval scenarios, the aim is to find
correspondences between different types of music representa-
tions [25], such as audio or video recordings, symbolic repre-
sentations, or graphical sheet music. For example, an audio-
visual retrieval task is to find audio excerpts that match a given
graphical sheet music representation (or vice versa) [26]. In our
score–audio retrieval application, the aim is to find relevant audio
recordings for a given symbolically encoded musical theme as
a query. Several studies already addressed theme-based music
retrieval [5], [6], [22], [27]. A previous study [5] pointed out
the challenges of the task, which are due to the differences
in modality (symbolic vs. audio), tuning, transposition, tempo,
and musical texture between the query and the recordings. The

1https://www.audiolabs-erlangen.de/resources/MIR/2021_TASLP-ctc-
chroma
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difference in musical texture is a major challenge because the
themes are monophonic, but they usually appear in a polyphonic
context in the recordings. Previous work [6] has shown that
pitch salience representations are suitable mid-level features
to compare the audio recordings with the symbolic themes.
In this paper, building upon these findings, we introduce an
approach for learning a task-specific feature representation for
our theme-based retrieval task.

B. Deep Salience and Deep Chroma Models

In MIR, many studies have demonstrated the effectiveness
of using deep-learning models to compute task-specific feature
representations [28]. One example is the use of deep salience
models to compute enhanced time–frequency representations
(measuring the saliency of frequencies over time) for tasks such
as melody [9], [17], [18] or multi-pitch tracking [9]. Another
example is the use of deep chroma models for computing
enhanced chroma features (encoding the energy in the twelve
chromatic pitch class bands) for chord recognition [11], [12],
[16], [29]. This paper is inspired by the deep salience approach
by Bittner et al. [9], who introduced a feature representation
named harmonic CQT (HCQT) as input for a convolutional
DNN. The HCQT is a three-dimensional tensor, where the three
dimensions are time, frequency (logarithmic scaling), and har-
monics. The third dimension ensures that harmonically related
frequency bins are neighbors across the depth of the tensor.
This way, the convolutional kernels of the network can easily
exploit harmonic frequency relationships. Assuming a reference
frequency fref = 32.7Hz (corresponding to the pitch ofC1), the
harmonic dimension consists of six CQT representations, where
the respective lowest frequency bin corresponds to a frequency
of h · fref , using h ∈ {0.5, 1, 2, 3, 4, 5}. Many studies use the
deep salience representation as a baseline [18], [30] or build upon
this model for diverse tasks such as polyphonic fundamental
frequency estimation [31], dominant melody estimation [10],
instrument recognition [32], tempo estimation [33], or chord
recognition [34].

The study of Wu et al. [34] is related to ours in two respects.
First, they also use the HCQT representation, and, second, they
use weakly aligned training data. However, they aim for chord
recognition instead of learning a mid-level representation for
score–audio retrieval. In contrast to our contribution, they take
a three-step approach: First, they use a pre-trained deep chroma
extractor to compute features. Second, they automatically align
their chord labels to the chroma features using a hidden Markov
model (HMM). Third, they use a frame-wise DNN classifier
for chord recognition. In our paper, we present a single-step
approach to realize the alignment within the DNN training
procedure.

C. Musical Applications of the CTC Loss

The Connectionist Temporal Classification (CTC) loss refers
to a loss function used to train neural networks where a sequence
of target labels is temporally aligned to the network’s output
during the loss computation. We describe the computation pro-
cedure in Section III-D.

TABLE I
DATASET OVERVIEW. DURATION FORMAT: HH:MM:SS. SD: STANDARD

DEVIATION

Originally proposed for the task of speech recognition [21],
CTC has been adopted to several MIR applications, includ-
ing optical music recognition [35]–[38], monophonic audio-to-
score transcription [39], lyrics alignment [40]–[42], and audio
tagging [43]. An alternative to CTC for sequence learning with-
out aligned training data is the usage of an attention mechanism,
which was used for, e.g., monophonic singing voice transcrip-
tion [44].

III. METHODS

In this section, we present various methodological aspects
relevant to the investigations of this paper. First, we describe
the dataset used in the experiments (Section III-A). Second, we
outline the basic retrieval pipeline, which is used later in the
experiments to evaluate our learned features (Section III-B).
Third, we explain our adaptation of a deep salience model to
compute an enhanced chroma representation for our score–audio
music retrieval application (Section III-C). Fourth, we introduce
the CTC loss used to train the adapted model (Section III-D).
Fifth, we describe how to derive chroma features from the output
of the CTC-based network (Section III-E).

A. Dataset

For our experiments, we use a dataset based on “A Dictionary
of Musical Themes” by Barlow and Morgenstern [45]. This book
from 1948 contains roughly 10000 musical themes. The dataset
covers a subset of 2067 of these themes and is publicly available
as Musical Theme Dataset (MTD) [24]. For each theme, the
MTD provides a symbolic encoding and an occurrence in an
audio recording. Furthermore, it comprises annotations about
differences in transposition between the symbolic and audio
versions. For our retrieval experiments, we also use the entire
audio recordings, where the occurrences have been annotated. In
total, the audio database consists of 1126 audio recordings with
a duration of about 120 hours. A theme corresponds to precisely
one recording, which, in turn, can contain the rendition of several
themes. Table I shows some statistics for the dataset.

B. Basic Retrieval Procedure

Closely following [5], [6], we describe our retrieval pipeline
and our evaluation measures. First, we have a set Q of symbolic
encodings of musical themes, which serve as queries. Further-
more, we have a collection of audio recordings, which we denote
as database documents.

Throughout this paper, we focus on the challenges due to
the difference in musical texture (monophonic queries and au-
dio recordings of polyphonic music). Accordingly, we use a
controlled retrieval scenario where, for each query, there is
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precisely one audio document that contains a globally corre-
sponding rendition of the query theme. I.e., we ensure matching
transpositions and scale the query using a tempo that results in
approximately the same duration as the theme occurrence in the
recording. For a fixed symbolic query Q ∈ Q, the aim is to re-
trieve the corresponding audio document. To compare the query
with a document, we convert both into chroma sequences. For the
symbolic query, we simply compute a binary chroma representa-
tion. For converting the audio recording, we employ an enhanced
chroma representation (from our CTC or a baseline approach,
as described later). Then, we use Subsequence Dynamic Time
Warping (SDTW) to compare the query with subsequences of the
document [1]. Inspired by [5], [6], we use the cosine distance,
the step size condition Σ := {(2, 1), (1, 2), (1, 1)}, as well as
the weights wvertical = 2 and whorizontal = wdiagonal = 1. As a
result of SDTW, one obtains a matching function, where local
minima point to locations with a good match between the query
and a document subsequence. We consider the minimal value
of the matching function as the distance between query and
document.

