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Abstract—In this paper, a pitch-adaptive waveform generative
model named Quasi-Periodic WaveNet (QPNet) is proposed to
improve the limited pitch controllability of vanilla WaveNet (WN)
using pitch-dependent dilated convolution neural networks (PD-
CNNs). Specifically, as a probabilistic autoregressive generation
model with stacked dilated convolution layers, WN achieves high-
fidelity audio waveform generation. However, the pure-data-driven
nature and the lack of prior knowledge of audio signals degrade
the pitch controllability of WN. For instance, it is difficult for
WN to precisely generate the periodic components of audio signals
when the given auxiliary fundamental frequency (F0) features are
outside the F0 range observed in the training data. To address
this problem, QPNet with two novel designs is proposed. First, the
PDCNN component is applied to dynamically change the network
architecture of WN according to the given auxiliary F0 features.
Second, a cascaded network structure is utilized to simultaneously
model the long- and short-term dependencies of quasi-periodic
signals such as speech. The performances of single-tone sinusoid
and speech generations are evaluated. The experimental results
show the effectiveness of the PDCNNs for unseen auxiliary F0

features and the effectiveness of the cascaded structure for speech
generation.

Index Terms—Pitch controllability, pitch-dependent dilated
convolution, quasi-periodic structure, vocoder, WaveNet.

I. INTRODUCTION

RAW waveform generation of audio signals like speech and
music is a commonly used technique as the core of many
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applications such as text-to-speech (TTS), voice conversion
(VC), and music synthesis. However, because of the extremely
high temporal resolution (sampling rates are usually higher than
16 kHz) and the very long term dependence of audio signals,
directly modeling the raw waveform signals is challenging.
To overcome these difficulties, in conventional synthesis tech-
niques, audio signals are usually encoded into low temporal res-
olution acoustic features and then audio waveforms are decoded
on the basis of these acoustic features. The analysis-synthesis
(encoding-decoding) technique is called the vocoder [1]–[3],
which is often built on a source-filter [4] speech production
model including source excitations and vocal tracts. However,
because of the oversimplified assumptions of the speech gen-
eration mechanism imposed on conventional vocoders such as
STRAIGHT [5] and WORLD [6], the lost temporal details and
phase information lead to the serious quality degradation of these
conventional vocoders.

Owing to the recent development of deep learning, many
neural-based audio generation models [7]–[18] have been pro-
posed to generate raw audio waveforms without the various as-
sumptions imposed on conventional vocoders. That is, advanced,
and deep network architectures directly model the long-term
dependence of high-temporal-resolution audio waveforms. In
this paper, we focus on WaveNet (WN) [7], which is one of the
state-of-the-art audio generation models and has been applied
to a variety of applications such as music generation [19],
text-to-speech (TTS) [20], [21], speech coding [22], speech
enhancement [23], [24], and voice conversion (VC) [25]–[29].
The main core of WN is an autoregressive (AR) network mod-
eling the probability distribution of each audio sample condi-
tioned on auxiliary features and a specific number of previ-
ous samples called a receptive field. To handle the very long
term dependence of audio signals, a stacked dilated convolu-
tion network (DCNN) [30] structure is utilized to efficiently
extend the receptive field. Furthermore, the WN vocoder [31]–
[34], which conditions WN on the acoustic features extracted
by conventional vocoders to recover the lost information,
achieves significant speech quality improvements for speech
generation by replacing the synthesis process of traditional
vocoders.

Although WN attains excellent performance in high-fidelity
speech generation, the fixed architecture is inefficient and the
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lack of prior audio-related knowledge limits the pitch con-
trollability of the WN vocoder. Specifically, because of the
quasi-periodicity of speech, each sample may have a specific
dependent field related to its periodicity instead of a fixed re-
ceptive field that presumably includes many redundant previous
samples. The requirement of a long receptive field for model-
ing speech dependency will lead to a huge network and high
demands for computation power. The data-driven architecture
without prior speech knowledge only implicitly models the
relationship between the periodicity of waveform signals and the
auxiliary fundamental frequency (F0) features, which may not
explicitly generate speech with the precise pitch corresponding
to the auxiliary F0 values, especially in an unseen F0 case.
However, pitch controllability is an essential feature for the
definition of a vocoder.

To address these problems, inspired by the source-filter
model [4] and code-excited linear prediction (CELP) codec [35],
[36], we propose Quasi-Periodic WaveNet (QPNet) [37], [38]
with a pitch-dependent dilated convolution neural network (PD-
CNN). Specifically, the generation process of periodic signals
can be modeled as the generation of a single pitch cycle signal
(short-term correlation) and then extending this single cycle sig-
nal to form the whole periodic sequences on the basis of pitches
(long-term correlation). As a result, we develop QPNet including
two cascaded WNs with different DCNNs. Vanilla WN with
fixed DCNNs is the first stage, which is used to model the
relationship between the current sample and a specific segment
of the nearest previous samples, and the second stage utilizes
the PDCNNs to link the correlations of the relevant segments in
the current and previous cycles. The Pitch-adaptive architecture
allows each sample to have an exclusive receptive field length
corresponding to the auxiliary F0 features and improves the
pitch controllability by introducing the periodicity information
into the network. The proposed QPNet with the improved pitch
controllability is more in line with the definition of a vocoder.
Furthermore, a more compact network size while achieving
acceptable quality similar to that of vanilla WN is feasible for
QPNet because of the more efficient way the receptive field is
extended, which is highly related to the modeling capability.

The paper is organized as follows. In Section II, we review
the speech manipulation of STRAIGHT and WORLD and the
development of recent neural-based speech generation models.
In Section III, a brief introduction to WN is presented. In
Section IV, we describe the concepts and details of QPNet.
In Sections V and VI, we report objective and subjective ex-
perimental results to evaluate the effectiveness of QPNet for
generating high-temporal-resolution periodic sinusoid signals
and quasi-periodic speech, respectively. Finally, the conclusion
is given in Section VII.

II. RELATED WORK

A. Speech Manipulation of STRAIGHT and WORLD

The human speech production process is usually described
as a source-filter mode [4]. An excitation (source) signal is
first generated by vocal fold movements (for voiced sound) or
constriction and closure of specific points along the human vocal

tract (for unvoiced and plosive sounds). Then the generated-
excitation signal is modulated by the resonance of the vocal and
nasal tracts and transferred by the lips. For a discrete-time digital
system, the excitation signal is represented as a digital signal,
and the spectral properties of the vocal and nasal tracts resonance
and the lip radiation are represented as a digital filter. The digital
source signal excites the digital filter to generate speech signals.

