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Abstract—In this paper, we propose a quasi-periodic parallel
WaveGAN (QPPWG) waveform generative model, which applies
a quasi-periodic (QP) structure to a parallel WaveGAN (PWG)
model using pitch-dependent dilated convolution networks (PDC-
NNs). PWG is a small-footprint GAN-based raw waveform gener-
ative model, whose generation time is much faster than real time
because of its compact model and non-autoregressive (non-AR)
and non-causal mechanisms. Although PWG achieves high-fidelity
speech generation, the generic and simple network architecture
lacks pitch controllability for an unseen auxiliary fundamental
frequency (F0) feature such as a scaled F0. To improve the pitch
controllability and speech modeling capability, we apply a QP
structure with PDCNNs to PWG, which introduces pitch informa-
tion to the network by dynamically changing the network architec-
ture corresponding to the auxiliary F0 feature. Both objective and
subjective experimental results show that QPPWG outperforms
PWG when the auxiliary F0 feature is scaled. Moreover, analyses
of the intermediate outputs of QPPWG also show better tractability
and interpretability of QPPWG, which respectively models spectral
and excitation-like signals using the cascaded fixed and adaptive
blocks of the QP structure.

Index Terms—Neural vocoder, parallel WaveGAN, pitch-
dependent dilated convolution, quasi-periodic WaveNet.
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I. INTRODUCTION

S PEECH generation is a technique to generate specific
speech according to given inputs such as texts (text-to-

speech, TTS), the speech of a source speaker (speaker voice con-
version, VC), and noisy speech (speech enhancement, SE). The
core of speech generation is the controllability of speech compo-
nents, and the fundamental technique is called a vocoder [1]–[3].
A vocoder encodes speech into acoustic representations such as
spectral and prosodic features and then decodes specific speech
on the basis of the manipulated acoustic features. Conventional
vocoders such as STRAIGHT [4] and WORLD [5] are based
on a source-filter model [6], which models speech with vocal
fold movements (excitation) and vocal tract resonances (spectral
envelope). However, many oversimplified designs such as a fixed
length of the analysis window, a time-invariant linear filter, and
a stationary Gaussian process are imposed on the conventional
vocoders. The losses of phase information and temporal details
caused by these ad hoc designs result in speech quality degra-
dation.

To tackle these problems, many neural network (NN)-based
speech generation models [7]–[34] have been proposed. In con-
trast to the conventional source-filter-based vocoders, most of
these models directly model the relationships among speech
waveform samples. Specifically, autoregressive (AR) models
such as WaveNet (WN) [7] and SampleRNN [8] achieve high-
fidelity speech generation by modeling the probability distri-
bution of each speech sample with the given auxiliary features
and previous samples. Taking conventional-vocoder-extracted
acoustic features as the auxiliary features for NN-based speech
generation models [35]–[39], which replace the synthesizer of
the conventional vocoders, also achieved early success. How-
ever, the AR mechanism and huge network architectures of WN
and SampleRNN result in very slow generations, making these
models impractical for realistic scenarios. To tackle these prob-
lems, many compact AR models with specific knowledge [9]–
[11] and non-AR models such as flow-based [12]–[16] and
generative adversarial network (GAN)-based [17]–[29] models
have been proposed.

Although these NN-based models achieve high-fidelity
speech generation without many ad hoc designs, the data-driven

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4390-1354
https://orcid.org/0000-0001-8782-4093
https://orcid.org/0000-0001-8146-1279
mailto:yichiao.wu@g.sp.m.is.nagoya-u.ac.jp
mailto:hayashi.tomoki@g.sp.m.is.nagoya-u.ac.jp
mailto:okamoto@nict.go.jp
mailto:hisashi.kawai@nict.go.jp
mailto:tomoki@icts.nagoya-u.ac.jp


WU et al.: QUASI-PERIODIC PARALLEL WaveGAN: A NON-AUTOREGRESSIVE RAW WAVEFORM GENERATIVE MODEL 793

nature, the generic network architecture, and the lack of prior
acoustic knowledge of these models make most of them lose
acoustic controllability and robustness to unseen auxiliary fea-
tures [40]–[44]. For instance, without explicitly modeling the
excitation signals as conventional source-filter models, it is
difficult for WN to generate speech with accurate pitches outside
the fundamental frequency (F0) range of training data when
conditioned on the scaled F0 feature [33], [34]. However, using
carefully designed mixed periodic and aperiodic inputs and
source-filter-like architectures, the authors of [30]–[32] pro-
posed different NN-based models attaining pitch controllability.
In our previous works [33], [34], we also proposed a quasi-
periodic WN (QPNet), which has a conventional-vocoding-like
framework while using a unified network without the require-
ment of specific mixed inputs. QPNet advances the dilated
convolution neural networks (DCNNs) [45] of WN with a
pitch-dependent mechanism to improve the pitch controllability
of WN by dynamically changing the network architecture ac-
cording to the auxiliary F0 feature. Although QPNet markedly
improves the pitch accuracy of the generated speech, the AR
mechanism and the huge network requirement of WN result
in slow generations. To address this problem, we extend the
AR PDCNN of QPNet to a non-AR PDCNN and apply the
quasi-periodic (QP) structure to parallel WaveGAN (PWG) [25],
which is a compact non-AR model with a WN-like network
architecture consisting of stacked DCNN layers. The proposed
QPPWG speech generation model [46] attains pitch controlla-
bility using a simple pitch-dependent architecture without the
requirement of specific mixed periodic and aperiodic inputs as
in [30]–[32]. Although QPPWG greatly improved the pitch con-
trollability of PWG, the behind mechanisms of the QP structure
in the non-AR model, the characteristic of each component, and
the effective architectures are remained to be explored.

Therefore, in this paper, we conduct more evaluations with
several hyperparameter settings and network architectures to
comprehensively explore the efficiency of model structures and
the internal behaviors and mechanisms of QPPWG. Specifi-
cally, model details such as the order of the cascaded structure,
the numbers of dilation cycles and residual blocks, and the
balanced ratio of adaptive and fixed modules are investigated.
Both objective and subjective evaluations are conducted, and
the experimental results show the effectiveness of the proposed
QP structure for PWG. Furthermore, we also investigate a new
parallel QP structure and show the reason why the stacked QP
structure is selected for QPPWG. In addition, comprehensive
analyses of intermediate outputs of QPPWG are presented to
make us know more about the internal behaviors of the QP
network. The discussions of the QP structure understanding
show the tractability and interpretability of QPPWG. The anal-
yses confirm our assumption that QPPWG respectively models
harmonic components with long-term correlations and non-
harmonic components with short-term correlations using the
adaptive module with pitch-dependent DCNNs (PDCNNs) and
the fixed module with DCNNs of QPPWG.

