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Abstract—We propose novel deep speaker representation learn-
ing that considers perceptual similarity among speakers for multi-
speaker generative modeling. Following its success in accurate
discriminative modeling of speaker individuality, knowledge of
deep speaker representation learning (i.e., speaker representa-
tion learning using deep neural networks) has been introduced
to multi-speaker generative modeling. However, the conventional
discriminative algorithm does not necessarily learn speaker em-
beddings suitable for such generative modeling, which may result
in lower quality and less controllability of synthetic speech. We
propose three representation learning algorithms that utilize a
perceptual speaker similarity matrix obtained by large-scale per-
ceptual scoring of speaker-pair similarity. The algorithms train a
speaker encoder to learn speaker embeddings with three different
representations of the matrix: a set of vectors, the Gram matrix,
and a graph. Furthermore, we propose an active learning algorithm
that iterates the perceptual scoring and speaker encoder training.
To obtain accurate embeddings while reducing costs of scoring and
training, the algorithm selects unscored speaker-pairs to be scored
next on the basis of the sequentially-trained speaker encoder’s simi-
larity prediction results. Experimental evaluation results show that
1) the proposed representation learning algorithms learn speaker
embeddings strongly correlated with perceptual speaker-pair simi-
larity, 2) the embeddings improve synthetic speech quality in speech
autoencoding tasks better than conventional d-vectors learned by
discriminative modeling, 3) the proposed active learning algorithm
achieves higher synthetic speech quality while reducing costs of
scoring and training, and 4) among the proposed similarity {vector,
matrix, graph} embedding algorithms, the first achieves the best
speaker similarity for synthetic speech and the third gives the most
improvement in the synthetic speech naturalness.

Index Terms—Deep speaker representation learning, active
learning, multi-speaker generative modeling, perceptual speaker
similarity, speaker embedding.

I. INTRODUCTION

D EEP speaker representation learning is a technology for
training a deep neural network (DNN)-based speaker
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encoder that extracts speaker embeddings (i.e., distributed
representations of speakers) from input speech [1]. Traditionally,
speaker embeddings have contributed to improve accuracy in
discriminative modeling of speaker individuality, such as
speaker recognition [2] and verification [3]. A typical training
algorithm for a speaker encoder is based on speaker classification
using speaker embeddings, which enables the embeddings to
discriminate speaker identity of input speech accurately. A
d-vector [4] and an x-vector [5] are well-known examples of
speaker embeddings learned by such a speaker-discriminative
training algorithm. These DNN-based speaker embeddings
achieve higher accuracy in speaker recognition and verification
tasks than conventional i-vectors [6].

Following the success in the discriminative modeling of
speaker individuality, knowledge of deep speaker representation
learning has been transferred to generative modeling of speech,
such as statistical text-to-speech (TTS) synthesis [7], [8] and
voice conversion (VC) [9], [10]. Single-speaker high-quality
generative modeling has been accomplished thanks to the de-
velopments of DNN-based speech waveform modeling [11],
[12], rich acoustic models (e.g., Tacotron [13], FastSpeech [14],
[15], and MelNet [16]), and sophisticated acoustic model train-
ing (e.g., generative adversarial network (GAN)-based meth-
ods [17], [18]). Speaker embeddings can advance the single-
speaker generative modeling to a multi-speaker one that can
synthesize any of the seen speakers’ voices using a single
generative model. A d-vector, for instance, acts as auxiliary input
to the generative model for controlling the speaker individual-
ity of synthetic speech [19]–[21]. In addition, multi-speaker
generative modeling has the capability to synthesize unseen
speakers’ voices, which is very attractive because it increases
the diversity of speaker individuality and widens the range of
speech synthesis applications (e.g., speaker anonymization [22]
and data augmentation for speech recognition [23]).

Another important factor in multi-speaker generative mod-
eling is intuitiveness in controlling speaker individuality. A
speaker embedding in multi-speaker generative modeling is
desirable to represent a perceptual relationship among multiple
speakers as well as an identity of a single speaker, i.e., the more
similar speakers’ voices sound, the closer their speaker embed-
dings positions in a speaker embedding space. Such human-
perception-oriented embedding space enables a user to explore
the space to find his/her favorite voice characteristics easily
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Fig. 1. Conceptual diagram of proposed deep speaker representation learning.
We first conduct (a) perceptual similarity scoring to obtain a matrix representing
the perceptual relationships among speakers. We then perform (b) speaker
encoder training to predict the relationships from the speaker embeddings. As a
result, similar speakers position are positioned closer to each other and dissimilar
ones are kept away in the speaker embedding space.

(c.f., interactive visual design optimization based on a prefer-
ential Bayesian optimization [24], [25]). Also, the introduction
of perceptual similarity among speakers has the possibility in
reproducing an unseen speaker’s voice characteristics from a few
of his/her speech utterances (i.e., speaker adaptation of a speech
synthesis model [26], [27]) because information of seen speakers
similar to him/her can enable the speaker adaptation to function
effectively. A conventional speaker-discriminative learning of
speaker embeddings completely ignores perceptual similarity
among speakers, resulting in a decrease in the controllability
and adaptability of multi-speaker generative modeling [28]. For
example, a multi-speaker TTS synthesis with a Tacotron-based
acoustic model and a pretrained d-vector extractor [21] can
synthesize significantly high-quality speech, but the speaker
similarity of the synthetic speech is somewhat degraded when
the speakers are unseen during the DNN training.

To learn better speaker embeddings suitable for multi-speaker
generative modeling, we propose deep speaker representation
learning algorithms that consider perceptual speaker similarity
among speakers. Fig. 1 illustrates a conceptual diagram of the
proposed deep speaker representation learning. We first con-
duct large-scale scoring of perceptual speaker-pair similarity to
obtain a perceptual speaker similarity matrix. We then train a
speaker encoder to minimize a loss function defined by the simi-
larity matrix. We proposed three algorithms with different repre-
sentations of the similarity matrix: a set of similarity vectors, the
Gram matrix, and a graph. Similarity vector embedding regards
the similarity matrix as a set of similarity vectors and trains a
speaker encoder to predict a similarity vector from a speaker
embedding. Similarity matrix embedding directly utilizes the
whole similarity matrix as the target to be predicted by a speaker
encoder and trains it to minimize the Frobenius norm between
the Gram matrix of a set of speaker embeddings (i.e., embedding-
derived speaker similarity matrix) and the perceptual speaker

similarity matrix. Similarity graph embedding defines a graph
that represents perceptual speaker similarity and trains a speaker
encoder to predict a link of the graph from a pair of speaker
embeddings. Furthermore, we propose an active learning algo-
rithm that iterates the perceptual speaker-pair similarity scoring
and speaker encoder training, which aims to reduce the number
of scoring times that quadratically increases with that of seen
speakers. To obtain accurate embeddings while reducing scoring
and training costs, the algorithm selects unscored speaker-pairs
to be scored next on the basis of the sequentially-trained speaker
encoder’s similarity prediction results. Fig. 2 shows the relation-
ship between the conventional and proposed approaches to deep
speaker representation learning.

In experimental evaluations, we first conduct large-scale scor-
ing, and then evaluate the proposed speaker representation al-
gorithms and active learning algorithm. The evaluation results
show that 1) the proposed speaker representation learning algo-
rithms learn speaker embeddings strongly correlated with per-
ceptual similarity scores, 2) the embeddings improve synthetic
speech quality in speech autoencoding tasks compared with
conventional d-vectors obtained by a speaker-discriminative
learning algorithm, 3) the proposed active learning algorithm
achieves higher synthetic speech quality while reducing costs
of scoring and training, and 4) among the proposed similarity
{vector, matrix, graph} embedding algorithms, the first achieves
the best speaker similarity for synthetic speech, and the third
gives the highest AUC value for similar speaker-pair detection
and the most improvement in the synthetic speech naturalness.

