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NAUTILUS: A Versatile Voice Cloning System

Hieu-Thi Luong

Abstract—We introduce a novel speech synthesis system, called
NAUTILUS, that can generate speech with a target voice either
from a text input or a reference utterance of an arbitrary source
speaker. By using a multi-speaker speech corpus to train all req-
uisite encoders and decoders in the initial training stage, our sys-
tem can clone unseen voices using untranscribed speech of target
speakers on the basis of the backpropagation algorithm. Moreover,
depending on the data circumstance of the target speaker, the
cloning strategy can be adjusted to take advantage of additional
data and modify the behaviors of text-to-speech (TTS) and/or
voice conversion (VC) systems to accommodate the situation. We
test the performance of the proposed framework by using deep
convolution layers to model the encoders, decoders and WaveNet
vocoder. Evaluations show that it achieves comparable quality with
state-of-the-art TTS and VC systems when cloning with just five
minutes of untranscribed speech. Moreover, it is demonstrated that
the proposed framework has the ability to switch between TTS and
VC with high speaker consistency, which will be useful for many
applications.

Index Terms—Voice cloning, text-to-speech, voice conversion,
speaker adaptation, neural network.

1. INTRODUCTION

PEECH synthesis is the technology of generating speech

from an input interface. In its narrow sense, speech synthesis
is used to refer to text-to-speech (TTS) systems [1], which play
an essential role in a spoken dialog system as a way for machine-
human communication. In its broader definition, speech synthe-
sis can refer to all kinds of speech generation interfaces like
voice conversion (VC) [2], video-to-speech [3], [4], and others
[5]-[7]. Recent state-of-the-art speech synthesis systems can
generate speech with natural sounding quality, some of which
are indistinguishable from recorded speech [8], [9]. Deep neural
networks are used in various components of these speech synthe-
sis systems. Many use sequence-to-sequence (seq2seq) models
to unfold a compact phoneme sequence into acoustic features
in the case of TTS [9], [10] or to handle the misalignment
of acoustic sequences in the case of VC [11]-[13]. A neural
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vocoder, which generates waveforms sample-by-sample [14]-
[16], is also a staple of many high-quality speech-generation
recipes [9], [17]. Generally speaking, the performance of deep
learning approaches are high when training on a large amount
of data. For speech generation models, this means that we need
many hours of speech from a target speaker to train a model. This
limits the ability to scale the technology to many different voices.

Besides improving the naturalness, cloning new voices with a
small amount of data is also an active research topic. While there
are many different approaches proposed to tackle this problem,
they all share the same fundamental principle which is using an
abundant corpus to compensate for the lack of data of a target
speaker [18]. For neural TTS, we can fine-tune all or part of
a well-trained acoustic model using transcribed speech from a
target speaker [19]. For neural VC, we can pool the speech data of
multiple source and target speakers and share knowledge learned
from each [20]. In most of these cases, the data used for training
or adaptation is either paired or labeled. However, as all acoustic
characteristics of a speaker are fully contained within speech
signals, we should hypothetically be able to clone voices by
using untranscribed speech only, and this would greatly reduce
the cost of building speech generation systems. Disentangling
speaker characteristics from linguistic information and repre-
senting it as a speaker vector is hence a popular way for cloning
voices [21]. Another approach is to use labels auto-generated
by speaker-independent automatic speech recognition (ASR)
trained on large-scale multi-speaker corpora [ 19]. Either way, the
cloning method is usually formulated for a specific data scenario
of a specific speech generation system (either TTS or VC), while
a true data-efficient method should work on extremely limited
data and also abundant data with or without labels.