To flexibly manipulate speech components such as pitch
and timbre, many source-filter vocoder techniques have been
proposed. However, the spectral estimation of early approaches
such as linear predictive coding (LPC) vocoder [39], [40] are
susceptible to signal periodicity [41]. Specifically, getting a
stable spectral envelope regardless of the windowing temporal
positions is difficult for the voiced speech analysis. The time-
variant pitch and natural fluctuations make the spectral analysis
suffer from the periodicity interferences because of the fixed
window length.

To address this problem, STRAIGHT [5] and WORLD [6]
have been proposed. The STRAIGHT vocoder adopts a pitch-
synchronized mechanism [42] with phasic interference reduc-
tion and oversmoothing compensation to extract stable spectra,
which are highly uncorrelated to the instantaneous F0. Specif-
ically, when extracting features, the window of each frame has
a different length according to the F0 of this frame to avoid the
periodicity interferences from the voiced speech. Furthermore,
as an improved and real-time version, the WORLD vocoder also
adopts the pitch-synchronized concept for its spectral analy-
sis [43].

Although the STRAIGHT and WORLD vocoders achieve
high flexibility of speech manipulation, the lost details and
phase information problems cause speech quality degradation.
The recent neural vocoders greatly improve speech quality but
suffer from the limited flexibility of speech manipulation. As
a result, we propose a pitch-adaptive component, PDCNN, and
a cascaded structure to improve the pitch controllability of the
WN vocoder while trying to keep a similar speech quality. The
proposed QPNet is also conditioned on the WORLD-extracted
features, and we expect QPNet is capable to manipulate pitch
like the WORLD vocoder.

B. Neural Vocoder

Recent mainstream speech generation techniques use AR
models such as WN [7] and SampleRNN [8] to model the very
long term dependence of speech signals with high temporal reso-
lution. For instance, vanilla WN adopts linguistic andF0 features
to guide the network to generate desired speech waveforms.
However, in contrast to the linguistic and F0 auxiliary features,
the WN vocoder [31]–[34] adopts acoustic features as the auxil-
iary features for a more efficient training that requires much less
training data. Many acoustic features have been applied to these
AR vocoders such as the mel-cepstral coefficients (mcep) with
band aperiodicity (ap) andF0 features, which are extracted from
WORLD [31]–[33] or STRAIGHT [44], and mel-spectrograms
with F0 features [34].
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Furthermore, to achieve acceptable speech quality, the basic
AR vocoders usually require a huge network for the long recep-
tive field. However, although the speech qualities of these basic
AR vocoders are significantly higher than those of the traditional
vocoders, the AR mechanism and the complicated network
structure make these AR vocoders difficult to generate speech in
real-time [7], [8]. To tackle this issue, the authors of FFTNet [9]
and WaveRNN [10] proposed more compact AR vocoders with
specific network structures based on speech-related knowledge
and efficient computation mechanisms. Moreover, AR models
generating glottal excitation [45], [46] and linear predictive
coding (LPC) residual [11] signals have been proposed to ease
the burden of modeling speaker identity and spectral informa-
tion. Because of the speaker-independent characteristic of these
source signals, the requirements for the network capacity and
speaker adaptation of these glottal vocoders and LPCNet are
greatly reduced.

In addition, flow-based [47], [48] non-AR vocoders have been
proposed for efficient parallel generations. For example, parallel
WaveNet [12] and ClariNet [13] with inverse autoregressive
flow (IAF) [49] and WaveGlow [14] and FloWaveNet [15] with
Glow [50] model an invertible transformation between a simple
probability distribution of noise signals and a target distribution
of speech signals for generating waveforms from a known noise
sequence.

Non-AR vocoders with mixed sine-based excitation inputs
produced on the basis of F0 and Gaussian noise [16], [17]
or periodic sinusoid signals and aperiodic Gaussian noise in-
puts [18] have also been proposed to simultaneously generate
whole waveforms while attaining pitch controllability via the
manipulation of the periodic inputs. However, to synchronize the
phases of generated and ground truth waveforms during training,
these models need a handcrafted design of the input signal or
a GAN [51] structure, which increases the complexity of the
models.

Instead of the carefully designed inputs and specific net-
works, we proposed a simple module PDCNNs, which can be
easily applied to any CNN-based generative model to improve
its audio signal modeling capability by introducing pitch in-
formation into the network. We applied PDCNNs to WN to
develop a pitch-dependent adaptive network QPNet [37], [38]
for speech generation with arbitrary F0 values. In this paper, we
further evaluate the periodical modeling capability of QPNet
with PDCNNs for nonspeech sinusoid signals generation and
comprehensively explore the effectiveness of the QPNet model
with different cascade orders, network structures, and adaptive
dilation sizes.

III. WAVENET FOR SPEECH GENERATION

A. Wavenet

Because an audio waveform is a sequential signal with a strong
long-term dependency, WN [7] is used to model audio signals in
an AR manner that predicts the distribution of each waveform
sample on the basis of its previous samples. The conditional

probability function can be formulated as

P (x) =

T∏
t=1

P (xt | xt−1, . . . , xt−r) (1)

where t is the sample index, xt is the current audio sample, and
r is a specific length of the previous samples called a receptive
field. Instead of the general recurrent structure for AR modeling,
WN applies stacked convolution neural networks (CNNs) with
a dilated mechanism and a causal structure to model the very
long term dependence and causality of audio signals. Since the
modeling capability of WN is highly related to the amounts of
the previous samples taken into consideration for predicting the
current sample, the dilated mechanism improves the efficiency
of extending the receptive field. Moreover, a categorical distri-
bution is applied to model the conditional probability whereas
audio signals are encoded into 8 bits by using the μ-law al-
gorithm. The categorical distribution is flexible to model an
arbitrary distribution of target speech. Taken together, the data
flow of WN is as follows: previous audio samples pass through
a causal layer and several residual blocks with DCNNs, gated
structures, and residual and skip connections. Specifically, the
gated structure for enhancing the modeling capability of the
network is formulated as

z(o) = tanh
(
Vf,k ∗ z(i)

)
� σ

(
Vg,k ∗ z(i)

)
(2)

where z(i) and z(o) are the input and output feature maps of the
gated structure, respectively.V is a trainable convolution filter, ∗
is the convolution operator, � is an element-wise multiplication
(Hadamard product) operator, σ is a sigmoid function, k is the
layer index, and f and g are the filter and gate, respectively.
Finally, the summation of all skip connections is processed by
two ReLU [52] activations with 1× 1 convolutions and one
softmax layer to output the predicted distribution of the current
audio sample.

