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Harmonic-Temporal Factor Decomposition for
Unsupervised Monaural Separation of

Harmonic Sounds
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Abstract—We address the problem of separating a monaural
mixture of harmonic sounds into the audio signals of individ-
ual semitones in an unsupervised manner. Unsupervised monau-
ral audio source separation has thus far been mainly addressed
by two approaches: one rooted in computational auditory scene
analysis (CASA) and the other based on non-negative matrix
factorization (NMF). These approaches focus on different clues
for making source separation possible. A CASA-based method
called harmonic-temporal clustering (HTC) focuses on a local
time-frequency structure of individual sources, whereas NMF fo-
cuses on a global time-frequency structure of music spectrograms.
These clues do not conflict with each other and can be used
to achieve a more reliable audio source separation algorithm.
Hence, we propose a monaural audio source separation framework,
harmonic-temporal factor decomposition (HTFD), by developing
a spectrogram model that encompasses the features of the models
used in the NMF and HTC approaches. We further incorporate
a source-filter model to build an extension of HTFD, source-filter
HTFD (SF-HTFD). We derive efficient parameter estimation al-
gorithms of HTFD and SF-HTFD based on the auxiliary function
principle. We show, through music source separation experiments,
the efficacy of HTFD and SF-HTFD compared with conventional
methods. Furthermore, we demonstrate the effectiveness of HTFD
and SF-HTFD for automatic musical key transposition.

Index Terms—Computational auditory scene analysis,
harmonic-temporal clustering, monaural audio source separation,
non-negative matrix factorization.

I. INTRODUCTION

AUDIO source separation, a technique of separating a mix-
ture audio signal into individual source signals, has a wide

variety of applications, including automatic music transcription
and music editing/remixing. Audio source separation has thus
far been tackled by many researchers but is still challenging since
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the problem is inherently ill-posed with infinitely many possible
solutions if there is no prior information available. While spatial
clues can be useful for multi-channel inputs, they are usually
unavailable when it comes to monaural inputs.

In supervised settings, deep neural networks (DNNs) have
shown promising performance when a sufficient number of train-
ing examples of individual source signals are available [1]–[5].
However, this is not always the case. For example, since the audio
signal of each musical note in a musical piece is not always easily
accessible, supervised approaches may perform unsatisfactorily
in such tasks as notewise audio source separation. One solution
would be to build databases large enough for individual tasks, but
this can be a costly and painstaking process. Another possible
way would be to adopt an unsupervised approach.

There are two major approaches to unsupervised monaural
audio source separation. One is based on computational auditory
scene analysis, e.g., [6]–[8]. The aim of this approach is to
implement the process of grouping spectrogram-like elements
that are likely to originate from the same auditory stream based
on a set of auditory grouping cues, described for instance in [9].
One attempt that has been made to imitate this process is
harmonic-temporal clustering (HTC) [7], [8]. HTC makes it pos-
sible to cluster time-frequency components originating from the
same audio stream based on a constraint designed according to
auditory grouping cues, such as harmonicity and the coherence
and continuity of amplitude and frequency modulations.

The other approach is based on non-negative matrix factor-
ization (NMF) [10]. The core idea is to interpret an observed
spectrogram as a non-negative matrix and assume that each
spectrum can be represented as a sum of a limited number
of spectral templates scaled by time-varying amplitudes. This
assumption amounts to approximating the observed spectrogram
by a product of two non-negative matrices: one containing a
different spectral template in each column and the other contain-
ing the associated time-varying amplitudes in each row. Thus,
factorizing the observed spectrogram into the two non-negative
matrices amounts to estimating unknown spectral templates and
mixing weights that best explain the observed spectra. This
approach has been used with notable success particularly for
music source separation. One reason for this is that a musical
piece typically consists of a limited number of recurring note
events, so similar spectral patterns frequently appear in a music
spectrogram.
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The above two approaches use different clues for making
audio source separation possible. Roughly speaking, the former
approach focuses on a local time-frequency structure of individ-
ual sources, whereas the latter approach focuses on a relatively
global time-frequency structure of music spectrograms. Since
these clues do not conflict with each other, we believe that
they can be useful in achieving a more reliable audio source
separation algorithm.

In this paper, by developing a spectrogram model that en-
compasses the features of the models used in the HTC and
NMF approaches, we propose a monaural audio source sep-
aration framework, which we call harmonic-temporal factor
decomposition (HTFD). As in the HTC approach, we model
the spectrogram of each source in the continuous wavelet trans-
form (CWT) domain and describe the spectral shape and the
fundamental frequency (F0) contour using an independent set
of parameters. The spectral shape is characterized by a set of
the relative magnitudes of harmonics scaled by a time-varying
amplitude in a way similar to the NMF approach. Our model
allows us to describe continuous spectral variations caused by
F0 changes reasonably well and handle musically expressive
sounds, such as slur, vibrato and portamento sounds, many of
which cannot be expressed very satisfactorily by the regular
NMF model.

We further extend the HTFD spectrogram model by incorpo-
rating a source-filter model, which can describe the generating
processes of many sound sources fairly well. We call the exten-
sion source-filter HTFD (SF-HTFD). The source-filter model
describes an audio signal as the output of a linear filter excited
by an excitation input. As for musical instrument sounds, the
excitation signal expresses a vibrating object such as a violin
string and the linear filter refers to the resonance structure of
the instrument. The excitation signal and filter characterize the
pitch and timbre of an instrument sound, respectively.

Several attempts have already been made to incorporate the
source-filter model into NMF to enhance the performance of
audio source separation and multipitch analysis [11]–[18]. In
these studies, a spectrum of each source is simply represented
as the product of excitation and filter spectra. We call this
representation the excitation-filter product representation to dis-
tinguish it from the one we introduce in this paper. If there is
no frame overlap and the filter length is significantly shorter
than the frame length, this representation can be justified in
the short-time Fourier transform (STFT) domain owing to the
orthogonality of the Fourier transform. However, since the CWT
is not an orthogonal transform, using the excitation-filter product
representation in the CWT domain is not well justified.

To overcome this issue, we derive an explicit parameter rela-
tionship between the HTFD spectrogram model and a source-
filter model defined in the discrete time domain, following the
idea described in [19]. This relationship allows us not only
to model spectral changes associated with pitch and timbre
separately but also to reveal the underlying meanings of the
excitation-filter product representation in the CWT domain.

We employ a generative modeling approach for HTFD
and SF-HTFD and design reasonable prior distributions for

F0s, spectral envelopes, and temporal activations of sources.
We then derive parameter estimation algorithms of HTFD
and SF-HTFD based on the auxiliary function principle [8],
[20], [21]. The contributions of this paper are summarized
as follows:
� We propose a monaural audio source separation frame-

work, HTFD, by developing a CWT spectrogram model
that offers the features of the HTC and NMF spectrogram
models concurrently.

� We further propose a source-filter extension of HTFD,
SF-HTFD, by deriving an explicit parameter relationship
between the HTFD spectrogram model and the source-filter
model defined in the discrete time domain.

� We derive parameter estimation algorithms of HTFD and
SF-HTFD based on the auxiliary function principle.

� We reveal the meaning of assuming the excitation-filter
product representation in the CWT domain.

� We show the efficacy of HTFD and SF-HTFD through
unsupervised music source separation experiments and
demonstrate the usefulness of the proposed frameworks
for automatic musical key transposition.

The rest of this paper is organized as follows. We derive
the HTC spectrogram model and present a generative model
of HTFD in Section II. We design prior distributions of the
parameters of the HTFD generative model in Section III, and we
derive a parameter estimation algorithm based on the auxiliary
function principle in Section IV. We extend HTFD to SF-
HTFD by deriving an explicit parameter relationship between
the HTFD spectrogram model and the source-filter model in
Section V, and we present a parameter estimation algorithm
of SF-HTFD in Section VI. In Section VII, we review related
studies in comparison with HTFD and SF-HTFD. Through
experiments on unsupervised monaural separation of harmonic
sounds, we show the efficacy of HTFD and SF-HTFD and that
they can be used to devise an automatic musical key transpo-
sition system in Section VIII. We finally conclude this paper
in Section IX. It should be noted that the present model is de-
signed for harmonic sounds and cannot be applied to percussive
sounds. Hence, in this paper, we focus on harmonic sounds
only.