To obtain the retrieval result, we compute distances between
all documents and the query. Note that in our scenario, there is
only one relevant document for a given query Q ∈ Q. We order
the documents according to ascending distance values. In the
resulting ordered list, the relevant document’s position (or rank)
is denoted by rQ ∈ N. We evaluate the retrieval procedure by
assessing only the top K ∈ N documents of the ranked list. For
a given K, the retrieval for a query is considered successful if
its relevant recording is among the top K matches (i.e., rQ ≤
K). Employing all queries Q ∈ Q, we then compute the top-K
recall rate ρK ∈ [0, 1] (in short: recall@K or top-K rate) as the
proportion of queries with a successfully retrieved document:

ρK = |{Q ∈ Q : rQ ≤ K}| / |Q|. (1)

Furthermore, we report the mean reciprocal rank (MRR), which
is the average of 1/rQ across all queries.

C. Deep Salience Model Adaptation

In this section, we explain our adaption of the deep salience
model by Bittner et al. [9], who approached the task of melody
and multi-pitch tracking using a strongly aligned dataset of
10 hours. In our case, we aim to learn an enhanced chroma
representation for score–audio retrieval, employing our weakly
aligned 5-hour dataset of 2067 themes. To avoid overfitting to
the smaller dataset, we simplified the original model in several
ways by reducing the number of parameters and memory re-
quirements. Additionally, we adapted the network such that it
can be trained with the CTC loss and used as a deep chroma
extractor.

Figs. 2(a) and (b) illustrate the original network architecture
and our adapted version, and the table in Fig. 2(c) gives further
details for our version. Compared to the model by Bittner et
al. [9], we introduce the following modifications: First, we use
a feature rate of 25 Hz (i.e., 25 feature vectors per second)
instead of 86 Hz. Second, we use a frequency resolution of a
third semitone instead of a fifth semitone. The high time and
frequency resolutions of the original model may be beneficial
in the application of melody estimation, but are not needed for

Fig. 2. Network architectures. (a) Illustrations of the original architecture
proposed by Bittner et al. [9] and (b) our adapted architecture used in this paper.
Illustrations inspired by [9]. (c) Details for our adapted architecture (72970
parameters in total).

our task (learning chroma features for retrieval). The decreased
frequency resolution results in 216 instead of 360 frequency bins.
As third modification, we reduced the number of filter kernels as
well as the size of some of the filter kernels. The latter reduction
accounts for the decreased frequency resolution. Fourth, we use
leaky ReLU activations instead of ReLU activations to avoid
zero gradients [46], [47]. Fifth, we do not use batch normaliza-
tion, which was used at the input to each layer in the original
model. Instead, we �2-normalize all columns of the input to the
network for being invariant to dynamics. Sixth, we add a pooling
layer at the end, which we explain in the next paragraph.

After the last convolutional layer (with sigmoid activation),
we obtain a representation that we could interpret as a kind of
pitch salience representation of size N × 216, where N ∈ N is
the number of time steps. In our retrieval scenario, where we
want to learn chroma-based mid-level features, we aim for an
output size of N × 13. Here, each of the N columns encodes a
probability vector over the set of the twelve chroma labels and
an additional blank symbol, which means that no chroma label
is active (more details in Section III-D). Let us consider a single
column of size 216 as input, which we want to transform to a
probability vector of size 13. To compute the first twelve entries,
we add up all pitch bins corresponding to the respective chroma
bins. This fixed pooling has no learnable parameters. To compute
the last entry for the blank symbol, we apply a standard dense
layer (linear activation) to the input column. This layer has 217
learnable parameters (216 weights and a bias). Finally, we apply
the softmax function to the resulting 13-dimensional vector. We
transform all columns of the input using this pooling procedure.

In summary, our adapted model differs from the original
model [9] in two important aspects: First, we reduced the number
of parameters from 406921 to 72970. Second, the model’s
output is a sequence of probability vectors over 13 dimensions
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(encoding chroma vectors at a semitone-resolution) rather than
360 dimensions (encoding a pitch salience at a fifth semitone
resolution).

D. CTC Loss

In the following, we present the main idea of the CTC loss
function introduced by Graves et al. [21]. Beyond the original
article [21], we also recommend the review on the CTC loss in
the thesis by Hannun [48]. We describe the CTC loss compu-
tation for a single pair consisting of an audio feature sequence
and a label sequence. Let

X = (x1,x2, . . . ,xN ) (2)

denote the feature sequence of length N ∈ N, which consists
of feature vectors xn ∈ RD for n ∈ [1 : N ] := {1, 2, . . . , N}
and dimensionality D ∈ N. The second sequence of the pair is
a label sequence

Y = (y1,y2, . . . ,yM ) (3)

of length M ∈ N, where typically M � N . This sequence
consists of elements ym ∈ A for m ∈ [1 : M ]. The alphabet A
is the set of symbols that can occur in the label sequence. For
example, in the case of lyrics alignment, the alphabet is the set
of all possible characters [40]. In our case, it is the set of the
twelve different chroma labels:

A := {C,C#,D, . . . ,B}. (4)

A DNN fθ with parameters θ transforms the feature sequence
X to a sequence of probability distributions

fθ(X) = (p1,p2, . . . ,pN ) (5)

having the same length N as the feature sequence. Each element
of the sequence pn : A′ → [0, 1] maps a symbol from the mod-
ified alphabet A′ to a probability value. The modified alphabet

A′ := A ∪ {ε} (6)

contains an additional blank symbol ε, which encodes that no
symbol is active. We further explain the role of this symbol later
in this section.