Furthermore, to guide the WN model to generate desired
contents, the vanilla WN is conditioned on not only previous
samples but also linguistic and F0 features. The conditional
probability is modified as

P (x | h) =
T∏

t=1

P (xt | xt−1, . . . , xt−r,h) (3)

where h is the vector of the auxiliary features (linguistic and
F0 features), and the gated activation with auxiliary features
becomes

z(o) = tanh
(
V

(1)
f,k ∗ z(i) + V

(2)
f,k ∗ h′

)

� σ
(
V

(1)
g,k ∗ z(i) + V

(2)
g,k ∗ h′

)
(4)

where V (1) and V (2) are trainable convolution filters, and h′

is the temporal extended auxiliary features, whose temporal
resolution matches to the speech samples.

B. WaveNet Vocoder

Many conventional vocoders [5], [6] are built on the basis
of a source-filter architecture [4], which models the speech
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generation process as a spectral filter driven by the source exci-
tation signal. However, the oversimplified assumptions, such as
time-invariant linear filters and stationary Gaussian processing
make the vocoders lose some essential information of speech
such as phase and temporal details, and it causes marked qual-
ity degradation. To address this problem, the authors of [31],
[32] proposed the WN vocoder, which conditions WN on the
auxiliary acoustic features extracted by a conventional vocoder
to generate raw speech waveforms. That is, the WN vocoder
replaces the synthesis part of conventional vocoders to syn-
thesize high-fidelity speech on the basis of the prosodic and
spectral acoustic features extracted by conventional vocoders.
Furthermore, conditioning WN on the acoustic features greatly
reduces the requirements of the amounts of the training data,
and it makes WN more tractable.

C. Problems in Using WaveNet as a Vocoder

As a vocoder, WN achieves high speech quality, but it lacks
pitch controllability, which is an essential feature of conven-
tional vocoders. Specifically, the WN vocoder has difficulties
in generating speech with precise pitch conditioning on the
F0 values that are not observed in the F0 range of training
data [37]. Even though theF0 and spectral features are within the
observed range, an unseen combination of the auxiliary features
still markedly degrades the generation performance of the WN
vocoder [25]–[29]. The possible reasons for this problem are that
WN lacks prior speech knowledge and does not explicitly model
the relationship between the auxiliary F0 feature and pitch. The
defect makes the WN vocoder inconsistent with the definition
of a vocoder. Moreover, since the fixed WN architecture as-
sumes each sample has the same length of the receptive field,
the inefficient receptive field extending may lead to the costly
requirements of a huge network and lots of computation power.

IV. QUASI-PERIODIC WAVENET

To improve the efficiency of receptive field extension and pitch
controllability, QPNet introduces the prior pitch information into
WN by dynamically changing the network structure according
to the auxiliary F0 features. As shown in Fig. 1, the main
differences between WN and QPNet are the pitch-dependent
dilated convolution mechanism handling the periodicity of audio
signals and the cascaded structures simultaneously modeling the
long- and short-term correlations. The pitch filtering in CELP,
which is the basis of the PDCNN, and the details of QPNet are
described as follows.

A. Pitch Filtering in CELP

Fig. 2 shows a flowchart of the CELP system [36], which
includes an innovation signal codebook and two cascaded time-
varying linear recursive filters. First, each innovation signal
in the codebook is scaled and passed to the pitch filter (long
delay) to generate the pitch periodicity of the speech, and
then the linear-prediction filter (short delay) restores the spec-
tral envelope to obtain the synthesized speech. Secondly, the
mean-square errors between the original and synthesized speech

Fig. 1. Quasi-Periodic WaveNet vocoder architecture.

Fig. 2. Code-excited linear prediction system.

signals are weighted by a linear filter to attenuate/amplify fre-
quency components that are less/more perceptually important.
Finally, the optimum innovation signal and the scaled factor are
determined by minimizing the weighted mean-square error. To
be more specific, the pitch-filtering process can be formulated
as

c
(o)
t = g × c

(i)
t + b× c

(o)
t−td

(5)

where c(i) is the input, c(o) is the output, td is the pitch delay,
g is the gain, and b is the pitch filter coefficient. This periodic
feedback structure handling the periodicity of signals is the basis
of the proposed PDCNN, and the cascaded recursive structure
modeling the hierarchical correlations is also applied to QPNet.

B. Pitch-Dependent Dilated Convolution

The main idea of the PDCNN is that since audio signals
have the quasi-periodic property, the network architecture can be
dynamically adapted using the prior pitch information. Specifi-
cally, the dilated convolution can be formulated as

y
(o)
t = W (c) × y

(i)
t +W (p) × y

(i)
t−d, (6)

where y
(o)
t is the output of the DCNN layer at sample t, and

y
(i)
t is the input of the DCNN layer at sample t. The trainable

1× 1 convolution filters W (c) and W (p) are respectively for
the current and previous samples. The dilation size d is constant
for the vanilla DCNN but time-variant for the PDCNN.

To enlarge the receptive field length, the vanilla WN utilizes
stacked chunks including DCNN layers with different dilation
sizes. Each chunk contains a specific number of DCNN layers,
and each layer (except the first layer) twice the dilation size of
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Fig. 3. Fixed and pitch-dependent dilated convolution.

Fig. 4. Sampling sparsity of different dense factor a.

the last one. The dilation sizes of the first layers of the chunks
are set to one, so the dilation size in each chunk exponentially
increases with base two. As shown in Fig. 3, the dilation sizes of
PDCNN layers in the stacked adaptive chunks of QPNet follow
the same extension rule but multiplied by an extra dilated factor
to match the instantaneous pitch of the current sample. The pitch-
dependent dilated factor Et is derived from

Et = Fs/(F0,t × a), (7)

where Fs is the utterance-wise constant sampling rate, F0,t is
the fundamental frequency with speech sample index t, and a
is a hyperparameter called the dense factor, which indicates
the number of samples in one cycle taken into consideration
as shown in Fig. 4 when predicting the current sample.

Specifically, the grid sampling locations of each DCNN is
controlled by the dilation size d, and the dilation size d′ of each
PDCNN is controlled by the dilated factor Et as

d′ = Et × d. (8)

By setting the F0 values and the dense factor a, the network
can control the sparsity of the CNN sampling grids to attain
the desired effective receptive field length. As shown in Fig. 5,
since the sinusoids in Figs. 5 (a) and (b) have the same dense

Fig. 5. Effective receptive fields with different F0 values.

factors and sampling rates, even though the frequencies of them
are different, the numbers of cycles in their effective receptive
fields are still the same. The difference is the temporal sparsity
of the effective receptive field. That is, fixing the number of
sampling grids in each cycle by the dense factor and changing the
gaps between the grid sampling locations by the instantaneous
F0 values lead to pitch-dependent and time-variant effective
receptive field lengths.