This paper is organized as follows. Section II briefly reviews
a conventional discriminative approach to deep speaker repre-
sentation learning. Section III describes the three components
in our approach: scoring perceptual speaker-pair similarity, deep
speaker representation learning considering the similarity, and
active learning. Section IV presents experimental evaluations.
Section V concludes this paper.

Note that this paper is partially based on an international
conference paper written by the authors [29]. The additional
contributions of this paper are the introduction of graph em-
bedding technology [30] and an active learning framework [31]
to the proposed perceptual-similarity-aware deep speaker repre-
sentation learning.

II. CONVENTIONAL SPEAKER-CLASSIFICATION-BASED DEEP

SPEAKER REPRESENTATION LEARNING

This section holds a d-vector up as an example and describes
conventional deep speaker representation based on a speaker
classification task. A learned d-vector can be used for condi-
tioning a multi-speaker generative model to control the speaker
individuality of synthetic speech.

A. D-Vector

A d-vector [4] is a bottleneck feature vector extracted from
a speaker encoder that performs feature extraction in a DNN-
based speaker classification model. The DNNs take an acoustic
feature sequence as input and predict a one-hot speaker code
c = [c(1), . . . , c(n), . . . , c(Ns)]

� that represents the identity of
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Fig. 2. Relationship between conventional deep speaker representation learning approach and proposed one.

Fig. 3. Conventional speaker encoder training based on speaker classification.
d-vector d is an output of a squeeze layer immediately before the output layer.

one of the seen (i.e., pre-stored) Ns speakers. The ith speaker’s
identity ci is defined as follows:

ci(n) =

{
1 if n = i

0 otherwise
(1 ≤ n ≤ Ns). (1)

A loss function for the DNN training is defined as the softmax
cross-entropy of speaker classification:

LSCE (c, ĉ) = −
Ns∑
n=1

c(n) log ĉ(n), (2)

where ĉ = [ĉ(1), . . . , ĉ(n), . . . , ĉ(Ns)]
� is an output vector of

the DNNs. Fig. 3 shows the computation procedure of LSCE(·).
This loss function is calculated frame by frame, and minibatch
stochastic gradient descent (SGD) is applied to update the model
parameters of the speaker encoder.

After the training, an Nd-dimensional d-vector d =
[d(1), . . . , d(Nd)]

� is extracted from a bottleneck layer of the
DNNs. One layer before the output is often used as the bottleneck
layer. The d-vector dimensionalityNd is typically set to a smaller
value than Ns to use the lower-dimensional speaker embedding.
The ith speaker’s d-vector di is extracted from the speaker’s
acoustic feature sequences and averaged across all frames in all
utterances.

B. Multi-Speaker Generative Modeling Using D-Vectors

In multi-speaker generative modeling, a single generative
model is trained to synthesize multiple speakers’ voices [32].
A speaker embedding is fed into the generative model to control
speaker identity of synthetic speech [19], [20]. A well-trained
multi-speaker generative model can even synthesize an unseen
speaker’s voice using a small amount of his/her speech data to
adapt the model parameters (i.e., weights and bias of DNNs)
or the speaker embedding that can well reproduce the speaker’s
voice characteristics.

One can use a per-speaker d-vector for multi-speaker gen-
erative modeling [19], [20] as shown in Fig. 4. Thanks to
its low-dimensional continuous representation, the use of the
d-vector shows better performance in speaker adaptation than

Fig. 4. Multi-speaker generative modeling using speaker embeddings. Pre-
trained speaker encoder extracts a per-speaker embedding from acoustic features
in advance, and a multi-speaker generative model predicts acoustic features from
input features. Speaker embeddings control speaker individuality of synthetic
speech.

that of a simple one-hot speaker code [33]. However, the speaker-
classification-based speaker embeddings have not only less
interpretability but also the possibility of worsening synthetic
speech quality in speaker adaptation [28].

III. PROPOSED PERCEPTUAL-SIMILARITY-AWARE DEEP

SPEAKER REPRESENTATION LEARNING

As we mentioned in Section I, the introduction of a human’s
speaker-similarity perception into deep speaker representation
learning has the possibility of improving controllability and
adaptability of a multi-speaker generative model. In this sec-
tion, we first introduce a speaker similarity matrix obtained by
perceptual scoring, which becomes the target of speaker encoder
training. Then, we propose speaker representation learning algo-
rithms that predict the perceptual scores from acoustic features.
To reduce scoring and training costs, we finally propose an active
learning algorithm.

A. Perceptual Speaker Similarity Matrix

We define a perceptual speaker similarity matrix that
represents the pairwise speaker similarity perceived by listeners.
Let S = [s1, . . . , si, . . . , sNs

] be an Ns-by-Ns symmetric
similarity matrix and si = [si,1, . . . , si,j , . . . , si,Ns

]� be an
Ns-dimensional similarity vector of the ith speaker. Each
element si,j takes a value between −v and v that represents the
perceptual similarity of the ith and jth speakers. We define si,j
as the average score of perceptual scoring that asks listeners “To
what degree do the ith speaker’s voice and the jth speaker’s one
sound similar? Please answer the degree of similarity as a value
between −v and v.” To focus on modeling the inter-speaker
perceptual similarity, we exclude same-speaker pairs from the
scoring; further, we assume that the diagonal elements si,i, i.e.,
intra-speaker perceptual similarity, take the maximum value v.
Fig. 5 illustrates the perceptual scoring process. Fig. 6(a) and (b)
show a perceptual speaker similarity matrix of 153 female
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Fig. 5. Perceptual scoring of speaker-pair similarity. Speaker-pair pool stores
the speaker pairs to be scored. Listener is asked to score perceptual similarity of
two presented speakers’ voices as an integer between −v and v. In this figure,
v = 3.

Fig. 6. (a) Perceptual speaker similarity matrix of 153 female Japanese speak-
ers obtained by large-scale perceptual scoring and (b) its sub-matrix.

Japanese speakers and its sub-matrix, respectively.1 Please
see Section IV-A1 for details of the perceptual scoring and
Section IV-B for the analysis results of the scores.

B. Perceptual-Similarity-Aware Deep Speaker Representation
Learning Algorithms

We proposed three algorithms for learning similarity-aware
speaker embeddings with different representations of the per-
ceptual speaker similarity matrix: a set of similarity vectors, the
Gram matrix, and a graph.

1) Similarity Vector Embedding: The first algorithm uses a
speaker similarity vector as the target to be predicted by a speaker
encoder. A loss function for the training is defined as follows:

L
(vec)
SIM (s, ŝ) =

1

Ns
(ŝ− s)� (ŝ− s), (3)

where s ∈ S and ŝ denote a target similarity vector and output
vector of the DNNs, respectively. This algorithm can be regarded
as speaker classification based on continuous-valued speaker
identity considering perceptual speaker similarity. Fig. 7(a)
shows the computation procedure ofL(vec)

SIM (·). This loss function
is calculated frame by frame, and minibatch SGD is applied to
update the model parameters of the speaker encoder.

2) Similarity Matrix Embedding: The second algorithm
directly uses a perceptual speaker similarity matrix as a

1We also conducted perceptual similarity scoring among the 13 speakers
(“F001”–“F013”), including the same-speaker pairs. However, we have not used
those results for any experimental evaluations in this study, because we aimed
to focus on perceptual similarity modeling among different speakers. Appendix
A summarizes and discusses those scoring results.

Fig. 7. Calculation of loss functions in proposed algorithms based on (a)
similarity vector embedding, (b) similarity matrix embedding, and (c) similarity
graph embedding.

constraint on coordinates of speaker embeddings. Let D =
[d1, . . . ,di, . . . ,dNs

] be an Nd-by-Ns matrix including speaker
embeddings extracted from all seen speakers. A loss function for
the training is defined as follows:

L
(mat)
SIM (D,S) =

2

‖1Ns
− INs

‖2F

∥∥∥K̃D − S̃
∥∥∥2
F
, (4)

K̃D = KD − (KD � INs
), (5)

S̃ = S− vINs
, (6)

where ‖·‖F , �, 1Ns
, and INs

denote the Frobenius norm of
a given matrix, the Hadamard product, an Ns-by-Ns matrix
whose components are all 1, and the Ns-by-Ns identity matrix,
respectively. 2/‖1Ns

− INs
‖2F is a normalization coefficient

corresponding to the degrees of freedom of the matrix K̃D − S̃.
KD is the Gram matrix of a set of speaker embeddings defined
as:

KD =

⎡⎢⎢⎣
k (d1,d1) · · · k (d1,dNs

)
...