Note that this paper is partially based on an international
conference paper written by the authors [22]. This paper has five
additional contributions compared with the conference paper. (i)
We reformulate a SF-HTFD model for enhancing the model
expressivity and (ii) present a novel parameter optimization
algorithm based on variational approximation and the auxiliary
function principle. (iii) We have conducted systematic quanti-
tative experiments and analyses of HTFD and SF-HTFD, while
only a qualitative experiment was reported in the conference
paper. (iv) We present HTFD and an efficient parameter estima-
tion algorithm. In the work described in the conference paper,
although we used HTFD in the experiment, we omitted the
definition and derivation of the HTFD model and algorithm. (v)
We define the proposed models in the magnitude spectrogram
domain instead of the power spectrogram since we have found
it to enhance the separation performance.
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II. SPECTROGRAM MODEL OF HTFD

A. Continuous Wavelet Transform of Source Signal Model

In this section, we introduce the CWT of a source signal model
as in [8]. Let K be the number of sources and k = 1, . . . ,K
be the source index. Suppose that a sound of source k can be
represented as an analytic signal representation of a pseudo-
periodic signal with N harmonic partials, which is defined in
the continuous time domain, u ∈ R:

sk(u) =

N∑
n=1

dk,n(u)e
j(nθk(u)+ϕk,n), (1)

where j is the imaginary unit and n = 1, . . . , N is the partial
index. Here dk,n(u) ≥ 0 and nθk(u) + ϕk,n ∈ R denote the
instantaneous amplitude and phase of partial n. This signal
model implicitly ensures that harmonicity and coherent fre-
quency modulation constraints of the auditory grouping cues
are not violated.

Letx ∈ R be the logarithm of the angular frequency and t ∈ R
be continuous time. The CWT of a time-domain signal is given
by the inner products of the signal and wavelet bases, which
are determined by an analyzing wavelet function ξ(u) ∈ C that
satisfies the admissible condition. As with [8], by using the
analyzing wavelet function whose Fourier transform is defined
by

Ξ(ω) =

{
e−

(lnω)2

2σ2 (ω > 0)

0 (ω ≤ 0)
, (2)

where ω ∈ R is the angular frequency, we can approximately
describe the CWT of sk(u) as

Wk(x, t) =
N∑

n=1

dk,n(t)e
− (x−Ωk(t)−lnn)2

2σ2 ej(nθk(t)+ϕk,n). (3)

Here,Ωk(t) denotes the logarithm of the time derivative of θk(t),
i.e., the logarithmic F0. The detailed derivation of Eq. (3) is
written in Appendix A.

Assuming that the partials rarely overlap each other, the
magnitude of Wk(x, t) is approximately given as

|Wk(x, t)| �
N∑

n=1

dk,n(t)Gk,n(t), (4)

where

Gk,n(t) := e−
(x−Ωk(t)−lnn)2

2σ2 . (5)

This assumption implies that the magnitude spectra of partials
can be approximately additive. A time slice of the spectrogram
model given by Eq. (4) at time t is expressed as a harmonically
spaced Gaussian mixture function as shown in Fig. 1. Note that
the spectrogram model is essentially identical to the one used in
the HTC approach [8].

Although we have thus far defined the spectrogram model
in the continuous time and continuous log-frequency domain,
observed spectrograms are actually given in the discrete time
and discrete log-frequency domain through computer imple-
mentations. Let us define L uniformly quantized log-frequency

Fig. 1. Illustration of HTC model at time t.

points and M uniformly quantized time points as {xl}Ll=1 and
{tm}Mm=1, respectively. Here, l = 1, . . . , L and m = 1, . . . ,M
are the indices of the quantized log-frequency and time. To
simplify notation, we denote Gk,n(tm),Ωk(tm), and dk,n(tm)
by Gk,n,m,Ωk,m, and dk,n,m, respectively.

B. Parameter Decomposition Into Time-Dependent and
Time-Independent Factors

In this section, we incorporate the feature of the NMF ap-
proach into the spectrogram model defined in Eq. (4). The
key assumption of NMF is that source spectra are decomposed
into time-dependent and time-independent factors: the scales
of the spectra and the spectral shapes, respectively. In order
to extend the NMF model to develop a more reasonable one,
we consider it important to clarify which factors involved in
the spectra should be assumed to be time-dependent and which
factors should not. For example, the F0s of string and wind
instrument sounds, particularly with musical expressions such
as vibrato and portamento, frequently varies continuously. To
accurately capture these sounds, the parameters associated with
F0s should be time-dependent. As with NMF, the scale of the
spectra should also be time-dependent, whereas the timbre of
musical instruments can be considered relatively static.

To incorporate these assumptions, we factorize dk,n,m into
a product of a time-dependent factor Uk,m ≥ 0 and a time-
independent factor wk,n ≥ 0:

dk,n,m = wk,nUk,m. (6)

The parameterUk,m represents the temporal activation of source
k at framem, and the parameterwk,n represents the normalized
relative magnitude of partial n of source k such that

∑
n wk,n =

1 for all k. Substituting Eq. (6) into Eq. (4) and assuming the
additivity of magnitude spectra as with NMF and HTC, we can
obtain an observed spectrogram model Xl,m as the sum of K
source spectrogram models, Sk,l,m:

Xl,m =
∑
k

Sk,l,m, Sk,l,m =

(∑
n

wk,nGk,n,m

)
︸ ︷︷ ︸

Hk,l,m

Uk,m.

(7)
If we denote the term in the parenthesis of Eq. (8) by Hk,l,m,
Xl,m is rewritten asXl,m =

∑
kHk,l,mUk,m, which makes the

relation to NMF clear.
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C. Probability Distribution of Observed Spectrogram

An observed spectrogram Yl,m, in reality, may deviate from
the assumptions and approximations we have made thus far. One
possible way of handling this deviation would be to use the idea
of probabilistic generative modeling. We assume Yl,m follows a
Poisson distribution with mean Xl,m:

Yl,m ∼ Poisson(Yl,m;Xl,m). (8)

Note that the maximum likelihood estimation of the Poisson
distribution amounts to fitting Xl,m to Yl,m with the general-
ized Kullback–Leibler divergence. The choice of the Poisson
distribution allows us to derive a fast-converging parameter
optimization algorithm as we will show in Section IV.

D. Relation to NMF and HTC Models

Our spectrogram model can be reduced to several variants of
NMF and HTC models. If we treat eachHk,l,m as a free param-
eter and assume it to vary in time according to a Markov chain,
the spectrogram modelXl,m can be seen as an NMF model with
time-varying basis spectra as in [23]. By treating each Hk,l,m

as a free parameter and assuming it to be time-invariant, Xl,m

reduces to the regular NMF model [10]. If we further assume
each basis spectrum to have a harmonic structure,Xl,m becomes
equivalent to the harmonic NMF (HNMF) model [24], [25].

If Ωk,m is assumed to be time-invariant, Xl,m reduces to a
model similar to the ones described in [26], [27]. By further
describingUk,m with a parametric function ofm,Xl,m becomes
equivalent to the HTC model [7], [8].