This paper is organized as follows. In Section II, we review
the recent GAN-based neural vocoders. In Section III, a brief
introduction to PWG is presented. In Section IV, we describe

the concepts and details of the proposed QPPWG. In Section V,
objective and subjective tests are presented to show the effective-
ness of QPPWG for generating speech with scaled F0. Further
discussion of QPPWG is presented in Section VI. Finally, the
conclusion is given in Section VII.

II. RELATED WORK

A. Source-Filter and Data-Driven Vocoders

Because of the high temporal resolution of speech signals,
directly modeling raw speech waveforms is challenging. One of
the standard speech modeling methods is source-filter model-
ing [6]. Specifically, the speech generative process is formulated
as a convolution of an excitation (voice source) signal and a
spectral filter. The excitation signal models the glottal waveform
generated by vocal fold movements, and the spectral filter mod-
els vocal tract resonances. As shown in Fig. 1, the conventional
parametric vocoders generate speech samples in an AR manner
such as LPC vocoders [47], [48] and mel-generalized cepstrum
(MGC) vocoders [49], [50] or in a non-AR manner such as
STRAIGHT [4] and WORLD [5]. Motivated by the development
of deep NNs, NN-based excitation generation models with the
AR mechanism such as LPCNet [11] and the non-AR mech-
anism such as GlotGAN [17], [18] and GELP [19] have been
proposed to improve the generated speech quality. Moreover,
the authors of [31] and [32] also proposed a neural source-filter
(NSF) network to model the source-filter generative framework
with an advanced neural filter.

In addition to the source-filter-based vocoders, many unified
NN-based waveform generative models have been proposed to
directly generate high-fidelity speech waveforms from acoustic
features in a purely data-driven manner as shown in Fig. 1.
For example, the WN [7] and WaveRNN [10] models au-
toregressively generate speech samples conditioned on acous-
tic/linguistic features and the previous samples, and the non-AR
Parallel WN [12] and Clarinet [13] models simultaneously gen-
erate all speech samples with acoustic/linguistic features and
white noise inputs. Although these models achieve high-fidelity
speech generation without many ad hoc designs imposed on
them, pitch controllability is degraded because of the data-
driven nature of not explicitly modeling excitation signals as the
source-filter-based models. To improve the pitch controllability
while keeping the unified and generic network architectures,
we proposed a QP structure [33], [34] for WN. The proposed
QPNet implemented a source-filter-like mechanism into WN
to simultaneously model the periodicity and aperiodicity of
speech signals using a pitch-adaptive network architecture. In
this paper, to achieve real-time generations, we extend the QP
structure to the non-AR PWG model [25] to markedly improve
the generation speed and show the generality of the proposed
PDCNN, which can be easily integrated into any CNN-based
network.

B. GAN-Based Vocoders

Recently, because of the successes of GAN [51] in image and
video generation, GAN-based neural vocoders [17]–[30] have
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Fig. 1. Comparison of waveform generative architectures.

also been proposed. The two main categories of recent GAN-
based neural vocoders are models with prior speech knowledge
and models directly trained in a data-driven manner as men-
tioned in the previous section.

Among the models with speech knowledge, GlotGAN [17],
[18] achieved early success in generating glottal excitation
signals, but it suffered severe speech quality degradation when
directly applied to raw speech waveform generation. GELP [19]
has been proposed to improve the glottal generator by using
short-time Fourier transform (STFT)-based regression loss and
the adversarial loss of the final generated waveforms. For neural
spectral filtering, the authors of [30] proposed a GAN-based
vocoder with tailored periodic and aperiodic inputs, and the
model was trained with the GAN loss of the generated waveform
and the Gaussian loss of its aperiodic components. Inspired by
the neural excitation generation of differentiable digital signal
processing (DDSP) [52] and the neural spectral filtering of NSF,
completely differentiable source-filter vocoders with a GAN
structure such as neural homomorphic vocoder (NHV) [20]
and HooliGAN [21] also have been proposed. Furthermore, the
authors of HiNet [22] also adopt a deep NN (DNN) model and
an NSF model with GAN structures to respectively predict am-
plitude spectrum and phase for hierarchical speech generation.

Among the purely data-driven models, teacher–student-based
parallel WN [12] conditioned on the mel-spectrogram has been
combined with a GAN structure of the waveform domain for
joint optimization [23] and speaker adaptation [24]. Further-
more, MelGAN [26] and GAN-TTS [27] have been proposed to
directly transform acoustic features to speech waveforms using
GAN structures with tailored generators and discriminators.
Specifically, both MelGAN and GAN-TTS have an upsampling
generator that gradually expands the temporal resolution of the
input acoustic features to match the speech waveforms. Mel-
GAN adopts a multi-scale discriminator with several different
downsampling rates to enable its generator to capture the infor-
mation of different levels. GAN-TTS also adopts an ensemble of
10 similar discriminators with different input window sizes with
or without the conditional acoustic features to guide its generator
to learn different aspects of speech information. Furthermore,
the variants of MelGAN such as VocGAN [28] adopted a multi-
scale generator and a hierarchically-nested discriminator and

Fig. 2. Architecture of parallel WaveGAN.

multi-band MelGAN [29] incorporated a multi-band technique
into MelGAN also achieved further speech quality or generative
efficiency improvements.

Another purely data-driven model called PWG [25], which
transforms white noise into speech with conditional mel-
spectrograms, has also been proposed. Instead of complex dis-
criminators, PWG adopts a simple one with stacked DCNN
layers. To achieve stable PWG training, STFT-based losses are
also utilized. In conclusion, most recent GAN-based neural
vocoders have adopted a convolutional feedforward network,
and the hierarchical information of speech waveforms such as
multi-resolution STFT-based losses is essential for training a
high-quality raw waveform generator.

In this paper, we focus on introducing prior pitch knowledge
to the data-driven PWG model, which is fast, compact, simple,
and easy to train, to improve its pitch controllability and speech
modeling capability and make it more consistent with the defi-
nition of a vocoder.

III. PARALLEL WAVEGAN

As shown in Fig. 2, PWG includes a classical GAN module,
which consists of a discriminator (D) and a generator (G),
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with fully convolutional feedforward networks and an additional
multi-resolution STFT loss module. The details are as follows.