. . .
...

k (dNs
,d1) · · · k

(
�dNs

, �dNs

)
⎤⎥⎥⎦, (7)

where k(di,dj) is a kernel function of a pair of speaker
embeddings di and dj , i.e., speaker-embedding-derived speaker
similarity. The choice ofk(di,dj)depends on how we normalize
the similarity scores si,j during the training. For example, if
we normalize the scores to be in [−1,+1], the sigmoid kernel
k(di,dj) = tanh(d�

i dj) is a possible choice. This proposed
algorithm therefore makes the speaker-embedding-derived
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Fig. 8. Speaker similarity graph defined by similarity matrix shown in
Fig. 6(b). Each node represents one speaker, and links connect perceptually
similar pairs (i.e., si,j > 0). The wider the links are, the more similar speaker
pairs are.

speaker similarity closer to the perceptual speaker similarity.
Fig. 7(b) shows the computation procedure of L(mat)

SIM (·). This
loss function is calculated during the training as follows. First,
fixed-length (e.g., 256 frames) acoustic feature sequences for all
seen speakers are randomly sampled from the training dataset
to construct a minibatch. Second, per-speaker embeddings are
extracted from each acoustic feature sequence in the minibatch
and averaged across the sequence. Third, the Gram matrix
(Eq. (7)) is calculated using the embeddings. Finally, the loss
function (Eq. (4)) is calculated, and minibatch SGD is applied
to update the speaker encoder’s model parameters.

3) Similarity Graph Embedding: The third algorithm is a
variant of the second algorithm and learns relationships among
speakers defined by a subjective speaker similarity matrix. LetG
be a speaker similarity graph defined by the matrixS. Each node
of the graph G represents the speaker identity of one speaker,
and a link connects a pair of similar speakers, as shown in Fig. 8.
We define an Ns-by-Ns adjacency matrix A that determines the
existence of the links on the basis of elements of the similarity
matrix S. In this paper, we use a soft adjacency matrix; i.e., each
element ai,j takes a real value between 0 (disconnected) and 1
(connected), which is calculated as ai,j = (si,j + v)/2v. A loss
function for the training is defined as follows:

L
(graph)
SIM (D,A) = −

Ns∑
i,j=1,i�=j

ai,j log pi,j

−
Ns∑

i,j=1,i�=j

(1− ai,j) log (1− pi,j), (8)

where pi,j denotes a link probability, which is defined as pi,j =
exp(−||di − dj ||22) referring to [34]. Fig. 7(c) shows the compu-

tation procedure ofL(graph)
SIM (·). The calculation procedure in this

loss function—i.e., the extraction and aggregation of the speaker
embedding—is similar to the one described in Section III-B2.

C. Multi-Speaker Generative Modeling Using
Perceptual-Similarity-Aware Speaker Embeddings

We can easily apply the proposed perceptual-similarity-aware
speaker embeddings to multi-speaker generative modeling by
replacing a speaker encoder in Fig. 4 with one trained by the pro-
posed algorithms. The embeddings can be expected to improve
synthetic speech quality and controllability of the modeling

Fig. 9. Active learning of perceptual-similarity-aware speaker embeddings.

since they are learned to predict similarity scores that represent
perceptual relationships among speakers, not speaker codes that
completely ignore the relationships.

D. Active Learning of Perceptual-Similarity-Aware
Speaker Embeddings

The proposed speaker representation learning algorithms re-
quire the perceptual scoring of speaker similarity, and the num-
ber of scoring times quadratically increases with that of seen
speakers Ns as well as the training time. We propose an active
learning algorithm to reduce the scoring and training costs.
Active learning [31] is a general framework to sequentially train
a machine learning model with a small labeled dataset and large
unlabeled one, which iterates 1) model training with the labeled
dataset and 2) query selection to increase labeled data.

Fig. 9 shows the active learning of the proposed deep speaker
representation learning. In the active learning, the Ns

C2 seen
speaker pairs are divided into two subsets: 1) scored pairs Ds

and 2) the remaining unscored ones Du. The similarity scores
of speaker pairs in Du are unobserved initially.

1) Speaker Encoder Training Using Scored Pairs: A speaker
encoder is trained using scored pairs Ds to learn the perceptual
similarity among them. The loss function for the training is any
of the proposed similarity vector, matrix, or graph embedding
algorithms, i.e., Eqs. (3), (4), or (8). Note that the speaker
encoder’s model parameters are not reset at every active learning
iteration.

2) Query Selection From Unscored Pairs: The trained
speaker encoder first predicts queries (i.e., tentative similarity
scores of unscored pairs Du) that indicate which of the pairs
should be scored preferentially. Then, an oracle (e.g., a human
annotator) annotates scores to speaker pairs with higher priority.
A query strategy has an important role in the query selection
since it determines the priority of scoring. We investigate three
query strategies: 1) lower-similarity first (LSF) that selects a
speaker pair whose predicted similarity is closer to −v, 2)
higher-similarity first (HSF) that corresponds to the inverse
version of the LSF, and 3) middle-similarity first (MSF) that
selects a speaker pair whose predicted similarity is closer to 0.
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E. Discussion

Regarding prior work, Tachibana et al. [35] and Ohta
et al. [36] proposed controllable speech synthesis in the hidden
Markov model (HMM) and Gaussian mixture model (GMM)
era. They modeled a speaker’s voice characteristics with a pair
of subjective impression words such as “warm – cold” and
“clear – hoarse” as latent variables of the HMMs and GMMs.
The proposed speaker representation learning algorithms extend
these ideas to make DNNs learn the pairwise speakers’ percep-
tual similarity rather than the conventional pointwise speaker’s
voice impression. Furthermore, one can model the relationship
between a speaker’s intention and listener’s perception (e.g.,
difference in emotion perception [37]) by using the algorithms.
Also, we can use the proposed speaker embeddings in more
sophisticated speech synthesis frameworks, such as end-to-end
multi-speaker TTS [21], multi-speaker multi-lingual TTS [38],
and singing VC [39], instead of the conventional discriminative
speaker embeddings.

The similarity vector embedding in Section III-B1 can train a
speaker encoder with a criterion that is simpler than the other two
proposed algorithms, which predict the whole similarity matrix
or the similarity graph structure. However, it is not very flexible
in handling an increased number of seen speakers, because the
dimensionality of the output layer is fixed.

Both the similarity matrix and graph embedding algorithms
can directly learn the relationships among speakers via the
matrix or graph. The difference between them is the approach
to optimization: the former is regression based, while the latter
is classification based. In Section IV, we empirically show that
the classification-based approach can improve the naturalness of
synthetic speech and work well in the proposed active learning
setting compared with the regression-based one.

In the Gram matrix calculation of the similarity matrix em-
bedding, we can choose an arbitrary kernel function to construct
a speaker embedding space. When we use the inner product as
the kernel function, Eq. (4) is equivalent to deep clustering [40]
(except for the diagonal component subtraction). Not only such
a simple kernel but also a more complicated one can be utilized.

The similarity graph embedding in Section III-B3 introduces
knowledge of graph embedding [30] to deep speaker repre-
sentation learning. One can further incorporate graph signal
processing [41] and graph neural networks [42] to the algorithm
for better modeling.