III. DESIGN OF PRIOR DISTRIBUTIONS OF HTFD

A. Prior Distribution of Ωk,m

The F0s of string and wind instrument sounds frequently
varies in time continuously during slurs, vibrato, and porta-
mento. For example, during vibrato, the F0s of a violin sound
vary periodically around the standard F0 of the performed
note. The F0s of these sounds tend to be located around the
standard F0s of the corresponding notes globally, whereas the
F0 contours of the sounds smoothly vary in time locally. These
global and local properties can be simultaneously incorporated
by designing a prior distribution of Ωk = [Ωk,1, . . . ,Ωk,M ]T

based on the product-of-experts (PoE) concept [28].
Letμk denote the logarithm of the standardF0 associated with

source k. To describe how likely Ωk,m is to be located near μk

globally, we design a probability distribution Pg(Ωk;μk, υ
2
k)

as a multivariate normal distribution with mean μk1M and
covariance υ2kIM :

Pg(Ωk;μk, υ
2
k) = Normal(Ωk;μk1M , υ

2
kIM ), (9)

where 1M is the M -dimensional all-one vector and IM is the
M ×M identity matrix. To describe how likely Ωk is to be
locally smooth along time, we design a probability distribution
Pl(Ωk; τ

2
k ) as

Pl(Ωk; τ
2
k ) = Normal(Ωk;0M , τ

2
k (D

TD)−1), (10)

Fig. 2. Plate notation of HTFD generative model.

where τk is the standard deviation of time differences of F0s
and 0M is an M -dimensional all-zero vector. Here, D is an
(M − 1)×M band matrix given by

D =

⎡
⎢⎢⎢⎢⎣
1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎦ . (11)

Following the PoE concept, the prior distribution ofΩk can then
be defined by

P (Ωk;μk, υ
2
k, τ

2
k ) ∝ (Pg(Ωk;μk, υ

2
k))

αg(Pl(Ωk; τ
2
k ))

αl ,
(12)

where αg and αl are the hyperparameters controlling the contri-
butions of Pg(Ωk;μk, υ

2
k) and Pl(Ωk; τ

2
k ) to the prior distribu-

tion, respectively.

B. Prior Distribution of Uk,m

In popular and classical western music, the number of times
each musical note is activated is usually limited. Thus, we can
assume sparsity of the temporal activations. To promote sparse-
ness, we employ a Gamma distribution as a prior distribution on
U :

Uk,m ∼ Gamma(Uk,m;α(U), β(U)), (13)

whereα(U) > 0 andβ(U) > 0 are the shape and rate parameters.
This prior distribution promotes sparsity when α(U) < β(U).
In summary, the overall generative model is depicted in plate
notation in Fig. 2.

IV. PARAMETER ESTIMATION ALGORITHM OF HTFD

A. Maximum a Posterior Estimation Problem

The parameters of interest in our model are

w = {wk,n}k,n : relative magnitude of partial n,

U = {Uk,m}k,m : temporal activation,

Ω = {Ωk,m}k,m : F0 of source k at frame m.

We denote the entire set of the above parameters as Θ. Given an
observed magnitude spectrogram Y = {Yl,m}l,m, we wish to
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find the estimate of Θ that maximizes the posterior P (Θ|Y ) ∝
P (Y |Θ)P (Θ), or equivalently,

lnP (Y |Θ) + lnP (Θ)=
c

∑
l,m

Yl,m lnXl,m −
∑
l,m

Xl,m

+
∑
k

lnP (Ωk;μk, υ
2
k, τ

2
k )

+
∑
k,m

lnP (Uk,m;α(U), β(U)),

(14)

where =
c

represents equality up to a constant. We denote the

right-hand side of Eq. (14) by I(Θ).
Xl,m includes the sums over k and n, and the first term of

Eq. (14) involves these sums in the logarithm function. Directly
maximizing I(Θ) is thus intractable. However, local optima can
be found by using the auxiliary function principle [8], [20], [21].

B. Auxiliary Function Principle

An auxiliary function approach consists of two steps. The first
step is to introduce auxiliary variables and construct a lower
bound of the objective function (the auxiliary function) that
is tangent to the objective function at some point and can be
maximized in closed form. The second step is to maximize the
auxiliary function by alternately updating the parameters and
the auxiliary variables. At each iteration the objective function
is guaranteed to be nondecreasing.

Since the logarithm function is a concave function, by using
the Jensen inequality, the first term of Eq. (14) can be lower-
bounded as

Yl,m lnXl,m = Yl,m ln
∑
k,n

wk,nGk,n,mUk,m (15)

≥ Yl,m
∑
k,n

λk,n,l,m (lnwk,n + lnUk,m

+ lnGk,n,m − ln λk,n,l,m) , (16)

where λk,n,l,m is a non-negative auxiliary variable such that∑
k,n λk,n,l,m = 1 for all l and m. The equality holds if and

only if

λk,n,l,m =
wk,nGk,n,mUk,m

Xl,m
. (17)

Although one may notice that the second term of Eq. (14) is
nonlinear in Ωk,m, this term can be well approximated by the
integral

∫∞
−∞X(x, tm), where X(x, tm) is given by

X(x, tm) =
∑
k,n

wk,ne
− (x−Ωk,m−lnn)2

2σ2 Uk,m, (18)

since
∑

lXl,m is the sum of the values at the sampled points
X(x1, tm), . . . , X(xL, tm) with a uniform interval, say Δx.
Hence, ∑

l

Xl,m �
1

Δx

∫ ∞
−∞

X(x, tm)dx (19)

=

√
2πσ2

Δx

∑
k,n

wk,nUk,m. (20)

This approximation implies that the second term in Eq. (14)
depends little on Ωk,m. The choice of the Poisson distribution
allows us to use the approximation and derive update rules
in closed form. Denoting the set of the auxiliary variables
{λk,n,l,m}k,n,l,m by λ, we derive the auxiliary function of I(Θ)
as

I+(Θ, λ) =
∑
l,m

Yl,m
∑
k,n

λk,n,l,m (lnwk,n + lnUk,m

+ lnGk,n,m − ln λk,n,l,m)

−
√
2πσ

Δx

∑
k,n,m

wk,nUk,m

+
∑
k

lnP (Ωk;μk, υ
2
k, τ

2
k )

+
∑
k,m

lnP (Uk,m;α(U), β(U)). (21)

C. Update Rules

By taking account of the normalization constraint ofwk,n and
using the method of Lagrange multipliers, we can obtain update
rules of the parameters. The update rule of wk,n is derived as

wk,n ←
∑

l,m Yl,mλk,n,l,m∑
m Uk,m

, (22)

followed by normalization:

wk,n ←
wk,n∑
n′ wk,n′

. (23)

The update rule of Uk,m is derived as

Uk,m ←
∑

l Yl,m
∑

n λk,n,l,m + α(U) − 1
√
2πσ2

Δx
+ β(U)

. (24)

To ensureUk,m to be non-negative, we setUk,m = 0 if the value
of Uk,m updated by Eq. (24) is negative. We experimentally
found this step not to disturb the convergence of the algorithm.

The update rule of Ωk is derived as

Ωk ←
⎛
⎝αl

τ2k
DTD +

αg

υ2k
IM +

∑
n,l

diag(ηk,n,l)

⎞
⎠−1

×
⎛
⎝μk

αg

υ2k
1M +

∑
n,l

(xl − lnn)ηk,n,l

⎞
⎠ , (25)

where diag is a function that converts a vector into a diagonal
matrix with the entries of the vector on the main diagonal and
ηk,n,l is given by

ηk,n,l =
1

σ2

[
Yl,1λk,n,l,1, Yl,2λk,n,l,2, . . . , Yl,Mλk,n,l,M

]T
.

(26)



NAKAMURA AND KAMEOKA: HARMONIC-TEMPORAL FACTOR DECOMPOSITION FOR UNSUPERVISED MONAURAL SEPARATION 73

Algorithm 1: Iterative Algorithm of HTFD.

Input: Observed spectrogram {Yl,m}l,m and the number
of iterations N (iter)

Output: w,U and Ω
1: Initialize w,U and Ω
2: for i = 1 to N (iter)

3: Compute λ according to Eq. (17)
4: Update w according to Eq. (22) followed by Eq. (23)
5: Compute λ according to Eq. (17)
6: Update U according to Eq. (24)
7: forall k and m
8: Uk,m ← max{0, Uk,m}
9: endfor

10: Compute λ according to Eq. (17)
11: Update Ω according to Eq. (25)
12: endfor

The algorithm of HTFD is summarized in Algorithm 1.
λ is a large array with KNLM elements, so Eq. (17) can

be computationally expensive. However, λk,n,l,m can be ap-
proximated fairly well by computing only the entries around
Ωk,m + lnn and dealing with the other entries as zeros since
λk,n,l,m is localized around Ωk,m + lnn. Through preliminary
experiments, we decided to compute only the entries within
[Ωk,m + lnn− 3σ,Ωk,m + lnn+ 3σ].

