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Objective Measures of Perceptual Audio Quality
Reviewed: An Evaluation of Their Application

Domain Dependence
Matteo Torcoli , Thorsten Kastner , and Jürgen Herre , Senior Member, IEEE

Abstract—Over the past few decades, computational methods
have been developed to estimate perceptual audio quality. These
methods, also referred to as objective quality measures, are usually
developed and intended for a specific application domain. Because
of their convenience, they are often used outside their original
intended domain, even if it is unclear whether they provide reliable
quality estimates in this case. This work studies the correlation of
well-known state-of-the-art objective measures with human per-
ceptual scores in two different domains: audio coding and source
separation. The following objective measures are considered: fwS-
NRseg, dLLR, PESQ, PEAQ, POLQA, PEMO-Q, ViSQOLAudio,
(SI-)BSSEval, PEASS, LKR-PI, 2f-model, and HAAQI. Addition-
ally, a novel measure (SI-SA2f) is presented, based on the 2f-model
and a BSSEval-based signal decomposition. We use perceptual
scores from 7 listening tests about audio coding and 7 listening tests
about source separation as ground-truth data for the correlation
analysis. The results show that one method (2f-model) performs
significantly better than the others on both domains and indicate
that the dataset for training the method and a robust underlying
auditory model are crucial factors towards a universal, domain-
independent objective measure.

Index Terms—Artifacts, audio coding, audio quality, BAQ,
domain-independence, generalization, objective audio quality,
objective measures, quality assessment, review and evaluation,
source separation, state of the art, transferability.

I. INTRODUCTION

BASIC Audio Quality (BAQ) defines a general, domain-
independent quality criterion to rate the perceived overall

quality of a signal being tested [1]. BAQ is one of the main eval-
uation criteria in audio coding and was used also as assessment
criterion in the field of blind source separation [2]. Listening tests
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(often referred to as subjective evaluation, e.g. MUSHRA [1])
in a controlled environment are the most reliable method for
assessing BAQ. These are, however, time-consuming and costly
and cannot be easily carried out at each development stage,
e.g. of a new audio codec. The recent social distancing measures
due to the COVID-19 pandemic have added another difficulty
to conducting listening tests in the laboratory. Therefore, objec-
tive evaluation measures are greatly desired, i.e. computational
methods that are able to estimate BAQ as closely as possible to
the human assessment [3].

These models are usually designed and trained on audio
material and distortion types representing the specific domain
in which the measures are intended to be used. A good measure
is expected to generalize to audio material unseen during its
development, as long as the distortions typical of the application
domain are encountered. A universal measure would generalize
also to unseen distortions from different application domains.
Universality or domain-independence is often implied to a cer-
tain degree, even without clear evidence that this is a valid
assumption. An interesting example is represented by PESQ [4],
which was finalized 20 years ago for the evaluation of speech
quality over telephony systems. It is nowadays widely used for
evaluating methods potentially introducing very different types
of distortion, e.g. speech separation based on Deep Neural Net-
works (DNNs), singing voice extraction, and dereverberation,
e.g. for hearing aids [5]–[9]. PESQ has also been proposed as
loss function for supervised learning [10], [11].

The correlation between objective measures and perceptual
scores has been studied by many authors, but usually within a
specific domain application or with limited amount of perceptual
ground-truth data [7], [12]–[27].

The aim of this paper is to shed some light on these issues
with the following contributions:
� State-of-the-art intrusive objective measures are reviewed,

with a glance at DNN-based non-intrusive estimates.
� The correlation with ground-truth data from 7 listen-

ing tests about audio coding and 7 listening tests about
source separation is analyzed. The prediction generaliza-
tion on different domains is investigated. The used lis-
tening tests are based on MUSHRA, which is suited for
assessing intermediate quality of audio signals. A gen-
eralization of the results on estimating BAQ of signals
with small impairments should not be done without further
research.
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� A novel measure based on the 2f-model, preceded by
a BSSEval-based signal decomposition is presented for
assessing the perceptual relevance of artifacts.

II. OBJECTIVE MEASURES

This section reviews state-of-the-art objective measures. The
focus of this work is on intrusive measures, i.e. ideal reference
signals are used for comparison to estimate the audio quality of
the signal under test. The only novel contribution of this section
is given in Section II-M. A reader with little time and previous
knowledge of the state of the art can skip the rest and continue
with Section III.

The measures described from Section II-A to Section II-C
belong to the speech enhancement domain, while the ones from
Section II-D to Section II-G were developed in the field of audio
coding. The measures from Section II-H to Section II-M focus
on source separation. Section II-N introduces HAAQI, which
was designed for hearing aids. Finally, Section II-O discusses
the recent developments leveraging deep learning.

Many of the following measures originally support only mono
signals. In this case, we compute the mean of the per-channel
outputs when dealing with stereo signals.

A. Frequency-Weighted Segmental SNR (fwSNRseg)

The fwSNRseg [28] quantifies the power ratio of the reference
signal and a noise signal that is obtained as the difference of the
reference and the test signal. The fwSNRseg is computed and
weighted for each time frame and each subband of a filterbank
with critical-band spacing. The implementation in [5] is used,
where the weights are computed from the subband-magnitude
of the reference raised to the power of 0.2.