When we align the feature sequenceX and the label sequence
Y , we assign a suitable symbol to each time frame. Intuitively,
we can consider this alignment as an expansion of the label
sequenceY to the length of the feature sequence. More formally,
an alignment is represented by a sequence

A = (a1,a2, . . . ,aN ) (7)

of elements an ∈ A′ and length N that satisfies the following
condition. When removing all consecutive duplicates and then
all blank symbols ε, the alignment sequence A is reduced to the
label sequence Y . Given an alignment A and the sequence of
probability distributions, we can compute the probability

P (A|X) =

N∏
n=1

pn(an) (8)

of the alignment. When computing the CTC loss, we do not ex-
plicitly know the correct alignment, but only the label sequence.
Because a label sequence can correspond to multiple alignments,
all possible alignments between X and Y are considered. Let

Fig. 3. Representations for the first theme of Beethoven’s Fifth Symphony.
(a) Score of monophonic theme. (b) HCQT input representation X (front slice
corresponding to the first harmonic). (c) Network output. (d) Chroma features
used for matching.

us denote the sum of probabilities for all these alignments as
P (Y |X). The final CTC loss for a single training pair is

Lθ(X,Y ) = − logP (Y |X). (9)

This loss function is used in mini-batch gradient descent to
update the parameters θ by averaging the loss value over all
training pairs in a mini batch. By this procedure, the network’s
parameters improve to produce probability sequences that make
the ground-truth label sequences of the training set more prob-
able. Graves et al. [21] described how to compute P (Y |X) in
a differentiable and efficient way using dynamic programming,
similar to the forward algorithm for HMMs [48], [49].

Finally, we want to clarify the role of the blank symbol ε. We
already mentioned one role for ε, namely the indication of no
active symbol, i.e., a rest in our music application. But as an addi-
tional role, the symbol also indicates repetitions. Let us illustrate
this role using the first theme of Beethoven’s famous Fifth Sym-
phony as an example (Fig. 3a). We only consider the beginning
of the label sequence for brevity, i.e., Y = (G,G,G,E�). An
alignment of A = (G,G,G,E�) would not correspond to this
label sequence because we remove the consecutive duplicates
when converting an alignment to a label sequence. Rather, this
alignment corresponds to the label sequence Y = (G,E�). To
represent repeated symbols in the label sequence, we need to
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separate them by a blank. A valid alignment for the Beethoven
excerpt is, e.g., A = (G, ε,G, ε,G,E�).

E. CTC-Based Chroma Features

We train the model described in Section III-C with the CTC
loss. The network’s input is an HCQT tensor computed for
an excerpt from an audio recording, where a musical theme
is played. As an example, Fig. 3a shows the score of the
Beethoven theme. Fig. 3b shows a slice of the HCQT fea-
tures for a recording of this theme. The corresponding label
sequence is the sequence of chroma labels of the theme with
neither rhythmic information nor temporal alignment to the input
(see also Fig. 1). For this Beethoven example, the sequence
is Y = (G,G,G,E�,F,F,F,D). The network’s output is a
sequence of probability distributions, visualized in Fig. 3c for
the Beethoven example. We see that the ε symbol has the largest
probability most of the time, and the chroma labels only have
large probabilities at the beginning of the corresponding note
events. To use the network output as a feature representation,
we remove the row corresponding to the ε symbol and interpret
the resulting matrix as a sequence of chroma features. Finally, we
�2-normalize the 12-dimensional chroma vectors to compensate
for the removed ε symbol. The �2 norm was chosen because
the features are used later for SDTW, where the cosine distance
is applied. Fig. 3d shows the normalized chroma features for
the Beethoven example, which correspond well to the label
sequence.

IV. RETRIEVAL EXPERIMENTS

We now evaluate the CTC-based chroma features in the con-
text of our retrieval application. This task allows us to evaluate
the features with quantitative evaluation measures. Using such
measures, we also compare our learned representation with other
features, computed by a traditional method and a deep-learning
approach not adapted to the theme retrieval task.

A. Baseline Experiments

In the experiments throughout this paper, we consider var-
ious chroma variants referred to by the symbol C (with an
additional subscript to specify a particular variant or without
subscript when referring to standard chroma features using the
full spectral content). To compare our approach with prior work
on score–audio retrieval, we use the best-performing chroma
representations from a previous evaluation study [6]. The authors
proposed converting pitch salience representations to chroma
features by a simple pooling strategy, where the energies of the
frequency bins that correspond to the same chroma are summed.
The first baseline chroma variant (CBG1) is based on a traditional
pitch salience representation by Bosch and Gómez [50], which
is computed by combining a source-filter model with harmonic
summation, using threshold parameters that are particularly
suited for orchestral music [51].2 The second baseline chroma
variant (CBit) is based on the original deep salience represen-
tation for melody estimation by Bittner et al. [9]. To compute

2The specific parameter setting is named “BG1” in [51].

TABLE II
RETRIEVAL RESULTS OF THE BASELINE METHODS (A) USING A FEATURE RATE

OF 10 HZ AS REPORTED IN PREVIOUS WORK [6], (B) USING A FEATURE RATE

OF 25 HZ

this representation, we use the original network3 that was not
adapted to our task and trained with a standard strongly aligned
approach (using the public MedleyDB [20] in combination with
additional non-public training data).

Table II(a) cites the results from the previous study [6], where
a 10 Hz feature rate was used. According to this study, three
quarters of the themes (75.4 %) yielded the relevant document
on the first rank usingCBG1. ForCBit, this is the case for 69.3 % of
the themes. We checked whether the feature rate is appropriate
for the given retrieval task and found that an increased time
resolution is beneficial for the retrieval quality. A rate of 25 Hz
turned out to be a good trade-off between retrieval accuracy and
efficiency. We repeated the experiments for CBG1 and CBit with
the increased feature rate and show the results in Table II(b).
Just by changing the temporal resolution, we see a substantial
improvement in the results. For example, for CBit, the top-1 rate
increases from 0.693 to 0.767, which means that the number of
query themes with a correct top match increased by about 7 %.4

The reason for this may be the following: A fast tempo of Presto
corresponds to up to 200 BPM. Having a quarter-note beat in
such a tempo, a sixteenth note has a duration of 75 ms, which
is shorter than the length of a frame given the feature rate of
10 Hz. In such cases, the increased feature rate is necessary to
represent the musical content in a more meaningful way. In all
subsequent experiments, we use the feature rate of 25 Hz.

For both feature rates, the representationCBG1 performs better
than CBit. For example, the respective top-1 rates are 0.824 and
0.767 for the 25 Hz rate. The results for CBit may be lower
because the training data of the underlying DNN consisted
mainly of popular music (for overall 240 training tracks, only
22 are tagged as “classical” in version 1 of MedleyDB [20]).
Another possible reason is that the saliency characteristics in
the training data (coming from the “Melody 2” definition of
MedleyDB) are different from the characteristics of musical
themes.