In summary, the dilated factor Et is the enlarged ratio of the
effective receptive field length to the receptive field length, and
the ratio of the receptive field length to the dense factor a is the
number of past cycles in the effective receptive field. With the
pitch-dependent structure, each sample has an exclusive effective
receptive field length, which is efficiently enlarged according to
the auxiliary F0 values. In addition, since speech has voiced and
unvoiced segments, we have tried to set Et to one or the value
calculated by interpolating the F0 values of the adjacent voiced
segments for the unvoiced segments, and the results in Section VI
show that QPNet with the continuous Et from interpolated F0

values achieves higher speech quality.

C. Cascaded Autoregressive Network

Most audio signals are sequential and quasi-periodic, so the
audio generative models usually simultaneously model the long-
term (periodicity) and short-term (aperiodicity) correlations of
audio samples. As shown in Fig. 1, the proposed QPNet utilizes
a cascaded architecture that contains a fixed and an adaptive
(pitch-dependent) macroblocks. The fixed macroblock models
the sequential relationship between the current sample and a
segment of the most recent samples. The adaptive macroblock
models the periodic correlations of the current and related
past segments in the successive cycles. Specifically, the fixed
macroblock (macroblock 0 in Fig. 1) of the QPNet is com-
posed of several fixed chunks. Each fixed chunk consists of
several stacked residual blocks with DCNNs (fixed blocks),
conditional auxiliary features, gated activations, and residual
and skip connections, similarly to the vanilla WN. The adap-
tive macroblock (macroblock 1 in Fig. 1) also contains sev-
eral adaptive chunks, which also have similar stacked resid-
ual blocks but with PDCNNs (adaptive blocks). In summary,
the cascaded structure of QPNet presumably mimics a similar
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TABLE I
ARCHITECTURE OF SINUSOIDAL GENERATIVE MODEL

1Causal and dilated CNN
2 1× 1 CNN in residual block
3 1× 1 CNN in output layer

generative procedure of CELP for quasi-periodic audio signals
generation.

V. PERIODIC SIGNAL GENERATION EVALUATION

To evaluate pitch controllability of the proposed QPNet with
the PDCNNs, we first evaluated the generation quality of simple
periodic but high-temporal-resolution signals. That is, the train-
ing data of QPNet were sine waves within a specific frequency
range and the corresponding F0 values. In the test phase, QPNet
was conditioned on an F0 value and a small piece of the related
sine wave for the initial receptive field to generate sinusoid
waveforms.

A. Model Architecture

In this section, to evaluate the effectiveness of the PDCNN,
we compared three types of QPNet with two types of WN in
terms of sine wave generation. Specifically, in addition to the
basic QPNet, because a sinusoid is a simple periodic signal that
can be modeled well by a pitch-dependent structure, the QPNet
model with only adaptive residual blocks (pQPNet) was taken
into account. The QPNet model with the reverse order of the
fixed and adaptive macroblocks (rQPNet) was also considered.
Moreover, a compact-size WN (WNc) and a full-size WN (WNf)
models were evaluated as the references.

The details of the network architectures are shown in Table I.
Since the numbers of CNN channels were the same for all
models, the model sizes were proportional to the numbers of the
chunks and residual blocks. For instance, the WNf contained 3
chunks and each chunk included 10 residual blocks, so the model
size of the WNf was larger than that of the WNc, which only
had 4 chunks with 4 residual blocks in each chunk. The learning
rate was 1× 10−4 without decay, the minibatch size was one,
the batch length was 22 050 samples, the training epochs were
two, and the optimizer was Adam [53] for all models.

B. Evaluation Setting

Because the pitch range of most speech is around 80–400 Hz,
the training sine waves were set to be in the same range with a
step size of 20 Hz (ex: 80, 100, 120 ... Hz). Each model had a
related one-dimensional F0 value as its auxiliary feature. Since

the single-tone generation was evaluated, the auxiliary features
of all samples in one utterance were the same. To prevent the
networks from suboptimal training and lacking the generality
for sinusoid generations with unseen F0 values, both sinusoid
and auxiliary signals were mixed with white noise.

The signal-to-noise ratio (SNR) of the sine waves was around
20 dB, and the noise of the auxiliary feature was a random
sequence between -1 and 1. Random initial phases were also
applied to the sinusoid signals. The number of training utterances
was 4000, and each utterance was one second. The ground truths
were clean sinusoid signals, so each model was trained as a
denoising network. The test data included 20 differentF0 values,
which were 10–80 Hz with a step size of 10 Hz, 100–400 Hz
with a step size of 100 Hz, and 450–800 Hz with a step size
of 50 Hz, and each F0 value contained 10 test utterances with
different phase shifts. Both training and test data were encoded
using the μ-law into 8 bits, and the sampling rate was 22 050 Hz.

In the test stage, the initial receptive field of each network
was fed with the noisy test sine wave, and the length of the
generated sinusoid was set to 1 s. The test data were divided into
10–40 Hz (under 1/2L), 50–80 Hz (above 1/2L), 100–400 Hz
(inside), 450–600 Hz (under 3/2U ), and 650–800 Hz (above
3/2U ) subsets. L is the lower bound and U is the upper bound
of the inside F0 range, which was the F0 range of the training
data. As a result, the under 1/2L and above 1/2L F0 ranges
are the lower outside F0 range, and the under 3/2U and above
3/2U F0 ranges are the higher outside F0 range.

C. Performance Measurement

The quality of each generated waveform was evaluated on the
basis of the SNR and the root-mean-square error (RMSE) of
the log F0 value measured from the peak of the power spectral
density (PSD). Specifically, because the SNRs are related to
the noisy degrees of the generated signals, the SNR values will
indicate the generated signals are clear sinusoids or not. Since
it was a single-tone sinusoid generation test, the high log F0

RMSEs might imply that the generated signals include much
harmonic noise or the frequencies of these signals are incorrect.
In other words, the generated signal with a high SNR and a high
RMSE might be a clear sinusoid with an inaccurate frequency,
the generated signal with a low SNR and a high RMSE might be
a noisy sinusoid with much harmonic noise, and the generated
signal with a very low SNR might be a noise-like signal.

D. Dense Factor

To explore the efficient dense factor value of the PDCNNs,
the sinusoid generative qualities of the pQPNet models with
different dense factors were evaluated. Since the chunk and
block numbers of the pQPNets were set to four, the length of
the receptive fields was 61 samples. That is, the receptive fields
included from 61 past cycles to less than one cycle according
to the dense factors from 20 to 26. Moreover, in contrast to
containing a fixed number of past cycles for sinusoids with
arbitrary pitch, the receptive fields of the WNf contained 11
past cycles for 80 Hz sinusoids and 56 past cycles for 400 Hz
sinusoids when the sampling rate was 22 050 Hz. As a result,
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TABLE II
SNR (DB) OF SINUSOID GENERATION WITH DIFFERENT DENSE FACTORS

TABLE III
LOG F0 RMSE OF SINUSOID GENERATION WITH DIFFERENT DENSE FACTORS

the effective receptive fields of the pQPNet with a dense factor 2
already contained a comparative number of the past cycles as the
WNf. Since the pQPNets introduced prior pitch knowledge into
the network, the required number of the past cycles for modeling
the sinusoids might be less than that of the WNf.