From the perspective of voice cloning, TTS and VC can
be regarded as similar systems that use different inputs for
generating speech with a target voice. They share almost the
same objective as well as many functional components, but they
are normally treated as different systems and are modeled using
vastly different frameworks. In this work, we present a novel
speech generation system, called NAUTILUS, which can clone
voices with a small amount of untranscribed speech and be used
for both TTS and VC. It is expected to have state-of-the-art
(SOTA) quality and highly consistent speaker similarity when
switching between modes.! More importantly, this combination
has the ability to clone unseen voices with a versatile strategy
that could be adjusted to accommodate the data situation of the

I'The basis of the voice cloning method for TTS was proposed in [22] and
as a proof-of-concept it was also shown that the same principle is applicable to
VC in [23]. This new work builds upon the methodology and presents a SOTA
unified voice cloning system for TTS and VC.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-4772-5995
https://orcid.org/0000-0003-2752-3955
mailto:luonghieuthi@nii.ac.jp
mailto:jyamagis@nii.ac.jp

2968

target speakers. Our experiments show that the proposed system
is able to capture unique and subtle speaker characteristics such
as L2 accents.

This paper is structured as follows: Section II reviews works
on TTS and VC in the context of cloning voices. Section III ex-
plains the principles of our framework. Section IV gives details
on the NAUTILUS system used in this paper. Section V presents
experiment scenarios and their evaluations. Section VI provides
further analysis and discussion. We conclude our findings in
Section VII.

II. RELATED WORK ON VOICE CLONING
A. Definition of Voice Cloning

The term voice cloning is used to refer to a specific speaker
adaptation scenario for TTS with untranscribed speech in several
works [21], [24]. However in pop culture, it is loosely used to
describe technology that resembles VC. In this paper, we use
voice cloning as an umbrella term that indicates any type of
system that generates speech imitating the voice of a particular
speaker. The main difference between voice cloning and speech
synthesis is that the former puts an emphasis on the identity of
the target speaker [25], while the latter sometimes disregards this
aspect for naturalness [26]. Given this definition, a voice cloning
can be a TTS, a VC, or any type of speech synthesis system
[4], [7]. The NAUTILUS system is designed to be expandable
to other input interfaces. However, we focus on TTS and VC,
which are two common speech synthesis tasks, in this work as
they play an irreplaceable role in our voice cloning framework.

The performance of a voice cloning system is judged on many
aspects. As a speech generation system, the naturalness and
similarity to target speakers are important [9]. As a computer
system, a small memory footprint [18] and fast computing
time [21], [27] are desirable for practical reasons. However, the
defining property of voice cloning compared with generic speech
synthesis is its data efficiency as this determines its scalability
[28]. While data efficiency can be interpreted as using as little
data as possible [18], a better voice cloning system should not
only work in a situation with extremely limited amount of data
but also be able to take advantage of abundant speech data [28]
when they become available regardless of the availability of
transcriptions [22].

B. Training Voice Conversion System for a Target Speaker

The conventional VC approach is text-dependent, i.e., it ex-
pects training data to be parallel utterances of source and target
speakers [29], [30]. As obtaining these utterances is expensive
and labor-intensive work, a parallel VC system has to commonly
be built with as little as five minutes of data from a speaker [31].
This is inconvenient and it limits the quality of VC systems in
general. Many have worked on methodologies for building VC
systems with non-parallel utterances [32]. With HMM models,
we can formulate a transformation function to adapt pretrained
models using non-parallel speech [33], [34]. With recent deep
representation learning approaches, the popular method for non-
parallel VC is training a speaker-disentangled linguistic repre-
sentation either implicitly or explicitly. For implicit cases, Hsu
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et al. [35] used variational auto-encoder (VAE), while Kameoka
et al. [32] used generative adversarial network (GAN) to train
a many-to-many non-parallel VC system. These methods use
multi-speaker data, conditional labels, and various regulariza-
tions to encourage a model to disentangle linguistic content from
speaker characteristics via a self-supervised training process.
For explicit cases, Sun et al. [36] used phonetic posteriorgrams
(PPG) obtained from an ASR model to train an any-to-one non-
parallel VC system. As the ASR model is speaker-independent,
a PPG-based VC system can theoretically convert the speech
of arbitrary source speakers into a target speaker. As PPG is a
stand-in for text, the adaptation techniques used for TTS such as
adapting an average [37] or a multi-speaker [38] acoustic model
can also be applied for PPG-based VC systems [20].