B. Training Details

We split the 2067 score–audio pairs of our dataset (see Sec-
tion III-A) into five folds, where we use three folds for training,
one for validation, and another one for testing. We ensure that
all themes by a composer are part of precisely one fold. As a

3Original weights (“Melody 2”). In [6], CBit was denoted by CCNN and C
was denoted by CIIR.

4Compared to the previous experiment [6], the dataset was revised and slightly
extended, accounting for up to 2 % improvements in the accuracy. Still, the main
improvements are due to the increased time resolution.
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TABLE III
RETRIEVAL RESULTS FOR CCTC

consequence, we do not use themes from the same composer
for training and evaluation in order to avoid overfitting to the
characteristics of particular composers. The first fold contains
more themes (559) than the others because it contains all MTD
themes by Ludwig van Beethoven, which is the most prominent
composer of the dataset, see [24]. The other folds have fewer
themes (377) and are more diverse in terms of composers, having
12 to 14 different composers each.

During training, we apply circular shifts along the chroma
axis as data augmentation to simulate transpositions (up to a
minor third upwards and downwards). We perform mini-batch
gradient descent with a mini-batch size of eight using the Adam
optimizer [52] and a learning rate annealing procedure. In the
first phase of this procedure, the initial learning rate is 0.001, and
we train the model until the loss for the validation fold does not
improve for five epochs. In the next phase, we halve the learning
rate and continue the training with the model that has the lowest
validation loss among the models of all previous epochs. We
repeat ten such phases. After the training is finished, we use
the model with the lowest validation loss as a chroma feature
extractor, and evaluate its effectiveness in the retrieval scenario.
We only use the query themes from the respective test fold and
all 1126 documents of our database for retrieval. The reported
average evaluation measures (∅) are weighted with the number
of queries from the respective test fold.

C. CTC-Based Results

We now discuss the results we achieved with our CTC-based
approach CCTC. Table III shows the evaluation results for the
five cross-validation iterations. The second column gives the
number of query themes in the respective test fold. The retrieval
results vary, ranging from a top-1 rate of 0.828 for the second
test fold up to 0.899 for the fourth test fold. The last row of the
table shows an average of the results, weighted by the number
of queries used. Overall, we see a substantial improvement
compared to the baseline approaches (Table II b). For example,
the average top-1 rate is 0.867 for CCTC, compared to 0.767
for CBit and 0.824 for CBG1. There are also improvements for
larger ranks, such as in the top-50 rate (0.969 compared to
0.930 and 0.952, respectively). When repeating the training and
evaluation procedures with different random initializations of
the network weights, we only observed minor variations in the
average evaluation measures (below 1 %). The results show that
our approach is able to outperform the baselines, which are the
state of the art for the given retrieval task [6].

In our experiments, we used the CTC-based chroma features
in a retrieval pipeline based on SDTW. As an alternative, one

TABLE IV
RETRIEVAL RESULTS (∅) FOR AN ORACLE OF THE BASELINE BY BOSCH AND

GÓMEZ [50] AND OUR CTC APPROACH

might also directly apply the CTC loss for retrieval. We address
this idea in the appendix of this article.

D. Oracle Experiment

The traditional approach CBG1 also shows excellent perfor-
mance for this task. To investigate the relationship between
CBG1 and CCTC, we evaluated both strategies with an oracle
fusion procedure. Given a query, let us denote the rank from by
the baseline by rBG1 ∈ N and from the CTC-based approach
by rCTC ∈ N. In our oracle procedure, we consider the better
rank min(rBG1, rCTC) when computing the evaluation mea-
sures. The oracle’s average evaluation measures over all queries
indicate the results of an optimal fusion of both methods.

Table IV again shows the results for CBG1 and CCTC for
convenience and shows the oracle results in the third row. The
oracle further improves the results for CCTC. For example, the
top-1 rate is 4 % larger (0.907 instead of 0.867). For top-K rates
with larger K, there are still some small improvements. The
oracle indicates thatCBG1 andCCTC capture different aspects for
certain queries. CBG1 is a slightly better feature representation
for some queries than the CTC-based approach. We conclude
that there is still some room for improvement in the given
retrieval scenario for future work, e.g., by combining different
feature representations.

E. Representative Example

To illustrate the properties of our CTC-based features, we
close this section by comparing various mid-level representa-
tions for a representative example.

Fig. 4a shows the full score and the chroma sequence for
the second theme in the first movement of Beethoven’s Piano
Sonata Op. 2, No. 2. In this case, the theme is played by the
right hand (upper staff), and the left hand (lower staff) plays
an accompaniment. The sixteenth notes of the accompaniment
present a minor triad (E,G,B) in the pickup and first measure,
and a diminished triad (F�,A,C) in the second and third mea-
sure. Ideally, for our retrieval scenario, we aim for a chroma
representation that only captures energy from the theme and not
from the accompaniment. Figs. 4b–e show chroma features for
the full spectral content C, the baseline approaches CBG1, CBit,
and our CTC strategyCCTC, respectively. The accompaniment is
strongly represented in the representation using the full spectral
content (Fig. 4b). For example, in the beginning, most energy is
in the E, G, and B bands, which correspond to the accompani-
ment’s E minor triad. In the representation CBG1 (Fig. 4c), the
main notes of the theme are well represented. However, some
shorter notes of the theme (e.g., fourth note G or seventh note
F�) are not salient in this representation. CBit (Fig. 4d) does
not capture the theme well. This is especially the case in the
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Fig. 4. Second theme of Beethoven’s Piano Sonata Op. 2, No. 2, first move-
ment. (a) Full score with the theme’s notes colored in red, along with the chroma
sequence of the theme. (b) C. (c) CBG1. (d) CBit. (e) CCTC.

second half, where the chroma bin A has the highest energy,
which is part of the accompaniment. Among all representations,
the theme is most evident in CCTC (Fig. 4e). In general, CCTC

attenuates the energy in the chroma bands corresponding to the
accompaniment. The ability to represent the chroma energy of a
musical theme is the main reason why our CTC-based features
are a powerful tool for score–audio music retrieval.