The number of training epochs of the pQPNet models with
dense factors from 22 to 26 was two. For dense factors of 20 and
21, pQPNet required at least 10 training epochs to attain stable
results. As shown in Tables II and III, the network with the dense
factor of 20 was very unstable even when already trained with
10 epochs. The results indicate that although the small dense
factor made the network have a long effective receptive field, the
overbrief information of each past cycle might make it difficult to
model signals well. For the inside and lower outside F0 ranges,
the networks with dense factors greater than 21 achieved high
SNR values. However, the performance of the network with a
dense factor of 26 markedly degraded when the auxiliary F0

values were in the higher outside F0 range. The possible reason
is that the PDCNNs of the network degenerated to DCNNs
because the Et became one when the dense factor was 26 and
the F0 values were higher than 350 Hz. Moreover, the log F0

RMSE results show a similar tendency to the SNR results. The
networks with dense factors of 20 and 26 achieved the lowest
pitch accuracies while the networks with dense factors of 22 and
23 achieved the highest pitch accuracies.

Furthermore, according to the Nyquist-Shannon sampling
theorem [54], a signal can be perfect reconstructed if the
bandwidth of the signal is less than the halved sampling rate.
Therefore, the dense factor 21 is theoretically enough to model
the periodic signals. The instability and markedly high RMSE
results of the pQPNet with dense factor 20 also confirm this
theory. However, in signal processing, oversampling usually
improves resolution and SNR, and relaxes filter performance
requirements to avoid aliasing. The higher SNR and lower
RMSE of the pQPNets with dense factor 22 and 23 have shown

TABLE IV
SNR (DB) OF SINUSOID GENERATION WITH DIFFERENT MODELS

TABLE V
LOG F0 RMSE OF SINUSOID GENERATION WITH DIFFERENT MODELS

this tendency, and the performance degradation of the pQPNet
with dense factor 26 is caused by the PDCNN degeneration
issue, which is irrelevant to the sampling theorem.

In conclusion, the PDCNN with an appropriate dense factor
was found to be robust against the conditions in the outside
F0 range, especially in the lower outside F0 range conditions.
For the higher outside F0 range conditions, the networks still
had acceptable quality until the F0 value exceeded 600 Hz.
Therefore, we set the dense factors to 23 for the models in
the following evaluations because of the balance between the
generative performance and the number of past cycles covered
in its receptive fields.

E. Network Comparison

As shown in Tables IV and V, the PDCNNs significantly im-
proved pitch controllability. The PDCNNs made the QP-series
networks achieve much higher SNR and lower log F0 RMSE
values than the same-size WNc network in both higher and
lower outside F0 ranges, and it shows the effectiveness of the
PDCNNs to enlarge the effective receptive field length. Although
the full-size WNf attained similar SNRs to the pQPNet, the
log F0 RMSE of the WNf was much higher in the outside F0

ranges. The results indicate that the WNf tended to generate the
signals in the insideF0 range instead of being consistent with the
auxiliary F0 feature. Therefore, the generated waveform of the
WNf might still be a perfect sinusoid signal but with an incorrect
pitch. The results also imply that the PDCNNs improved the
periodical modeling capability using prior pitch knowledge.

In addition, because of the simple periodic signal generation
scenario, the pQPNet with the longest effective receptive fields
and the pure PDCNN structure attained the best generative
performance among all QP-series networks. The QPNet and the
rQPNet showed some quality degradations when the auxiliary
F0 values were far away from the inside F0 range, but they still
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Fig. 6. Waveform and PSD of 500 Hz sinusoid generated by pQPNets with
dense factors 23 ((a), (b)), 20 ((c), (d)), and 26 ((e), (f)).

outperformed the WNc in both measurements and the WNf in
terms of log F0 RMSE.

F. Discussion

In this section, several sinusoid generation examples are
presented for looking into the physical phenomena behind the
objective results. As shown in Figs. 6 (a) and (b), the pQPNet
with a dense factor 23 generated clear sine waves with an SNR
23.7 dB when conditioned on an outside auxiliary value of
500 Hz (under 3/2U ). The PSD of this generated signal has
a peak value of 502 Hz, which is very close to the ground truth,
and the log F0 RMSE is less than 0.01. However, the results
in Figs. 6 (c) and (d) show that the sine wave generated by the
pQPNet with a dense factor 20 includes much harmonic noise,
which results in a low SNR. Even if the generated sine wave
is still like a periodic signal, the wrong peak value from the
second harmonic component of the PSD also causes a high log
F0 RMSE. Moreover, the results in Figs. 6 (e) and (f) show that
the pQPNet with a dense factor 26 generated a very noisy signal,
which results in a low SNR and an incorrect peak value of its
PSD.

In addition, as shown in Figs. 7 (a) and (b), the pQPNet with
a dense factor 23 still generated a clear sine wave with an SNR
23.3 dB and a correct peak value of its PSD when conditioned

Fig. 7. Waveform and PSD of 20 Hz sinusoid generated by pQPNet with a
dense factor 23 ((a), (b)), WNc ((c), (d)), and WNf ((e), (f)).

on an outside 20 Hz (under 1/2L) auxiliary value. However, the
same-size WNc could not generate any meaningful signal, and
the SNR of its generated signal is very low as shown in Figs. 7
(c) and (d). By contrast, the WNf still generated a clear sine
wave with an SNR 33 dB but its frequency is incorrect as shown
in Figs. 7 (e) and (f). Specifically, the PSD peak value is 120 Hz,
and it implies that the WNf tends to generate seen signals even
if conditioned on an unseen auxiliary feature.

The results confirm our assumptions that the high SNR and
RMSE signal like Fig. 7 (e) is a clear sinusoid with an inaccurate
frequency, the low SNR and high RMSE signal like Fig. 6 (c) is a
noisy sinusoid with much harmonic noise, and the very low SNR
signal like Figs. 6 (e) or 7 (c) is a noise-like signal. More results
of different frequencies can be found on our demo page [55].