V. INCORPORATION OF SOURCE-FILTER MODEL INTO HTFD

A. Parameter Relationship Between Source-Filter Model and
HTFD Spectrogram Model

As described in Section I, we incorporate a source-filter
model into HTFD in a different way from the excitation-filter
product representation. To this end, we first derive a parameter
relationship between the CWT spectrogram model defined in
Eq. (4) and a source-filter model via the analytic signal model
defined in Eq. (1), following the idea described in [19].

Let us consider sk(u) within a short frame centered at time
tm and denote its discrete-time representation by sk,m[i], where
i is the discrete-time index. One well-founded way to describe
a source-filter model would be to use an all-pole system. As-
suming that sk,m[i] is the output of an all-pole system with
P + 1 filter coefficients, a.k.a. linear predictive coding (LPC)
coefficients, sk,m[i] satisfies

ak,m,0sk,m[i] = −
P∑

p=1

ak,m,psk,m[i− p] + εk,m[i], (27)

where εk,m[i] is the excitation signal, p = 0, . . . , P is the filter
coefficient index, and ak,m,p is the pth LPC coefficient such that
ak,m,0 �= 0. Since sk,m[i] is assumed to be a periodic signal with
F0 of eΩk,m consisting of N partials, εk,m[i] must be a periodic
signal with the same F0:

εk,m[i] =

N∑
n=1

ck,n,me
jneΩk,m iΔu , (28)

Fig. 3. Illustration of SF-HTFD spectrogram model at time tm. The dashed
line denotes the all-pole spectrum.

where ck,n,m is the complex amplitude of partial n and Δu is
the sampling period of sk,m[i].

Putting Ak,m(ω) :=
∑

p ak,m,pe
−jpω and applying the

discrete-time Fourier transform (DTFT) to Eq. (27) yield

ŝk,m(ω) =
1

Ak,m(ω)

N∑
n=1

ck,n,mδ(ω − neΩk,mΔu), (29)

where ŝk,m(ω) is the DTFT of sk,m[i] and δ is the Dirac delta
function. By applying the inverse DTFT to both sides of Eq. (29),
we obtain another expression of sk,m[i] as

sk,m[i] =

N∑
n=1

ck,n,m

Ak,m(neΩk,mΔu)
ejne

Ωk,m iΔu . (30)

Finally, comparing this expression with Eq. (1), we can obtain
the following explicit parameter relationship between the CWT
spectrogram model and the all-pole system:

dk,n,m =

∣∣∣∣∣ ck,n,m

Ak,m(neΩk,mΔu)

∣∣∣∣∣ . (31)

Eq. (31) means that the spectral envelope of each of the
HTC source spectra is determined by the all-pole spectrum
1/Ak,m(neΩk,mΔu) as shown in Fig. 3.

B. Generative Model of SF-HTFD

In the model presented in Section II, we have assumed the
relative magnitudes wk,n of partials to be time-invariant based
on an assumption that the timbre of a musical instrument sound is
almost static. However, since the timbre of a pitched sound may
be better characterized by its spectral envelope than harmonic
magnitudes, we consider it reasonable to assume the shape of
the spectral envelope to be static. Here, we derive an extension
of the generative model of HTFD in this section based on this
idea.

Let us introduce a filter index f = 1, . . . , F and a pitch index
r = 1, . . . , R. In our conference paper, we assigned only one
filter to each pitch r. However, under this constraint, it becomes
difficult for the model to express the spectrum of concurrent
sounds with the same pitch. In addition, we have experimentally
found that this constraint tended to make the parameter estima-
tion algorithm numerically unstable. To address these problems,
we assign a pair (f, r) to each source k and hereafter replace the
subscript k with a subscript pair (f, r).
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In a way similar to Eq. (6), we factorize cf,r,n,m as

cf,r,n,m = c̃f,r,n,mŨf,r,m, (32)

where c̃f,r,n,m ∈ C is the scaled complex amplitude of partial n
and Ũf,r,m ≥ 0 is the temporal activation. The all-pole spectrum
1/Af,r,m(neΩf,r,mΔu) does not change the F0s, and we can as-
sume af,r,m,p to be independent of time and pitch. To implement
this, we hereafter remove the subscripts m and r in Af,r,m(ω)
and af,r,m,p, i.e., Af (ω) and af,p. Substituting Eq. (32) into
Eq. (31) yields

df,r,n,m = w̃f,r,n,mŨk,m, (33)

w̃f,r,n,m :=

∣∣∣∣∣ c̃f,r,n,m

Af (neΩf,r,mΔu)

∣∣∣∣∣ . (34)

In this way, the relative magnitude of each partial, assumed to be
time-invariant in the HTFD model, now becomes time-variant.

Eq. (34) implicitly defines a conditional probability distribu-
tion of w̃f,r,n,m as

P (w̃f,r,n,m|c̃f,r,n,m;af ,Ωf,r,m)

= δ

(
w̃f,r,n,m −

∣∣∣∣∣ c̃f,r,n,m

Af (neΩf,r,mΔu)

∣∣∣∣∣
)
, (35)

where af = [af,0, . . . , af,P ]
T. If we assume that c̃f,r,n,m fol-

lows an isotropic complex normal distribution with a standard
deviation of 1 as in [19], |c̃f,r,n,m| follows a Rayleigh distribu-
tion with a scale parameter of 1. Hence w̃f,r,n,m also follows a
Rayleigh distribution as

w̃f,r,n,m ∼ Rayleigh

(
w̃f,r,n,m;

1

|Af (neΩf,r,mΔu)|

)
, (36)

where Rayleigh(z; γ) = (z/γ2)e−z
2/(2γ2). This prior distribu-

tion promotes the spectral envelopes of the source spectrogram
model to resemble the all-pole spectrum. Note that we do
not directly assume the prior distribution of w̃f,r,n,m but that
of c̃f,r,n,m. The maximum likelihood estimation of the prior
distribution of w̃f,r,n,m given by Eq. (36) amounts to fitting
the all-pole spectrum |Af (ne

Ωf,r,mΔu)|2 to w̃2
f,r,n,m with the

Itakura–Saito divergence. Introducing the prior distribution of
c̃f,r,n,m allows us to derive an efficient update rule of af as was
done in [29], which we will show in Section VI-B.

As with HTFD, the observed spectrogram model X̃l,m is
given as the sum of FP source spectrogram models S̃f,r,l,m:

X̃l,m =
∑
f,r

S̃f,r,l,m, (37)

S̃f,r,l,m =

(∑
n

w̃f,r,n,mGf,r,n,m

)
Ũf,r,m. (38)

By adopting the same probability distributions as Eqs. (8),
(12), and (13) for Yl,m,Ωf,r,m, and Ũf,r,m, we can obtain the
generative model of SF-HTFD as shown in Fig. 4.

Fig. 4. Plate notation of SF-HTFD generative model.

VI. PARAMETER OPTIMIZATION ALGORITHM OF SF-HTFD

A. Derivation of Objective Function

1) Problem Formulation: The parameters of interest in the
generative model of SF-HTFD are

w̃ = {w̃f,r,n,m}f,r,n,m : relative magnitude of partial n,

a = {af,p}f,p : LPC coefficient of filter f ,

Ũ = {Ũf,r,m}f,r,m : temporal activation,

Ω = {Ωf,r,m}f,r,m : F0 of filter f and pitch r.

We use Θ̃ to denote the set of a, Ũ and Ω. Although we have
already derived an algorithm that searches for the parameters
that maximize the posterior P (w̃, Θ̃|Y ) in [22], we have found
that this algorithm is numerically unstable, particularly in terms
of w̃ and a since w̃ heavily depends on the values of a. To
alleviate this instability, here we develop an improved algorithm
that approximately computes the posterior of w̃ based on the
auxiliary function principle.

Let us consider the problem of finding the estimate of Θ̃ that
maximizes the posterior density P (Θ̃|Y ), or equivalently

J (Θ̃) := lnP (Y |Θ̃) + lnP (Θ̃) (39)

= ln

∫
W
P (Y, w̃|Θ̃)dw̃ + lnP (Θ̃), (40)

where W denotes the domain of w̃. Since the first term of
Eq. (40) involves the intractable integral in the logarithm func-
tion, the current maximization problem is difficult to solve
analytically.