V. EFFECT OF CTC LOSS

We showed that our CTC-based chroma representation out-
performs the baseline approaches in our retrieval application.
To further analyze the effect of the CTC strategy, we performed
additional experiments, where we learned features without the
CTC loss function. Instead, we trained our adapted DNN model
using a standard loss function (categorical cross-entropy). This
training procedure requires strongly annotated training data and

TABLE V
RETRIEVAL RESULTS (∅) USING CROSS-ENTROPY

implies classifying each spectral frame with respect to the twelve
chroma labels.

A. Comparison With Linear Scaling

To treat our task as a classification problem, we have to assume
a particular temporal alignment between the symbolic themes
and the corresponding excerpts in the audio recordings. As a
first alignment approach (Clinear), we assume a constant tempo
throughout the theme occurrence. We used binary chroma repre-
sentations to encode the output labels by temporally scaling the
symbolic themes to the same length as the corresponding audio
excerpts in a linear way (using nearest-neighbor interpolation).
As a result of the scaling procedure, we technically obtain a
one-to-one correspondence between the input representations
(spectral frames) and the target labels (binary chroma vectors),
facilitating a frame-wise training of our neural network (without
the need for an alignment at the loss stage). Similar to the CTC
strategy, this approach uses weakly aligned data, but we also used
the rhythm information and note durations from the MIDI files
(which we did not use for CCTC). The blank symbol now only
indicates rests in a theme. Since the assumption of a constant
tempo is not realistic, we expect this to yield a sort of lower limit
for the performance of the CTC-based approach.

We trained the model with the linearly scaled training data,
used it as a chroma extractor, and then evaluated this strategy in
the theme retrieval context. The first row of Table V repeats the
average evaluation measures from Table III for convenience, and
the second row presents the average results for the classification
strategy with linear scaling (Clinear). For Clinear, the evaluation
measures are lower than the CTC-based results, e.g., having a
top-1 rate of 0.829 compared to 0.867. This difference is due
to the non-linear temporal correspondence between the audio
recordings and the symbolic themes.

The evaluation measures for Clinear are in a similar range as
the results for CBG1 (given in Table II b), which highlights that
the learning procedure yields a decent representation despite the
linear scaling.

B. Comparison With Strongly Aligned Data

As a second alignment approach (Cstrong), we use manually
aligned correspondences between the symbolic themes and the
audio occurrences. In contrast to the previous strategies, this is a
standard strongly aligned approach to train a neural network,
similar to the training procedure used for the original deep
salience model [9]. Creating the strong alignment annotations
was highly labor-intensive because it implied annotating the
onset time position for every note in each theme. We expect
that training with strongly aligned data yields an upper limit for
the performance of the CTC-based approach.



ZALKOW AND MÜLLER: CTC-BASED LEARNING OF CHROMA FEATURES FOR SCORE–AUDIO MUSIC RETRIEVAL 2965

The third row of Table V shows the results for the classification
approach using the manual alignments (Cstrong). The strongly
aligned approach slightly improves the results compared to the
CTC strategy. For example, the top-1 rate is 0.882 compared
to 0.867. For higher ranks, both strategies are on par with each
other, e.g., yielding top-10 rates of 0.939 and 0.942, respectively.
The fact that our CTC-based results are closer to the upper limit
(Cstrong) than the lower limit (Clinear) demonstrates that the CTC
loss implicitly handles the alignment problem well in the training
procedure. Without CTC, one has to take care of the alignment at
the input level, using annotations, which are often not available
or hard to generate.

C. Qualitative Comparison

Fig. 5 shows the score and five feature variants for a theme
by A. Dvořák. The first representation (Fig. 5b) is based on a
symbolic encoding, manually aligned to the audio occurrence.
Fig. 5c shows standard chroma features C, using the full spectral
content. As expected, the theme and the accompanying voices
influence the features. While the theme’s quarter notes of the
first bar are clearly visible, the theme’s sixteenth notes of the
second and third bar are not captured as well. Fig. 5d shows
our CTC-based representation. Despite some noise in the first
half, we see that CCTC mainly captures the theme’s notes.
Fig. 5e shows the representation Clinear from the weakly aligned
classification approach, which is smoother compared to CCTC.
In fact, the representation Clinear is strongly over-smoothed. The
features have this property because there is no accurate temporal
correspondence between the input and output representations in
the corresponding training strategy. As a consequence, the model
temporally smears the active chroma bins. In the next section,
we will further analyze the feature’s temporal granularity and
smoothness. The features from the strongly aligned classifica-
tion approach Cstrong (Fig. 5f) are cleaner and sharper compared
to the other audio representations.

VI. TEMPORAL GRANULARITY

In the previous section, we showed that differently learned
features have distinct properties. In particular, we observed
different degrees of temporal granularity and smoothness in
the feature representations. To better understand how these
differences impact our retrieval results, we now compare the
chroma representations CCTC and CBG1 in terms of temporal
granularity.

A. Granularity Measure

We now introduce a measure to quantify the temporal granu-
larity of a feature representation on a scale from low granularity
(i.e., smooth) to high granularity (i.e., fine-grained). To this end,
we compare a sequence of �2-normalized chroma feature vectors

C = (c1, c2, . . . , cN ) (10)

of length N ∈ N, having elements cn ∈ R12 for n ∈ [1 : N ],
with a smoothed variant of C. To compute this variant, we
apply a temporal average filter of 6 frames (corresponding to
240 ms) and then again �2-normalize each vector. We apply
the smoothing in a centric way, using suitable zero-padding

Fig. 5. Representations for the first theme of A. Dvořák’s Slavonic Dance in
F major Op. 72, No. 3. (a) Score of piano reduction with the theme’s notes
colored in red. (b) CMID. (c) C. (d) CCTC. (e) Clinear. (f) Cstrong.

conventions. As a result, the smoothed sequence

Csmooth = (csmooth
1 , csmooth

2 , . . . , csmooth
N ) (11)

has the same lengthN as the original sequence. Then, inspired by
the distance measure used for SDTW, we compute as a measure
of temporal granularity Γ : R12×N → [0, 1] the average cosine
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Fig. 6. Distribution of granularity values for (a) CCTC and (b) CBG1. The red
dotted lines indicate the median value of the respective distribution.

distance

Γ(C) =
1

N

N∑
n=1

(
1− 〈cn, csmooth

n 〉
‖cn‖ · ‖csmooth

n ‖
)
. (12)

High Γ-values indicate fine-grained features since the features
are dissimilar to their smoothed variants. Low Γ-values indicate
smooth features since they are similar to their smoothed variants.
Fig. 6 shows the distribution of Γ-values for the 2067 themes
of our dataset. For the CTC approach (Fig. 6a), the median Γ is
around 0.09, and for CBG1 (Fig. 6b), it is approximately 0.05.
This difference shows that the CTC-based features are more
fine-grained.