Active learning in Section III-D can be regarded as human-
in-the-loop (HITL) learning [43] of speaker embeddings consid-
ering human speech perception. From this viewpoint, one can
extend the HITL learning framework to speech synthesis that
takes a human listener’s speech quality assessment into account
for the model training (e.g., the GAN training incorporating a
human-based discriminator [44]).

IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions

1) Conditions for Large-Scale Perceptual Scoring: We con-
ducted large-scale perceptual scoring to obtain the similarity
matrix S. We used 153 female Japanese speakers from the

JNAS corpus [45]. Each speaker utters at least 150 reading-
style utterances (totaling about 44 hours). We extracted five
non-parallel utterances per speaker to score text-independent
perceptual similarity among the speakers. Each listener scored
the perceptual similarity of 34 randomly-selected speaker pairs
extracted from all of the 11 628 possible different speaker pairs
with an integer between −3 (very dissimilar) and +3 (very
similar). We recruited listeners using Lancers,2 a well-known
crowdsourcing platform in Japan. At least 10 different listeners
scored the similarity of each of the 11 628 speaker pairs. The
total numbers of listeners and answers were 4060 and 138 040,
respectively.

2) Conditions for Deep Speaker Representation Learning:
We used the JNAS corpus to train a DNN-based speaker encoder
and assumed that the 13 speakers shown in Fig. 6(b) (from
“F001” to “F013”) were unseen during the training. In the
training, we used 90% of the remaining 140 seen speakers’
utterances and balanced the number of utterances per speaker.
In the evaluation, we used the unseen speakers’ 50 utterances
and the seen speakers’ remaining ones. We omitted the five
utterances for the perceptual scoring from both the training and
evaluation data.

During the training, we normalized each element in the
similarity matrix to be in [−1, +1] for the similarity vector
or matrix embedding (Sections III-B1 and III-B2) and in [0,
1] for the similarity graph embedding (Section III-B3) by a
linear transformation: si,j/3 in the former case and (si,j + 3)/6
in the latter case. Accordingly, we used the sigmoid kernel
k(di,dj) = tanh(d�

i dj) for the Gram matrix calculation in
Eq. (7). Note that the sigmoid kernel is not positive definite, and
other choices such as the cosine similarity and Gaussian kernels
are also available for the proposed algorithm. In the similarity
graph embedding, we defined the adjacency matrix using the
normalized similarity matrix that represents the likelihood of a
link existence as a value between [0, 1]. We used 256 frames of
acoustic feature sequence to calculate per-speaker embeddings
in the proposed similarity matrix or graph embedding algorithm.

The DNN architecture for the speaker encoder was a Feed-
Forward network that included four hidden layers with the
tanh activation function. The numbers of hidden units at the
first-through-third layers and the fourth layer for the speaker em-
bedding extraction were 256 and 8, respectively. In the d-vector
learning (Section II-A) and the similarity vector embedding
(Section III-B1), we prepared an output layer with 140 units
whose activation function was the softmax for the former and
the tanh for the latter. The input of the speaker encoder was a
joint vector of the 1st-through-39th mel-cepstral coefficients and
their dynamic features. We used the STRAIGHT vocoder [47]
to extract the mel-cepstral coefficients and normalized them to
have a zero-mean and unit-variance during the training. The
optimization algorithm was AdaGrad [48], setting its learning
rate to 0.01. The number of epochs for the training was 100.

3) Conditions for Multi-Speaker Generative Modeling: We
constructed a variational autoencoder (VAE)-based multi-
speaker generative model [20] that incorporates a DNN-based
speech recognition model and a speaker encoder into speech

2https://www.lancers.jp

https://www.lancers.jp
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Fig. 10. VAE-based multi-speaker generative model used in the experimen-
tal evaluation. Here, “MLPG” means maximum likelihood parameter genera-
tion [46] using the static-dynamic features predicted from the decoder networks.
The speaker embedding is predicted from the input static-dynamic mel-cepstral
coefficient sequence by using the speaker encoder and averaged across all frames
in the sequence.

synthesis. The VAEs can be expected to learn various speakers’
voice characteristics through the autoencoding process with
latent variable regularization. Note that the VAE-based speech
autoencoding evaluation is not very close to conventional speech
synthesis such as TTS and VC, but we believe that this evaluation
is sufficient to investigate the effectiveness of the proposed
perceptual-similarity-aware speaker embeddings. Fig. 10 illus-
trates the VAE-based multi-speaker generative model that we
used. The DNN architecture for the speech recognition model
was a Feed-Forward network that included four hidden layers
with the tanh activation function. The number of hidden units
was 1024. We trained the recognition model that predicted
framewise 43-dimensional Japanese phonetic posteriorgrams
(PPGs) [49] from the same input vector as the speaker encoder.
We used at least 50 utterances for each of the 140 seen speakers
for the training. The number of epochs for the training was
100. The speaker encoder was the same as the DNNs described
in Section IV-A2. The DNN architecture for the VAEs was a
Feed-Forward network that consisted of encoder and decoder
networks. The encoder network represented a diagonal Gaussian
distribution, whose mean and variance were estimated by DNNs.
The encoder had two hidden layers with the rectified linear unit
(ReLU) [50] activation function and predicted the framewise
mean and variance of the diagonal Gaussian distribution from a
joint vector of the static-dynamic mel-cepstral coefficients and
PPGs to sample 64-dimensional latent variables. The first and
second hidden layers had 256 and 128 hidden units, respectively.
We used the standard multivariate Gaussian N (0, I) for the
latent variable’s prior distribution. The decoder network repre-
sented an isotropic Gaussian distribution, whose mean was esti-
mated by DNNs. The decoder generated the input static-dynamic
mel-cepstral coefficients frame by frame from a joint vector of
the latent variables, PPGs, and 8-dimensional speaker embed-
ding. The DNN architecture for the decoder was symmetric with
respect to that for the encoder. We trained the VAEs to maximize
the variational lower bound of the log likelihood [51] with 25
epochs using the same training data as that used in the speaker
encoder training (Section IV-A2). The optimization algorithm
for the speech recognition model and VAEs was AdaGrad,
setting its learning rate to 0.01. In inference, we generated any ar-
bitrary target speaker’s static-dynamic mel-cepstral coefficients
by using the trained VAEs representing a Gaussian distribution
with the predicted mean vector and a fixed isotropic covariance.

Fig. 11. (a) Fully scored (FS) and (b) partially scored (PS) settings. In the
active learning evaluation (Sections IV-D1 and IV-D2), we used the “PS” setting
as the starting point for all active learning setups.

Specifically, we first fed a speaker’s static-dynamic mel-cepstral
coefficients into the speech recognition model to obtain PPGs.
We then inputted a joint vector of the coefficients and PPGs to
the encoder networks and predicted the framewise mean and
variance of the diagonal Gaussian distribution to sample the
VAE latent variables.3 Finally, we fed a joint vector of the latent
variables, the PPGs, and the target speaker’s embedding into the
decoder networks and generated the speaker’s static-dynamic
mel-cepstral coefficients. We performed the maximum likeli-
hood parameter generation [46] to generate static mel-cepstral
coefficients considering their temporal dependencies. We used
the generated mel-cepstral coefficients and original speech’s
excitation parameters (i.e., F0 and five band-aperiodicity [52],
[53]) for speech waveform synthesis using the STRAIGHT
vocoder systems [47].

4) Conditions for Active Learning: In active learning, we
divided the 140 seen speakers into two groups (the first 70
speakers and the remaining), and assumed that speaker similarity
scores among the different groups were unobserved, as shown in
Fig. 11(b). We simulated this active learning by using a binary
mask to exclude unobserved scores from the loss calculation. We
iterated 1) the speaker encoder training using observed similarity
scores with one epoch and 2) the query selection using the trained
speaker encoder. We set the number of queries per iteration to 43
empirically. The number of active learning iterations was 115.
Other conditions, i.e., the numbers of training/evaluation data
and their details, the DNN architectures, the speech parameter
extraction, and the optimization algorithm, were the same as the
ones previously described in Sections IV-A2 and IV-A3.

