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Abstract—This paper presents Sinsy, a deep neural network
(DNN)-based singing voice synthesis (SVS) system. In recent years,
DNN s have been utilized in statistical parametric SVS systems, and
DNN-based SVS systems have demonstrated better performance
than conventional hidden Markov model-based ones. SVS systems
are required to synthesize a singing voice with pitch and timing
that strictly follow a given musical score. Additionally, singing
expressions that are not described on the musical score, such as vi-
brato and timing fluctuations, should be reproduced. The proposed
system is composed of four modules: a time-lag model, a duration
model, an acoustic model, and a vocoder, and singing voices can
be synthesized taking these characteristics of singing voices into
account. To better model a singing voice, the proposed system
incorporates improved approaches to modeling pitch and vibrato
and better training criteria into the acoustic model. In addition, we
incorporated PeriodNet, a non-autoregressive neural vocoder with
robustness for the pitch, into our systems to generate a high-fidelity
singing voice waveform. Moreover, we propose automatic pitch
correction techniques for DNN-based SVS to synthesize singing
voices with correct pitch even if the training data has out-of-tune
phrases. Experimental results show our system can synthesize a
singing voice with better timing, more natural vibrato, and correct
pitch, and it can achieve better mean opinion scores in subjective
evaluation tests.

Index Terms—Automatic pitch correction, neural network,
singing voice synthesis, timing modeling, vibrato modeling.

1. INTRODUCTION

INGING voice synthesis (SVS) is a technique of generat-
S ing singing voices from musical scores. A unit-selection
method [1], [2] can automatically synthesize a singing voice by
concatenating short waveform units selected from a database.
While such systems can provide good sound quality and natu-
ralness in certain settings, it is impossible to guarantee that the
units will always be connected smoothly. Moreover, since it also
tends to have limited flexibility, large databases are generally
required to synthesize singing voices.
Statistical parametric SVS systems such as hidden Markov
model (HMM)-based SVS systems [3] have been proposed to
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avoid the problems described above. The singing voice wave-
form is synthesized from the acoustic parameters predicted by a
trained HMM, thereby requiring less data to construct a system
compared to unit-selection systems. However, HMM-based sys-
tems suffer from over-smoothing that degrades the naturalness
of synthesized singing voices.

In recent years, deep neural networks (DNNs) have signif-
icantly improved in various speech processing tasks such as
speech recognition [4], speech synthesis [5], [6], and voice
conversion [7]. DNN-based SVS systems [8], [9] have also been
proposed and demonstrated their superiority over HMM-based
ones. A feed-forward neural network (FFNN) is utilized as
an acoustic model to represent the mapping function between
the musical score feature and the acoustic feature. Recently,
recurrent neural networks (RNNs) with long short-term mem-
ory (LSTM), convolutional neural networks (CNNs), and deep
autoregressive (AR) models have been incorporated into SVS
systems to model the acoustic features more appropriately [10]-
[13]. Trajectory training [14] and adversarial training [15] have
also been incorporated into SVS systems to improve training
criteria and achieve higher singing voice quality [9], [16].

In SVS systems, singing voices must be synthesized accu-
rately following the input musical score. Methods such as pitch
normalization [8] and data augmentation [12], [17] have been
proposed for DNN-based SVS systems to generate fundamental
frequency (FO) following the note pitch in the input musical
score. Vibrato is the periodic fluctuation of the pitch and is an-
other essential point of modeling a singing voice. Some systems
model vibrato-like fluctuations as a part of the FO [10], [12],
[13]. Our previous work [9] separates the vibrato from the FO
and models it as sinusoidal parameters, enabling reproduction
and control of the vibrato. The temporal structure of a singing
voice is heavily constrained by note length in a musical score,
but the start timing of musical notes and a singing voice do
not always match. A framework with a time-lag model and
a duration model has been proposed to determine the phone
durations under note length constraints considering these timing
fluctuations [9]. These techniques are essential for synthesizing
a human-like natural singing voice.

When building SVS systems, a pitch correction technique is
sometimes necessary to avoid generating out-of-tune singing
voices. Since DNN-based SVS is a statistical approach that tries
to reproduce training data, it tends to generate an out-of-tune
pitch if the training data contains out-of-tune phrases. The
pitch accuracy significantly impacts the subjective quality of
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the singing voices; thus, a technique is needed for synthesizing
singing voices with an appropriate pitch from arbitrary training
data, including such out-of-tune phrases.

Recently, TTS research fields have utilized state-of-the-art
systems with sequence-to-sequence (seq-to-seq) acoustic mod-
els and neural waveform generation models to achieve the same
naturalness as human speech [18]. Seq-to-seq models with atten-
tion mechanisms directly map input text or phonetic sequences
to the acoustic features without using an external duration model.
Although some seq-to-seq models for end-to-end SVS have
also been proposed [19]-[25], unlike TTS, a duration informed
attention network is mainly used because of singing-specific
backgrounds. For instance, the lengths of singing voices are
generally longer than those of speech, and the amount of training
datais insufficient. With the growth of deep learning techniques,
statistical parametric SVS has been attracting attention for its
various applications; however, these systems require high stabil-
ity and controllability in terms of both acoustic parameters and
alignments. Furthermore, since the synthesized singing voice
strictly needs to be synchronized with the given musical score,
it is not enough to apply the TTS-like end-to-end frameworks
to the SVS systems. There is still a high demand for pipeline
systems with an external time-lag model and a duration model
from these perspectives.

This paper presents our DNN-based SVS system, “Sinsy.”
Our proposed system of this paper is an extension of our previous
work [9]. All the components for synthesizing a singing voice
from the analyzed score features are based on neural networks
and incorporate novel techniques to better model a singing voice.
Our system has a singing-specific design: 1) The combination
strategy with the time-lag model and the duration model predicts
phoneme boundaries under note length constraints statistically.
2) The acoustic model has improved pitch and vibrato modeling
and a better training criterion for considering dynamic features.
3) The PeriodNet [26], a non-AR neural vocoder with more
robustness of pitch, is adopted. 4) Automatic pitch correction
techniques are incorporated into our SVS system to synthesize
singing voices with the correct pitch. With these techniques, our
proposed system can synthesize a high-fidelity singing voice
waveform.

In the rest of this paper, Section II reviews the conventional
SVS system. Section III describes the overview of our proposed
SVS system. Section IV introduces the proposed techniques
for modeling pitch and vibrato. Section V describes our pro-
posed automatic pitch correction methods for DNN-based SVS.
Section VI presents the experimental evaluations. Finally, Sec-
tion VII concludes this paper.