B. Effect on Retrieval

How does the difference in temporal granularity of our fea-
tures impact the retrieval results? A possible disadvantage of
smooth features is that they hardly capture short note events.
Since such events only span a short period, they may not be
represented well in smooth features. Therefore, the CTC model’s
fine-grained features may perform better for themes with short
note events. To examine this hypothesis, we relate the theme’s
note durations to the retrieval results. We compute the median
note duration (using the manual alignments) for each theme and
show the resulting distribution in Fig. 7a. Most of the themes
have a median note duration between 0.1 and 0.6 seconds.

Both feature representations CCTC and CBG1 perform well
in the retrieval application for many themes. For 1623 of the
2067 themes, the relevant document is ranked at the top (rank
1) in both approaches. We now consider only the remaining
444 themes yielding a non-relevant top match in at least one
of the approaches. These themes constitute the more difficult
part of our dataset. Only using this part, we again show the
distributions of median note durations in Figs. 7b and c. The
distribution shape corresponding to the 444 themes is similar to
the distribution shape corresponding to the total dataset (Fig. 7a).
The histogram’s colors and hatches indicate the rank that a theme
yielded in the two strategies CCTC (Fig. 7b) and CBG1 (Fig. 7c).
We see that most themes with a short median note duration of

Fig. 7. Distribution of median note durations for (a) all 2067 themes, (b) the
set of difficult themes (color and hatches based on CCTC), and (b) the set of
difficult themes (color and hatches based on CBG1).

below 0.5 have better ranks in the CTC-based approach than
for CBG1. But, we have no substantial differences between the
procedures for themes with a median note duration of above
0.5. Apparently, the fine-grained CTC-based features better
represent themes with short note durations.

VII. MUSICAL EVALUATION

After having analyzed the effect of the CTC loss and the
features’ properties, we now come back to our music retrieval
application. A main challenge of the retrieval scenario is the
fact that the queries are monophonic, and the audio recordings
are polyphonic. In this section, we review categories of musi-
cal texture that help us to specify this monophony–polyphony
discrepancy. Then, we analyze our retrieval results in terms of
musical texture.

A. Musical Texture

We categorize the themes according to their musical tex-
ture, using the standard texture categories of monophony, ho-
mophony, and polyphony. We expect that more complex musical
textures go along with decreased retrieval evaluation measures.

Closely following the MTD article [24] and the textbook
by Benward and Saker [53], we review our used musical ter-
minology, ordered by increasing complexity. A monophonic
texture consists of a single melodic line (possibly doubled by
octaves). We already showed a monophonic example in Fig. 3,
which has no monophony–polyphony discrepancy between the
query and the corresponding audio occurrence for this theme.
As a consequence, the retrieval was successful (i.e., correct top
match) for all chroma representations considered.

A homophonic texture is made up of a melody and an ac-
companiment. Themes with a similar rhythm in all voices are
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Fig. 8. Sheet music of piano reduction and chroma feature representations
for two polyphonic music examples. The theme’s notes are colored in red.
In case that the audio occurrence has a different transposition than the sheet
music, we cyclically shifted the feature representations to match the sheet music.
(a) J. S. Bach: Flute Sonata in B minor, BWV 1030, beginning. (b) J. Haydn:
Quartet in F minor, Hob. III:35, Finale, second fugue subject.

also included in this category. We already showed homophonic
examples in Figs. 4 and 5 and discussed that our CTC strategy
is able to attenuate the energy in the chroma bands correspond-
ing to the accompaniment. As for the theme in Fig. 4, CCTC

performed better in the retrieval-based evaluation (rank 1) than
CBG1 (rank 37). The theme of Fig. 5 yielded a top match in both
approaches CCTC and CBG1.

A polyphonic texture comprises two or more musically in-
dependent melodic lines. We show two complex polyphonic
examples in Fig. 8, where the sheet music displays the theme’s
notes colored in red and all other voices in black. Along with
the score, we show a symbolic representation (CMID), which is
manually aligned to the respective audio occurrence and, there-
fore, temporally corresponds to the audio features. Furthermore,
we show the audio feature representations CCTC and CBG1. The
first polyphonic example (Fig. 8 a) comes from a flute sonata by
Bach. Though some energy from the other voices is present in the
features (especially in the B band), the theme is well preserved
in the feature representations. The theme yielded a relevant top
match in both approaches CCTC and CBG1.

The second polyphonic example (Fig. 8 b) is a theme from a
string quartet fugue by Haydn. This is a complex case because
two fugue subjects are overlapping. In this example, we consider

the second subject played by the cello while the second violin
presents the first subject (the second violin starts two measures
before the beginning of this example). The feature representa-
tions contain both subjects to a certain degree, but the first subject
is more strongly represented. This theme yielded the ranks of 42
and 6 in the approaches CCTC and CBG1, respectively.

For more musical examples and a discussion on the texture
categories, we refer to the corresponding dataset article [24].
Furthermore, on our accompanying website, we provide visu-
alizations of every theme in all feature representations, which
gives a comprehensive overview of all queries used in the
retrieval-based evaluation.

B. Analysis of Retrieval Results

Table VI shows the evaluation results according to the cat-
egories monophony (M), homophony (H), and polyphony (P).
For convenience, we also add results for the total dataset (T),
which was already shown in Table III. If different textures appear
in a particular theme (e.g., starting monophonic and getting
polyphonic later), we assign a single category to this query,
where we always use the most complex texture that occurs for
the theme.

We start our discussion with the first row that reports on
results for the first fold. This fold contains 40 monophonic,
418 homophonic, and 101 polyphonic themes. In total (T), 559
themes are in this fold. For 37 out of 40 monophonic themes, the
relevant document was on the first rank (top-1: 0.93). 367 of the
418 homophonic queries had a relevant top match (top-1: 0.88).
For the 101 polyphonic themes, this is the case for 85 themes
(top-1: 0.84). For all 559 themes of this fold, the top-1 measure
is 0.87. The evaluation measures negatively correlate with the
complexity of the musical texture of the themes. This trend also
holds for the average results (∅), where the monophonic themes
have a higher top-1 measure (0.93) than the homophonic themes
(0.88) and the polyphonic themes (0.84). We can observe the
same correlation for evaluation measures that take more than
only the top rank into account. For example, the MRR is 0.94,
0.90, and 0.87 for the monophonic, homophonic, and polyphonic
themes, respectively.