2) Derivation of Lower Bound of J (Θ̃): Now, in a similar
way to Section IV, we derive a lower bound of J (Θ̃). The first
term of Eq. (40) can be lower-bounded by the Jensen inequality
on the concave logarithm function as

ln

∫
W
P (Y, w̃|Θ̃)dw̃ ≥

∫
W
q(w̃) ln

P (Y, w̃|Θ̃)

q(w̃)
dw̃, (41)

= Ew̃[P (Y |w̃, Θ̃)] + Ew̃[P (w̃|Θ̃)]

+ Ew̃[q(w̃)], (42)
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where q(w̃) is a non-negative auxiliary distribution of w̃ such
that

∫
W q(w̃)dw̃ = 1. Here Ew̃[g(w̃)] is given by

Ew̃[g(w̃)] =

∫
W
q(w̃)g(w̃)dw̃. (43)

The equality holds if and only if q(w̃) = P (w̃|Y ). If we can
iteratively update q(w̃) according to this equality condition
and Θ̃ so that it maximizes Eq. (42) plus the log-prior term
lnP (Θ̃), the original objective function J (Θ̃) is guaranteed to
be nondecreasing at each iteration according to the auxiliary
function principle.

Although computing the exact posterior P (w̃|Y ) is in-
tractable, we can use the idea of variational inference [30]
to approximate the distribution using a so-called variational
distribution q(w̃). Here, we restrict q(w̃) to a factorized form:

q(w̃) =
∏

f,r,n,m

q(w̃f,r,n,m), (44)

where q(w̃f,r,n,m) satisfies
∫∞
0 q(w̃f,r,n,m)dw̃f,r,n,m = 1 for

all f, r, n and m.
The first term of Eq. (42) is written as

Ew̃[P (Y |w̃, Θ̃)] =
c

∑
l,m

Yl,mEw̃[ln X̃l,m]−
∑
l,m

Ew̃[X̃l,m],

(45)
and the first term of Eq. (45) can be lower-bounded by the Jensen
inequality as in Eq. (16):

Yl,mEw̃[ln X̃l,m] ≥
∑
f,r,n

Yl,mλ̃f,r,n,l,m(Ew̃[ln w̃f,r,n,m]

+ ln Ũf,r,l,m + lnGf,r,n,m − ln λ̃f,r,n,l,m). (46)

Here λ̃f,r,n,l,m is a non-negative variable such that∑
f,r,n λ̃f,r,n,l,m = 1 for all l and m. The right-hand side

of Eq. (46) is maximized when

λ̃f,r,n,l,m ∝ eEw̃[ln w̃f,r,n,m]Gf,r,n,mŨf,r,m. (47)

Since w̃f,r,n,m can be seen as a tangent line of a quadratic
function of w̃f,r,n,m, the second term of Eq. (45) is bounded
as

− Ew̃[X̃l,m] = −Ew̃[w̃f,r,n,m]Gf,r,n,mŨf,r,m (48)

≥ −1

2

(
Ew̃[w̃

2
f,r,n,m]

χf,r,n,m
+ χf,r,n,m

)
Gf,r,n,mŨf,r,m, (49)

where χf,r,n,m is a non-negative variable. The right-hand side
of Eq. (49) is maximized when

χf,r,n,m =
√

Ew̃[w̃2
f,r,n,m]. (50)

3) Approximation of Lower Bound of J̃(Θ): Furthermore,
applying the approximation given by Eq. (19) to the right-hand
side of Eq. (49) yields

−
∑
l

1

2

(
Ew̃[w̃

2
f,r,n,m]

χf,r,n,m
+ χf,r,n,m

)
Gf,r,n,mŨf,r,m

� −
√
πσ2

2Δ2
x

(
Ew̃[w̃

2
f,r,n,m]

χf,r,n,m
+ χf,r,n,m

)
Ũf,r,m. (51)

This approximation allows us to simplify the variational poste-
rior q(w̃) and derive an update rule of Ω in closed form.

To sum up, a lower bound ofJ (Θ̃) is approximately obtained
as

J +(λ̃, χ, q(w̃), Θ̃)

=
c

∑
l,m,f,r,n

Yl,mλ̃f,r,n,l,m(Ew̃[ln w̃f,r,n,m] + ln Ũf,r,l,m

+ lnGf,r,m − ln λ̃f,r,n,l,m

)
−
√
πσ2

2Δ2
x

∑
f,r,n,m

Ew̃

[(
w̃2

f,r,n,m

χf,r,n,m
+ χf,r,n,m

)
Ũf,r,m

]

+
∑

f,r,n,m

Ew̃ [lnP (w̃f,r,n,m;af ,Ωf,r,m)] + Ew̃[q(w̃)]

+
∑
f,r

lnP (Ωf,r;μf,r, υ
2
f,r, τ

2
f,r)

+
∑
f,r,m

lnP (Ũf,r,m;α(U), β(U)), (52)

where λ̃ := {λ̃f,r,n,l,m}f,r,n,l,m and χ := {χf,r,n,m}f,r,n,m.
Since the equalities of inequalities (46) and (49) do not always
hold at Eqs. (47) and (50), respectively, J +(λ̃, χ, q(w̃), Θ̃) is
no longer an auxiliary function of J (Θ̃). However, the inequal-
ities (42), (46), and (49) hold for any q(w̃), λ̃, andχ, respectively,
and the bound property is preserved up to the approximation
(51). We maximize J +(λ̃, χ, q(w̃), Θ̃) instead of the original
objective function.

B. Update Rules

1) Update Rule of q(w̃f,r,n,m): By taking into account the
normalization constraint of q(w̃f,r,n,m) and using the method of
Lagrange multipliers, we can obtain the following update rule
of q(w̃f,r,n,m).

q(w̃f,r,n,m)← Nakagami(w̃f,r,n,m; ρf,r,n,m, ζf,r,n,m), (53)

where Nakagami(z; ρ, ζ) ∝ z2ρ−1e−ρz/ζ and

ρf,r,n,m :=

∑
l,m Yl,mλ̃f,r,n,l,m

2
+ 1, (54)

ζf,r,n,m :=

∑
l,m Yl,mλ̃f,r,n,l,m + 2

√
2πσ2Ũf,r,m

χf,r,n,mΔx
+ |Af (neΩf,r,mΔu)|2

. (55)

The expectations associated with q(w̃) are computed as

Ew̃[ln w̃f,r,n,m] =
1

2

(
ψ(ρf,r,n,m)− ln

ρf,r,n,m

ζf,r,n,m

)
, (56)

Ew̃[w̃
2
f,r,n,m] = ζf,r,n,m, (57)
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Ew̃[w̃f,r,n,m] =
Γ(ρf,r,n,m + 1

2 )

Γ(ρf,r,n,m)

√
ζf,r,n,m

ρf,r,n,m
, (58)

where ψ denotes the digamma function.
2) Update Rule of af : For af , we can use the multiplicative

update algorithm as in [29]. Since

|Af (ne
Ωf,r,mΔu)|2 = aT

fC(ne
Ωf,r,mΔu)af , (59)

where C(ω) is a (P + 1)× (P + 1) Toeplitz matrix whose
(p, q)th element is given by cos(ω(p− q)), the partial derivative
of −J +(λ̃, χ, q(w̃), Θ̃) with respect to af can be represented
as

−∂J
+(λ̃, χ, q(w̃), Θ̃)

∂af
= (Vf − V ′f )af , (60)

where Vf and V ′f are (P + 1)× (P + 1) positive definite ma-
trices defined by

Vf =
∑
p,n,m

1

aT
fC(ne

Ωf,r,mΔu)af

C(neΩf,r,mΔu), (61)

V ′f =
∑
p,n,m

Ew̃[w̃
2
f,r,n,m]

2
C(neΩf,r,mΔu). (62)

The update rule of af is given by

af ← V −1f V ′faf . (63)

To adjust the scale of 1/|Af (ne
Ωf,r,mΔu)|, we normalize af

such that af ← af/af,0 for all f after Eq. (63) is applied.
3) Update Rules of Ũf,r,m and Ωf,r: In a similar way to