II. RELATED WORK

The usage of neural networks in SVS systems is similar to
that in TTS systems. The simplest way to apply DNNs to TTS
systems is to use an FFNN as a deep regression model to map a
linguistic feature sequence obtained by text to an acoustic feature
sequence extracted from speech [5]. A DNN-based SVS system
also uses the DNN as the acoustic model; however, unlike TTS,
feature vectors extracted from the musical score are used as
the input instead of the linguistic feature. Architectures such as
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RNNs, CNNs, and AR structures are used as acoustic models
for both TTS and SVS systems [10]-[13], [27]-[29].

The pitch of the synthesized singing voice must accurately
follow the note pitch of the musical score even if the note pitch
to be synthesized is outside the range of the training data. A pitch
normalization technique has been proposed for FO modeling in
DNN-based SVS [8]. In this technique, the differences between
the log FO sequence extracted from waveforms and the note pitch
are modeled. Recent studies [23], [24] introduced a residual
connection between note pitch and generated log FO, which
can be said to be the same approach to pitch normalization.
Some systems [12], [17] utilize a data augmentation technique
by pitch-shifting the training data. However, this technique
requires more training time due to the increased amount of
training data, and it is difficult to reproduce the voice charac-
teristics and singing styles that change according to the tone. A
post-processing strategy has also been proposed [13]. For this
strategy, FO should be modified for each voiced segment, which
may generate a discontinuous FO contour at the edge of the
voiced segment.

Another unique characteristic of singing voices is that FO
includes periodic fluctuations due to vibrato. In our previous
study [9], we separated the vibrato from the original FO se-
quence in advance and modeled with sinusoidal parameters.
This enables us to control the vibrato intensity and speed in
the synthesis stage. Some systems do not use the decomposed
approach, and the FO sequence with the vibrato component
is directly modeled using neural networks such as RNNs and
AR models [10], [12], [13]. This approach can be expected
to reproduce more complex vibrato shapes that are difficult to
represent by sinusoidal parameters. However, there is a problem
that the vibrato cannot be controlled during synthesis.

Since DNN-based SVS systems are data-driven approaches,
the quality of the synthesized singing voice depends on the
quality and quantity of the training data. Recent TTS systems
often use over 20 hours of training data for a single-speaker
model [18] and even hundreds of hours for a multi-speaker
model [30]. However, unlike TTS, the amount of training data for
SVSis often limited due to recording costs, annotation costs, and
strict copyright issues in the music domain. Thus, in most cases,
1-2 hours of a singing voice corpus are used. Recently, there has
been an attempt to utilize singing voice data mined from music
websites as training data [31]. However, the pitch of this mined
data is not always correct, despite pitch accuracy significantly
impacting the quality of a singing voice. Even if the singing voice
data is recorded for the training data, it may contain out-of-tune
data due to various factors, such as a singer’s skill, a song’s
tempo, and/or a melody’s complexity. Although FO contours
can be manually modified after being extracted from training
data, it is difficult to correct while maintaining a human-like FO
trajectory and is impractical in terms of editing cost. Therefore,
there is demand for an automatic pitch correction technique in
the SVS system.

Our system is based on our previous studies [8], [9] and
incorporates improved singing-specific techniques. The skip
connection of the note pitch improves acoustic feature estima-
tion accuracy, particularly pitch. The differences-based vibrato
modeling can achieve more accurate reproduction of vibrato
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Overview of the DNN-based SVS system, “Sinsy.” Our system consists of a score analyzer and four neural network-based models. Singing voice can be

synthesized from a musical score via these modules. Proposed singing-specific techniques, pitch normalization, vibrato modeling, and automatic pitch correction

are incorporated in the acoustic model.

shape and can help control vibrato intensity. Automatic pitch
correction techniques are also introduced into the SVS system.
In addition, our system adopts the pitch robust neural vocoder
PeriodNet. As a result, our system can synthesize a more natural
singing voice that follows a given score more accurately.

III. DNN-BASED SVS SYSTEM

A. Overview

Figure 1 overviews our proposed DNN-based SVS system,
“Sinsy.” This system consists of several models: 1) a time-lag
model to predict the start timing of the notes, 2) a duration model
to predict phoneme durations in each note, 3) an acoustic model
to generate acoustic features based on the predicted phoneme
timing, and 4) a vocoder to synthesize waveforms from gener-
ated acoustic features. These models are based on the neural
network.

Our system is composed of training and synthesis parts.
In the training part, score and acoustic features are extracted
by score analysis and vocoder encoding, then each model is
trained. The score feature contains musical score information
(e.g., lyrics, note keys, note lengths, tempo, dynamics, and slur),
and the acoustic feature contains spectrum (e.g., mel-cepstral
coefficients) and excitation parameters (e.g., FO). Time-aligned
score features are needed to train the time-lag model, the duration
model, and the acoustic model. Therefore, pre-trained hidden
semi-Markov models (HSMMs) are used to estimate phoneme
alignments [32].

In the synthesis part, first, the score features are extracted
from the musical score to be synthesized. The time-lag model
predicts each note’s start timing, and the duration model predicts
the phoneme duration in each note under the constraints of the
note boundaries determined by the time-lag model. The frame-
level score feature sequence is obtained using these predicted
boundaries and then fed into the acoustic model to predict the
acoustic feature sequence. Finally, the neural vocoder synthe-
sizes a singing voice waveform.

Sinsy is a system for synthesizing singing voices from music
scores. We adopt MusicXML [33] for representing musical
scores that include lyrics. The score analyzer extracts musical
contexts from the input musical score and encodes them into
the categorical and numerical features that are easy for neural
networks to handle. We use singing specific rich contexts, which
are designed in our previous works [3].

B. Acoustic Model

In the SVS, the DNN-based acoustic model represents the
mapping function from the score feature sequences to the acous-
tic feature sequences. There is a correlation between the spec-
trum and the excitation parameters in the acoustic feature (e.g.,
mel-cepstral coefficients and FO). Some studies have utilized a
cascade structure to model this correlation [12]. In this work, a
single neural network is used to model both spectrum and exci-
tation parameters simultaneously, assuming that the correlation
between them can be expressed inside the neural network.