A. GAN-Based Waveform Generation

A WN-like architecture is adopted for the generator of PWG.
The main differences between the PWG generator and WN
are a Gaussian noise input instead of previous samples, a raw
waveform output instead of a probability distribution, and a
non-AR manner. Specifically, the inputs of the generator are
a Gaussian noise sequence z and auxiliary acoustic features,
and z is drawn from a Gaussian distribution with zero mean
and standard deviation, denoted as N(0, I). The output of the
generator is the waveform samples. The generator, which tries
to generate realistic speech samples, is trained in a manner
adversarial to the discriminator, which attempts to distinguish
natural (real) and generated (fake) speech waveforms. The
adversarial loss of the generator (Ladv) is formulated as

Ladv(G,D) = Ez∈N(0,I)

[
(1−D(G(z)))2

]
. (1)

Note that all auxiliary features of the generator are omitted in
this section for simplicity. Unlike some flow-based models [14],
[15], which adopt an invertible network to map the real data into
the Gaussian noise sequence, the generator of PWG learns to
transfer the input noise sequence to the output waveforms via
the feedback from the discriminator.

Furthermore, a simple architecture consisting of stacked
DCNN layers with LeakyReLU [53] activation functions is
adopted for the discriminator of PWG, and the dilation size of
each DCNN layer increases exponentially with a base of 2 and
the exponent of its layer index. The discriminator is trained to
minimize the adversarial loss (LD) formulated as

LD(G,D)

= Ex∈pdata

[
(1−D(x))2

]
+ Ez∈N(0,I)

[
D(G(z))2

]
, (2)

where x denotes the natural samples and pdata denotes the data
distribution of the natural samples.

B. Multi-Resolution STFT Loss

Since training PWG with only adversarial losses is difficult
and tends to be unstable, an additional STFT-based loss (Lsp) is
adopted to improve the stability and efficiency of the GAN train-
ing. Specifically, a spectral convergence loss (Lsc) is formulated
as

Lsc(x, x̂) =
‖|STFT(x)| − |STFT(x̂)|‖F

‖|STFT(x)|‖F
, (3)

and a log STFT magnitude loss (Lmag) is formulated as

Lmag(x, x̂)

=
1

N
‖log |STFT(x)| − log |STFT(x̂)|‖L1 , (4)

where x̂ denotes the samples generated from the generator,
‖ · ‖F is the Frobenius norm, ‖ · ‖L1 is the L1 norm, |STFT(·)|
denotes the STFT magnitudes, and N is the number of mag-
nitude elements. The multi-resolution STFT-based loss Lsp is

formulated as

Lsp(G) =
1

M

M∑

m=1

(L(m)
sc (G) + L(m)

mag(G)), (5)

where M denotes the number of STFT setting groups, and each
group includes different FFT sizes, frame lengths, and frame
shifts. The losses L

(m)
sc and L

(m)
mag are calculated on the basis

of the STFT features extracted using the settings of the m
group. The multiple STFT losses prevent the generator from a
suboptimal problem and enhance the modeling capability of the
generator by making it capture speech structures with different
resolutions. In conclusion, the overall training loss of the PWG
generator (LG) is formulated as

LG(G,D) = Lsp(G) + λadvLadv(G,D), (6)

which is a weighted sum of Ladv and Lsp with weight λadv. The
hyperparameter λadv is empirically set to 4.0 in this paper.

C. Problems in Using PWG As a Vocoder

Although PWG achieves high-fidelity speech generation with
acoustic features, it is still vulnerable to unseen acoustic features
such as scaled F0. That is, the speech quality and pitch accuracy
of the PWG-generated speech will markedly degrade when the
F0 of the auxiliary acoustic features is scaled or is outside the
F0 range of training data [33], [34]. The possible reasons for
the degradation are the generic architecture, data-driven nature,
and lack of prior speech knowledge. Moreover, since speech is a
quasi-periodic signal, which includes both periodic components
with long-term correlations and aperiodic components with
short-term correlations, modeling both components with the
fixed network architecture of PWG is inefficient. For instance,
the fixed receptive field size of the network for both periodic and
aperiodic components may not be reasonable, and the receptive
field may include many redundant samples when modeling the
periodic structures of speech.

IV. QUASI-PERIODIC PARALLEL WAVEGAN

Since pitch controllability is an essential feature of a vocoder,
we propose QPPWG [46] to improve the pitch controllability
and speech modeling efficiency of PWG. Specifically, because
the effectiveness of the GAN structure and the multi-resolution
STFT losses have been shown for PWG, the proposed QPPWG
only improves the generator of PWG using the QP structure
while keeping other components of PWG the same. The QP
structure of the proposed generator introduces pitch information
to the network via a non-AR PDCNN module and a cascaded
architecture. The details are as follows.

A. Non-Autoregressive Pitch-Dependent Dilated Convolution

Inspired by pitch filtering in code-excited linear prediction
(CELP) [54], [55], we proposed a PDCNN for causal AR mod-
els [33], [34]. In this paper, we further extend the PDCNN in a
non-causal manner for the non-AR PWG model. As shown in
Fig. 3, a DCNN is a convolution layer with gaps between input
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Fig. 3. Pitch-dependent dilated convolution.

samples, and the length of each gap is a predefined hyperpa-
rameter called the dilation size (rate). The non-causal dilated
convolution can be formulated as

y
(o)
t = W (c) × y

(i)
t +W (p) × y

(i)
t−d +W (f) × y

(i)
t+d, (7)

where y
(o)
t is the DCNN output at sample t, y(i)

t is the DCNN
input at sample t, and d is the dilation size. W (c), W (p),
and W (f) are the trainable 1× 1 convolution filters of the
current, previous, and following samples, respectively. For the
vanilla DCNN, d is a predefined time-invariant constant. As
an extension of a DCNN, the dilation size d′ of a PDCNN is
pitch-dependent and time-variant.

Specifically, the pitch-dependent dilated factor Et is multi-
plied by the dilation size d in each time step t to dynamically
set the dilation size d′ as

d′ = Et × d. (8)

The dilated factor Et is derived from

Et = Fs/(F0,t × a), (9)

where Fs is the sampling rate, F0,t is the fundamental frequency
of the input sample at time step t, and a is the dense factor. The
dense factor a is a hyperparameter that indicates the number of
samples in one cycle taken as the inputs of a PDCNN. The higher
the dense factor, the lower the sparsity of the PDCNN. Using
the pitch-dependent dilation size, the architecture of QPPWG
with PDCNNs is dynamically changed according to the input
F0 feature.