B. Log-Likelihood Ratio Distance (dLLR)

The dLLR [29] is based on the assumption that, over short
time intervals, speech can be represented by an all-pole model.
Linear Prediction Coefficients (LPC) are computed for the test
signal and the reference. The two LPC sets predict the reference
with certain residual energies. The dLLR is defined as the
logarithm of the ratio of these residual energies. We employ
the implementation in [5], where the distance is limited to 2
before averaging over time.

C. Perceptual Evaluation of Speech Quality (PESQ)

PESQ [4], [30], [31] was designed for speech transmitted over
telecommunication networks and narrow-band speech codecs.
The method comprises a pre-processing that mimics a telephone
handset. Measures for audible disturbances are computed from
the specific loudness of the signals and combined in PESQ
scores. From these, a Mean Opinion Score (MOS) [32] is pre-
dicted by means of a polynomial mapping function. We use the
wideband mode of the ITU reference software [4]. This operates
at a sampling frequency of 16 kHz. So the signals are resampled
to this sampling frequency before they are fed to the tool. Stereo
signals are supported natively. The tool exited with a processing
error for 8% of the signals in the PEASS datasets (details in

Section III-B). These signals are discarded in the following
correlation analysis of PESQ.

D. PEAQ (Perceptual Evaluation of Audio Quality)

PEAQ [33], [34] is a measurement scheme for the perceptual
evaluation of coded audio signals. Several mid-level perceptual
features, called Model Output Variables (MOVs), are derived
by either comparing the error signal with estimated masking
thresholds or by comparing the internal ear representations of
reference and test signal. They are combined in a neural network
computing the main output, i.e. the Overall Difference Grade
(ODG). Two versions of PEAQ are defined: 1) the Basic version,
designed for applications requiring high processing speed, and
2) the Advanced version, designed for higher accuracy at the
expense of speed. We use the Basic version by the McGill Uni-
versity, publicly available as MATLAB code [35]. Multi-channel
signals are natively supported. The individual MOVs were also
shown to be good predictor of perceived audio quality for
different tasks [21], [36]. We consider the MOVs that exhibited
the highest correlation performance in our experiments as well
as in [21]: Average Distorted Blocks (ADB), Noise-to-Mask
Ratio (NMR), Windowed average of the Modulation Difference
#1 (WinModDiff1), and Average Modulation Difference #1
(AvgModDiff1).

E. Perceptual Objective Listening Quality Assessment
(POLQA)

POLQA [23], [37] was developed as a “technology update”
for PESQ and it was designed to predict the perceived overall
speech quality of listening tests that comply with [32] or [38]
(the test signals used in this work do not necessarily meet this
requirement). POLQA operates in two modes: narrowband or
superwideband. We use a proprietary implementation licensed
by OPTICOM in the superwideband mode and compare the three
main versions of POLQA: Version 1.1 (01/2011), Version 2.4
(09/2014), and Version 3 (03/2018) [39].

F. Perception Model-Based Quality (PEMO-Q)

PEMO-Q [40] aims to be a general measure of perceived
audio quality for any type of audio signals and audio signal
distortions. It is an extension of a previous work on speech
quality assessment [41]. The measurement scheme compares the
internal ear representations of the reference and the test signal
like PEAQ and POLQA. The internal representations are esti-
mated using a psychoacoustic model [42]. Three-dimensional
(time, frequency, and modulation) internal representations of
the signals are obtained and the cross-correlation coefficient
between the test and reference representations is calculated and
used as a measure of the perceived similarity, i.e. the Perceptual
Similarity Measure (PSM). A regression function based on
subjective data is then applied to map the PSM to the ODG. For
consistency with PEASS (Section II-J), we use the PEMO-Q
version used by PEASS and publicly available from [43].
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G. ViSQOLAudio

ViSQOLAudio [44] is a metric designed for estimating the
quality of general coded audio at 48 kHz developed from Virtual
Speech Quality Objective Listener (ViSQOL) [45], [46], which
was focused on speech signals. Both metrics are based on
a model of the peripheral auditory system to create spectro-
temporal internal representations of the signals called neuro-
grams. These are compared via an adaptation of the structural
similarity index, originally developed for evaluating the quality
of compressed images and then adapted to predict intelligibil-
ity [47]. Version 3 was recently released [48], [49] and it is
here referred to as ViSQOLAudioV3. The declared aim for this
new version is to “fill the blind spots in the training/validation
datasets” so as to have a more general system that would
perform better “in the wild”. This tool internally down-mixes
multi-channel signals to mono.

H. Blind Source Separation Evaluation (BSSEval)

BSSEval [50] is a multi-criteria performance evaluation tool-
box. The toolbox is widely used in the source separation commu-
nity and it was used as main figure of merit in several community-
based evaluation campaigns from 2007 [51] to 2018 [52].
BSSEval projects the estimated source onto the subspace
spanned by all reference source signals, including filtered ver-
sions of those. This filter can be time-variant and its length
can be adjusted by the user. In practice, a time-invariant 512-
tap-FIR-filter is normally used. The estimated signal is thereby
decomposed into target signal starget and components, meant to
be related to different types of error: spatial distortion (espatial),
interference from other sources (einterf) and projection error,
interpreted as artifacts (eartif). Energy-based signal-to-error ra-
tios are computed from these components and expressed in dB.
Two modes are available: sources (only for mono sources) and
source images (i.e. multi-channel sources). We use the images
mode, but we do not consider the spatial distortion, i.e. s′target =
starget + espatial. Source to Distortion Ratio (SDR), Source to
Interference Ratio (SIR) and Source to Artifact Ratio (SAR)
are considered. We use version 3.0 of the Matlab toolbox [53].
We limit the range of the output metrics to [−30 dB, 30 dB].