The sequence of acoustic feature vectors ¢ can be written in
vector forms as follows:

T T 1T
c=ley,...,¢, ... e, (1)

where c¢; is a D-dimensional static feature vector that can be
represented by ¢; = [c;(1), ¢ (2),...,c:(D)]", and T is the
number of frames included in a song. The optimal static feature
vector sequence ¢ is given by

¢ =argmax N (c| ¢ %), 2)

where N(-| ¢, 2(%)) denotes the Gaussian distribution with a
mean vector ¢ and a covariance matrix X(¢). In the SVS system,
¢ is obtained by feeding the score feature vector sequence into
a trained neural network. A covariance matrix %(®) is given by

3

In the DNN-based SVS, () is usually independent of score
features; thus, »©isa globally tied covariance matrix. Training

E(c) = dlag[EgC)a B 2156)7 T 25?)]
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of the DNN aims to maximize the likelihood function £() given
by

LE = N(c|ex@). “)

Since a singing voice includes long tones, parameter disconti-
nuity degrades the quality of the synthesized singing voice. Our
previous studies [8], [9], [16] used the dynamic features to avoid
this. The acoustic feature sequence of static and their dynamic
feature vectors! o can be written in vector forms as follows:

T T T
O:[Ol7~'~aot7"'7OT]7 (5)

where o, consists of the static and the dynamic feature vectors
o, = [c¢],AM¢c] AP ¢/]T. Relation between o and ¢ can be
represented by o = We, where W' is a window matrix that
extends ¢ to o. An acoustic model is trained by maximizing the
following objective function as

LY =N(o| 0,5, 6)

where o, 3(°) are a mean vector and a global tied covariance
matrix that include the elements that correspond to dynamic
features. The optimal static feature vector sequence e is ob-
tained from considering dynamic features by using the parameter
generation algorithm [34] as follows:

e = argmax (o] 0,2@) = argmax N (We | 0, £(°)).
c c
(N

Although the parameter generation algorithm can generate
a smooth acoustic feature sequence, the computational cost at
the synthesis stage increases. A recent study [11] introduced a
different approach that considers dynamic features only during
training. In this approach, the objective function that considers
the dynamic features can be written as

L=N(o|We, %), 8)

Since the output of the DNN contains only static feature vector
¢, the optimal static feature sequence can be obtained by (2)
without the parameter generation algorithm in the synthesis
stage. The average length of a singing voice is longer than that of
speech, and the generation time is sometimes a problem. Thus,
we utilize this approach for our system to generate a smooth
parameter sequence without increased computational costs in
the synthesis stage.

C. Time-Lag Model and Duration Model

In SVS, the phoneme duration should be determined from
the note length of the musical score since a singing voice
is synthesized based on the tempo and rhythm of the music.
However, as Fig. 2 shows, humans generally tend to begin to
utter consonants earlier than the absolute musical note onset
timing. In addition, note timing may be slightly advanced or
delayed as part of an individual’s singing technique, so the timing
varies depending on the singer. In this paper, we call the timing
fluctuations caused by these factors “time-lag” and model them.

'We use velocity and acceleration features as dynamic features.
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Fig. 2. Example of time-lag.

Two separated neural networks are used to model the time-
lags and the phoneme durations. We define a time-lag as the
difference between the note timing of the musical score and
the actual timing of a reference phoneme within a note. To
consider the time-lag in this work, we use the first vowel or
silence for rests in each note as the reference phoneme instead of
the first phoneme in the note. This reference phoneme shifting
is based on the tendency of humans to sing so that the vowel
onset timing is closest to the note timing in the score, and
preliminary experiments have confirmed its effectiveness. Note
that no additional annotation is needed in the training stage
to train the time-lag and duration models because the actual
phoneme timing of the singing voice can be obtained by a forced
alignment using a well-trained HSMM [32].

In the synthesis stage, first, the time-lag of each note is
predicted using a trained time-lag model. The sequences of note
lengths obtained from the given musical score and predicted
time-lags L, g can be written as follows:

L:[Lla"'ana"'aLN]v )

g:[glw'wgn?"'ag]\’}? (10)

where NV is the number of notes included in a song. Note that
g1 is always zero since there is no need to shift the first note
boundary. Each adjusted note length L,, is obtained by

i/ :{Ln_gTL+g7L+17 (n<N)

Ly — G- (n = N) an

Next, the phoneme durations are predicted by a trained
phoneme duration model and are normalized on a note-by-note
basis so that the sums of the phoneme durations within each
note match the adjusted note lengths. The duration of the k-th
phoneme in the n-th note is determined as follows:

K,
dnk - f/n . /ank/z#nka
k=1

where K, is the number of phonemes in the n-th note, and i,
is the output value of the DNN-based duration model at the k-th
phoneme in the n-th note.

The phoneme duration of synthesized songs can be obtained
by the above strategy, considering the time-lag by the neural
network. However, the distribution of phoneme durations differs
greatly depending on the type of phonemes, such as consonants,
vowels, and breaths. For example, durations of vowels vary
greatly depending on the note length, while those of consonants

12)
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and breaths are barely affected by note length. Note that the
breath phoneme corresponds to the breath mark in the musical
score, and its duration needs to be predicted because the actual
duration cannot be obtained from the musical score. Thus, it is
not appropriate to fit the phoneme duration to the note length
constraint by uniformly multiplying all the phonemes within a
note by a constant as in (12).

Therefore, we statistically estimate the adjusted phoneme
duration by considering the variance of the phoneme duration.
This approach is based on constrained maximum likelihood
estimation. We use a mixture density network (MDN) [35] to
model the phoneme duration distribution. Note that an MDN
with one mixture component is used for simplification. We
assume that a single-mixture MDN has sufficient ability to

represent the phoneme duration distribution.

~ (ML
The optimal phoneme duration sequence of n-th note dr(L )

is given by

K

~ (ML) ~
dn = argn,lifileog./\/(dnk | ,Ufnk70721k)7 (13)
k=1
subject to
Kn
S0 — L, 09
k=1

where fi,,, 02, denote the mean and the variance of the k-th
phoneme duration in the n-th note, and these are obtained from
a trained MDN.