Furthermore, according to our previous work [33], [34], cal-
culating Et using the interpolated F0 values of the adjacent
voiced segments achieves higher speech quality than directly
settingEt to one for the unvoiced segments. Because our internal
evaluation results of QPPWG also show the same tendency, all
QPPWG models in this paper adopt the interpolated F0 values
for calculating the Et values of the unvoice segments. In con-
clusion, the adaptive architecture of QPPWG introduces pitch
knowledge to the network to improve the pitch controllability,
allows each sample to have a specific receptive field size, and
efficiently extends the receptive fields.

B. QPPWG Generator With PDCNNs

As shown in Fig. 4, a QPPWG/PWG generator is composed
of input, macroblock, and output modules. The input module
includes a Gaussian noise input with 1× 1 CNN and upsampled
acoustic features with the matched temporal resolution to the
output waveform samples. As shown in Fig. 4(d), a macroblock
includes several stacked residual blocks. The inputs of each
residual block are the residual connection output of the previous
block and auxiliary features. The outputs of each residual block
are the residual connection output for the next block input and
the skip connection to the output module. The architecture of
each residual block consists of a DCNN/PDCNN layer, a gate
structure, and a residual connection. Last, the summation of
the skip connections from all residual blocks is processed by
two ReLU [56] activations with 1× 1 CNNs to directly output
speech waveform samples.

The main difference between the QPPWG and PWG gen-
erators is the QP structure. Specifically, a QPPWG generator
includes a fixed macroblock and an adaptive macroblock while
a PWG generator includes only one fixed macroblock. The fixed
macroblock consists of only fixed (residual) blocks with DCNN
layers, and the adaptive macroblock consists of only adaptive
(residual) blocks with PDCNN layers. Each fixed block adopts
a DCNN with a fixed network architecture to model the aperiodic
speech components such as spectral envelopes with short-term
correlations. Each adaptive block adopts a PDCNN layer to
model the periodic speech components such as excitation signals
with long-term correlations, and the PDCNN layer makes the
architecture of the block adaptive to auxiliary F0 values.

As shown in Fig. 4(a), unlike PWG consisting of residual
blocks with only DCNNs, QPPWG adopts a cascaded archi-
tecture composed of two different macroblocks. The cascaded
architecture simultaneously models both periodic and aperiodic
speech components in an efficient manner by using prior pitch
knowledge, which also improves its pitch controllability. The
cascaded architecture with prior pitch knowledge is assumed
to have better tractability and interpretability than the original
PWG architecture since it models different speech components
with related specific network structures. Furthermore, in this
paper, since we assume that the fixed and adaptive macroblocks
respectively focus on aperiodic and periodic components, we
also explore a new parallel QP structure as shown in Fig. 4(b) to
better understand the internal speech production mechanisms.

V. EXPERIMENTS

A. Experimental Settings

All speech generation models in this paper were trained in
a multi-speaker manner. The training corpus consisted of 2200
utterances of the “slt” and “bdl” speakers of the CMU-ARCTIC
corpus [57] and 852 utterances of all speakers of the Voice
Conversion Challenge 2018 (VCC2018) corpus [58]. The total
size of the training corpus was around 3000 utterances and the
data length was around 2.5 hours. The testing corpus was the
SPOKE set of the VCC2018 corpus. The SPOKE set consists
of two male and two female speakers, and each speaker has 35
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Fig. 4. (a) QPPWG generator with stacked QP strucutre; (b) QPPWG generator with parallel QP strucutre; (c) PWG generator (d) Macroblock.

testing utterances. The sampling rate of all speech data was set
to 22 050 Hz, and the resolution of the speech data was 16-bit.

The auxiliary features of these speech generation models were
composed of one-dimensional continuous F0, one-dimensional
unvoiced/voiced binary code (U/V ), 35-dimensional mel-
cepstrum (mcep), and two-dimensional coded aperiodicity
(codeap) features. Specifically, the WORLD (WD)1 vocoder
was adopted to extract one-dimensionalF0 and 513-dimensional
spectral (sp) and aperiodicity (ap) features with a frameshift of
5 ms. F0 was interpolated to the continuous F0 and converted to
U/V , ap was coded into codeap, and sp was parameterized into
mcep. To simulate unseen data, the continuous F0 was scaled
by ratios of 0.5 and 2 while keeping the other features the same.
Moreover, the dilated factor Et of QPPWG was empirically
calculated on the basis of the continuousF0 because of the higher
speech quality [33], [34].

All PWG-like models were trained with the RAdam op-
timizer [59] (ε = 10−6) with 400 k iterations. Specifically,
the generators were trained with only multi-resolution STFT
losses for the first 100 k iterations and then jointly trained
with the discriminators for the following 300 k iterations.
The multi-resolution STFT losses were calculated on the basis
of three STFT setting groups including different FFT sizes
(1024/2048/512), frame shifts (120/240/50), and frame lengths
(600/1200/240). The balanced weight λadv of Ladv was set to
4.0. The generators’ learning rate was 10−4 and the discrimina-
tors’ learning rate was 5× 10−5. Both learning rates decayed
by 50% every 200 k iterations. The minibatch size was six and
the batch length was 25 520 samples. Furthermore, the baseline
QPNet2 model was trained with the Adam optimizer [60] with
200 K iterations. The learning rate of QPNet was 10−4 without
decay, and the minibatch size was one with a batch length of
20 000 samples.

B. Model Descriptions

In this paper, several variants of PWG and QPPWG models
and a baseline QPNet model were involved in the evaluations.
To describe the different architecture of each model, several
basic modules are introduced. Specifically, a macroblock mod-
ule consisting of stacked residual blocks was adopted, and each

1https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
2https://github.com/bigpon/QPNet

macroblock was only composed of one type of residual block
namely, adaptive blocks (BAda) or fixed blocks (BFix). The PWG
models only consisted of one macroblock (Macro 0) with fixed
blocks. The proposed QPPWG and baseline QPNet models were
composed of two cascaded macroblocks (Macro 0 and 1) with
different types of residual block.

Taking vanilla PWG as an example, the architecture composed
of 30 fixed blocks with three cycles (repeats) of exponentially
increasing dilation size, and each cycle contained 10 fixed
blocks. Therefore, the number of total blocks (Block Num) of
vanilla PWG was 30, and the vanilla PWG architecture was 10
fixed blocks × 3 cycles denoted as BFix10× 3. For the baseline
QPNet, since Macro 0 consisted of 12 fixed blocks with 3 cycles
(BFix4× 3), and Macro 1 consisted of 4 adaptive blocks with
1 cycles (BAda4× 1), the order of macroblock (Macro order)
was denoted as BFix → BAda. The proposed QPPWG models
followed the same naming conventions.