I. Scale-Invariant (SI) BSSEval

Starting from the premise that BSSEval has “generally been
improperly used and abused, resulting in misleading results”,
modified and simpler definitions for the BSSEval measures were
proposed in [54]. These are called scale-invariant (SI), i.e. SI-
SDR, SI-SAR, SI-SIR, and they are particularly recommended
by their authors for single-channel separation evaluation. The
main difference to BSSEval is the usage of a single coefficient
α to account for scaling discrepancies instead of the full 512-tap
filter. Hence, a broadband scaling is the only forgiven difference
with the reference signal. The measures are defined in a way
for which the following relationship holds: 10−SI-SDR/10 =
10−SI-SIR/10 + 10−SI-SAR/10. We use our own implementation
of the measures, done following the description in [54]. For
stereo signals (not covered in the original paper) we compute α

considering all channels during the projection, as per BSSEval.
Also in this case, we limited the range of the output metrics to
[−30 dB, 30 dB].

J. Perceptual Evaluation Methods for Audio Source
Separation (PEASS)

PEASS [55] was proposed for the perceptual assessment of
separated audio source signals, developed as a perceptually
motivated successor of BSSEval. Perceptual similarity scores
are computed in a two-stage fashion: Error signals reflecting
different types of signal distortion are computed from the esti-
mated source signal similar to BSSEval but in a time-frequency
selective manner using a gammatone filterbank. Differently from
BSSEval, the perceptual salience of the error signals reflecting
target source, interfering source, and artifacts is assessed with
PEMO-Q, i.e. considering the perceptually relevance of the error
signals. For this purpose, a reference signal is generated first for
each error type by subtracting the according error signal from
the estimated source signal. The resulting perceptual similarity
scores (qoverall, qtarget, qinterf, qartif) are mapped using a small neu-
ral network trained with subjective ratings to form measures of
different perceptual audio quality. Herein, Overall-, Artifact- and
Interference-related Perceptual Score (OPS, APS and IPS) are
considered. We use Version 2.0.1 of the PEASS software [43],
where a 2-layer neural network is used for generating the out-
put metrics. This version includes substantial differences with
respect to the original proposal in [55]. The authors report that
these modifications “greatly improve correlation with human
assessments”. Multi-channel signals are natively supported.

K. Log Kurtosis Ratio Perceptually Improved (LKR-PI)

LKR-PI [56] is a measure of perceived musical artifacts (a.k.a.
artificial noise, musical noise, or birdies) caused by spectral
holes or islands. It is based on the measured change in spectral
kurtosis between before and after processing. The change in
spectral kurtosis is measured in a black-box fashion, i.e. without
assumptions on the distribution of the signal power spectra. This
is combined with a perceptually motivated pre-processing. For
the source separation domain, the measurement is performed
only on the leaking interferer, where the spectral kurtosis should
not change. This excludes the portions of the signal where the
target source is active. In the correlation analysis of LKR-PI,
we ignore the signals for which the excluded portion is bigger
than 95% of the total length. About 40% of the signals in the
following evaluation have to be discarded for this domain, while
no signal is excluded for the audio coding domain.

L. The 2f-Model

The 2f-model [16] estimates the perceived quality of separated
source signals, driven by 2 MOVs from PEAQ Basic: ADB
and AvgModDiff1. ADB estimates the amount of noticeable
distortions in units of the just noticeable level difference between
test and reference signal. AvgModDiff1 assesses differences in
the temporal modulation of the loudness envelopes between the
signals. The two MOVs are computed with the PEAQ Basic
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version provided by the McGill University [35], which is pub-
licly available. The parameters for combining these MOVs and
so obtaining the final 2f-model score were newly computed for
this implementation and are available online [57]. This differs
slightly from the original proposal in [16], in which an internal
PEAQ implementation (and so a different set of combining
paramers) was used.

M. SI-SA2f

For BAQ any perceived deviation from the reference signal
is considered a degradation. However, it is often of interest to
assess the presence of artifacts independently from the interferer
reduction, e.g. in applications such as source separation. For this
purpose, we propose to combine the signal decomposition used
in SI-BSSEval and the perceptual model offered by the 2f-model.
We name this novel measure SI-SA2f (i.e. a blend of SI-SAR
and 2f-model) and it has the same aim as (SI-)SAR, APS, and
LKR-PI, i.e. assessing the amount of artifacts independently of
the interferer reduction. Starting from the signal under test y and
the ground-truth sources, the SI-BSSEval signal decomposition
provides the following signals: starget, einterf, eartif, where y =
starget + einterf + eartif. SI-SA2f is obtained by running the 2f-
model on the signal under test y and using starget + einterf as
reference signal. Hence:
� If eartif → 0 then SI-SA2f→ 100.
� If eartif → y (and starget → 0) then SI-SA2f→ 0.