VI. SPEECH GENERATION EVALUATIONS

In this section, we evaluate the effectiveness of the PDCNNs
for speech generation. The appropriate proportions of adaptive
and fixed residual blocks, the continuous pitch-dependent di-
lated factor, and the order of the macroblocks are explored.
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TABLE VI
ARCHITECTURE OF SPEECH GENERATIVE MODEL

1Causal and dilated CNN
2 1× 1 CNN in residual block
3 1× 1 CNN in output layer

A. Model Architecture

The quality of speech generation was evaluated on the basis
of 11 vocoders, which included three types of vocoder, WN, QP-
Net, and WORLD. First, to explore the efficient receptive field
extension by the PDCNNs, the compact-size QPNet vocoders
were compared with the same-size WNc and double-size WNf
vocoders. Secondly, the evaluations included eight variants
of QPNet such as the models with different types of pitch-
dependent dilated factor Et and the different order of the fixed
and adaptive macroblocks. Specifically, the QPNet (fixed-to-
adaptive macroblocks) and rQPNet (reversed adaptive-to-fixed
macroblocks) vocoders with the continuous and discrete Et

sequences were evaluated. For the unvoiced frames, the discrete
Et sequence was set to ones, and the continuous Et sequence
was calculated using interpolated F0 values as mentioned in
Section IV. Moreover, the full-size QPNet and rQPNet vocoders,
which were full-size WN vocoders cascaded with four extra
adaptive residual blocks, were also taken into consideration to
explore the effect of the ratio of adaptive to fixed residual blocks.
Last, the conventional vocoder WORLD was also adopted as a
reference.

The network architectures and model sizes are shown in
Table VI. The learning rate was 1× 10−4 without decay, the
minibatch size was one, the batch length was 20 000 samples,
and the optimizer was Adam [53] for all models. Since even the
compact-size WNc had tens of millions of parameters, which
was the same order of magnitude as that of WNf, the training
iterations were empirically set to 200 000 for all models. Note
that we did not evaluate speech generation using the pQPNet
model because it failed to model the short-term correlation of
speech according to our internal experiments.

B. Evaluation Setting

All models were trained in a multispeaker manner. The train-
ing corpus of these multispeaker NN-based vocoders consisted
of the training sets of the “bdl” and “slt” speakers of CMU-
ARCTIC [56] and all speakers of VCC2018 [57]. The total
number of training utterances was around 3000, and the total
training data length was around three hours. The evaluation

corpus was composed of the SPOKE set of VCC2018, which
included two female and two male speakers, and each speaker
had 35 test utterances. All speech data were set to a sampling
rate of 22 050 Hz and a 16-bit resolution. The waveform signals
for the categorical output of the NN-based vocoders were fur-
ther encoded into 8 bits using the μ-law. The 513-dimensional
spectral (sp) and ap and one-dimensional F0 features were ex-
tracted using WORLD. The sp feature was further parameterized
into 34-dimensional mcep, ap was coded into two-dimensional
components, and F0 was converted into continuous F0 and the
voice/unvoice (U/V ) binary code for the auxiliary features [31].
The F0 range of the SPOKE set was around 40–330 Hz, and
the F0 mean was around 150 Hz. The unseen outside auxiliary
features were simulated by replacing the original F0 values of
the acoustic features with the scaled F0 values, and the scaling
ratios were 1/2, 3/4, 5/4, 3/2, and 2. A demo can be found on our
demo page [55], and the open-source QPNet implementation1

has been released.

C. Objective Evaluation

For the objective evaluations, the ground truth acoustic
features were extracted from natural speech utterances using
WORLD, and the extraction error from WORLD was neglected.
A speaker-dependent F0 range was applied to the feature extrac-
tion of each speaker to improve the extraction accuracy, and the
F0 range was set following the process in [58]. Since WORLD
was developed to extract F0-independent spectral features [6],
the WORLD-extracted sp feature was assumed to be highly
uncorrelated to the F0 feature in this paper. Therefore, the
ground truth acoustic features for the scaled F0 scenarios were
the same natural spectral features with the F0 feature scaled
by an assigned ratio. The auxiliary features of the evaluated
vocoders were the ground truth acoustic features. Mel-cepstral
distortion (MCD) was applied to measure the spectral recon-
struction capability of the vocoders, and the MCD was calculated
between the auxiliary mcep and the WORLD-extracted mcep
from the generated speech. The pitch accuracy of the generated
speech was evaluated using the RMSE of the auxiliary F0 and
the WORLD-extracted F0 value from the generated speech in
the logarithmic domain. The unvoiced/voiced (U/V ) decision
error was also taken into account in the evaluation of the
prosodic prediction capability, which was the percentage of the
unvoiced/voiced decision difference of each utterance.

1) Dense Factor: Since speech generation is more compli-
cated than sine wave generation, we first conducted an objective
evaluation of the QPNet models with different dense factors
for speech generation to check the consistency of the efficient
dense factor value. As shown in Table VII, the tendency of
the objective evaluation is similar to the results of the sinusoid
generation evaluation. That is, the QPNets with dense factors
from 21–24 achieved similar generative performance while the
speech quality and pitch accuracy of the QPNets with dense
factors 25 and 26 markedly degraded because of the much
shorter effective receptive field lengths. Specifically, as shown

1[Online].Available: https://github.com/bigpon/QPNet

https://github.com/bigpon/QPNet
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TABLE VII
QPNET WITH DIFFERENT DENSE FACTORS

TABLE VIII
EFFECTIVE RECEPTIVE FIELD LENGTH (SAMPLES)

in Table VIII, the average effective receptive field lengths of
the QPNets with the dense factors 25 and 26 are much shorter
than others, and the lengths were too short to cover at least one
cycle of the signal with 150 Hz, which was the F0 mean of the
SPOKE set.

Furthermore, although the QPNet with a 20 dense factor had
the longest average effective receptive field length and achieved
an acceptable MCD, the higher RMSE of log F0 and U/V
error indicate its instability, which was also observed in the
sinusoid generation evaluation. The results also confirm our
assumption that the QPNet with a 20 dense factor cannot model
the periodic components well because the Nyquist frequency
of the QPNet adaptive macroblock is lower than the bandwidth
of the periodic components. Moreover, because of the natural
fluctuations of speech, F0 extraction errors, etc., the oversam-
pling models with an appropriate dense factors such as 22–24,
which keep long enough effective receptive fields, also achieve
better performance. As a result, the dense factors of the following
QPNet-series models were set to 23 because of the lowest RMSE
of log F0 and U/V error with an acceptable MCD. The internal
subjective evaluation results also show the preference of the
utterances generated by the QPNet with the dense factor 23.