B. Analysis of Perceptual Similarity Scores

We analyzed the perceptual similarity scores that made the
similarity matrix shown in Fig. 6(a). Fig. 12 shows a histogram
of all the scores. We found that approximately 70% of the
scores were smaller than zero. We also created a histogram of
speaker-pairwise scores of the 13 unseen speakers in Fig. 13.
We observed that the score distributions of dissimilar speaker

3We can also use latent variables sampled from the prior N (0, I) instead of
the ones predicted by the encoder networks. Evaluation results described in Ap-
pendix B show that the experimental evaluation using the predicted VAE latent
variables is sufficient to demonstrate the proposed algorithms’ effectiveness,
because there were no significant differences between the quality of the speech
synthesized with the predicted and sampled latent variables.
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Fig. 12. Histogram of perceptual similarity scores of 153 female Japanese
speakers. Red line denotes the cumulative ratio.

pairs (e.g., “F001-F009”) had a lower variance than those of
similar ones (e.g., “F010-F011”). These results suggested that
the listeners easily found dissimilar speakers rather than similar
ones. To investigate the inter-listener agreement of the whole
scoring results, we calculated the Fleiss’s kappa [54]. The kappa
value was 0.0467, which indicated the possibility of agreement
slightly better than chance. When we binarized the seven-value
scale (from −3 to +3) into “similar” (si,j ≥ 0) and “dissimilar”
(otherwise) values, kappa increased to 0.1228. The similarity
matrix we obtained is available online.4

C. Evaluation in Deep Speaker Representation Learning

We first evaluated whether the proposed representation learn-
ing algorithms learn speaker embeddings that consider percep-
tual speaker similarity and improve synthetic speech quality in
multi-speaker generative modeling. We compared the following
four algorithms in this section:
� d-vec.: Minimizing Eq. (2) [4]
� Prop. (vec): Minimizing Eq. (3)
� Prop. (mat): Minimizing Eq. (4)
� Prop. (graph): Minimizing Eq. (8)
1) Correlation Analysis of Speaker Embeddings: We com-

puted the Pearson correlation coefficient between the normalized
similarity scores si,j and predicted similarity, i.e., values of the
kernel function k(di,dj) in “d-vec.,” “Prop. (vec),” and “Prop.
(mat)” or the link probability pi,j in “Prop. (graph).” Fig. 14
shows the scatter plots of the similarity scores and predicted sim-
ilarity with their correlation coefficients. We found that “Prop.
(*)” learned speaker embeddings that had a stronger correlation
with the similarity scores than “d-vec.,” which demonstrated that
the proposed algorithms learned speaker embeddings consid-
ering perceptual similarity among speakers. We also observed
that “Prop. (graph)” achieved the strongest correlation among
the four algorithms not only in (a) “Seen-Seen” but also (b)
“Seen-Unseen“ speaker-pair cases, which indicated that the
graph-embedding-based learning algorithm worked the best to
learn pairwise relationships among speakers.

2) Performance in Similar Speaker-Pair Detection: We cre-
ated a receiver operating characteristic (ROC) curve [55] of a
binary classifier that detects similar speaker pairs using per-
speaker embeddings. An ROC curve represents the performance

4http://sython.org/demo/JSPS-DC1/index.html

TABLE I
AUC VALUES OF SIMILAR SPEAKER-PAIR DETECTION USING SPEAKER

EMBEDDINGS LEARNED BY FOUR DIFFERENT SPEAKER

REPRESENTATION LEARNING ALGORITHMS

of a binary classifier as a true positive rate against a false
positive rate at various threshold value settings. The closer the
curve follows the upper left corner (i.e., a false positive rate of
zero and a true positive rate of one regardless of the threshold
value settings), the more accurate the classifier is. Fig. 15 shows
ROC curves of similar speaker-pair detection using per-speaker
embeddings learned by the four different algorithms. Here, we
defined “similar speaker-pair” as a pair of two speakers whose
perceptual similarity is greater than 0. From this figure, we found
the proposed algorithms successfully made the ROC curves
closer to the upper left corner while the conventional d-vectors
did not.

We also calculated the area under the ROC curve (AUC) [56]
that quantifies the performance of a binary classifier as a scalar
value between 0.5 (random classification) and 1.0 (perfect clas-
sification). Table I shows the AUC values calculated with the
ROC curves shown in Fig. 15. We found that “d-vec.” resulted
in the lowest AUC among the four algorithms, which suggests
that the conventional speaker-classification-based learning al-
gorithm never considers perceptual similarity among speakers.
On the other hand, the three proposed algorithms increase the
AUC successfully, and “Prop. (graph)” achieved an AUC higher
than 0.8 even in the “Seen-Unseen” speaker-pair case. These
results demonstrated that the proposed algorithms constructed
the speaker space where we can accurately find similar speaker
pairs using their embeddings.

3) Subjective Evaluation in Speaker Adaptation: We evalu-
ated the effectiveness of the proposed speaker embeddings in
speaker adaptation of the VAE-based multi-speaker generative
model. In the speaker adaptation, we aimed to reconstruct the
13 unseen speakers’ speech using their speaker embeddings and
the trained VAEs. We conducted subjective evaluations on the
naturalness and speaker similarity of the synthetic speech of the
unseen speakers. We used 50 utterances of each unseen speaker
for the speaker embedding extraction. We synthesized speech
samples using mel-cepstral coefficients predicted by the VAEs
trained with the four different speaker encoders. We evaluated
the synthetic speech naturalness on the basis of a series of
preference AB tests that compared the conventional algorithm
(“d-vec.”) with any of the three proposed algorithms (“Prop.
(*)”). Twenty-five listeners participated in each of the following
evaluations by using our crowdsourced evaluation system. Each
listener evaluated 10 speech samples randomly extracted from
the 50 utterances of each unseen speaker. Similarly, we evaluated
the synthetic speech speaker similarity on the basis of a series
of XAB tests using the natural speech of the unseen speakers as
the reference speech samples “X.” The total number of task sets
was 2 (AB or XAB) × 3 (“d-vec.” vs. “Prop. (*)”) × 13 (unseen
speakers) × 25 (listeners per task set) = 1,950.

http://sython.org/demo/JSPS-DC1/index.html
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Fig. 13. Histogram of perceptual similarity scores of 13 speakers (from “F001” to “F013”).

Fig. 14. Scatter plots of similarity scores and predicted similarity with their
correlation coefficient r.

Fig. 15. ROC curves of similar speaker-pair detection using per-speaker
embeddings. The closer the curve follows the upper left corner, the more accurate
the speaker embeddings can detect similar speaker pairs.

Tables II and III list the preference scores on the synthetic
speech naturalness and speaker similarity, respectively. The bold
values denote that there is a significant difference between the
two scores (p < 0.05). We found that “Prop. (vec)” and “Prop.
(graph)” always achieved higher scores than “d-vec.” regarding
both the naturalness and speaker similarity, which indicated that
the proposed similarity-aware speaker embeddings improved
the synthetic speech quality in the speaker adaptation task.
We observed that “Prop. (mat)” also improved the naturalness;
however, it significantly degraded the speaker similarity in a
number of cases (e.g., “F005” and “F012”).