Moreover, all PWG and QPPWG models had the same
discriminator architecture, which consisted of 10 non-causal
DCNN layers with 64 convolution channels, three kernels, and
LeakyReLU (α = 0.2) activation functions. For each adap-
tive/fixed block of the QPPWG/PWG generator, a gated acti-
vation with tanh and sigmoid functions was adopted, and the
number of CNN channels of residual and skip connections and
auxiliary features was also 64. The QPNet structure followed that
in our previous works [34], and the number of CNN channels of
residual connections and auxiliary features was 512 and that of
skip connections was 256.

C. Objective Evaluations

As reported in this section, the quality of the vocoders was
evaluated by the mel-cepstral distortion (MCD), root mean
square error (RMSE) of log F0, and U/V decision error.
These measurements were calculated using the auxiliary features
and the acoustic features extracted from the generated speech.
Specifically, WD disentangles speech into a resonance compo-
nent, spectral envelope sp, and source components including F0

and ap, and the designs of WD try to make the extracted spec-
tral envelope and source components highly uncorrelated [61].
Therefore, the mcep and F0 features were assumed as indepen-
dent in this paper. In other words, for the auxiliary features of
the neural vocoders, we only manipulated theF0 values and kept
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TABLE I
CNN CHANNELS OF PWG GENERATOR

other acoustic features the same. Since the topic of this paper
is a neural vocoder, the ground truth acoustic features of the
objective evaluations were the auxiliary features. That is, even
for the scaled F0 scenarios, the ground truth mcep was still the
mcep extracted from natural speech.

The following objective evaluations were conducted to ex-
plore different hyperparameter settings to find the most efficient
network architecture. Three design principles were adopted to
select the final QPPWG architecture. First, because of the more
efficient speech modeling of the QP structure, we try to reduce
the number of residual blocks while maintaining a similar speech
quality. Secondly, since the receptive field length is highly
related to the speech modeling capacity, if the performance
differences are small, the model with the longest receptive field
length will be selected. Last, the motivation of this work is to
improve the pitch controllability, so the pitch accuracy is the first
priority.

1) Number of CNN Channels: To efficiently explore different
network architectures and hyperparameter settings, we first ex-
plored the relationship between model capacities and the number
of CNN channels and tried to reduce the CNN channels for
fast model training while keeping reasonable speech quality.
The vanilla PWG generators with 8–64 CNN channels were
evaluated. Note that because this work focused on improving
the generator, all PWG/QPPWG models in this section adopted
the same discriminator, whose number of CNN channels was
64 and whose model size was 0.1 M. The results in Table I
show that the original setting (64 CNN channels) predictably
achieves the best performance characteristics of all objective
measurements. However, even if the number of CNN channels
is reduced to 16, which greatly reduces the training time because
of the compact model size, the speech quality and pitch accuracy
are still acceptable. Therefore, the objective evaluations in the
following sections were conducted based on the models with 16
CNN channels.

2) Numbers of Blocks and Cycles: Since one of the motiva-
tions for adopting the QP structure is taking advantage of the
higher speech modeling capability to reduce the model size, the
importance of the numbers of residual blocks was first evaluated.
As shown in Table II, we first kept 10 residual blocks in one cycle
and reduced the number of cycles to cut down the number of
total blocks. The results show that the model with 20 blocks
still achieves acceptable performance while the performance
of the 10 blocks model significantly degrades. Moreover, the
importance of the dilation cycle number was also evaluated.
The results indicate that compared to the model with two cycles,
the four cycles model achieves slightly higher spectral modeling

TABLE II
BLOCKS AND CYCLES OF PWG GENERATORS WITH 16 CNN CHANNELS

TABLE III
RATIOS OF FIXED AND ADAPTIVE BLOCKS OF QPPWG GENERATORS WITH 20

RESIDUAL BLOCKS, 16 CNN CHANNELS, AND DENSE FACTOR 4

accuracy but much lower pitch accuracy, and both the spectral
and pitch accuracies of the one cycle model markedly degrades.
In conclusion, although fewer dilation cycles result in a longer
receptive field, the network may not model the speech well. By
contrast, the larger the number of dilation cycles, the shorter
the receptive field. Since a longer effective receptive field can
be achieved by replacing fixed blocks with adaptive blocks, we
focus on improving the PWG generators with 20 residual blocks
and two or four cycles using the QP structure in this paper.

3) Ratio of Fixed and Adaptive Blocks: Since speech is a
quasi-periodic signal, speech modeling is theoretically required
both fixed and adaptive blocks to respectively model aperiodic
and periodic components. To explore the efficient ratio of fixed
and adaptive blocks, four QPPWG models with 20 residual
blocks, four cycles, and dense factor 4 were evaluated. Specif-
ically, because of the more possible combinations of fixed and
adaptive blocks, the number of cycles was set to four. The
dense factor was empirically set to 4, and more discussions
of dense factor are presented in the following subsection. As
shown in Table III, although the model with only adaptive
blocks (BAda5× 4) has the longest receptive fields, the spectral
modeling accuracy is markedly low because of the limited
modeling capability of the aperiodic components. The same
tendency can also be observed in the spectral domain. The more
adaptive blocks the model has, the more harmonic components
the generated speech has. However, overenhanced harmonic
structures generate significantly robotic and unnatural sounds.
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TABLE IV
QP STRUCTURE OF QPPWG_20 GENERATOR WITH 16 CNN CHANNELS AND

DENSE FACTOR 4

Since the model with balanced numbers of adaptive and fixed
blocks achieves the highest pitch accuracy and lowest U/V
error while keeping acceptable spectral accuracy and attaining
longer receptive fields than the model with only five adaptive
blocks, the 20 residual blocks with balanced numbers of adaptive
and fixed blocks was selected as the QPPWG paradigm. To
summarize, the ratio of adaptive and fixed blocks is crucial
to the network for avoiding over/undermodeling the harmonic
structures. Moreover, since one dilation cycle including 10 fixed
blocks showed effectiveness in the PWG and WN models, and
the receptive fields of 10 fixed blocks are longer than that of
5× 2 fixed blocks, the architecture of the following QPPWG
models was set to 20 residual blocks including 5× 2 adaptive
blocks and 10 fixed blocks. The QPPWG architecture is denoted
as QPPWG_20.