2) Spectral Accuracy: As shown in Table IX, in terms
of spectral prediction capability, the compact-size (r)QPNet
vocoders with the proposed PDCNNs significantly outper-
formed the same-size WNc vocoder. The results confirm the
effectiveness of the QP structure to skip some redundant samples
using the prior pitch knowledge for a more efficient recep-
tive field extension. However, the MCDs of the double-size
WNf vocoder are lower than that of the compact-size (r)QPNet
vocoders, and the full-size (r)QPNet vocoders with the largest
network size also outperformed the WNf vocoder in terms of
MCD. The results indicate that the MCD values are highly
related to the network sizes, so a deeper network attains a more
powerful spectral modeling capability. Furthermore, the systems
with continuous pitch-dependent dilated factors achieved lower
MCDs than those with discrete ones, and the result is consistent
with our internal subjective evaluation for speech quality. How-
ever, the MCD differences of the rQPNet and QPNet vocoders
were not reflected in the perceptual quality, and they had similar
speech qualities according to the internal evaluation.

3) Pitch Accuracy: The logF0 RMSE results in Table X also
show that both the compact-size QPNet and rQPNet vocoders
attained markedly higher pitch accuracy than the same-size WNc
vocoder, particularly when conditioned on the unseen F0 with a
large shift. Since the WNf vocoder usually generates seen signals
even conditioned on unseen auxiliary features, the compact-size
QPNet vocoder achieved higher pitch accuracies than the WNf
vocoder as expected. The results indicate that the PDCNNs with
the prior pitch knowledge improved the pitch controllability of
these vocoders against the unseenF0. However, the pitch accura-
cies of the full-size (r)QPNet vocoders are lower than that of the
(r)QPNet vocoders. The possible reason is that the unbalanced
proportion of the adaptive and fixed residual blocks impaired the
pitch controllability. That is, for the full-size (r)QPNet vocoders,
the number of the fixed blocks is markedly larger than the
number of the adaptive blocks. Therefore, the network might
be dominated by the fixed blocks, which degraded the influence
from the adaptive blocks. Specifically, for the (r)QPNet vocoders
with a dense factor 23, the receptive field length of the fixed
blocks is 46 samples (The details of the receptive field length
can be found in Discussion), and the average effective receptive
field length of the adaptive blocks is 384 samples as shown in
Table VIII. However, for the full-size (r)QPNet vocoders, the
receptive field length of the fixed blocks is 3070 samples, which
was much longer than the 384 samples of the extra four adaptive
blocks. Therefore, the influence of the adaptive blocks might be
very limited.

4) U/V Accuracy and Summary: As shown in Table XI, the
compact-size QPNet vocoder attained the lowest U/V deci-
sion error among all NN-based vocoders, and it indicates a
higher capability to captureU/V information. In conclusion, the
compact-size QPNet vocoder with the proposed PDCNNs and
continuous pitch-dependent dilated factors attained the highest
accuracy of pitch and U/V information among the evaluated
NN-based vocoders. Although the compact-size QPNet vocoder
did not achieve the same spectral prediction capability as the
WNf vocoder according to the MCD results, it is difficult to
measure a perceptual quality difference only on the basis of
MCD. As a result, we subjectively evaluated the compact-size
QPNet (with continuous pitch-dependent dilated factors), WNc,
and WNf vocoders in the next section. Moreover, although
the WORLD vocoder had the best objective evaluation results,
the WORLD-generated speech usually lacks naturalness and
contains buzz noise, which may not be reflected in the objec-
tive measurements. Therefore, the WORLD vocoder was also
evaluated in the subjective tests.

D. Subjective Evaluation

The subjective evaluations included the Mean Opinion Score
(MOS) test for speech quality and the ABX preference test for
perceptual pitch accuracy. Specifically, the naturalness of each
utterance in the evaluation set for the MOS test was evaluated by
several listeners by assigning scores of 1–5 to each utterance;
the higher the score, the greater naturalness of the utterance.
The MOS evaluation set was composed of randomly selected
utterances generated by the WORLD, WNf, WNc, and QPNet
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TABLE IX
MCD (DB) WITH FRAME-BASED 95% CONFIDENCE INTERVAL (CI) OF DIFFERENT GENERATION MODELS FOR SPEECH GENERATION

TABLE X
LOG F0 RMSE WITH UTTERANCE-BASED 95% CI OF DIFFERENT GENERATION MODELS FOR SPEECH GENERATION

TABLE XI
U/V DECISION ERROR RATE (%) WITH UTTERANCE-BASED 95% CI OF DIFFERENT GENERATION MODELS FOR SPEECH GENERATION
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Fig. 8. Sound quality MOS evaluation of female speakers with 95% CI.

vocoders, and the auxiliary features with 1/2 F0, 3/2 F0, and
unchanged F0. The compact-size QPNet vocoder with the con-
tinuous dilated factors was adopted and abbreviated as QPNet in
the subjective evaluations. We randomly selected 20 utterances
from the 35 test utterances of each condition and each speaker
to form the MOS evaluation set, so the number of utterances
in the set was 960. The mean, standard deviation, longest, and
shortest lengths of the selected utterances were 4 s, 1.6 s, 8 s,
and 1 s, respectively. The MOS evaluation set was divided into
five subsets, and each subset was evaluated by two listeners, so
the total number of listeners was 10. All listeners took the test
using the same devices in the same quiet room. Although the
listeners were not native speakers, they had worked on speech
or audio generation research.

In the ABX preference test, the listeners compared two test
utterances (A and B) with one reference utterance (X) to evaluate
which testing utterance had a pitch contour more consistent with
that of the reference utterance. Although the natural speech
with the desired scaled F0 does not exist, the conventional
source-filter vocoders usually attain high pitch controllability.
Therefore, the WORLD-generated utterances were taken as the
references. The ABX evaluation set consisted of the same gen-
erated utterances of the WNf, QPNet, and WORLD vocoders as
the MOS evaluation set. The number of ABX utterance pairs was
240, and each pair was evaluated by two of the same 10 listeners
as in the MOS test. Since the ABX test focus on pitch accuracy,
all listeners were asked to focus on the pitch differences and
ignore the quality differences.

1) Speech Quality: As shown in Fig. 8, for the female speaker
set, the QPNet vocoder significantly outperforms the same-
size WNc vocoder in all cases. Although the QPNet vocoder
achieves slightly lower naturalness than the WNf vocoder in
the unchanged F0 (inside) case, the QPNet vocoder still attains
markedly better naturalness than the WNf vocoder in the 1/2
F0 (outside) case. The results indicate that halving the network
size markedly degrades the speech modeling capability of the
WN vocoder. However, the proposed PDCNNs significantly
improves the modeling capacity with the halved network size,
especially in the 1/2 F0 case which makes QPNet obtain a long
effective receptive field length. On the other hand, owing to the
small dilated factors caused by the high F0 values, many of
the PDCNNs may degenerate to DCNNs in the 3/2 F0 case.

Fig. 9. Sound quality MOS evaluation of male speakers with 95% CI.