N. Hearing-Aid Audio Quality Index (HAAQI)

HAAQI [58] was designed to predict music quality for indi-
viduals listening through hearing aids. The index is based on
a model of the auditory periphery [59], extended to potentially
include the effects of hearing loss. This is fitted to a dataset
of quality ratings made by listeners having normal or impaired
hearing. The rated signals feature musical content, modified by
different types of processing found in hearing aids. Some of
these processes are common also in audio coding and source
separation. The hearing loss simulation can be bypassed and
the index becomes valid also for normal-hearing people; we use
HAAQI in this normal hearing. An implementation provided by
the original author is used in this investigation. Based on the
same auditory model, the authors of HAAQI also proposed a
speech quality index (HASQI) and a speech intelligibility index
(HASPI): references are given in [58].

O. Methods Based on Deep Learning

All measures reviewed so far originate outside the deep learn-
ing paradigm. DNNs have gained a lot of momentum over the
past few years and DNNs for estimating the perceived audio
quality were proposed. Two main approaches can be identified.
The first one uses a large amount of subjective perceptual scores
to train new DNN-based objective measures [60]. The second
approach is to train DNNs to estimate existing measures (such as
the ones described in the previous sections), e.g. with the aim of
making them completely or partially non-intrusive [61]–[64]. Of
the referenced works, only [63] provides the trained DNNs [65],
referred to as Waveform Evaluation Networks (WEnets). These

are four DNNs, trained to predict PESQ, POLQA, PEMO-Q,
or Short-Time Objective Intelligibility (STOI), without refer-
ence signals. The four networks were here tested (with input
level normalization active, 3-seconds segments, 50% overlap,
and averaging over the estimated scores for one items). The
DNN achieving the best overall performance is reported in the
following. This is the one predicting PESQ and is referred to as
WEnets PESQ.

III. GROUND-TRUTH SUBJECTIVE SCORES

This section describes the datasets of subjective reference
ratings, which will be used as ground truth for the correlation
analysis in the following sections. An overview of these datasets
is given in Table I together with the number of ratings from each
listening test. We consider 7 listening tests in the audio coding
domain (from 2 independent sources) and 7 listening tests in the
source separation domain (also from 2 independent sources).
The ground-truth perceptual scores consist of averages over all
ratings given to each signal.

All the listening tests followed MUSHRA or MUSHRA-like
procedures for assessing intermediate quality of audio signals.
The perceptual scores of the considered listening tests span the
full quality scale, from poor to excellent quality, which is an
important factor to consider while interpreting the correlation
results in the following sections. Further research is required
for domains where only a small portion of the quality scale is
spanned or where only small impairments are observed.

A. Audio Coding

1) Coding Artifacts [66]: In this set of listening tests, 16
subjects assessed the quality of signals that were distorted in a
controlled fashion with different monaural coding artifacts so
to simulate sub-optimal audio coding operating points. Each
distortion was applied on a different set of 8 musical signals,
with no overlap between sets. The following 5 distortions were
considered, each applied with 5 different coarse quality levels:
� Birdies, i.e. warbling artifacts generated by spectral holes

or islands.
� Bandwidth limitation (BW Lim), i.e. low-pass-filtered ver-

sions with an adapted crossover frequency.
� Pre-echoes, i.e. fuzzy onsets, imprecise percussion timing,

and ghost voice for speech signals.
� Tonality or harmonicity mismatch, i.e. simulating a sub-

optimal bandwidth extension, where all spectral content
above a given crossover frequency was replaced by a scaled
copy of the remaining lower part of the spectrum.

� Unmasked noise, i.e. simulating a suboptimal band-
width extension, where all spectral content above a given
crossover frequency is substituted by random noise with
the same spectral envelope.

2) MPEG USAC Verification Test [67]: Three verification
tests were run to assess BAQ of the Unified Speech and Audio
Coding (USAC) [67], where USAC was compared with AMR-
WB+ and HE-AAC v2 at different bit-rates. We consider Test 1
(USAC t1) and Test 3 (USAC t3). Excluding the items used
during the listener training, USAC t1 and USAC t3 contain
the same 24 audio excerpts. USAC t1 considers only the first
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TABLE I
OVERVIEW OF LISTENING TESTS USED FOR THE GROUND-TRUTH PERCEPTUAL SCORES. ONLY EXPERT LISTENERS TOOK PART IN THE LISTENING TESTS (EXCEPT

SISEC18 DATASET INCLUDING ALSO NON-EXPERT LISTENERS). AMOUNT OF RATED SIGNALS AND SYSTEMS ARE GIVEN WITHOUT CONSIDERING ANCHORS AND

REFERENCES. SIGNALS INCLUDE MIXTURES OF SPEECH AND NOISE OR MUSIC, MUSIC WITH SINGING VOICE, OR MUSIC ONLY. THE PERCENTAGE OF ITEMS

WHERE THE TARGET CONTAINS ONLY SPOKEN SPEECH IS GIVEN

channel of each items and the mono signals are encoded at low
bit rates (8-24 kbps). USAC t3 considers the stereo signals and
these are encoded at high bit-rates (32-96 kbps). The 24 items
comprise music-only samples, speech-only samples, and mixed
speech and music samples. Of these, 5 items have no spoken
or singing voice at all, while 7 have spoken speech only. The
low-pass anchor and the reference conditions are not considered,
leaving 9 conditions for USAC t1 and 8 conditions for USAC
t3, all being real-world coding conditions. USAC t1 involved 62
listeners from 13 different test sites with previous training and
post-screening (but not all of them rated all signals). USAC t3
involved 29 listeners from 6 sites.