4) QP Structure: Since the fixed and adaptive blocks are as-
sumed to respectively model aperiodic and periodic components
of speech signals, a new parallel QP structure (Fig. 4(b)) was
evaluated in this paper compared to the original stacked QP
structure (Fig. 4(a)). However, the results in Table IV show that
the QPPWG_20 model with a parallel QP structure achieves very
low pitch accuracy and highU/V errors, which indicate the very
limited periodic component modeling capability of the parallel
model. Observing the output waveforms of the skip connection
summation from the adaptive/fixed blocks, we also find that
the output waveforms are dominated by the fixed blocks in the
parallel QP model while the outputs of the adaptive blocks are
very small. In other words, these results show that only the fixed
blocks are well activated for speech modeling when the parallel
QP structure is adopted.

The possible reason is that the difficulty of modeling speech
using a fixed network architecture is lower than that of the
network adopting a more complicated pitch-adaptive architec-
ture in the very initial stage. Since the gradient paths of the
fixed and adaptive macroblocks are separated, this difference of
modeling difficulty may make the whole adaptive macroblock
inactive. On the other hand, because the adaptive and fixed
macroblocks are cascaded in the stacked QP structure, these
macroblocks are in the same gradient flow, which makes the
entire network participates in the speech modeling. Furthermore,
since the aperiodic and periodic components are not completely
independent, the stacked QP structure takes advantage of the
aperiodic and periodic information propagations between the
fixed and adaptive macroblocks to get better speech modeling
capability. As a result, the stacked QP structure was selected
as the QPPWG paradigm. Further discussion and more details

TABLE V
DENSE FACTOR OF QPPWGaf_20 GENERATOR WITH 16 CNN CHANNELS

about the outputs of the adaptive and fixed macroblocks will
be presented in Section VI. Moreover, the cascaded adaptive
to fixed macroblock order is denoted as af , and the reversed
macroblock order is denoted as fa. The effectiveness of the
macroblock order will be presented in the overall objective
evaluation.

5) Dense Factor: The dense factor is inversely proportional
to the receptive field size, and the QPPWGaf_20 models with
1–16 dense factors were evaluated. The results in Table V show
that while the models with dense factors of 4–16 achieve similar
generative performance, the models with dense factors of 1
and 2 achieve slightly worse performance. A similar tendency
was also observed by listening to the generated speech. The
generated utterances from the models with dense factors of 1
and 2 were more unstable. Furthermore, PDCNN degenerates
to DCNN when Et is one, and a larger dense factor makes Et

closer to one for more F0 values. Therefore, since a lower dense
factor attains a longer receptive field expansion and a higher
lower bound of F0, which makes PDCNN degenerate to DCNN,
the dense factors of the following QPPWG models were set
to 4.

6) Overall Objective Evaluation: An overall objective eval-
uation was conducted including the WD, QPNet, PWG, and QP-
PWG models. Specifically, since the AR QP structure has shown
effectiveness for the WN [33], [34] vocoder, it is interesting to
explore the generality of the QP structure for non-AR models
and the performance difference between the QPNet and QPPWG
models. Because the QPNet architecture contained only 16
residual blocks with four cycles, the PWG and QPPWG models
with 16 residual blocks and four cycles were also evaluated.
Moreover, the effectiveness of the different QPPWG macroblock
orders was also explored. The number of CNN channels of the
PWG and QPPWG models was set to 64 following the original
setting. The model sizes are shown in Table VI. Since the model
size is proportional to the square of the number of CNN channels,
the model size of vanilla PWG is only 5% of that of QPNet
because of the greatly reduced number of CNN channels. The
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TABLE VI
MODEL SIZE (G: GENERATOR; D: DISCRIMINATOR)

sizes of the QPPWG models were reduced further by 30–50%
because of the reduced number of residual blocks compared with
that of vanilla PWG (PWG_30).

To present the correlations of theF0 distributions and vocoder
performances, the gender-dependent results are shown in Ta-
ble VII. Specifically, because of the multi-speaker training man-
ner, the F0 range of the training data covered both male and
female F0 values. Therefore, the most female 1/2× F0 and
male 2× F0 values are still in the F0 range of the training data
while the most female 2× F0 and male 1/2× F0 values are
outside the F0 range. Since these gender-dependent differences
might cause different effects in the scaled F0 evaluations, the
gender-dependent results are more informative.

As the MCD results shown in Table VII, the female 2× F0

and male 1/2× F0 sets achieve much higher MCD than the
female 1/2× F0 and male 2× F0 sets as we expected. However,
the overall tendencies of the male and female sets are similar.
The QPPWG models with the af order outperform the models
with fa order in both sets and all scenarios showing the supe-
riority of QPPWGaf . The possible reason is that modeling the
long-term structure of speech signals first as QPPWGaf makes
the generated speech more stable than modeling the details
first as QPPWGfa. More details about the comparison between
QPPWGaf and QPPWGfa will be presented in Section VI.

Furthermore, the QPPWGaf_20 model achieves a compara-
ble spectral accuracy with the PWG_30 and PWG_20 models
showing the QP structure keeping the similar spectral prediction
accuracy. Although the average MCD of PWG_16-generated
utterances is not very high, the very high RMSE of logF0 and the
very highU/V error indicate that the speech quality of PWG_16
is low. Specifically, the similar MCDs of PWG_16-generated ut-
terances with different scaled F0 values imply that the PWG_16
model tends to ignore the F0 scaled ratio to generate similar
speech waveforms. The very high RMSE of log F0 and the very
highU/V error also indicate that the PWG_16-generated speech
waveforms lack fine harmonic structures. On the other hand,
compared to QPNet, although the model size of QPPWGaf_16
is much smaller than that of QPNet, the non-AR mechanism and
GAN structure still make QPPWG achieve comparable spectral
prediction accuracy.

Because the GAN structure greatly improves the speech mod-
eling capability, the results of the F0 RMSE and U/V error in
Table VII show that the non-AR PWG models already achieve a
comparable pitch accuracy with the AR QPNet model. However,
the QP structure still further improves the pitch accuracy of the
non-AR PWG models. The QPPWGaf_16 model even attains
a similar pitch accuracy to the reference WD vocoder. Although
the pitch and U/V accuracies of PWG_16 markedly degrade
because of the short receptive field, the QPPWGaf_16 model
significantly improves them to an acceptable level showing the
effectiveness of the QP structure to enlarge receptive filed. In
conclusion, the QP structure efficiently increases the effective
receptive field size and introduces the pitch information to the
network, resulting in a comparable spectral accuracy, a much
higher pitch accuracy, and a smaller model size. The objective
results show the effectiveness of the proposed QP structure for
the PWG models.