To obtain optimal phoneme durations under the constraint
condition in (14), we use the Lagrange multiplier method as
follows:

K

F(dnkapn) = ZIOgN(dnk | ﬂnkagik)
k=1

K,
+ Pn (Z dnk - in) )
k=1

where p,, denotes the Lagrange multiplier. Hence, the optimal
duration of the k-th phoneme in the n-th note is obtained by

15)

™ = fk + puo?y, (16)
where p,, is given by
K, Ky
o=\ Lo = pn /Zaﬁk. (17)
k=1 k=1

Our system assumes that each note is assigned one or more
phonemes. The note with the long sound symbol “—"is assigned
the appropriate phoneme based on the previous note’s lyric,
using language-specific heuristic rules at the score analyzing
process. For example, in Japanese, the phoneme of a note with
a long vowel symbol is obtained by duplicating a vowel in a
previous note. In English, the syllable nucleus allocated to the
previous note is duplicated, and the phoneme after the duplicated
syllable nucleus is shifted to the current note. Since consecutive
diphthongs due to duplication may degrade the continuity of a
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Fig. 3. The overview of PeriodNet parallel model.
singing voice, we defined the duplication rules for diphthongs
in our previous work [36].

D. Neural Vocoder

We use the PeriodNet [26] as a vocoder to generate singing
voice waveforms from acoustic feature sequences. PeriodNet is a
non-autoregressive neural vocoder with a structure that separates
periodic and aperiodic components. PeriodNet consists of two
sub-generators connected in parallel or series and models a
speech waveform based on the following two assumptions. The
first one is that the speech waveform can be represented as
the sum of the periodic and aperiodic waveform. The second
one is that periodic and aperiodic waveforms of speech can be
easily generated from an explicit periodic signal with autocor-
relation (such as sinusoidal signal) and an explicit aperiodic
signal without one (such as noise), respectively. The parallel or
series structure helps to model speech waveform with periodic
and aperiodic components more appropriately and improves the
robustness of the input acoustic features, especially FO. SVS
systems require the ability to generate high-quality singing voice
waveforms even if the input pitch is outside the range of training
data. PeriodNet is highly suitable for the neural vocoder in SVS
systems because it has superior reproducibility of accurate pitch
and breath sounds.

This work adopts the parallel model (PM2 in [26]), as shown
in Fig. 3. A periodic generator takes an explicit periodic signal
and an aperiodic generator that takes an aperiodic signal. A
sample-level voiced/unvoiced (V/UV) signal is also fed into
both generators, and the periodic signal can be generated from
FO predicted by the acoustic model in the synthesis stage. Both
periodic and aperiodic generators adopt WaveNet-like architec-
ture, which has a stack of non-causal convolution layers, and
are conditioned on the acoustic feature. To obtain the robustness
of pitch, we exclude the FO sequence from the condition of the
aperiodic generator. PeriodNet is trained by an adversarial train-
ing framework using a multi-scale discriminator along with a
multi-resolution short-time Fourier transform (STFT) auxiliary
loss.

IV. ACCURATE AND EXPRESSIVE PITCH MODELING FOR THE
DNN-BASED SVS SYSTEM

This section describes the singing-specific techniques of ac-
curately modeling pitch, including vibrato for the DNN-based
SVS.
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A. Pitch Normalization

The corpus-based nature of statistical parametric SVS ap-
proaches makes their performance highly dependent on the
training data. It is challenging to express contextual factors
that rarely appear in training data. Hence, DNN-based SVS
systems should be trained using a database that contains various
contextual factors to synthesize high-quality singing voices.
In particular, since the prediction accuracy of FO significantly
affects the quality of the synthesized singing voice, the pitch
must be covered correctly. However, it is almost impossible to
cover all possible contextual factors because a singing voice
is affected by a large number of factors, such as lyrics, key,
dynamics, note duration, and note pitch.

A musical note-level pitch normalization technique for DNN-
based SVS systems was proposed in our previous work [8] to
address the aforementioned problem. In that technique, the FO
sequence extracted from the natural waveforms is not modeled
directly but as a difference from the note pitch determined by mu-
sical notes in the score. Therefore, the acoustic model only needs
to predict the human bias from the note pitch. This technique
enables DNN-based SVS systems to synthesize singing voices
that contain arbitrary pitches, including unseen ones. However,
modeling the difference of FO remains a challenge because FO
in unvoiced frames and the note pitch in the musical rest are
unmeasurable. Thus, all unvoiced frames and musical rests in the
musical score are linearly interpolated and modeled as voiced
frames.

Figure 4 shows the architecture of the acoustic model with
the pitch normalization technique. In the pitch normalization
technique, a predicted log FO sequence ¢(F?) is represented

by using the note pitch sequence p = [p1,p2,...,pr]  and
the output mean parameter sequence p = [ji, fi2, ..., jir] as
follows:

¢FO = p+4p. (18)

Note that we use log FO, the log scale of FO. The note pitch
sequence p to be added can be obtained from the input score
features sequence.

A note pitch transition greatly influences the FO trajectory.
Therefore, we add a skip connection between the input note
pitch and a hidden layer of the acoustic model to deliver the
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note pitch inside the acoustic model, motivated by [11]. This
helps transmit the note pitch information efficiently and predict
the residual component between log FO and the note pitch.

B. Vibrato Model

Generating an expressive FO contour for a singing voice is also
challenging. Vibrato is one of the important singing techniques,
and the timing and intensity of vibrato vary from singer to
singer. Thus, it should be modeled even though it cannot be
explicitly described in the musical score. Some acoustic models
with a recurrent or AR structure can model FO with vibrato
directly [10], [12], [13]. However, it does not enable explicit
control of vibrato. Here, we assume that vibrato is a periodic
fluctuation of the FO contour and introduce two explicit vibrato
modeling methods.

1) Sine-Based Vibrato Modeling: One method for modeling
vibrato is to express periodic fluctuations with sinusoidal pa-
rameters [9]. The vibrato v(-) of the ¢ frame in the i-th vibrato

section [tgs), tge)] can be defined as

v(ma(t), my(t),i) = ma(t) sin(?wmf(t)fs (t— tz('S)))v
(19)

where m,(t) is the amplitude of vibrato in cents, m(t) is
the frequency of vibrato in Hz, and f is the frame shift in
seconds. These parameters can be obtained from the original
FO sequence with an estimation algorithm [37]. In this work,
the vibrato amplitude and frequency parameters are extracted
based on the intersection points between the original FO and a
median-smoothed FO. Two-dimensional parameters, m, (t) and
my(t), are added to the acoustic feature vector and modeled by
a DNN along with the spectral and excitation parameters. The
vibrato parameters are unobserved outside the vibrato sections.
Thus, these parameters are interpolated in the same manner as
the FO sequence and are modeled along with an additional binary
flag to determine the vibrato/non-vibrato frames.