B. Source Separation

1) PEASS [55]: The PEASS dataset was used for the de-
velopment of PEASS. The dataset contains separated sources
and specifically defined anchor signals including listener ratings
on global quality (i.e. BAQ), preservation of the target source,
suppression of other sources and absence of additional artificial
noise for each audio signal. The following evaluation considers
the ratings regarding the global quality (referred to as PEASS
OPS LT) and the ratings on the absence of additional artificial
noise (referred to as PEASS APS LT).

2) Subjective Evaluation of Blind Audio Source Separation
(SEBASS) [16], [57]: The SEBASS dataset is a collection of five
listening tests on BAQ of separated audio sources from blind and
informed source separation systems. These listening tests are
referred to as: SASSEC, SiSEC08, PEASS BAQ, SiSEC18, and
SAOC DB. In each listening test, except SAOC DB, the listeners
rated separated signals submitted as part of community-based
signal separation evaluation campaigns, as indicated by the
names of the datasets. PEASS BAQ contains the signals from
the PEASS OPS LT but ratings from [16]. The main difference
with PEASS OPS LT in terms of listening test design is that
the listeners of PEASS BAQ were not instructed to rate the
worst item with 0. Instructing to rate the worst item with 0
is not compliant with MUSHRA. SAOC DB contains scores
investigating the influence on quality of a separated source when
an enhanced t/f rendering architecture, as it is offered by MPEG
Spatial Audio Object Coding (SAOC) [68], is used for acous-
tic reproduction [69]. Separated source signals from SASSEC
were used to drive the enhanced rendering architecture and the

resulting signals were evaluated alongside the original separated
signals. The ratings relative to the original separated signals are
not considered as part of the SAOC DB in the following, as
ratings for the same signals are already contained in SASSEC.
As a technology, SAOC is an interesting case where (informed)
source separation and audio coding overlap [68], [70], [71].

IV. CORRELATION ANALYSIS: CRITERIA

In order to assess the performance of the considered objective
measures (Section II), a correlation analysis of the measures
outputs with the subjective scores (Section III) is carried out.
For each listening test, Pearson’s and Kendall’s correlation
coefficients are computed.

All signals from the datasets are re-sampled to 48 kHz or
to 16 kHz for PESQ and WEnets PESQ (highest supported
sampling frequency).

A. Pearson’s and Kendall’s Correlations

Given the ground-truth perceptual scoresX for a set of signals
and the outputs Y from a measure run on the same signals, the
Pearson’s correlation coefficient ρ is computed as:

ρ(X,Y ) =

∑N
i=1(Xi −X)(Yi − Y )√∑N

i=1(Xi −X)2
√∑N

i=1(Yi − Y )2
, (1)

where i serves as index for the signals in the considered listening
test and the over-line indicates the mean over all signals, e.g.
X = 1

N

∑N
i=1 Xi. Pearson’s correlation measures linear corre-

lation between X and Y , i.e. how close their relationship is
to a first-oder polynomial: ρ(X,Y ) = 1 indicates total positive
linear correlation, while ρ(X,Y ) = 0 indicates no correlation at
all andρ(X,Y ) = −1 indicates total negative correlation. As we
are not interested in distinguishing between positive or negative
correlation, but we are interested in how strong the correlation
is, the absolute value of ρ is reported, ranging between 0 and
1. Pearson’s ρ can be significantly smaller than 1 even with
identical ranking between the elements in X and the one of the
elements in Y . For this reason, we consider also Kendall’s rank
correlation τ , which is a measure of the ordinal association (or
ranking):

τ(X,Y ) =
2K

n(n− 1)
, (2)
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TABLE II
AGGREGATED CORRELATION ρ AND τ ′ ON AUDIO CODING AND SOURCE

SEPARATION DATASETS (BAQ) FOR SOME SELECTED MEASURES.
AGGREGATED SCORES > 0.80 ARE SHOWN IN BOLD

where K correponds to the number of concordant pairs minus
the number of discordand pairs, i.e.:

K =

N−1∑
i=1

N∑
j=i+1

c(X,Y, i, j), (3)

where i and j serve as indices for the signals in the listening test
and c(X,Y, i, j) measures the pairs concordance:

c(X,Y, i, j) =

⎧⎪⎨
⎪⎩
1, if (Xi −Xj)(Yi − Yj) > 0

0, if (Xi −Xj)(Yi − Yj) = 0

−1, if (Xi −Xj)(Yi − Yj) < 0

(4)

In order to make the values of τ more comparable with the
ones of ρ, τ is mapped to τ ′ and the absolute value of τ ′ is
reported in the following. The mapping is as follows [72]:

τ ′ = sin
(
τ
π

2

)
. (5)

These two metrics (ρ, τ ′) have the advantage of being scale-
independent, which is desired in our analysis, in which measures
with outputs on different scales are compared. E.g. PEASS
and the 2f-model range from 0 to 100 (MUSHRA scores),
while PEAQ estimates an ODG ranging from −4.0 to 0. Other
metrics (such as the ones suggested in [73], e.g. the Root Mean
Square Error) are not scale-independent and are not adopted
here.

The statistical significance for the correlation coefficients is
also tested (t-test, two-tailed, α = 0.05). Tables III, IV, and
V report an asterisk on the coefficients for which the null
hypothesis could be rejected.

B. Aggregated Scores

A meta-analysis is conducted where the correlation coeffi-
cients for a number of experiments (i.e. a subjective data pool)
are aggregated in one score, referred to as aggregated score.
This aggregation is done by applying the Fisher-z transform on
the correlation coefficients, calculating the mean in this domain
(where the sampling distribution of the resulting coefficients is
approximately normal), and inverting the transformation [74].