Similar trends can also be observed for CBG1 (last row). For
example, the top-1 rates are 0.95, 0.83, and 0.79 for the mono-
phonic, homophonic, and polyphonic themes, respectively. The
CTC approach does not improves over CBG1 for monophonic
themes (top-1: 0.93 and 0.95), but for the homophonic (top-1:
0.88 and 0.83) and polyphonic (top-1: 0.84 and 0.79) themes.

At first sight, it may be surprising that the difference between
homophonic and polyphonic texture does not lead to greater
differences in retrieval results. Though the difference in both cat-
egories is essential from a musical point of view, it may not be as
important from a signal-processing perspective. In both texture
categories, the theme appears with additional voices that make
an audio occurrence dissimilar to its corresponding monophonic
query. It may only have a limited impact on our retrieval re-
sults if these voices constitute an accompaniment (homophonic
theme) or musically independent melodies (polyphonic theme).
It is more critical if the additional voices (independent or not)
contribute a lot of energy to the theme occurrence in the audio
recording.
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TABLE VI
EVALUATION ON DATASET PARTS WITH DIFFERENT MUSICAL CHARACTERISTICS: MONOPHONY (M), HOMOPHONY (H), POLYPHONY (P), AND TOTAL (T)

TABLE VII
RETRIEVAL RESULTS (TOP-1) FOR THE ORCHSET

VIII. DATASET GENERALIZATION

To verify if our learned features generalize beyond the MTD
dataset, which was used for training our CTC-based model
(using cross-validation with a “composer-split,” as described in
Section IV-B), we report in this section on an additional retrieval
experiment with a separate dataset. We use the Orchset, which is
a publicly available dataset of orchestral music recordings with
main melody annotations [54]. The dataset contains 64 audio
excerpts having durations between 9.5 to 32.6 seconds and a
total duration of about 23.5 minutes. As pointed out in the MTD
article [24], the musical concepts of themes and main melodies
are not identical but closely related. Since both concepts refer
to monophonic salient elements in an excerpt of music, we can
use the main melody annotations from the Orchset as queries as
we did with the themes in our experiments with the MTD.5

To generate queries from the Orchset, we sample segments
of length λ ∈ R with a hop size of 1 s from the main melody
annotations. Then, we use the melody segment as a query, utilize
a certain chroma variant for the audio recordings, apply our
SDTW-based retrieval procedure to rank the 64 audio recordings
of the dataset, and evaluate the results as described in Section III-
B. Note that the smaller dataset (64 recordings of less than half
an hour instead of 1126 recordings of more than 120 hours)
constitutes a less challenging retrieval task. In the following, we
only consider the top-1 recall rate, which is the “strictest” of our
evaluation measures.

The resulting top-1 rates are presented in Table VII for differ-
ent chroma variants and query durations λ. The second column
shows results for a query duration of λ = 3 seconds (leading to
1242 queries). Here, the baseline representations CBit and CBG1

yield top-1 rates of 0.785 and 0.819, respectively. To obtain an
evaluation measure for our CTC-based approach, we perform
five iterations of the retrieval procedure using the five different
versions of our CTC-based model (trained with the five different
folds of the MTD, as described in Section IV-B). The resulting

5Although the recordings are entirely different, around two-thirds of the
Orchset’s audio excerpts correspond to musical works that are also represented
in the MTD. However, these excerpts usually correspond to different musical
passages within the pieces compared to the MTD’s theme occurrences.

top-1 rates cover a range between 0.820 and 0.858. The average
for the five rates, presented in Table VII, is 0.845.

With increasing query duration λ, the retrieval results improve
for all approaches. For example, using a query duration of λ = 6
seconds (leading to 1050 queries), the corresponding top-1 rates
are 0.892 for CBit, 0.924 for CBG1, and 0.935 for CCTC. For
λ = 9 seconds (leading to 858 queries), the evaluation measures
still increase while the differences in the results between the
approaches become smaller. It is not surprising that increased
query durations λ go along with improved retrieval results
because longer queries are more characteristic, thus making the
retrieval of the relevant recordings easier.

Overall, the retrieval experiments with the Orchset reveal
similar tendencies as our experiments with the MTD. Among the
baseline approaches, CBG1 yields better results than CBit. The
evaluation measures for CCTC are still higher than those for the
baselines, which confirms that our approach is applicable to new
datasets and new musical scenarios (e.g., main-melody-based
instead of theme-based retrieval).

IX. CONCLUSION

In our paper, we showed how to apply the CTC loss to train
deep chroma models with weakly aligned training data. In our
theme retrieval scenario, we improved the state of the art by using
features learned by such a model. These improvements were
obtained with a standard neural network architecture, which may
be further optimized in future work.

Previous work on speech recognition [21] and lyrics align-
ment [40] already realized the goal of using weak rather than
strong annotations for training by using CTC. As a main con-
tribution of our study, we conducted explicit experiments for
comparing the CTC strategy with standard classification ap-
proaches (where we use weakly and strongly aligned training
data) in our theme-based music application. Our results verified
that the CTC strategy is superior to standard DNN training
procedures for weakly aligned training data. Furthermore, our
experiments showed that the CTC results are only slightly worse
than the results obtained by training approaches using strongly
aligned data, which can be considered the ideal case in our
scenario. This finding is of major importance because it is
highly labor-intensive to create strong alignments. A CTC-based
strategy allows for saving a lot of annotation work and only
leads to a slight drop in retrieval quality. This potential of
CTC is also relevant for other MIR tasks, where annotations
are hardly available, such as melody estimation [55] or chord
recognition [56].

A primary challenge of our theme-based retrieval task is
the difference in musical texture between the monophonic
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queries and audio recordings of polyphonic music. Through
various examples and quantitative measures, we showed that
our task-specific chroma features implicitly reduce the degree
of polyphony of the audio content, which makes them well-
suited for our theme-based retrieval scenario and other related
applications (e.g., main-melody-based retrieval). Furthermore,
our analyses revealed that the CTC-based approach avoids a
temporal over-smoothing of the chroma representations and
captures short note events that may be characteristic elements
for certain musical themes.