On the other hand, since the WD-extracted mcep and F0 are
not completely independent, takingmcep extracted from natural
speech as the ground truth of the scaled F0 scenarios might
cause some mismatches. However, the objective evaluations
still provide meaningful information about the performance of
these vocoders, and we also conducted the subjective evaluation
in the following subsection to provide convincing results from
different aspects.

D. Subjective Evaluations

The set of samples used for subjective evaluation was com-
posed of 1680 synthesized and 80 natural utterances. The synthe-
sized utterances were generated by seven vocoders conditioned
on three F0 scaled ratios (unchanged, halved, and doubled) and
four speakers (the VCC2018 SPOKE set). For each vocoder,
speaker, andF0 scaled ratio, we randomly selected 20 utterances
from the 35 testing utterances for both mean opinion score
(MOS) and ABX evaluations. Specifically, the speech quality
of each utterance was evaluated by listeners assigning MOSs of
1–5. The higher the MOS, the better the speech quality. For each
ABX, two testing utterances were compared with one reference,
and the listeners chose the one whose pitch was more consistent
with that of the reference. Eight listeners evaluated part of the
subjective evaluation set in both MOS and ABX tests, and each
utterance/pair was evaluated by at least two listeners. Although
the listeners were not native English speakers, they worked on
audio-related research. The demo utterances can be found on the
demo page [62].

1) MOS Evaluation of Speech Quality: The MOS evaluation
included the vocoders of WD, QPNet, PWG of three different
sizes, and QPPWG of two different sizes. The MOS results
shown in Figs. 5 and 6 are presented for three different F0

scaled ratios for male and female speakers, respectively. The
overall results show that the proposed QP structure improves
the speech modeling capacity of the PWG vocoders, especially
when the PWG_16 vocoder has a very small receptive field.
Because the QPPWG vocoders markedly outperform the PWG
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TABLE VII
WORLD, QPNET, PWG, AND QPPWG VOCODERS

Fig. 5. Speech quality MOS evaluations of male speakers with 95% CI.

Fig. 6. Speech quality MOS evaluations of female speakers with 95% CI.

vocoders of the same size for all scenarios in the MOS evalu-
ation, the following discussion focuses on comparisons among
QPPWGaf_20, PWG_30, and QPNet.

For the 1/2× F0 scenario, the QPPWGaf_20 vocoder
markedly outperforms the PWG_30 and WD vocoders and
attains a similar speech quality to the QPNet vocoder for the male
set. For the female set, the QPPWGaf_20 vocoder is comparable
to the PWG_30 and QPNet vocoders while still outperforming

the WD vocoder. The results indicate that the models with the
QP structure are more robust for an unseen F0 outside the F0

range of the training data, such as most of the 1/2× F0 values
in the male set. On the other hand, although the combination of
the 1/2× F0 and other acoustic features in the female set is still
unseen, the scaled F0 values are almost in the F0 range of the
training data. Therefore, the PWG_30 vocoder can still achieve
a similar speech quality to the QPPWGaf_20 vocoder.
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Fig. 7. Pitch accuracy ABX evaluations with 95% CI.

For the 2× F0 scenario, because most of the scaled F0 values
of the male set are in the F0 range of the training data, the
performance of the QPPWGaf_20 vocoder is similar to that
of the PWG_30 vocoder for the male set. The QPPWGaf_20
vocoder outperforms the WD and QPNet vocoders in the male
set, while the QPNet vocoder achieves an inferior speech mod-
eling capacity for the 2× F0 scenario [33], [34]. On the other
hand, although the QPPWGaf_20 vocoder predictably outper-
forms the PWG_30 and QPNet vocoders in the female 2× F0

scenario, the WD vocoder achieves a higher speech quality than
the QPPWGaf_20 vocoder. A possible reason for this is that
many PDCNNs of the QPPWGaf_20 model might degenerate
to DCNNs because of the values of Et close to one due to the
very high F0 values.

In conclusion, the proposed QPPWG vocoder with 20 residual
blocks attains speech quality competitive with the PWG vocoder
with 30 residual blocks for natural auxiliary features even though
the model size is only 70% of that of the PWG model. When
conditioned on the auxiliary features with the unseen F0 values,
which are outside the F0 range of the training data, the proposed
QPPWG vocoders achieve a higher speech quality than the PWG
vocoders. The results confirm the effectiveness of the proposed
QP structure for the PWG model in efficiently modeling speech
signals and dealing with unseen F0 features.

2) ABX Evaluation of Pitch Accuracy: To evaluate the
perceptual pitch accuracy, we conducted ABX tests of the
QPPWGaf_20, PWG_30, and QPNet vocoders with the WD-
generated utterances taken as references. Note that because there
were no natural utterances with scaled F0 and the conventional
signal-processing-based vocoder usually attains accurate pitch
controllability, the WD-generated utterances were an alternative
ground truth. Since the speech quality of the WD-generated
speech is usually worse than the neural-vocoder-generated-
speech, we asked the listeners to focus on the pitch differences
and ignore the speech quality differences. Because the results
of the female and male sets have the same tendency, only the
overall results are shown in Fig. 7. We find that the perceptual
pitch accuracy of the proposed QPPWGaf_20 vocoder is much
better than that of the PWG and QPNet vocoders for both
halved and doubled F0 scenarios. To summarize, the ABX
results show perceptible pitch differences between QPPWG- and
PWG-/QPNet-generated utterances, and the ABX experimental
results are consistent with the objective results of the RMSE of
log F0

Fig. 8. Comparison of receptive field lengths of PWG_30, PWG_20, and
QPPWG_20 for male (M) and female (F) sets.

VI. DISCUSSION

A. Effective Receptive Field

Our previous works [33], [34] showed that the capacity of
an AR vocoder is strongly related to the length of its recep-
tive field, and we argue that a non-AR vocoder has a similar
tendency. Specifically, the receptive field length of PWG_30 is
6139 (20 + · · ·+ 29 = 1023with three cycles and two sides plus
one) and that of PWG_20 is 4093. For the QPPWG, the effective
receptive field length is the summation of 2047 for BFix10× 1
and 124×Et (20 + · · ·+ 24 = 31with two cycles and two sides)
for BAda5× 2. The male F0 range is around 40–240 Hz and the
female F0 range is around 100–400 Hz, so the Et of the male
set is around 20–140 and that of the female set is around 10–60
when the dense factor is set to 4. As shown in Fig. 8, most
of the effective receptive filed lengths of QPPWG_20 for the
male set are longer than the receptive filed length of PWG_30,
which may result in the higher pitch accuracy and comparable
speech quality of QPPWG. The slightly lower speech quality
of QPPWG_20 than of PWG_30 for the female set may result
from the shorter effective receptive fields of QPPWG_20. In
conclusion, the quality of the non-AR-vocoder-generated speech
still strongly depends on the length of the receptive field, and
QPPWG has longer effective receptive fields by skipping some
redundant samples of the periodic components. Although the
network may also lose some details of the aperiodic components
owing to the skipping mechanism, the overall experimental
results still show the effectiveness of the QP structure.