Fig. 10. Pitch accuracy ABX evaluation of female speakers with 95% CI.

Specifically, when the dilated factors are less than or equal to
one because of the high F0 values, the dilation sizes of PDCNN
are also less than or equal to DCNN. As a result, while these
vocoders are conditioned on the auxiliary features with 3/2 F0,
although the QPNet vocoder still outperforms the WNc vocoder,
the naturalness of the WNf- and WORLD-generated utterances
is higher than that of the QPNet-generated utterances because
of the much shorter effective receptive field length of the QPNet
vocoder.

In addition, as the results of the male speaker set shown in
Fig. 9, the naturalness of the QPNet-generated utterances is com-
parable to that of the WNf-generated utterances and significantly
better than that of the WNc-generated utterances in all F0 cases.
Specifically, even if the F0 values are scaled, most of the 3/2
F0 values of the male utterances are still within the range of the
normal femaleF0. Therefore, the effective receptive field lengths
of the QPNet vocoder are still much longer than the receptive
field lengths of the WNc vocoder for most male utterances with
scaled F0. On the other hand, the WORLD vocoder shows a
similar tendency in the evaluations of both female and male
speaker sets. In the unchanged F0 case, the naturalness of the
WORLD-generated utterances is slightly lower than the WNf-
and QPNet-generated utterances. In the scaled F0 cases, the
WORLD vocoder achieves even much lower naturalness in the
1/2 F0 case, but comparable naturalness in the 3/2 F0 case.

2) Pitch Accuracy and Summary: As shown in Figs. 10
and 11, the QPNet vocoder significantly outperforms the WNf
vocoder in terms of pitch accuracy in most F0 cases and both
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Fig. 11. Pitch accuracy ABX evaluation of male speakers with 95% CI.

Fig. 12. Distributions of receptive field lengths of different vocoders.

the female and male sets except in the unchanged F0 cases of
the female set, which may be caused by the naturalness degrada-
tion. The results confirm the pitch controllability improvement
of the QPNet vocoder with the PDCNNs. In summary, the
QPNet vocoder with the more compact network size achieves
comparable speech quality to the WNf vocoder under most
conditions except for the female set with 3/2 F0 because the
higher F0 values may make the PDCNNs degenerate to the
DCNNs. The QPNet vocoder conditioned on the unseen F0 also
gets the markedly higher pitch accuracy than the WNf vocoder.
Moreover, the QPNet vocoder achieved higher or comparable
speech quality than the WORLD vocoder under most conditions
except conditioned on the acoustic features with the unseen 3/2
female F0.

E. Discussion

As shown in Fig. 12, the length of the receptive fields of
WNf is 3070 samples (The receptive field length of 10 blocks in
each chunk is 20 + 21 + · · ·+ 29 = 1023, so the total length is
1023× 3 with an extra one from the causal layer), that of WNc
is 61 samples (Each chunk contains 20 + 21 + 22 + 23 = 15, so
the total receptive field length is 15× 4 + 1 = 61), and that of
QPNet is 100–1000 samples (The receptive field length of the
fixed blocks and the causal layer is 15× 3 + 1 = 46, and that

of the adaptive blocks is 15× Et. The pitch-dependent dilated
factor Et with a dense factor 8 was around 60 for 50 Hz and
6 for 500 Hz). Specifically, the receptive field lengths of WNf
and WNc are constant because of the fixed network structure,
and the receptive field length of QPNet is time-variant and
pitch-dependent because of the QP structure.

Furthermore, the results in Fig. 12 also show that the QPNet
effective receptive field lengths of both SPOKE female and male
speakers are longer than the receptive field length of WNc,
which are consistent with the evaluation results showing that
QPNet significantly outperforms WNc. Furthermore, most of
the effective receptive field lengths of the female set are shorter
than that of the male set, and it is caused by the higher F0

values of the female speakers. The distribution results also imply
that the effective receptive field lengths of QPNet are close to
the receptive field length of WNc when conditioned on the
female 3/2 F0 because most PDCNNs degenerate to DCNNs.
In conclusion, the performance of AR models is highly related
to the length of the receptive fields.

However, the length of the receptive fields may be more
strongly correlated to the quality of the generated speech,
whereas a balanced proportion of the adaptive and fixed modules
may be an essential factor for the pitch accuracy. Specifically,
although the full-size QPNet has the longest effective receptive
field lengths and achieves the lowest MCD, the pitch accuracy of
full-size QPNet is still lower than that of compact-size QPNet.
The possible reason is that the full-size QPNet is dominated
by the fixed blocks because the number of the fixed blocks is
much larger than the number of the adaptive blocks while the
compact-size QPNet has more balanced numbers of the fixed
and adaptive blocks.

In addition, as shown in Tables I and VI, the number of the
trainable parameters of the compact-size QPNet model is around
half of that of the WNf model, so only about 75% of the training
time and 40% of the generation time were required. However,
because of the very long effective receptive fields, the memory
usage of QPNet in the training stage was almost the same as
that of WNf. The huge memory requirement in the training
process limits the possible ratio of the fixed to adaptive modules,
which leads to an unbalanced proportion problem. Therefore,
improving the efficiency of memory usage will be one of the
main tasks of future work.

VII. CONCLUSION

In this paper, we propose a WaveNet-like audio waveform
generation model named QPNet, which models quasi-periodic
and high-temporal-resolution audio signals on the basis of an
NN-based AR model with a novel PDCNN component and a
cascaded AR structure. Specifically, the novel PDCNN com-
ponent is a variant of a DCNN that dynamically changes the
dilation size corresponding to the conditioned F0 for modeling
the long-term correlations of audio samples. On the basis of the
sinusoid generation evaluation results, the PDCNNs improves
the periodicity-modeling capability of the generation network
using the introduced prior frequency information. Furthermore,
the QPNet vocoder models the short- and long-term correlations
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of speech samples on the basis of the cascaded fixed and adaptive
macroblocks, respectively.

The speech generation evaluation results indicate that the
proposed QPNet vocoder attains a higher pitch accuracy and
comparable speech quality to the WN vocoder especially when
conditioning on the unseen auxiliary F0 values. Moreover, the
network size and generation time requirements of the QPNet
vocoder are only half of those of the WN vocoder. In conclusion,
the proposed QPNet model with the novel PDCNN compo-
nent and compact cascaded network architecture improves the
pitch controllability of the vanilla WN model, and it makes the
QPNet vocoder more in line with the definition of a vocoder.
However, because the F0-transformed ground-truth utterances
are absent, the evaluation results might include some unknown
biases. Therefore, in our future work, we plan to design a better
evaluation scheme as well as to further improve the performance
of our QPNet vocoder.
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