We further compared the four algorithms on the basis of a
five-point scale mean opinion score (MOS) test on the synthetic
speech naturalness (1: “very unnatural”; 5: “very natural”) and a
differential MOS (DMOS) test on the synthetic speech speaker
similarity (1: “very dissimilar”; 5: “very similar”). Fifty listeners

TABLE II
PREFERENCE SCORES ON SYNTHETIC SPEECH NATURALNESS (LEFT:

CONVENTIONAL D-VECTOR, RIGHT: PROPOSED ALGORITHM)

TABLE III
PREFERENCE SCORES ON SYNTHETIC SPEECH SPEAKER SIMILARITY (LEFT:

CONVENTIONAL D-VECTOR, RIGHT: PROPOSED ALGORITHM)

TABLE IV
RESULTS OF MOS EVALUATION ON SYNTHETIC SPEECH NATURALNESS AND

DMOS EVALUATION ON SYNTHETIC SPEECH SPEAKER SIMILARITY

WITH 95% CONFIDENCE INTERVALS. WE USED 13 UNSEEN

SPEAKERS IN THIS EVALUATION

participated in each of the following evaluations by using our
crowdsourced evaluation system. Each listener evaluated 20
speech samples randomly extracted from the 650 (50 × 13)
utterances, enabling us to compare average performances of the
four algorithms. The total number of task sets was 2 (MOS or
DMOS) × 50 (listeners per task set) = 100. Table IV shows the
MOS and DMOS evaluation results. Bold values indicate that
the method’s score was significantly higher than that of “d-vec”
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TABLE V
RESULTS OF MOS EVALUATION ON SYNTHETIC SPEECH NATURALNESS AND

DMOS EVALUATION ON SYNTHETIC SPEECH SPEAKER SIMILARITY WITH 95%
CONFIDENCE INTERVALS. WE USED FIVE SEEN SPEAKERS IN THIS EVALUATION

(p < 0.05). We found that each of the three proposed algorithms
significantly improved the synthetic speech naturalness over that
of the conventional d-vector. Furthermore, the “Prop. (vec)” and
“Prop. (graph)” algorithms also achieved significantly higher
DMOS values than with “d-vec.” while “Prop. (mat)” did not.
These results correspond with the preference AB/XAB test
results listed in Tables II and III.

We also conducted subjective evaluations of the four algo-
rithms by using richer DNN architectures than the Feed-Forward
networks; these results are described in Appendices C (recurrent
speaker encoder) and D (convolutional VAEs).

4) Subjective Evaluation Using Seen Speakers: We also
compared the four algorithms in terms of the synthetic speech
quality of seen speakers through a series of MOS and DMOS
tests. We used five seen speakers labeled as “FP01”–“FP05”
in the JNAS corpus. Fifty listeners participated in each of the
following evaluations via our crowdsourced evaluation system.
Each listener evaluated 20 speech samples randomly extracted
from 80 (16 × 5) utterances. The total number of task sets was
2 (MOS or DMOS) × 50 (listeners per task set) = 100. Table V
lists the evaluation results. They show that “d-vec.” achieved
MOS and DMOS values comparable with those of “Prop. (*),”
which indicates that the speaker-discrimination-based embed-
ding worked sufficiently well in synthesizing seen speakers’
voices.

5) Subjective Evaluation in Speaker Interpolation: We in-
vestigated whether the perceptual-similarity-aware speaker em-
beddings improve the synthetic speech quality in speaker in-
terpolation [57] that aims to artificially produce new voice
characteristics by mixing two (or more) speakers’ voices. Better
speaker interpolation should satisfy high naturalness and high
controllability of interpolated speech, i.e., it should not deterio-
rate the speech quality and should provide a way to control the
interpolated voice characteristics intuitively. We evaluated the
conventional and proposed speaker embeddings in embedding-
manipulation-based speaker interpolation [58], [59] that uses
a convex combination of speaker embeddings to interpolate
their voice characteristics. Formally, if we have two speaker
embeddings dA and dB, an interpolated speaker embedding is
calculated as dAB = (1− α)dA + αdB with an interpolation
coefficient 0 ≤ α ≤ 1. In the speaker interpolation evaluation,
we considered four speaker pairs: 1) the first and second most
dissimilar pairs (“F033-F134” and “F023-F077”), and 2) the first
and second most similar ones (“F017-F149” and “F088-F122”),
to be mixed with a coefficient α ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.

We conducted an MOS test on naturalness of the interpolated
speech (α = 0.5) with speaker embeddings learned by the four
different algorithms. Fifty listeners participated in the MOS
evaluations by using our crowdsourced evaluation system. Each

TABLE VI
RESULTS OF MOS EVALUATION ON INTERPOLATED SPEECH NATURALNESS

WITH 95% CONFIDENCE INTERVALS. THE BOLD SCORES ARE SIGNIFICANTLY

HIGHER THAN THOSE OF D-VEC. (p < 0.05)

listener evaluated 16 samples of the interpolated speech. The
total number of task sets was 4 (speaker pairs) × 50 (listeners
per task) = 200. Table VI lists the MOS evaluation results. From
the results, we found that the three proposed algorithms achieved
higher MOS values than the conventional d-vector for all speaker
pairs. Among the three proposed methods’ results, “Prop. (mat)”
and “Prop. (graph)” significantly outperformed “d-vec.” in the
two evaluations using dissimilar speaker pairs (Table VI(a)), and
“Prop. (*)” significantly improved the naturalness of interpo-
lated speech over that of “d-vec.” for the “F088-F122” speaker
pair (Table VI(b)). These results indicated that the proposed
similarity-aware speaker embeddings improved the synthetic
speech quality not only in speaker adaptation but also in speaker
interpolation.

We further conducted a variant of the preference XAB
test to evaluate the speaker similarity of interpolated
speech. In the evaluation, listeners first played three speech
samples interpolated with different coefficients: “X” (α ∈
{0.0, 0.25, 0.5, 0.75, 1.0}), “A” (α = 0.0), and “B” (α = 1.0),
and then answered which of the two samples “A” or “B” sounded
similar to “X.” Thirty listeners participated in the evaluation by
using our crowdsourced evaluation system, and each listener
evaluated 20 speech samples. The total number of task sets was
4 (speaker pairs) × 30 (listeners per task) = 120. Fig. 16 shows
the preference score curves against the five different interpo-
lation coefficients. We observed that the shapes of the curves
significantly changed depending on the speaker pair, which sug-
gests that perceptual similarity of a speaker pair greatly affects
the result of speaker interpolation, i.e., the more dissimilar a
speaker pair is, the larger the difference of the interpolated
speech becomes. To illustrate this observation clearly, we added
red lines to Fig. 16 representing “interpolation coefficients and
preference XAB scores are equal,” i.e., listeners could infer
the two speakers’ mixing ratio from the interpolated speech
perfectly. We can see from Fig. 16(1b) that all the preference
scores are near 0.5 regardless of the interpolation coefficient set-
tings, i.e., listeners hardly perceived the differences among the
interpolated speech samples. This was a natural result because
we mixed very similar speakers’ voices, and listeners therefore
could not detect the difference between the two speech samples
“A” (α = 0.0) and “B” (α = 1.0). A similar tendency is observed
in Fig. 16(2b). However, the score curve for “d-vec.” becomes
close to the red line, which indicates that the conventional
speaker-classification-based embedding space never considered
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Fig. 16. Results of XAB tests on speaker similarity of the interpolated speech
using (1a) the most dissimilar (“F033-F134”), (1b) most similar (“F017-F149”),
second most dissimilar (“F023-F077”), and second most similar (“F088-F122”)
speaker pairs. The closer the score curves to red lines become, the better listeners
inferred two speakers’ mixing ratio from interpolated speech.

TABLE VII
LEAST SQUARES ERRORS BETWEEN THE RED LINES AND CURVES IN

FIGS 16(1A) AND (2A)

the perceptual similarity among speakers in the speaker interpo-
lation. Focusing on the results shown in Fig. 16(1a) and (2a), one
can quantify controllability of speaker interpolation using a pair
of dissimilar speakers as the distance between the red lines and
the curve in this figure. We calculated the linear least squares
error between the red lines and preference scores we obtained.
Table VII lists the calculation results. They show that the three
proposed algorithms decreased the errors better than “d-vec.”
did, although the improvement was not significant. These results
suggest that the consideration of perceptual similarity among
speakers in deep speaker representation learning can improve not
only the quality but also the controllability of synthetic speech
in multi-speaker generative modeling.