B. Deformable Dilated Convolution

The idea of a dynamically updated attention mechanism,
which makes a sequential network know “where to look” at
each time step, is not new. Generative models [63]–[65] that
utilize differentiable attention mechanisms to constrain the read
and write operations of the network to specific parts of the
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Fig. 9. Comparison of intermediate cumulative outputs.

TABLE VIII
COMPARISON OF RTF OF MODEL INFERENCE

scene have been proposed. To handle the limitation of the fixed
geometric structure of the CNNs, the authors of [66] proposed
a learnable spatial transformation of the input feature maps of
the CNNs to regularize the input of each CNN layer. Moreover,
the authors of [67] proposed a deformable convolution to en-
able the freeform deformation of the CNN sampling grid. The
deformable convolution gives the network an adaptive receptive
filed that focuses on different locations of the input feature map
corresponding to the current conditions.

Since the offsets of the grid sampling locations in PDCNN
are derived from the F0 values, the proposed PDCNN is a
special case of a deformable CNN. As a deformable CNN
with few additional parameters and computations, the PDCNN
is implemented with a simple indexing technique3 without a
large extra computational cost. As shown in Table VIII, the
average real-time factor (RTF) of the QPPWG_20 inferences is
similar to that of PWG_20 and less than that of PWG_30 when
running on an Intel Xeon Gold 6142 CPU (2.60 GHz and 32

3https://github.com/bigpon/QPPWG

threads). However, because of the different indexing processes
of each CNN kernel, the parallelization of the CNN computation
on a GPU is degraded. As shown in Table VIII, although the
model size of QPPWG_20 is only 70% of that of PWG_30, the
QPPWG_20 model has 170% of the training time and 130% of
the inference time of the PWG_30 model when using an Nvidia
TITAN V GPU. However, since the RTF of the PWG generation
is much less than one, the additional inference time of QPPWG
is insignificant.

C. Understanding of QP Structure

Because of the direct waveform outputs of PWG/QPPWG,
we can easily dissect the models to explore the internal speech
modeling mechanisms. Specifically, the raw waveform outputs
of the PWG/QPPWG models are the cumulative results of the
skip connection outputs from the residual blocks. Therefore, the
speech modeling behavior of the residual blocks can be explored
via the visualized intermediate outputs of partial residual blocks.
Spectrograms of the intermediate outputs of the cumulative
residual blocks are presented in Fig. 9. For the PWG vocoder re-
sults (Figs. 9(a)–(d)), the spectrogram contains more details and
textures as the number of cumulative residual blocks increases.
In contrast to the PWG vocoder, which gradually adds both
harmonic and non-harmonic components to the spectrogram,
the first 10 adaptive blocks of the QPPWGaf vocoder mostly
focus on modeling the harmonic components as shown in Fig. 9
(f). By contrast, the first ten fixed blocks of the QPPWGfa
vocoder mostly generate the non-harmonic part of the speech
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Fig. 10. Comparison of intermediate cumulative outputs of 1–10 blocks with
different F0 scaled ratios.

as shown in Fig. 9 (j). The results confirm our assumption
that the adaptive blocks with the PDCNNs primarily model the
pitch-related speech components with long-term correlations,
while the fixed blocks with the DCNNs mainly focus on the
spectrum-related components with short-term correlations.

In addition, to explore the behaviors of the adaptive and fixed
blocks for different scaled F0 features, comparisons among the
visualized cumulative outputs of the first 10 residual blocks
from the QPPWGaf and QPPWGfa vocoders are presented.
The spectrograms of QPPWGaf shown in Figs. 10(a)–(c) have
similar structures along the time axis but increasingly stretched
harmonic structures along the frequency axis asF0 increases. By
contrast, despite the differentF0 scaled ratios, both the frequency
and temporal structures of the spectrograms of QPPWGfa
shown in Figs. 10(d)–(f) are similar. The results imply that the
adaptive blocks primarily model the pitch-dependent harmonic
components and the fixed blocks mainly focus on the pitch-
independent non-harmonic components. Furthermore, although
the QPPWG vocoder is a unified NN-based waveform gener-
ative model, the generative mechanism of its QP structure is
similar to that of a source-filter model. The cascaded adaptive
(pitch-dependent) and fixed macroblocks of the QP structure
are analogous to the excitation generation and spectral filtering
of the source-filter model. In conclusion, because a vocoder is
assumed to have the capability for independently controlling

each speech component, the QPPWG vocoder is more consistent
with the definition of a vocoder. The QPPWG vocoder with
the QP structure also attains a more tractable and interpretable
architecture. More details of the visualized intermediate outputs
can be found on our demo page [62].

VII. CONCLUSION

To improve the pitch controllability of the PWG vocoder,
we propose a QPPWG vocoder to introduce the prior pitch
information to the network using the QP structure. Using the
proposed non-AR PDCNN, the network architecture is dynam-
ically adapted to the input F0 feature of each input sample.
Both objective and subjective experimental results show the
effectiveness of the QP structure for the PWG vocoder. The
QPPWG vocoder outperforms the PWG vocoder in pitch ac-
curacy and speech quality for unseen scaled F0 features while
attaining a comparable speech quality to the PWG vocoder for
natural F0 features. Because of the more efficient receptive
field expansion by PDCNNs, the model size of the QPPWG
vocoder is only 70% of that of the PWG vocoder. Moreover, the
visualized intermediate outputs of QPPWG vocoders confirm
our assumption that adaptive blocks mainly model long-term
correlations and fixed blocks focus on short-term correlations.
To summarize, the proposed QPPWG vocoder is a fast and sim-
ple waveform generative model with higher pitch controllability,
smaller model size, and better interpretability and tractability
than vanilla PWG. The effectiveness of the QPPWG vocoder
also indicates the generality of the QP structure for different
CNN-based speech generative models.
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