2) Difference-Based Vibrato Modeling: In this paper, we
propose another method of modeling the vibrato component
separated from the FO. The vibrato component is defined as the
difference between the original FO sequence and the smoothed
FO sequence. This difference-based vibrato component is a
one-dimensional continuous feature and is directly modeled by
the acoustic model that can model time series data such as RNN
without an extra binary flag representing vibrato/non-vibrato
frames. This method has the advantage of generating more com-
plex vibrato shapes given no assumption of the vibrato shape. In
particular, smoother vibrato can be obtained because the start and
end of the vibrato are determined by the value of the difference
rather than the binary flag. Furthermore, it is possible to control
the vibrato intensity by changing the difference values, unlike
the method of not separating the vibrato component explicitly.

V. AUTOMATIC PITCH CORRECTION

The singing voice becomes out of tune when the pitch of a
singing voice deviates from that of the musical score. Therefore,
we introduce two automatic correction techniques to prevent
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synthesized singing voices from becoming out of tune: prior
distribution of pitch and pseudo-note pitch.

A. Prior Distribution of Pitch

In pitch normalization, the difference between log FO and
note pitch is modeled by (18). Here, we correct the out-of-tune
phrases by giving a prior distribution to the pitch normaliza-
tion training, assuming that the difference follows a zero-mean
Gaussian distribution.

The prior distribution of pitch is given as

P(p) =N(p|v,8),

where v and S correspond to the mean and the variance of
prior Gaussian distribution. Note that g does not contain a
vibrato component because the pitch should be corrected while
maintaining vibrato. Here v = 0O since the prior distribution
we assume always represents the difference between the FO
extracted from the natural waveforms and note pitch in the
musical score. The variance S works as a parameter that controls
the intensity of pitch correction. The smaller element of S is,
the stronger the out-of-tune pitch is corrected. In this work, we
assume that the variance always takes the fixed value o'2. In the

p
training part, an objective function in terms of F0 is defined as

LE) = N (0T | W(p + ), SN N (| v, ), 1)

(20)

where 0F and (") are a sequence of feature vectors and a
covariance matrix in terms of log FO and their dynamic features.

In unique phenomena of a singing voice such as overshooting?
and preparation,® FO contours are deflected from the target notes
before or after a note changes. Thus, it is not always optimal to
correct the pitch with the same intensity at all frames. Further-
more, it sounds rather unnatural if the difference between the FO
and the note pitch becomes too small. Therefore, we introduce
a dynamic weight vector w = [w, ws, ..., wr] whose values
are changed based on the note position into (21):

£(FO) :N(O(FO) | W (p+p), Z(O(FO)))N(M | v, 8)®

T
=N T | W (p+ p), S ) TN (e | 0,02,
t=1

(22)

where 1" denotes the number of frames. The values of the weight
vector increase or decrease at the beginning or end of notes, as
shown in Fig. 5. In this paper, the maximum of w takes 0.5, and
the width of increasing and decreasing is set to 25 frames.

B. Pseudo-Note Pitch

One cause of the phrases being out of tune is that there is
a difference between an assumed note pitch by the singer and
the correct note pitch. By training the acoustic model using the
pseudo-note pitch that takes these differences into account, the
singing voice should be synthesized with the correct pitch by

2Qvershooting is a pitch deflection exceeding the target note after a note
change.

3Preparation is a pitch deflection in the direction opposite to a note change
that can be seen just before the note change.
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Fig. 5. Automatic pitch correction by prior distribution with dynamic weight
vector.

using the original note pitch during synthesis. We propose two
different approaches to obtaining the pseudo-note pitch.

1) Heuristic Pseudo-Note Pitch: The pseudo-note pitch is
heuristically calculated from the flat part of the FO sequence
to express the singer-assumed note pitch during singing. In the
training stage, the pitch normalization technique is applied using
this pseudo-note pitch. In the synthesis stage, it is possible to
synthesize the singing voice with the correct pitch by using the
original note pitch instead of the pseudo-note pitch. An example
of the heuristic pseudo-note pitch will be shown in Section VI-D.

2) Pitch Bias-Based Pseudo-Note Pitch: We introduce addi-
tional trainable parameters, note-level pitch bias, to represent the
difference between the singer-assumed note pitch and the correct
note pitch. In this approach, the pseudo-note pitch is defined as
the sum of the original note pitch given by musical score and the
note-level pitch bias. The pitch bias should absorb the average
pitch shift in each note seen in the out-of-tune phrases. In the
training stage, the predicted log FO sequence is defined as

&F0)

=p+p+b, (23)

where b = [by, ba, ..., br]" is a sequence of the trainable pitch
bias. The bias parameters are assigned to each note (except for
musical rests), and b is obtained by duplicating each parameter
according to a corresponding note length. Note that the bias
values in musical rests are obtained by linearly interpolating
them in the same manner as the original note pitch in pitch nor-
malization described in Section IV-A. Hence, the total number of
trainable bias parameters is equal to the total number of musical
notes in the training data. These bias parameters can be trained
using a back-propagation in the same fashion as the other model
parameters without any additional loss function. In the synthesis
stage, the FO with the correct pitch can be generated by fixing
the bias value to zero.

VI. EXPERIMENTS

This section evaluates the effectiveness of the proposed sys-
tem in terms of the combination strategy with the time-lag model
and the duration model, improved acoustic feature modeling, and
automatic pitch correction techniques.

A. Experimental Conditions

In this experiment, 70 Japanese children’s songs (total:
70 min) by a female singer were used. Sixty songs were used for
training, and the rest were used for testing. Singing voice signals
were sampled at 48 kHz and windowed with a 5-ms shift. The
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acoustic feature consisted of O-th through 49-th mel-cepstral co-
efficients, log FO value, 0-th through 24-th mel-cepstral analysis
aperiodicity measures, and vibrato parameters. In order to reduce
an error of F0 extraction, voting results from three FO estimators
were used as FO of acoustic features [38]. Mel-cepstral coeffi-
cients were extracted from the smoothed spectrum analyzed by
WORLD [39]. Two types of explicit vibrato parameters were
used: 2-dimensional sinusoidal-based parameters that consisted
of amplitude and frequency parameters and a 1-dimensional
vibrato component that represented the difference between the
original log FO and the smoothed log FO. The score feature
was obtained by analyzing the musical score, and the contextual
factor we used followed our previous work [3].