D. Evaluation of Active Learning

We investigated the active learning’s effectiveness in each
of the three proposed representation learning algorithms inde-
pendently. In addition to the three query strategies described in
Section III-D2 (“LSF,” “HSF,” and “MSF”), we compared “FS”
and “PS (50%)” that trained a speaker encoder with 115 epochs
using the fully observed scores and partially observed ones as
shown in Fig. 11(a) and (b), respectively.

TABLE VIII
MOS RESULTS OF PROPOSED ALGORITHMS USING ACTIVE LEARNING. THE

SECOND COLUMN DENOTES PERCENTAGES OF THE NUMBER OF SCORED

SPEAKER PAIRS. BOLD SCORES ARE COMPARABLE TO

THOSE OF “FS” (p > 0.05)

TABLE IX
DMOS RESULTS OF PROPOSED ALGORITHMS USING ACTIVE LEARNING. THE

SECOND COLUMN DENOTES PERCENTAGES OF THE NUMBER OF SCORED

SPEAKER PAIRS. BOLD SCORES ARE COMPARABLE TO “FS” (p > 0.05)

1) Evaluation of AUC Improvement: We investigated how
the proposed active learning affected the AUC of similar
speaker-pair detection. Fig. 17 shows the curves of the AUC
against the active learning iterations. Red and blue lines denote
the final AUC values of “FS” and “PS (50%)” after 115 epochs,
respectively. Note that the final AUC values of “LSF,” “HSF,”
and “MSF,” in Fig. 17(a) did not necessarily correspond to those
of “FS” because their speaker encoders sequentially learned per-
ceptual similarity among the 140 seen speakers using differently
ordered similarity scores. We found that the query strategies
significantly affected the AUC improvement by the active learn-
ing and “MSF” reasonably worked among the three strategies,
regardless of the training algorithms we used. We observed that
active learning in “Prop. (vec)” and “Prop. (graph)” successfully
improved the AUC through the iterations better than “PS (50%)”
did in both the “Seen-Seen” and “Seen-Unseen” speaker-pair
cases. Meanwhile, “Prop. (mat)” increased the AUC by the active
learning iterations in the “Seen-Seen” speaker-pair case but
resulted in decreasing the AUC in the “Seen-Unseen” case. This
result indicates that this algorithm tends to be highly sensitive
to the data we use during the proposed active learning.

2) Evaluation of Synthetic Speech Quality: We investigated
whether the active learning efficiently trained a speaker encoder
that improved synthetic speech quality with fewer number of
scoring times and training iterations. Similar to Section IV-C3,
we conducted MOS and DMOS tests comparing the quality
of synthetic speech made by speaker embeddings of “FS,”
“PS,” and “MSF” with three different active learning iterations
to increase the percentage of scored speaker pairs, to 62.5%
(30 iterations), 75% (60 iterations), and 87.5% (90 iterations),
respectively. Tables VIII and IX list the results of the MOS
and DMOS tests, respectively. We found that “MSF” achieved
a synthetic speech quality comparable to that of “FS” with a
fewer number of additional similarity score observations and
active learning iterations. These results demonstrated that active
learning of the perceptual-similarity-aware speaker embeddings
effectively reduced the number of scoring times while achieving
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Fig. 17. Curves of similar speaker-pair detection AUC with respect to the number of active learning iterations. We started this active learning with 50% of the
observed similarity scores.

Fig. 18. Curves of similar speaker-pair detection AUC with respect to the number of active learning iterations. We started this active learning with 5% of the
observed similarity scores.

higher synthetic speech quality with fewer training iterations.
Focusing on the results of “Prop. (mat),” there were no signif-
icant differences among the five scores, and “FS” marked the
lowest scores in the same row entries.

3) Evaluation of Active Learning Starting With More Lim-
ited Observed Scores: We also evaluated the proposed active
learning algorithm using the best query strategy, i.e., “MSF,” in
a more challenging experimental setting. Here, we first divided
the 140 seen speakers into 20 groups including seven disjoint

speakers (i.e., “F014”–“F020,” “F021”–“F026,” etc.), and we as-
sumed that speaker similarity scores were observed only among
the speakers within each group. Therefore, the percentage
of initially observed similarity scores was 7C2/140C2 × 20 =
420/9730 < 5%. We then started the proposed active learning
with less than 5% of the observed similarity scores and ran 217
epochs to reach the point of 100% score observation.

Fig. 18 shows curves of the AUC with respect to the number
of active learning iterations. The red and blue lines denote
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the final AUC values for “FS” and “PS (5%),” respectively,
after 217 epochs. The results show that the active learning in
“Prop. (vec)” and “Prop. (graph)” worked well, similarly to
the case of starting with 50% of the observed similarity scores
(Fig. 17). Notably, “MSF” even outperformed “FS,” as shown
in Fig. 18(1). This result suggests that “FS” is not necessarily
an optimal setting to learn perceptual-similarity-aware speaker
embeddings for “Prop. (vec),” and that active learning with
the “MSF” query strategy can give better speaker embeddings
to capture the perceptual similarity well. “Prop. (graph)” also
achieved AUC values comparable with those of “FS” through the
active learning iterations, while “Prop. (mat)” did not. This result
indicates that “Prop. (mat)” strongly depends on the similarity
score observations during active learning.

V. CONCLUSION

This paper proposed novel algorithms for incorporating per-
ceptual similarity among speakers into deep speaker representa-
tion learning. The proposed speaker representation learning al-
gorithms utilize a perceptual speaker similarity matrix obtained
from large-scale perceptual scoring as the target for the speaker
encoder training. The algorithms learn speaker embeddings with
three different representations of the matrix: a set of vectors,
the Gram matrix, and a graph. To reduce costs of scoring and
training, we further proposed an active learning algorithm that
iterates the perceptual similarity scoring and speaker encoder
training. The algorithm selects speaker pairs to be scored next
on the basis of the sequentially-trained speaker encoder’s sim-
ilarity prediction results. The experimental evaluation results
demonstrated that 1) the proposed speaker representation learn-
ing algorithms learned speaker embeddings strongly correlated
with perceptual similarity scores, 2) the embeddings improved
synthetic speech quality in speech autoencoding tasks better than
conventional d-vectors obtained by discriminative modeling, 3)
the proposed active learning algorithm achieved higher synthetic
speech quality while reducing costs of scoring and training, and
4) among the proposed similarity {vector, matrix, graph} em-
bedding algorithms, the first achieved the best speaker similarity
for synthetic speech, and the third gave the highest AUC value
for similar speaker-pair detection and the most improvement in
the synthetic speech naturalness.

In the future, we will investigate different parameterization of
the similarity scores (e.g., using the interval [0, 1], where 1 means
“similar” while 0 means “dissimilar”) for the perceptual simi-
larity scoring and the hyperparameter settings of the proposed
active learning. We will also examine the effect of averaging the
speaker embedding during training.

APPENDIX A
PERCEPTUAL SPEAKER SIMILARITY SCORING INCLUDING

SAME-SPEAKER PAIRS

We present the results of perceptual similarity scoring among
the 13 unseen speakers (“F001”–“F013”) including both same-
speaker and different-speaker pairs. We scored the perceptual
similarity of 91 speaker pairs including the 13 same-speaker

Fig. 19. Perceptual speaker similarity matrix obtained by large-scale percep-
tual scoring for 13 female Japanese speakers. The listeners scored pairs of both
the same speaker and different speakers.

pairs and 13C2 different-speaker ones. The scoring procedure
was similar to the one described in Section IV-A1.

Fig. 19 shows the similarity matrix that we obtained. We found
that off-diagonal elements of the matrix became larger than those
shown in Fig. 6(b), which indicates that perceptual similarity
scoring including the same-speaker pairs tends to increase the
similarity score results for different speaker pairs. Regarding the
scoring results for the same-speaker pairs’ perceptual similarity,
the mean and standard deviation of the diagonal elements in the
similarity matrix were 2.33 and 0.52, respectively. This result
suggests that the crowdsourced listeners did not always score the
same-speaker pairs with the maximum value. Hence, we should
consider this tendency when extending the proposed algorithms
to ones that can model not only the inter-speaker similarity but
also the intra-speaker similarity. We also created a histogram of
the speaker-pairwise scores of the 13 unseen speakers, as shown
in Fig. 20. We observed that the score distributions had larger
variances than those shown in Fig. 13. These results indicate
that perceptual similarity scoring including same-speaker pairs
is more difficult than that using only different-speaker pairs.