Fig. 1. Difference between SI-SA2f (left) and 2f-model (right) in predicting
BAQ for the pre-echoes test. Different symbols are used for the 5 different quality
levels. Dashed lines connect the points corresponding to the same items in the
different quality levels. The reference signals depicted with black squares are
not considered in the calculation of the correlation coefficients.

The coefficients of to the datasets used during the development
of a given measure are not considered in the computation of the
aggregated score for that measure. This is noted by (†) next to
the ignored coefficients in Tables III, IV, and V. The Fisher-z
transform is defined as:

z =
1

2
ln

(
1 + γ

1− γ

)
, (6)

where γ can be either ρ or τ ′. If γ = ρ, the aggregated score
for the Pearson’s correlation is computed, which is noted as ρ.
If γ = τ ′, the aggregated score for the Kendall’s correlation is
computed, noted as τ ′. In Tables III, IV, and V, the objective
measures are displayed in descending order according to ρ.

The statistical significance of the difference between aggre-
gated score couples is also tested in the Fisher-z domain [73].
Also for this statistical test, the two-tailed t value for α = 0.05
is used as significance threshold. The smallest statistically sig-
nificant differences are shown by columns A and B in Tables III,
IV, and V. The aggregated score ρ for measure A (see symbol
reported in column A) is significantly different to the aggregated
score for measure B (same symbol in column B) and it is
not significantly different to the measures listed in between.
Taking as example Table III, the 2f-model ((φ) column A) differs
significantly from SI-SA2f ((φ) column B) and from all other
following measures to the end of the list.

V. CORRELATION ANALYSIS: RESULTS

The following presentation of the results is divided into three
parts considering: BAQ in the audio coding domain (Section V-
A, Table III); BAQ in the source separation domain (Section V-B,
Table IV); artifacts-only ratings in source separation (Section V-
C, Table V). The aggregated scores ρ and τ ′ for some selected
measures are summarized in Table II.

A. Results for BAQ in the Audio Coding Domain (Table III)

In the audio coding domain, the best aggregated scores are
exhibited by the 2f-model (ρ = 0.90, τ ′ = 0.91). SI-SA2f shows
similar aggregated scores (ρ = 0.87, τ ′ = 0.89), but with re-
markable differences, especially for pre-echoes, as shown in
Fig. 1. Considering the aggregated scores, the novel SI-SA2f out-
performs the other artifacts-related measures: (SI-)SAR, APS,
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TABLE III
BAQ: AUDIO CODING DOMAIN. EACH TABLE CELL REPORTS PEARSON’S ρ AND MAPPED KENDALL’S τ ′, GIVEN IN PERCENT RELATIVE TO 1, E.G. 94 STANDS FOR

0.94. AGGREGATED SCORES ρ, τ ′ OVER ALL DATASETS IN THE TABLE ARE ALSO REPORTED. (†) VALUES ARE NOT USED FOR CALCULATING THE AGGREGATED

SCORES (DATASET WAS USED IN THE DEVELOPMENT OF THE MEASURE). COLUMNS A AND B REPORT STATISTICALLY SIGNIFICANT DIFFERENCES, E.G.,
2F-MODEL ((φ) COLUMN A) DIFFERS SIGNIFICANTLY FROM SI-SA2F ((φ) COLUMN B)

and LKR-PI. Both the 2f-model and SI-SA2f were designed in
the source separation domain, but the underlying MOVs were
developed in the audio coding domain.

The lowest correlation coefficients observed for the 2f-model
are for the listening test on tonality mismatch (ρ = 0.65, τ ′ =
0.71), for which also the underlying MOVs (ADB and Win-
ModDiff1) show weak correlation. This is one of the most
challenging listening tests to be predicted in this domain, with
only NMR, PEAQ ODG, and APS showing ρ and τ ′ > 0.80.
Even more challenging is the listening test on unmasked noise,
for which only NMR shows ρ and τ ′ > 0.80.

The four considered PEAQ MOVs are among the top ten
aggregated scores, showing higher aggregated scores than
their combination inside the PEAQ ODG, as also observed
in [21].

Among the top five aggregated scores, three are achieved
by measures not explicitly calibrated for audio coding, i.e. 2f-
model, SI-SA2f, and HAAQI. Ignoring the MOVs, the best
measures from the audio coding domain are met on Rank 8
(PEAQ ODG) and 9 (ViSQOLAudio). The different versions of
POLQA are on Rank 15 (v1), 21 (v3) and 24 (v2).

WEnets PESQ is not able to mimic PESQ in any test.
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TABLE IV
BAQ: SOURCE SEPARATION DOMAIN. EACH TABLE CELL REPORTS PEARSON’S ρ AND MAPPED KENDALL’S τ ′, GIVEN IN PERCENT RELATIVE TO 1. (†) VALUES

ARE NOT USED FOR CALCULATING THE AGGREGATED SCORES. COLUMNS A AND B REPORT STATISTICALLY SIGNIFICANT DIFFERENCES

Finally, non-perceptual, signal-based measures dominate the
lower third of the ranking: (SI-)SDR and (SI-)SAR.