Section IV-C, the update rule of Ũ is derived as

Ũf,r,m ←
∑

l,n Yl,mλ̃f,r,n,l,m + α(U) − 1√
πσ2

2Δ2
x

(∑
n

Ew̃[w̃2
f,r,n,m]

χf,r,n,m
+ χf,r,n,m

)
+ β(U)

,

(64)
followed by Ũf,r,m ← max{0, Ũf,r,m}, which ensures Ũf,r,m

to be non-negative. If the term related to the all-pole spectrum in
the objective function, or Ew̃[lnP (w̃f,r,n,m;af ,Ωf,r,m)], can
be assumed to be negligible when updating Ωf,r, we can use
Eq. (25) in which ηf,r,n,l is replaced with η̃f,r,n,l to update
Ωf,r:

Ωf,r ←
⎛
⎝ αl

τ2f,r
DTD +

αg

υ2f,r
IM +

∑
n,l

diag(η̃f,r,n,l)

⎞
⎠−1

×
⎛
⎝μf,r

αg

υ2f,r
1M +

∑
n,l

(xl − lnn)η̃f,r,n,l

⎞
⎠ , (65)

where η̃f,r,n,l is a M -dimensional vector whose mth entry is
given by Yl,mλf,r,n,l,m/σ

2. Although the above assumption
used when deriving Eq. (65) and the normalization steps of af

and Ũf,r,m may affect the convergence of the algorithm, we have
experimentally found that the algorithm works well.

The algorithm of SF-HTFD is summarized in Algorithm 2.

Algorithm 2: Iterative Algorithm of SF-HTFD.
Input: Observed spectrogram Y and the number of
iterations N (iter)

Output: q(w̃), a, Ũ and Ω
1: Initialize q(w̃), a, Ũ and Ω
2: for i = 1 to N (iter) do
3: Compute λ and χ according to Eqs. (47) and (50)
4: Update q(w̃) according to Eq. (53)
5: Compute λ and χ according to Eqs. (47) and (50)
6: Update Ũ according to Eq. (64)
7: for all f, r and m do
8: Uf,r,m ← max{0, Uf,r,m}
9: end for

10: Compute λ and χ according to Eqs. (47) and (50)
11: Update a according to Eq. (63)
12: for all f do
13: af ← af/af,0
14: end for
15: Compute λ and χ according to Eqs. (47) and (50)
16: Update Ω according to Eq. (65)
17: end for

Using q(w̃), a, Ũ and Ω obtained with the algorithm, the
estimated spectrogram of filter f and pitch r is calculated as
Ew̃[S̃f,r,l,m]. To reduce the computational cost, as in HTFD,
we computed the entries of λ̌ only within [Ωf,r,m + lnn−
3σ,Ωf,r,m + lnn+ 3σ].

VII. RELATED STUDIES

A. Separation of Harmonic Sounds With Time-Varying F0s

In this section, we briefly review related studies and highlight
our contributions. The proposed methods can be reduced to
HNMF as described in Section II-D. HNMF forces the spectral
templates to have the harmonic structures by initializing the
entries of each template with zero except for those around the
correspondingF0 and its harmonics. The update rule of the spec-
tral templates is multiplicative and the zero-initialized entries re-
main zeros after the update. Although HNMF works well for the
separation of nearly stationary harmonic sounds, time-varying
fluctuations such as vibrato decrease the separation performance
of HNMF due to its assumption of the time-invariance of the
spectral templates [31], [32].

To better capture sounds having time-varying fluctuations,
a variant of NMF (Hennequin model) has been developed by
allowing the F0 of each basis spectrum to be time-varying [31].
The Hennequin model can be seen as an STFT version of the
HTFD spectrogram model, with the exception of the additional
penalty terms. Although it may appear that the Hennequin model
can also be used to express CWT spectrograms by naively using
it in the log-frequency domain, this may not work properly since
the interpretation of the model parameters becomes unclear.

By contrast, since our HTFD model is derived based on
the time-domain signal model, the interpretation of the model
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parameters remains clear, regardless of the domain in which it
is expressed. Namely, our spectrogram model, represented in
either the CWT domain or STFT domain, is designed so that the
model parameters are associated with those of the time-domain
signal representation. In fact, an STFT version of the HTFD
model can easily be derived. Specifically, the STFT version of
the HTFD model can be written by replacing Gk,n,m in Eq. (7)

with G(STFT)
k,n,m given by

G
(STFT)
k,n,m = e−

(ex−ne
Ωk,m )

2σ2 . (66)

B. Source-Filter Model Representation in CWT Domain

After our conference paper [22] had been published, a spec-
trogram model called an infinite superimposed discrete all-pole
(iSDAP) model was proposed for multipitch analysis [17]. The
iSDAP model adopts the the excitation-filter product represen-
tation in the CWT domain. As described in Section I, this way
of modeling CWT spectrograms is not justified since CWT is
not an orthogonal transform. In addition, the interpretation of
the model parameters is unclear for the same reason as the
Hennequin model when used as a CWT spectrogram model.

Indeed, the SF-HTFD model can be reduced to one using
the excitation-filter product representation. If we assume that
cf,r,n,m in Eq. (32) follows δ(cf,r,n,m − 1) instead of the
isotropic complex normal distribution when deriving the SF-
HTFD model, w̃f,r,n,m equals 1/|Af (ne

Ωf,r,mΔu)|. The spec-
trum model of each f and r pair is then represented by a product
of the all-pole spectrum and the excitation spectrum whose
partial amplitudes equal Ũf,r,m. Thus, adopting the excitation-
filter product representation in the CWT domain implies that
the partials of the excitation spectrum are assumed to have the
same magnitude, which can be too restrictive for audio source
separation. We will show the effect of this assumption on the
separation performance in Section VIII. To our knowledge, this
is the first time in the literature to reveal the flaws and limitations
of the excitation-filter product representation assumed in the
CWT domain. Although the NMF-based model presented in [18]
also uses the excitation-filter product representation in the CWT
domain, we did not consider this model for comparison since it
is for supervised settings.

C. Unsupervised Monaural Audio Source Separation

While the proposed methods perform the source separation
in the CWT domain, a few recent methods of unsupervised
monaural audio source separation have explored modulation-
based representations of signals [32]–[34]. In [32], a variant of
the modulation spectrogram (the common fate transform) has
been presented, which has explicit dimensions corresponding
to the spectral and temporal modulations. The source sepa-
ration is achieved by factorizing the common fate transform
of a mixture audio signal into that of the sources with non-
negative tensor factorization (NTF), which was originally intro-
duced for multichannel audio source separation [35]. Since, for
the sources with different modulation patterns, their common
fate transforms are likely to be less heavily overlapped than

the STFTs, the modulation-based representations have been
reported to be advantageous for separating mixtures of vibrato
sounds played with a same pitch into those of different musical
instruments [32], [33]. Although the use of NTF assumes that
each source has a unique modulation pattern, the modulation
patterns are often changed, depending on musical expressions
(e.g., legato and vibrato), players, and their performance skills.
Additionally, since these methods are designed to separate the
concurrent instrument sounds played with the same pitch, they
are difficult to directly use for separation into the sounds of indi-
vidual pitches, which we address. By contrast, although HTFD
and SF-HTFD are not designed for instrument-wise separation,
they do not impose such an assumption and can work well for
real performances as shown in Section VIII.

In [16], a NTF-based framework was presented, which has
the flexibility of encompassing prior distributions of its pa-
rameters and the source-filter model. However, this framework
assumes the excitation-filter product representation. As shown in
Section VII-B, this representation is reasonable in the STFT
domain but is not well justified in the CWT domain. In addition,
although NTF can be used for the monaural audio source separa-
tion of the modulation-based representations as described in the
above, in such a domain, the excitation-filter product representa-
tion is apparently inappropriate for expressing the source-filter
model. For example, the common fate transform is computed by
dividing the complex STFT into overlapping rectangular patches
and applying the two-dimensional discrete Fourier transform to
these patches, and the common fate transform of the source is
not represented by a product of the common fate transforms
of the excitation and filter components. On the other hand, the
proposed methods can appropriately encompass the source-filter
model in the CWT domain without assuming the excitation-filter
product representation.