Five-state, left-to-right, no-skip HSMMs were used to obtain
the time alignment of the score features and the acoustic features
for training the DNN-based time-lag, duration, and acoustic
models. The decision tree-based context clustering technique
was separately applied to distributions for the spectrum, excita-
tion, aperiodicity, and state duration. The spectrum and aperiod-
icity stream were modeled with single multivariate Gaussian dis-
tributions. The excitation stream was modeled with multi-space
probability distribution HSMMs (MSD-HSMMs) [40] that each
consisted of a Gaussian distribution for “voiced” frames and a
discrete distribution for “unvoiced” frames. The duration stream
was modeled with single Gaussian distributions. The minimum
description length (MDL) criterion was employed to control the
size of the decision trees for context clustering [41].

B. Objective Evaluation of Time-Lag Modeling and Duration
Modeling

An objective evaluation experiment was conducted to com-
pare the prediction accuracy of note timing and phoneme du-
ration. In this experiment, the following three methods were
compared.

® DT: Conventional method of predicting phoneme bound-
aries using the decision tree-based clustered context-
dependent time-lag model and duration model in an HMM-
based SVS system [42].

® DNN: Time-lag and phoneme duration were modeled by
DNNs, and final phoneme boundaries were determined
according to (12).

* DNN-+ML: Time-lag and phoneme duration were modeled
by DNN and single MDN, and final phoneme boundaries
were determined using constrained maximum likelihood
estimation with (16).

In DT, the sizes of the decision trees were determined by
the MDL criterion. In DNN and DNN+ML, the input feature
of DNN was an 824-dimensional feature vector consisting of
734 binary features for categorical linguistic contexts (e.g.,
the current phoneme identity) and 90 numerical features for
numerical contexts (e.g., the number of phonemes in the current
syllable). In DNN, the outputs of the time-lag model and duration
model are one-dimensional numerical values. In DNN+ML,
the time-lag model outputs one-dimensional numerical values,
and the duration model outputs the mean and variance of the
one-dimensional phoneme duration distribution. In DNN and
DNN+ML, the architecture of the time-lag model was three
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TABLE I
OBJECT EVALUATION OF TIMING PREDICTION ACCURACY

Method ‘ DT DNN DNN+ML
Note duration-RMSE [frame] 15.78 12.75 12.75
Phoneme duration-RMSE [frame] 13.32 11.23 10.94
Note duration-CORR 0.9742  0.9780 0.9780
Phoneme duration-CORR 0.9719  0.9757 0.9767

hidden layers with 32 units per layer, and that of the duration
model was three hidden layers with 256 units per layer. The
sigmoid activation function was used in the hidden layers, and
the linear activation function was used in the output layer. The
weights of the DNNs and the MDN were initialized randomly,
then the DNNs were optimized by minimizing the mean squared
error, and the MDN was optimized by maximizing the like-
lihood. In the training phase, the Adam optimizer [43] was
adopted for all neural networks.

The root mean square errors (RMSEs) of the note and the
phoneme duration and Pearson correlations (CORRSs) of the note
and the phoneme duration were used as the objective evaluation
metrics. Note that the phoneme boundaries of forced alignment
obtained by trained HMMs were used as the correct phoneme
boundaries.

The experimental results are listed in Table I. It can be seen
that both DNN and DNN+ML performed better in predicting
note and phoneme boundaries than DT. This result indicates
the effectiveness of replacing the decision tree-based clustered
models with DNN-based models. Also, comparing DNN+ML
with DNN in terms of phoneme duration prediction accuracy,
DNN+ML outperformed DNN. This suggests that constrained
maximum likelihood estimation of note lengths with consider-
ation of variances helps fit the phoneme durations.

C. Comparison of Acoustic Feature Modeling

Objective and subjective evaluations were conducted to com-
pare the acoustic models in terms of pitch normalization, skip
connection of the note pitch, vibrato modeling, and the training
criterion. We used the seven systems shown in Table II.

The input feature vector for the acoustic models was an 844-
dimensional feature vector with the 824-dimensional feature
vector in Section VI-B and a 20-dimensional additional feature
vector that included duration features. The output feature vector
for the acoustic models consists of mel-cepstral coefficients,
log FO value, mel-cepstral analysis aperiodicity measures, vi-
brato parameters (except System 5), voiced/unvoiced binary
value, and vibrato/non-vibrato binary value (only System 4).
In System 7, the dynamic features (velocity and acceleration
features) were also included in the output feature vector. A single
network that modeled all acoustic features simultaneously was
trained by using the Adam optimizer [43]. The architecture of
the acoustic models was the stack of three fully connected layers
with 2048 hidden ReLU units, three convolution blocks each
containing a 1D convolutional layer with 1024 filters, batch
normalization [44] and ReLU activations, two bidirectional
LSTMs containing 512 units (256 in each direction), and a
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TABLE II
RESULTS OF OBJECTIVE EVALUATION OF ACOUSTIC MODELS

System System Details MCD FO-RMSE  F0+Vib-RMSE FO-CORR  FO+Vib-CORR

Index Pitch norm?®  Skip connect? Vibrato® Criteriond [dB] [cent] [cent]
System 1 | v v Diff-based £ | 5423 7400 80.96 0.9713 0.9647
System 2 Diff-based c 5.644 26407 265.71 0.6689 0.6677
System 3 v Diff-based L 5.627 79.80 86.69 0.9653 0.9585
System 4 v v Sine-based L 5.456 72.91 85.12 0.9712 0.9592
System 5 v v N/A C 5.439 - 80.95 - 0.9635
System 6 v v Diff-based £ 5.462 73.49 82.00 0.9712 0.9636
System 7 v v Diff-based £D 5.445 74.16 82.48 0.9709 0.9633

2Pitch normalization described in Section IV-A.
PSkip connection described in Section IV-A.

©“Sine-based” denotes sine-based vibrato modeling described in Section IV-B1, and “Diff-based” denotes the difference-based vibrato modeling described in Section IV-B2.

ATrainig criteria £, £(%), and £(? are given by (8), (4), and (6), respectively.

w

IN

Mean opinion score
w

2
1
System 1 System 3 System 5 System 7
System 2 System 4 System 6
Fig. 6. Mean opinion scores of the seven SVS systems with 95% confidence
intervals.

linear projection layer. The same pre-trained PeriodNet [26]
neural vocoder was used to reconstruct singing waveforms from
generated acoustic features in all systems.