SI-SIR shows no correlation, as expected, since there is no
interference present in this domain. On the other hand, IPS
strongly correlates with some of the artifact types, such as BW
Lim and Pre-echoes. This can be observed in detail in Fig. 2 and
is surprising as no interfering signal is present in this case. As
expected, qinterf is always maximum (= 1.0) for these signals.
PEASS Version 2 takes qinterf, qartif, and qglobal as inputs for the
final 2-layers neural network producing the IPS. Here, qglobal

seems to have a decisive impact on the final IPS, even if IPS
should be only related to the interference.

Over all measures, best aggregated scores are achieved on the
BW Lim dataset, while the worst ones are achieved on Tonality
Mismatch and Unmasked Noise.

B. Results for BAQ in the Source Separation Domain
(Table IV)

In the source separation domain, the best measure is again
the 2f-model (ρ = 0.86 and τ ′ = 0.82), even if with slightly
lower aggregated scores than in the audio coding domain. The
2f-model shows similar performance to ADB, with which no sig-
nificant difference is observed. The other aggregated scores up
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TABLE V
ARTIFACTS ONLY: SOURCE SEPARATION DOMAIN. TASK:“ RATE THE QUALITY

IN TERMS OF ABSENCE OF ADDITIONAL ARTIFICIAL NOISE IN EACH TEST

SIGNAL.” EACH TABLE CELL REPORTS PEARSON’S ρ AND MAPPED KENDALL’S

τ ′, GIVEN IN PERCENT RELATIVE TO 1

to Rank 10 (ρ ≥ 0.69; τ ′ ≥ 0.61) are achieved by measures not
from the source separation domain. Notably, POLQA performs
better in this domain than in audio coding.

It might seem counterintuitive at first, but it is to be expected
that measures designed to assess only artifacts (SI-SA2f, APS,
(SI-)SAR, and LKR-PI) perform better in the audio-coding
domain even if designed for source separation. In both domains,
listeners assessed BAQ and judged any and all perceived dif-
ferences between the reference and the test signals, but only the
signals in the source separation domain present also non-artifact
related differences with the reference, i.e. interferer of varying
level. In other words, assessing only artifacts and assessing
BAQ are the same task in the considered listening tests about
audio coding, while they are very different tasks in source
separation. The best measure of these is again SI-SA2f (ρ = 0.65

Fig. 2. Interference-related Perceptual Score (IPS, left) and 2f-model (right)
predicting BAQ for the listening test BW Lim. No interference signals are present
here, but IPS shows clear correlation with BAQ regardless.

and τ ′ = 0.62), showing particularly low correlation with the
listening tests PEASS OPS LT and PEASS BAQ. For these
listening tests, (SI-)SIR show some significant correlation (up to
ρ = 0.70 and τ ′ = 0.76). This suggests that the different levels
of the interferer strongly contributed to BAQ in these listening
tests.

The non-perceptual, signal-based measuring methods, such as
BSSEval, dominate again the lower third of the ranking. WEnets
PESQ is able to mimic PESQ only for SASSEC and not for all
other listening tests.

C. Results for the Artifacts-Only Scores for the Source
Separation Domain (Table V)

In source separation, it is often of interest to assess the
interferer reduction and the presence of distortions, artifacts,
and colorations independently rather than jointly [55], [75]. This
can give useful diagnostic information, e.g., for supporting the
interpretation of a listening test [76] or for controlling the amount
of interferer reduction such that a desired artifacts-related quality
level is met [77]. As far as perceptual scores assessing exclu-
sively artifacts, only one dataset is available (PEASS APS LT), in
which listeners rated the quality in terms of absence of additional
artificial noise. Conclusions should be corroborated on more
data for this scenario.

APS yields the highest scores, but it was trained on this
dataset. LKR-PI shows no statistically significant difference
with APS, but the dataset was used as validation set for this mea-
sure. SI-SA2f is the first system in the list for which the data was
completely unknown (ρ = 0.64 and τ ′ = 0.67). Furthermore,
the novel SI-SA2f outperforms the remaining artifacts-related
measures (SI-)SAR. Also, SI-SA2f was shown to consistently
outperform APS and the other artifacts-related measures in the
other considered cases (Table III and Table IV). AvgModDiff1
follows with ρ = 0.55 and τ ′ = 0.46. This MOV assesses the
differences in the temporal modulation of the loudness envelopes
of the reference and the test signal. These differences can be an
indicator of the presence of artifacts-related distortions.

All other considered measures either generally assess the
differences between test and reference signal or are tailored to
assess other specific aspects (e.g. interferer). As expected, these
measures perform poorly on this dataset.
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Fig. 3. Aggregated Pearson’s ρ between the considered objective measures
and the ground-truth BAQ scores for the source separation domain and the
audio coding domain. Domain-independent models would lie on the diagonal,
possibly best in the top right corner, i.e. approaching ρ = 1 for both domains.

VI. DISCUSSION

Fig. 3 gives an overview of the aggregated Pearson’s correla-
tion scores observed for BAQ in the source separation domain
against the audio coding domain. It can be observed that the
2f-model is the best measure in both domains, showing a high
degree of domain independence. The 2 MOVs used by the
2f-model perform well also on their own (especially ADB), but
their combination in the 2f-model outperforms their individual
performance. Also PESQ and PEMO-Q ODG show medium-
to-high correlation scores on both domains (0.72 ≤ ρ ≤ 0.77),
hence being possible second best choices. In fact, 2f-model,
ADB, PESQ, and PEMO-Q populate the top right corner of
Fig. 3. These results indicate the possibility of an application
domain independent model. For this purpose, the importance
of two components is highlighted: 1) an accurate perceptual
model (PEAQ MOVs, PESQ, and PEMO-Q are almost all older
than 20 years and still show their validity in most cases) and 2)
varied training data comprising a large variety of different audio
material with different distortion types.