VIII. EXPERIMENTAL EVALUATIONS

A. Data Preparation and Separation Procedure

We assessed the separation performance of HTFD and SF-
HTFD through experiments on separating music audio signals
into the signals of individual semitones. We first describe com-
mon experimental settings in the following two sections.

For the test data, we used the first 30 seconds of seven
musical pieces, Classic Music No. 1 to 7 from the RWC music
database [36]. To determine the hyperparameters of the proposed
and conventional methods, we used the first 30 seconds of
Classic Music No. 13 to 15 from the RWC music database
as the development data. We synthesized mixed and ground
truth audio signals from MIDI files of the excerpts with a
MIDI synthesizer called FluidSynth [37] and a high-quality
GeneralUser GS 1.4 soundfont to make the synthesized signals
as realistic as possible. The sampling frequency was set to
16 kHz, i.e., Δu = 1/16000. All control messages contained in
the MIDI files were preserved, but the drum tracks were muted.
The number of semitones and input signal-to-distortion ratios
(SDRs) of each excerpt are as shown in Table I.

We first transformed the mixed signals into spectrograms
using the fast approximate CWT algorithm [38], [39] with a
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TABLE I
STATISTICS OF EXCERPTS

time resolution of around 2 ms and frequency bins from 27.5
to 7040 Hz per 100/3 cents, i.e. xl = ln(2π × 27.5) + (l −
1) ln(2)/36 for l = 1, . . . , L. We used the analyzing wavelet
defined by Eq. (2) and set σ = ln(2)/60, which corresponds to
one fifth of a semitone interval. To reduce the computation time,
we decimated the magnitude spectrogram of each mixed signal
so that Δt = tm − tm−1 was around 10 ms. We scaled the dec-
imated magnitude spectrogram such that

∑
l,mXl,m/(LM) =

1, as in [15], and applied the separation methods to it. After the
separation, we linearly interpolated the separated spectrograms
up to the original time resolution and converted the interpolated
ones into the time-domain signals using the inverse fast approx-
imate CWT algorithm with the phase of each mixed signal.

B. HTFD Experiments

1) Comparison With HNMF and HTC: To evaluate the effect
induced by the features of the HTC and NMF spectrogram
models, we first compared HTFD with HNMF [24] and HTC [7].
For fair comparison, we used the Gamma distribution given
by Eq. (13) as a prior distribution of temporal activations. To
maximize the separation performance of HNMF and HTFD,
we performed a grid search on β(U) = 1.0× 10γ among γ =
−5,−4,−3,−2,−1 and 0 while fixing α(U) = 1. For these
methods, the number of iterations N (iter) was set to 100.

The other parameters of these methods were set as follows.
HTFD: The hyperparameters were set to K = 88, N =

20, αg = αl = 100, τk = ln(2)Δt/72 (vibrato frequency of
6 Hz), υk = ln(2)/36 (one third of semitone interval), and
μk = ln(2π × 27.5) + (k − 1) ln(2)/12 for k = 1, . . . , 88 (A0
to C8).Uk,m were randomly initialized, andΩk,m andwk.n were
initialized at Ωk,m = μk and wk,n ∝ e−n.

HNMF: We used 88 spectral templates, which were associ-
ated with semitones from A0 to C8. The kth template was initial-
ized such that its entries within a range of [μk + lnn− 3σ, μk +
lnn+ 3σ] were proportional to

∑
n e
−ne−(xl−lnn−μk)

2/(2σ2)

for all ns and the other entries were set to zero. The temporal
activations of HNMF were initialized randomly.

HTC: The parameters were set and initialized as in [7] except
for the number of initial models since we experimentally found
that the number of initial models strongly affected the separation
performance. Through a grid search, we determined the number
of initial models as 600. Although HTC originally takes the
CWT power spectrograms |Yl,m|2 as inputs, we instead used
the CWT magnitude spectrograms |Yl,m|, which significantly
improved the separation performance of HTC.

TABLE II
AVERAGE AND MEDIAN SDR IMPROVEMENTS OF PROPOSED HTFD AND

CONVENTIONAL METHODS OVER ALL SOURCES. TFR AND IRM DENOTE THE

TIME FREQUENCY REPRESENTATION AND THE IDEAL RATIO MASK

Table II summarizes the average and median SDR improve-
ments obtained with all methods under the best γ settings, where
SDRs were computed using the BSS Eval toolbox [40]. As a ref-
erence objective, we also provided the results for the ideal ratio
mask (IRM), which computes the best mask with the ground
truth sources. In terms of average and median SDR improve-
ments, HTFD outperformed HTC by more than 8 dB and HNMF
by more than 1 dB. For all the excerpts, HTFD consistently
achieved the highest average and median SDR improvements as
shown in Table III. We also examined the statistical significance
of the SDR differences between HTFD and HNMF, which gave
the highest SDR improvements in the conventional methods, by
performing a paired t-test on the sources of all the excerpts. Since
the p-value was 2.00× 10−5, HTFD significantly outperformed
HNMF in SDR improvements. These results clearly show the
effect induced by the features of the spectrogram models used
in the HTC and NMF approaches.

2) Comparison With STFT Domain Model: Next, we com-
pared HTFD with the Hennequin model presented in [31]. As
in HNMF, we also used the gamma distribution as a prior
distribution of the temporal activations instead of the penalty
terms used in the literature and conducted a grid search on
γ to maximize the separation performance. We set the other
parameters as in [31] except for the harmonic amplitudes of the
spectral templates since we observed that initializing the partial
amplitudes in the same way as HTFD performed better. For
STFT, we used a Gaussian window with a hopsize of 10 ms
length, where the standard deviation of the Gaussian window
was set to one sixth of the window length.

As shown in Table III, HTFD achieved higher average and
median SDR improvements than the Hennequin methods when
the time windows were 64,128 and 256 ms lengths. This result
supports that CWT is more suitable for music source separation
than STFT, which is consistent with the literature [41].

C. SF-HTFD Experiments

1) Comparison With HTFD: To evaluate the effect of in-
corporating the source-filter model into HTFD, we compared
SF-HTFD with HTFD. We further compared it with the iSDAP
model [17] to evaluate the advantage of the proposed modeling
frameworks over the excitation-filter product representation in
the CWT domain. For SF-HTFD and the iSDAP model, the
filter degree was set at P = 16, 32, 48 and 64, and the number
of filters at F = 1, 3, 5, and 7. Since these models adopt gamma



NAKAMURA AND KAMEOKA: HARMONIC-TEMPORAL FACTOR DECOMPOSITION FOR UNSUPERVISED MONAURAL SEPARATION 79

TABLE III
SEPARATION PERFORMANCES OF PROPOSED HTFD AND CONVENTIONAL METHODS FOR EACH EXPERT. THE LABELS ARE THE SAME AS TABLE II

TABLE IV
γ VALUES OF SF-HTFD AND ISDAP MODEL FOR EACH PAIR OF P AND F

distributions as the prior distributions of temporal activations,
we conducted a grid search on γ for each F and R pair to
maximize the separation performance. The chosen values of γ
are summarized in Table IV. The other parameters of SF-HTFD
and the iSDAP model were set as follows.

SF-HTFD: We setμf,r = ln(2π × 27.5) + (r − 1) ln(2)/12
for r = 1, . . . , 88 and f = 1, . . . , F , andαg = αl = 1. The LPC
coefficients af were initialized by randomly sampling P values
in the range of [0.09,0.11] and then using the sampled values
as the poles of the all-pole system. This initialization ensures
that the all-pole spectral functions monotonically decrease in
the frequency direction. The variational posterior q(w̃f,r,n,m)
was initialized at the corresponding prior distribution. The other
parameters were set and initialized as in HTFD.

iSDAP: We initialized the parameters and variational posteri-
ors of the iSDAP model as in [17] except for the LPC coefficients,
which were initialized as in SF-HTFD for fair comparison.

Fig. 5 shows the average and median SDR improvements of
these models. SF-HTFD achieved the highest average and me-
dian SDR improvements when (P, F ) = (48, 3) and (P, F ) =
(48, 5), respectively, and SF-HTFD with several P and F pairs
outperformed HTFD, demonstrating the effect of incorporating
the source-filter model.