Mel-cepstral distortion (MCD) [dB], RMSE:s of log FO with-
out/with vibrato (FO-RMSE and FO+Vib-RMSE) [cent], CORRs
of log FO without/with vibrato (FO-CORR and FO+Vib-CORR)
were used to objectively evaluate the performance of systems.
Phoneme durations from natural singing voices were used while
performing the objective evaluation. Mean opinion score (MOS)
tests were also conducted to subjectively evaluate the natural-
ness of synthesized waveforms. In the subjective evaluation,
the phoneme durations were determined by DNN+ML in Sec-
tion VI-B. The subjects were eleven Japanese students in our
research group, and twelve phrases were chosen at random per
method from the test set. The scale for the MOS test was 5 for
“natural” and 1 for “poor.” The demo songs can be found on the
demo page [45].

Table II shows the objective evaluation results and Fig. 6
shows the subjective evaluation results. By comparing System 2
and System 3 in the objective and the subjective evaluations, we
revealed that the pitch normalization technique is essential in
modeling the pitches of singing voices. The synthesized singing
voices in System 2 were sometimes perceived as if they were
sung following different note pitches because the generated FO
deviated from the target note pitches. Furthermore, System 1
achieved a better score than System 3 in terms of both the metrics
of FO and MCD, which also led to a good subjective evaluation

score. This result suggests that it is helpful to transmit the note
pitch information of the musical score to the inside of the model
by using the skip connection because a singing voice is greatly
affected by note pitch transition.

Comparing the methods of vibrato modeling, System 1 and
System 5 outperformed System 4 in terms of FO+Vib-RMSE,
FO+Vib-CORR, and MOS value. The examples of generated
FO contours in each system are plotted in Fig. 7. As the figure
shows, the FO contours of System 1 and System 5 are closer to
the natural FO contour than that of System 4. Since System 4
cannot reproduce the vibrato phase, the FO contour deviates
significantly from the natural FO contour. This is a major factor
in the deterioration of the objective evaluation. In addition, the
start and end shapes of the vibrato of System 1 and System 5 are
smoother than that of System 4, indicating the effectiveness of
modeling the vibrato component by neural networks without
using the sinusoidal parameters. A comparison of System 1
and System 5 shows no significant difference between them.
In System 1, since FO and vibrato are modeled separately, it
is possible to change the vibrato intensity and introduce the
pitch correction techniques described in Section V. Therefore,
difference-based vibrato modeling is an effective method.

Finally, System 1, System 6, and System 7 were compared.
System 1 was expected to enable more continuous and appropri-
ate parameter generation without using explicit dynamic features
during synthesis because this system was trained considering
the dynamic features, but the effect was slight. Although Sys-
tem 6 sometimes generated unstable singing voices, it was not
a big problem in the subjective evaluation. Our acoustic model
consisted of bidirectional LSTMs that can generate sufficiently
continuous parameters without using dynamic features. Mean-
while, System 7 may have caused parameter over-smoothing
due to the parameter generation considering dynamic features
explicitly.

In summary, System 1 got a generally good objective score
and achieved the best MOS value. These results indicate the
effectiveness of the proposed system with pitch normalization,
the skip connection of the note pitch, difference-based vibrato
modeling, and the training criterion considering dynamic fea-
tures.
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(a) Difference-based vibrato modeling (System 1). (b) Sine-based vibrato modeling (System 4). (c) Not using explicit vibrato modeling (System 5).
Fig. 7. Generated FO contours for test song. Predicted (w/o vib.) denotes the bare FO contour without vibrato components and Predicted (w/ vib.) denotes final

FO contour with vibrato components. The frequency value of note A4 is 440 Hz in this paper.

—e— Original note pitch (Org, Org-+Prior)

~— Heuristic pseudo-note pitch (Heur, Heur+Prior)

—4— Pitch bias-based pseudo-note pitch (Bias, Bias-+Prior)

100

=

]

S 80 r

8 60 F =

2 W
40 L

i i
z 0.972} ,// B e S S
5 ; P,
O E] Py
S £ 0,970}
¢ 0.968}
70k % 0.9661

10 15 20 25 30 35 40
Standard deviation o, [cent]

10 15 20 25 30 35 40 o
Standard deviation o, [cent]

Fig. 8.

10 15 20 25 30 35 40
Standard deviation o, [cent]

10 15 20 25 30 35 40
Standard deviation g, [cent]

Objective evaluation of comparing automatic pitch correction techniques. o, = oo denotes the systems not using prior in the training (Org, Heur, and

Bias) and the dotted lines on each graph represent the objective evaluation values of these systems.

TABLE IIT
SYSTEMS FOR EVALUATION OF PITCH CORRECTION TECHNIQUES

Note pitch w/o prior w/ prior

Original note pitch Org Org+Prior
Heuristic pseudo-note pitch Heur Heur+Prior
Pitch bias-based pseudo-note pitch Bias Bias+Prior

D. Effectiveness of Automatic Pitch Correction Techniques

We also evaluated the effectiveness of the automatic pitch
correction techniques using a different speaker’s singing voice
dataset. This dataset consisted of the same 70 songs used in the
previous experiments but contained out-of-tune phrases. Other
experimental conditions were the same as in Section VI-A.
Time-lags and phoneme durations were modeled by DNN+ML
in Section VI-B, and acoustic features were modeled by Sys-
tem 1 in Section VI-C.

In this experiment, six systems were used for comparison as
shown in Table III. Three types of note pitches were used in the
training stage: the original note pitch given by the musical scores
as a baseline, a heuristic pseudo-note pitch mentioned in Sec-
tion V-B1, and a pitch bias-based pseudo-note pitch mentioned
in Section V-B2. Note that original note pitches were always
used during the synthesis stage.

1) Objective Evaluation: We compared the performance
of the experimental systems objectively. In Org+Prior,
Heur+Prior, and Bias+Prior, we compared seven different
values of standard deviation o, [cent] in (22). We use four
objective measures: the RMSE and CORR between the gener-
ated FO and the FO calculated from the note pitches (RMSEcte
and CORRy,ote), and those between the generated FO and the FO
extracted from the natural waveform (RMSE,,; and CORR,.).
RMSEs and CORRs are objective measures that represent how
close the value and shape of the predicted sequence are to the

target sequence. Note that if the target sequence includes out-of-
tune phrases, itis not necessarily good that the RMSE,,; achieves
small and the CORR,,,; achieves high. A small RMSE, ot and
high CORR; . mean that the generated FO is close to the
stair-like correct note pitch.