We make our contributions reproducible and accessible in
three different ways.6 First, we provide an interactive web in-
terface that shows detailed retrieval results for each theme and
includes visualizations of the various feature representations. A
tabular view allows ordering the themes according to the cor-
responding retrieval ranks, making it easy to find well-behaved
and problematic queries. Second, we make pre-trained models
and code to apply them available, which allows computing the
CTC-based chroma features for arbitrary audio files. Third,
our training data is publicly accessible, including an overview
website with score visualizations and sonifications [24].

We think that the findings of this paper are relevant beyond
our retrieval scenario. The trend towards using ever-increasing
annotated datasets is considered critical among researchers.
Data efficiency is still an important topic in the age of deep
learning [57]. Some MIR researchers critically consider that
certain large annotated datasets are not equally accessible by
industry and academia [58]. A step towards solving this problem
could be to use weakly annotated datasets, which are much easier
to obtain. Our work shows that procedures for weakly aligned
annotations can achieve results nearly as good as approaches
using strongly aligned annotations, encouraging further adapta-
tions and developments of such procedures.

APPENDIX

In our retrieval pipeline, as described in Section III-B, we used
SDTW to compare a query (symbolically encoded monophonic
musical theme) with subsequences of each document (audio
recordings of polyphonic music). Similar to SDTW, the CTC
loss can also be used to align a query with a document, thus
being an alternative in our retrieval pipeline. In this section, we
describe a CTC-based retrieval approach and compare it with
the SDTW-based strategy.

A. Matching Functions

SDTW allows for comparing a short query sequence with
subsequences of a longer document. As a result of SDTW, we
obtain a matching function (the uppermost row of the accumu-
lated cost matrix), denoted by ΔSDTW : [1 : N ] → R, where
N ∈ N is the number of time steps (see [1] for more details).
For normalization, we divide each cost value ΔSDTW(n) for
n ∈ [1 : N ] by the query length. Each valueΔSDTW(n) encodes
the cost of a cost-minimizing alignment between the query and
a variable-length subsequence of the document that ends with

6https://www.audiolabs-erlangen.de/resources/MIR/2021_TASLP-ctc-
chroma

TABLE A1
RETRIEVAL RESULTS (∅) FOR THE SDTW-BASED AND CTC-BASED

RETRIEVAL APPROACH

index n. In the matching function, local minima indicate a good
match between the query and a subsequence of the document.

As an alternative to SDTW, we compute a CTC-based match-
ing function ΔCTC having the same interpretation as ΔSDTW.
CTC allows for globally comparing two sequences. To simulate
subsequence matching, we use a sliding window approach,
where we segment the document into overlapping subsequences
of a fixed length (e.g., given by the duration of the annotated
ground truth match). Then, we compute the CTC loss (see Equa-
tion 9 in Section III-D) between the query and all considered
subsequences separately. The CTC loss ΔCTC(n) integrates the
cost measures for all possible alignments between the query and
the considered document subsequence.

Note that SDTW is much more efficient because the subse-
quence matching is done implicitly in the dynamic program-
ming algorithm, without a need for explicitly segmenting the
document into subsequences (as we do for CTC).

B. Feature Representations

In our comparison, both approaches use a feature represen-
tation computed by our neural network trained with the CTC
loss. For computing the SDTW-based matching functions, we
post-process the network’s output (removal of ε-values and �2-
normalization), which results in 12-dimensional chroma features
(see Section III-E). For the CTC-based matching functions, we
directly use the network’s output (13-dimensional probability
vectors).

C. Experiments

In Fig. 9, we show SDTW- and CTC-based matching func-
tions for three queries and their respective relevant audio docu-
ments. The red dotted lines indicate the annotated ground truth
match. Note that our dataset only contains annotations for a
single occurrence of each theme, even if the theme occurs several
times. In our first example, we use the first theme of Beethoven’s
Fifth Symphony as a query and a recording of the entire first
movement of this musical piece as a database document. Fig. 9a
shows ΔSDTW, and Fig. 9b shows ΔCTC. The theme occurs
various times in this movement, which is reflected by several
low-cost values in the matching functions (e.g., around seconds
20, 100, and 460). For ΔSDTW and ΔCTC, the matching quality
is associated with the values of the local minima relative to
the matching function’s overall level. In general, both functions
show similar tendencies, especially for local minima. Similar
tendencies can also be seen in the other examples (Figs. 9(c)–(f)).

We performed a CTC-based retrieval experiment with the
MTD, using the same cross-validation strategy as before. In
Table A1, we show the resulting evaluation measures for this
experiment. Furthermore, we repeat the average SDTW-based
results (from Table III) for convenience. Both strategies perform
similarly, e.g., yielding top-1 rates of 0.867 (SDTW) and 0.871
(CTC), respectively.



2970 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 9. SDTW-based and CTC-based matching functions for various exam-
ples. The dotted red vertical line denotes the ground truth match. The red star
denotes the minimum of the function (estimated match). (a)–(b) First theme of
Beethoven’s Fifth Symphony Op. 67, first movement (see Fig. 3). (c)–(d) Second
theme of Beethoven’s Piano Sonata Op. 2, No. 2, first movement (see Fig. 4).
(e)–(f) First theme of A. Dvořák’s Slavonic Dance in F major Op. 72, No. 3 (see
Fig. 5).

D. Summary and Discussion

As an alternative to SDTW, we used the CTC loss for our
retrieval pipeline. The results of both approaches turned out
to be similar. Because of the major benefits offered by SDTW
(described below), we used this approach throughout our paper.

First, the CTC-based retrieval strategy can only be applied for
the CTC-based representation and not for the baselines (CBG1

and CBit). In contrast to that, we can compute SDTW-based
matching functions for all representations considered. Second,
we need to explicitly estimate the duration of the ground truth
match for the CTC-based approach, providing the fixed length of
the sliding window. SDTW is more flexible because it implicitly
computes the best match between the query and a variable-length
subsequence from the document. Third, SDTW is much more
efficient than our “naive” sliding window approach employing
the CTC loss (differing approximately by a factor in the order
of the query length). In our implementations, the runtime for
computing CTC-based matching curves increases by a factor of
about 10 (for an average query length). To compensate for this
shortcoming, one may devise a subsequence variant of CTC in
the future.
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