The performance gain of SF-HTFD over HTFD was greater
on average than median. We observed that SF-HTFD produced
less standard deviation of the average SDR improvements over
the excerpts than HTFD: The standard deviations were 6.36 dB
for SF-HTFD and 8.26 dB for HTFD. These results may imply
that the incorporation of the source-filter model had a larger
effect on the sources that HTFD failed to separate than on those
that it could separate successfully. To verify this, we compared
the distributions of the SDR improvements of HTFD and SF-
HTFD. Fig. 6 clarifies that SF-HTFD had fewer outliers of SDR
improvements in all the excerpts and around 0.8 dB larger 25th
percentiles than HTFD averagely. The 75th percentiles of SF-
HTFD were slightly lower than those of HTFD in the excerpts

Fig. 5. Separation performance of proposed and iSDAP models. The equations
for F in the parentheses of the label names represent the number of filters. The
chain, dotted, solid, and dashed lines correspond to HTFD, the model presented
in our conference paper, SF-HTFD, and the iSDAP model, respectively. The blue,
orange, red, and green colors correspond to F = 1, 3, 5, and 7, respectively.

Fig. 6. Boxplots of SDR improvements for HTFD and SF-HTFD with
(P,F ) = (48, 3). The parameters of HTFD are the same as in Table II.

No. 1 and 2, but in the other excerpts, were equal to or slightly
greater than those of HTFD.

2) Comparison With iSDAP Model: SF-HTFD outperformed
the iSDAP model for all the F and R pairs, demonstrating
the advantage of our model over the excitation-filter product
representation in the CWT domain. Due to this representation,
the iSDAP model implicitly assumes the partials of the excitation
spectra to have the same magnitude, representing the spectral
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shape of each semitone by a superposition of only F all-pole
spectra. This can be too restrictive for audio source separation,
and this could be why the iSDAP model could not perform better
than the HTFD model.

3) Comparison With Our Previous Model: In addition to the
above models, we compared the present model with the model
presented in our conference paper [22], which we call [Naka-
mura+2014]. The parameters of this model were initialized
in a similar way to SF-HTFD. Through a grid search on γ
and P , we decided to use P = 2 and γ = 0, which gave the
highest average SDR. During the grid search, we occasionally
encountered numerical errors when updating af , particularly
with P ≥ 16. When such errors occurred, we chose to adopt
the values obtained just before the last iteration as the current
estimates of af . As shown in Fig. 5, SF-HTFD notably out-
performed [Nakamura+2014], clearly showing the advantages
of the reformulation and the novel inference algorithm we have
presented in this paper.

D. Demonstration on Automatic Musical Key Transposition

In this section, we demonstrate how well the proposed meth-
ods perform in an automatic musical key transposition task using
real audio signals. The task is to change the key of an input music
audio signal to another key. For this experiment, we developed
an automatic musical key transposition system, which works by
performing the following four steps. (i) Given a music audio sig-
nal and its key, we first separated the magnitude spectrogram of
the input signal into that associated with each semitone by using
HTFD, SF-HTFD, or HNMF. (ii) We selected the semitones to
be transposed according to the source and target key and shifted
only the separated magnitude spectrograms corresponding to
the selected semitones in the log-frequency direction. In the
equal-tempered scale, the F0s of different semitones are equally
spaced in log-frequency. Thus, shifting a spectrogram by a fixed
offset corresponds to pitch transposition. For example, when the
key of the input signal is A major, we can convert its scale into
the A natural minor scale by shifting the separated magnitude
spectrograms corresponding to C�, F�, and G� down by one
semitone so that they correspond to C, F and G. (iii) We added all
the separated spectrograms, including the shifted ones, together
to construct the spectrogram of a pitch-transposed version and
(iv) finally converted it into a time-domain signal using the phase
reconstruction algorithm for fast approximate CWT presented
in [39].

Several separated and key-transposed results obtained with
the above system are available at http://tomohikonakamura.
github.io/Tomohiko-Nakamura/demo/key_transposition/
index.html , where we experimentally used the initialization
that wk,n ∝ e−0.3n for HTFD and HNMF. We can confirm
from these examples that the audio signals generated using
HTFD and SF-HTFD had less dissonance than those obtained
with HNMF, especially in vibrato sounds. When listening to
the separated audio signals of the pitches that should not be
transposed, we notice that the separated signals of SF-HTFD
have less squeaking noise than those of the other methods and
that SF-HTFD yielded perceptually better separation. These

observations show that HTFD and SF-HTFD can not only
perform well even on real audio signals but also track the F0s
of the performed notes more accurately than HNMF.

IX. CONCLUSION

In this paper, we presented a monaural audio source separation
framework called HTFD and its extension incorporating the
source-filter model, called SF-HTFD. The spectrogram model
of HTFD concurrently offers the advantages of the HTC and
NMF models, in which the regularities underlying both the local
and global time-frequency structures of music spectrograms
are exploited. The efficient parameter estimation algorithm of
HTFD was derived based on the auxiliary function principle.
To incorporate the source-filter model, we derived the explicit
parameter relationship between the HTFD spectrogram model
and the all-pole system and extended the generative model of
HTFD to that of SF-HTFD. This extension allows for sepa-
rately modeling fine structures and envelopes of source spectra
and designing the reasonable prior distributions on F0s and
spectral envelopes. Furthermore, we revealed that assuming
the excitation-filter product representation in the CWT domain
as in the iSDAP model corresponding to assuming the partial
amplitudes of the excitation spectrum to be the same. As with
HTFD, we derived a parameter estimation algorithm consisting
of closed-form update rules based on the auxiliary function prin-
ciple. Through music audio separation experiments, we showed
the efficacy of HTFD and SF-HTFD and demonstrated their
effectiveness to automatic musical key transposition.

Some improvements remain as future work. Many musical
pieces include percussive sounds, e.g., drums and attack parts
of piano sounds, and dealing with these sounds would broaden
the applications of the proposed methods. Since the regular NMF
works well for the separation of percussive sounds, one possible
way to deal with these sounds is to add the regular NMF model
to the HTFD and SF-HTFD models as in [31]. Another way to
deal with percussive sounds would be to preprocess an input
signal with harmonic-percussive source separation [42].

APPENDIX A
DERIVATION OF CONTINUOUS WAVELET TRANSFORM OF

SOURCE SIGNAL MODEL

In this section, we derive the CWT of the analytic signal model
given by Eq. (1). The wavelet bases are computed by scaling and
time-shifting the analyzing wavelet ξ(u):

ξα,t(u) =
1

α
ξ

(
u− t
α

)
, (A1)

whereα > 0 is the scale parameter. The CWT of sk(u) is written
as

Wk

(
ln

1

α
, t

)
=

N∑
n=1

∫ ∞
−∞

dk,n(u)e
j(nθk(u)+ϕk,n)ξ∗α,t(u)du,

(A2)
where ξ∗α,t(u) is the complex conjugate of ξα,t(u). The dominant
part of ξ∗α,t(u) is typically localized around time t, and the results
of the integrals in Eq. (A2) shall depend only on the values of

http://tomohikonakamura.github.io/Tomohiko-Nakamura/demo/key_transposition/index.html
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θk(u) and dk,n(u) near t. For this reason, we introduce zeroth-
and first-order approximations of θk(u) and dk,n(u) around time
t given by

dk,n(u) � dk,n(t), θk(u) � θk(t) + θ̇k(t)(u− t), (A3)

where θ̇k(u) is the time derivative of θk(u), a.k.a. the instan-
taneous fundamental frequency. By undertaking the above ap-
proximations, applying Parseval’s theorem, and puttingΩk(t) =
ln θ̇k(t), Eq. (A2) is reduced to

Wk

(
ln

1

α
, t

)
=

N∑
n=1

dk,n(t)Ξ
∗(ne−x+Ωk(t))ej(nθk(t)+ϕk,n).

(A4)
Since the function Ξ(ω) can be chosen arbitrarily, we can use
the wavelet given by Eq. (2). Since this wavelet has a center
frequency of 1, α equals the reciprocal of the angular frequency,
and we can put x = ln(1/α). We can thus write Eq. (A4) as
Eq. (3).
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