More work is still to be done on both fronts. Purely
signal-based measurement methods without perceptual aspects,
e.g. SDR, perform worst in both domains, but perceptually-
motivated measures also show their limits, especially with more
modern distortion types, e.g. tonality mismatch and unmasked
noise (suboptimal parametric coding of the higher frequency
bands). On the other hand, more research and training data are
needed for improving the correlation performance, especially
in the source separation domain, where the correlation scores
are generally lower. OPS from the PEASS toolkit shows on
the source separation datasets a high correlation only on the
PEASS OPS LT and PEASS BAQ dataset. This may indicate
that the training dataset was too limited or over-fitted. Moreover,
PEMO-Q is used internally by OPS as perceptual model, but
PEMO-Q performs overall significantly better than OPS in the
source separation domain.

Besides 2f-model, ADB, PESQ, and PEMO-Q, the perfor-
mance of the remaining measures show a certain domain depen-
dence or medium to low correlation in general. Some (e.g. PEAQ
ODG) reveal lower performance on the unknown domain. Sur-
prisingly, others achieve better performance on the unknown
domain (e.g. POLQA).

When assessing exclusively the perceptual relevance of arti-
facts, SI-SA2f seems to be the most promising measure. Com-
pared to the measures performing best in this task (APS and
LKR-PI, Table V), SI-SA2f was not calibrated or validated on
this dataset and showed better robustness on the other datasets
(Table III and IV). More test data is needed, however, for this
special case.

Similar but not identical results were observed for the 2f-
model and SI-SA2f in the audio coding experiments. Only
artifacts-related degradations are present in the listening tests
for this domain. Intuition would suggest that the results should
be identical for the 2f-model and SI-SA2f. However, the two
measures rely on different definitions of artifacts. The 2f-model
leverages a perceptually motivated definition as per PEAQ
MOVs, which is a well established approach in the audio coding
community. SI-SA2f uses the purely signal-based definition of
BSSEval, which is a popular approach in the source separation
community. Here, the artifacts are defined as the projection
error when trying to explain the separated target source sig-
nal by a linear projection of the original source signals onto
the signal mixture. Everything that cannot be explained by a
filtered version of the original source signals is considered as
artifact. This is not necessarily congruent with the perceptual
definition of artifacts and highlights the importance of a more
perceptually-motivated signal decomposition.

Finally, WEnets PESQ showed very low correlation in al-
most all experiments. It has to be noted that WEnets PESQ
operates without reference signal, so the task for this mea-
sure is significantly more difficult than for all other measures.
The original work reports Pearson correlation of 0.97 with
PESQ [63], where training and testing signals were speech items
processed by different speech codecs followed by noise suppres-
sion. This type of material fits PESQ original domain, but not
many of our experiments, where, e.g. also music is present and
very different processes. This domain mismatch brings much
more dramatic consequences for the purely data-driven method
(WEnets PESQ) with respect to the perceptually-motivated steps
of PESQ.

VII. CONCLUSION

Aggregating the correlation coefficients from 13 listening
tests including a range of application domains and distortions,
the possibility of a domain-independent model for predicting
Basic Audio Quality (BAQ) has been shown. However, only
a very limited number of the considered state-of-the-art tools
exhibit domain independence along with high correlation scores.
The source separation domain appears to be a particularly chal-
lenging application domain, with only two measures showing
aggregated scores ≥ 0.80. For this application domain both the
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interferer level and artifacts and colorations contribute to the
final BAQ.

The 2f-model showed the best aggregated correlation for
both the audio coding domain (ρ = 0.90, τ ′ = 0.91) and the
source separation domain (ρ = 0.86, τ ′ = 0.82). This model
uses perceptual features from the audio coding domain devel-
oped more than 20 years ago as part of PEAQ. Their combination
is trained with data from the source separation domain. This mix
of domains, the validity of the underlying perceptual model,
and the varied training data appear to be successful strategies in
addressing a big range of audio quality degradations. The main
output from PEAQ itself shows good correlation only for the
domain on which it was trained and it is also often outperformed
by the individual underlying features. This suggests that the
auditory models themselves still hold their validity (with the
only exception of parametric bandwidth extension), while more
heterogeneous data is needed for training and calibration. The
same conclusion can be drawn when analyzing OPS, which
performs well only on the signals on which it was trained.

Besides the 2f-model, also ADB, PESQ, and PEMO-Q show
similar correlation scores on both domains along with medium-
to-high correlation (0.72 ≤ ρ ≤ 0.77), as it can also be observed
in Fig. 3.

DNN-based methods are still in the early phase of develop-
ment, mostly because of the difficulty in collecting large amount
of ground-truth subjective scores. Training DNNs to predict the
output of an existing measure (e.g. so to make it non-intrusive)
is an alternative that still needs to be proven robust in the actual
application.

If only artifacts and colorations are to be assessed, regardless
of the interferer level, the most promising measure seems to be
SI-SA2f, which is a novel measure based on the 2f-model and
preceded by a BSSEval-based signal decomposition.
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