Fig. 8 shows the results of the objective evaluations. In
Org+Prior, by setting o, smaller than 30, RMSE,o¢c Signifi-
cantly decreased compared to Org. This result indicates that
introducing prior distributions corrected the pitch. On the other
hand, the CORR,,,t went higher at the same time as the improve-
ment of RMSE,,tc, indicating that the shape of the generated FO
in Org+Prior tends to be a stair-like note pitch. The results of
RMSEnpat at 0, < 30 in Org+Prior also got worse because the
test data for evaluation also included out-of-tune phrases. When
o, was set in the range of 20 to 35, CORRy,¢ in Org+Prior had
a better score than that in Org. This is because it could suppress
the generation of unstable pitch fluctuations, which can be seen
in the out-of-tune training data.

Compared Heur with Org, RMSE,ot. Was greatly improved
by introducing a heuristic pseudo-note pitch. In addition, when
combined with prior distributions in Heur+Prior, RMSE, ¢, and
CORRyote did not change if o5, = 20 or more. These results show
that the heuristic pseudo pitch is effective for pitch correction.
Furthermore, Heur and Heur+Prior achieve higher CORR, ¢
than Org and Org+Prior, indicating that the deviation between
the original FO and note pitch in Heur and Heur+Prior becomes
smaller by using the pseudo-note pitch, thus avoiding forced
pitch correction.

The results of Bias+Prior show a similar trend to those of
Heur+Prior. In contrast, the objective results of Bias were not
as good as those of Heur. The examples of heuristic pseudo-note
pitch and pitch bias-based pseudo-note pitches in both Bias and
Bias+Prior are shown in Fig. 9. The pitch bias-based pseudo-
note pitch of Bias+Prior in Fig. 9(c) is similar to the heuristic
pseudo-note pitch in Fig. 9(a). However, the pitch bias-based
one sometimes yields inappropriate results, as shown at around
1.5 seconds in Fig. 9(c). This result is because the pitch bias is
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Fig. 9. Examples of pseudo-note pitch in proposed automatic pitch correction.
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Fig. 11.  Results of MOS test comparing automatic pitch correction techniques
with 95% confidence intervals. In Org+Prior, Heur+Prior, and Bias+Prior,
o, were set to 20.

determined by considering the entire note and is influenced by
the singing expression that changes FO within the note, such as
bending and hiccups. On the other hand, the pitch bias-based
pseudo-note pitch of Bias in Fig. 9(b) is close to the original
note pitch in the musical score. This result indicates that there
is ambiguity as to whether the average pitch shift of FO at each
note should be represented by the outputs of the acoustic model
or the pitch biases.

2) Subjective Evaluation: We conducted the MOS test to
evaluate the overall naturalness. Subjects were instructed to
give high score values to test phrases that were naturally pitch-
corrected and not out of tune. We compared the six systems listed
in Table III. The o, in Org+Prior, Heur+Prior, and Bias+Prior
were set to 20.

The generated FO contours are plotted in Fig. 10, and the
results of the MOS test are plotted in Fig. 11. Org+Prior
achieved a higher MOS value than Org. This result confirmed the
effectiveness of using prior distribution. Heur and Heur+Prior
outperformed Org, but there was little difference between Heur
and Heur+Prior. Since the values of the FO differences modeled
by the acoustic model were smaller on average by introducing
the heuristic pseudo pitch, the prior distribution seemed to

(e) Heur+Prior (o = 20)

Time [sec]

(f) Bias+Prior (o), = 20)

Generated FO contours for one test phrase.

have a limited effect. On the other hand, although Bias and
Bias+Prior also outperformed Org, these did not reach Heur
and Heur+Prior, respectively. As shown in Fig. 10, Bias and
Bias+Prior were more likely to generate an FO that slightly
deviates from the correct note pitch, compared with Heur and
Heur+Prior. This result indicates that it is not easy to auto-
matically obtain pseudo-note pitches from FO, which includes
fluctuations such as bending and hiccups, and the heuristic
method of obtaining pseudo-note pitches is powerful and ef-
fective. Overall, Org+Prior achieved the best MOS value even
though Org+Prior showed a worse CORRy,,+ than Heur+Prior
and Bias+Prior. The objective evaluation results and Fig. 10(d)
show that the FO contour generated by Org+Prior was the most
similar to a stair-like FO contour, and the output of the acoustic
model in terms of the FO was strongly corrected by the prior
distribution in the training stage. While fine fluctuations of FO
were lost, the unstable pitch fluctuation seen in the out-of-tune
phrases was also suppressed, leading to good subjective eval-
uation results. Appropriate correction methods and standard
deviation of prior o, should be selected based on which to
prioritize, the reproducibility of FO fluctuations particular to
singers in training data, or the accuracy of the pitch. Note that
none of the systems reached the subjective score of System 1 in
Section VI-C. This result indicates that it is difficult to predict
the pitch accurately even if the pitch correction technique is used
when the training data contains the out-of-tune phrase. This led
to a decrease in MOS score because the naturalness of pitch
fluctuation significantly affects the subjective quality of singing
voices.

VII. CONCLUSION
We proposed a DNN-based SVS system called “Sinsy,”
designed to synthesize singing voice with singing-specific
expressions at appropriate timing from a musical score. The
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proposed system consists of four DNN-based modules: a time-
lag model, a duration model, an acoustic model, and a vocoder.
The proposed system incorporates improved pitch and vibrato
modeling, the better training criterion, and the pitch robust neural
vocoder PeriodNet. Furthermore, we propose pitch correction
techniques that enable synthesizing singing voices with the
correct pitch even if the training data has out-of-tune phrases.
Experimental results indicated the effectiveness of our novel
techniques. Our proposed system can synthesize high-quality,
high-fidelity singing voices that can follow a given musical
score.

Future work includes investigating different distributions for
prior in automatic pitch correction and evaluating the pro-
posed system using the different speaker, genres, and language
datasets. In our previous work [36], [46], since an HMM-based
SVS system, which had a similar strategy combining the time-
lag model, duration model, and acoustic models, was applied
for synthesizing singing voice with other styles and languages,
we think the proposed DNN-based SVS system can also support
these kinds of songs. The modeling of songs in unique singing
styles such as shouting and growling, which are difficult to
annotate songs and extract acoustic feature representations, is
also included in our future work. Furthermore, incorporating our
proposed techniques, such as time-lag and vibrato modeling and
automatic pitch correction, into seq-to-seq SVS systems is an
important task. Recent studies [19]-[25] introduce a seq-to-seq
model into the SVS system. Although such systems can model
the singing voice as sequential mapping using an encoder-
decoder model with an attention mechanism, they cannot model
and control timing fluctuation explicitly. Extending a unified
framework for simultaneously modeling acoustic feature and
duration parameters [47] is one of our future works to model
time-lags, durations, and acoustic features simultaneously.
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