APPENDIX B
COMPARISON OF PREDICTED AND SAMPLED VAE

LATENT VARIABLES

In Section IV-C3, we generated the target speaker’s acous-
tic features by using VAE latent variables predicted from the
speaker’s acoustic features themselves. However, such latent
variables might contain the speaker’s individual voice charac-
teristics such as his/her speaking style. To remove the target
speaker leakage in the VAE latent variables, we also used latent
variables sampled from their prior distribution, i.e., N (0, I),
for acoustic feature generation. In this evaluation, we fed a
joint vector of the sampled latent variables, PPGs, and speaker
embeddings into the VAE decoder networks and generated the
target speaker’s static-dynamic mel-cepstral coefficients. We
conducted a series of preference AB/XAB tests to compare the
quality of synthetic speech generated by using the predicted
or sampled latent variables. Fifty listeners participated in each
of the following evaluations via our crowdsourced evaluation
system. Each listener evaluated 10 speech samples randomly
extracted from 650 (50 × 13) utterances, enabling us to investi-
gate the average performance in each evaluation case. The total
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Fig. 20. Histogram of the perceptual similarity scores of the 13 speakers (from “F001” to “F013”). The listeners scored pairs of both the same speaker and
different speakers. The first through thirteenth columns represent the perceptual similarity score distributions of the same-speaker pairs.

TABLE X
PREFERENCE SCORES FOR SYNTHETIC SPEECH NATURALNESS (LEFT:

PREDICTED VAE LATENT VARIABLES; RIGHT: SAMPLED ONES)

TABLE XI
PREFERENCE SCORES FOR SYNTHETIC SPEECH SPEAKER SIMILARITY (LEFT:

PREDICTED VAE LATENT VARIABLES; RIGHT: SAMPLED ONES)

number of task sets was 2 (AB or XAB) × 50 (listeners per task
set) × 4 (algorithms) = 400.

Tables X and XI list the preference scores for the synthetic
speech naturalness and speaker similarity, respectively. From
these tables, we found no significant differences between the
“Predicted” and “Sampled” scores. These results indicate that
target speaker leakage did not occur in the VAE-based multi-
speaker generative modeling; therefore, experimental evaluation
using the predicted VAE latent variables is sufficient to demon-
strate the proposed algorithms’ effectiveness.

APPENDIX C
SUBJECTIVE EVALUATION USING STRONG

D-VECTOR BASELINE

In Section IV-C3, we used simple Feed-Forward DNNs for the
conventional algorithm. Here, we instead adopted a three-layer
uni-directional long-short term memory (LSTM)-based speaker
encoder (“d-vec. (LSTM)”) [60] and investigated the effective-
ness of the strong baseline in improving the synthetic speech
quality. The speaker encoder had 256 memory cells.

We first compared the two baseline methods, “d-vec.” and “d-
vec. (LSTM),” and evaluated only the recurrent DNN architec-
ture’s effectiveness. Fifty listeners participated in this evaluation
through a series of preference AB/XAB tests via our crowd-
sourced evaluation system. Each listener evaluated 10 speech
samples randomly extracted from 650 (50 × 13) utterances. The
total number of task sets was 2 (AB or XAB) × 50 (listeners

TABLE XII
PREFERENCE SCORES FOR SYNTHETIC SPEECH NATURALNESS AND SPEAKER

SIMILARITY (LEFT: FEED-FORWARD DNN; RIGHT: LSTM)

TABLE XIII
RESULTS OF MOS EVALUATION ON SYNTHETIC SPEECH NATURALNESS AND

DMOS EVALUATION ON SYNTHETIC SPEECH SPEAKER SIMILARITY WITH 95%
CONFIDENCE INTERVALS. WE USED AN LSTM-BASED SPEAKER

ENCODER FOR “D-VEC.”

per task set) = 100. Table XII lists the preference scores for
the synthetic speech naturalness and speaker similarity. From
the results, we found that “d-vec. (LSTM)” significantly out-
performed “d-vec.” in terms of both the naturalness and the
speaker similarity of synthetic speech. These results indicate
that the recurrent speaker encoder was effective for improving
the synthetic speech quality in multi-speaker acoustic modeling.

We then compared “d-vec. (LSTM)” with “Prop. (*)” through
a series of MOS and DMOS tests and investigated whether the
three proposed algorithms could even outperform the strong
baseline in terms of the synthetic speech quality. Fifty listeners
participated in this evaluation via our crowdsourced evaluation
system. Each listener evaluated 20 speech samples randomly ex-
tracted from 650 (50 × 13) utterances. The total number of task
sets was 2 (MOS or DMOS) × 50 (listeners per task set) = 100.
Table XIII lists the MOS and DMOS evaluation results. From the
MOS results, “d-vec. (LSTM)” achieved naturalness compara-
ble with those of “Prop. (*)” because of the temporal dependency
modeling by the LSTM-based speaker encoder. However, “Prop.
(vec)” significantly outperformed “d-vec. (LSTM)” in terms
of the speaker similarity of synthetic speech, although we did
not use the LSTM-based speaker encoder for the proposed
algorithms. This result indicate the algorithm’s effectiveness in
improving the synthetic speech quality.

APPENDIX D
SUBJECTIVE EVALUATION USING RICH DNN ARCHITECTURE

FOR VAES

In Section IV-C3, we used simple Feed-Forward DNNs for
the VAE-based multi-speaker acoustic model. Here, we adopted
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TABLE XIV
RESULTS OF MOS EVALUATION ON SYNTHETIC SPEECH NATURALNESS AND

DMOS EVALUATION ON SYNTHETIC SPEECH SPEAKER SIMILARITY WITH 95%
CONFIDENCE INTERVALS. WE USED GATED-CNN-BASED VAES

IN THIS EVALUATION

gated convolutional neural networks (CNNs) [61] as the DNN
architecture for the acoustic model and investigated this richer
architecture’s effectiveness in improving the synthetic speech
quality. The CNN-based encoder and decoder had two 1D
convolutional (Conv1D) layers and two 1D deconvolutional
(Deconv1D) layers, respectively, along the temporal axis. We set
the convolution window size and stride width of all the Conv1D
and Deconv1D layers to five and one, respectively. The encoder
extracted the framewise 64-dimensional latent variables from a
joint vector of the static mel-cepstral coefficients and PPGs. The
numbers of input channels for the first and second Conv1D layers
were 256 and 128, respectively. The decoder reconstructed the
static mel-cepstral coefficients from a joint vector of the latent
variables, PPGs, and 8-dimensional speaker embeddings. The
numbers of input channels for the first and second Deconv1D
layers were 128 and 256, respectively.

We conducted a series of MOS and DMOS tests and com-
pared the four CNN-based VAEs for acoustic modeling with
speaker embeddings learned by each of the four algorithms. Fifty
listeners participated in this evaluation via our crowdsourced
evaluation system. Each listener evaluated 20 speech samples
randomly extracted from 650 (50 × 13) utterances. The total
number of task sets was 2 (MOS or DMOS) × 50 (listeners per
task set) = 100. Table XIV lists the MOS and DMOS evaluation
results. They show that the overall MOS and DMOS values
increased in comparison with using the Feed-Forward DNNs as
acoustic models (Table IV). Among the four algorithms, “Prop.
(graph)” and “Prop. (vec)” achieved the best MOS and DMOS
values, which were significantly better than those of “d-vec.”
baseline. These results demonstrate that these algorithms were
also effective in multi-speaker acoustic modeling using the
CNN-based VAEs.
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