Even though a typical VC system is only trained on speech
data, recent studies have suggested that using transcriptions of
training data [13], [39] or jointly training TTS along with VC
[40] can further improve naturalness of the generated speech.
In our previous work [23], we established a methodology to
bootstrap VC from TTS by utilizing the pretrained linguistic
latent space. This paper builds upon this method by introduc-
ing an auxiliary phoneme recognition module and many new
techniques to improve overall performance.

C. Adapting Text-to-Speech System to an Unseen Target

A TTS system is typically trained on dozens of hours of
transcribed speech [9], [41]. Due to the high requirement for
quantity and quality, a professional voice actor is commonly
commissioned to record such data in a controlled environment.
This makes the conventional approach ill-fitted for the voice
cloning task in which we do not have controls over target speaker,
recording environment, or the amount of data. To build a TTS
system for speakers with a limited amount of labeled data, we
can adapt a pretrained model. The initial model can be trained
on the data of a single speaker [42] or data pooled from multiple
speakers [37], [43]. This simple fine-tuning produces a high-
quality model when the data of target speakers is sufficient (e.g.,
one hour) [28]. When the data is extremely limited (e.g., one
minute), we can restrict the tuning to certain components instead
of the entire network to prevent overfitting [28], [43], [44]. In
summary, speaker adaptation transfers knowledge learned from
abundant data of one or multiple speakers to reduce demand on
a target.

The costly part of the voice cloning system is the data col-
lecting process, especially the transcription of speech. Theo-
retically speaking, as speaker characteristics are self-contained
within an utterance we should be able to clone voices without
using text. One practical approach is obtaining automatically
annotated transcriptions using a SOTA ASR system [19]. How-
ever ASR-predicted transcriptions contain incorrect annotations,
which affects the performance of the adaptation. Moreover, this
approach assumes that a well-trained ASR is obtainable for the
target language, which makes it impractical for low-resource
languages [26] or performing cross-language adaptation [24],
[45]. Given the disentanglement ability of deep learning mod-
els, another approach is to train a speaker-adaptive model
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conditioned on a speaker representation extracted from speech
[21], [46]. The speaker representation can be an i-vector [47],
d-vector [18], [48], or x-vector [49], which are all byproducts of
speaker recognition systems. This approach has a computational
advantage in that it does not involve an optimization loop [21].
However, the drawback is its limited scalability; in other words
the speaker similarity seems to stop improving when more
than a few seconds of speech is used [28]. The basis of our
backpropagation-based unsupervised adaptation method, with
high scalability, was proposed in previous publications [22],
[50]. This paper tests the same method on a more elaborate and
integrated speech generation system to refine the quality and
speaker similarity of the target speakers.

D. TTS as Speech-Chain Component

Even though TTS and ASR, two essential modules of spoken
dialog systems, are placed at the two ends of the human-machine
communication interface and compliment each other, histori-
cally, they are built independently under different frameworks
[1], [51]. Recent end-to-end speech models have reduced the
technical difference between TTS and ASR systems and opened
up the possibility of integrating them into a single ecosystem.
Tjandra et al. [52] developed the Speech Chain model which
consists of a TTS and ASR that consume each other’s output
as their own inputs. Karita et al. [53] factorized TTS and ASR
into encoders and decoders and then jointly trained them all
together by putting a constraint on the common latent space.
The purpose of these unified systems is combining resources
and enabling semi-supervised training.

Similar to the situation with ASR, several studies have tried
to combine VC with TTS [13], [40] or bootstrapping VC from
TTS [23], [39], [54]. However, their focus was on leveraging
a TTS-like system for VC [13], [54] or vice versa [40], [55]
in a data-abundant scenario (target speakers with a reasonable
amount of transcribed speech), and they disregard the data
efficiency aspect as well as the application synergy between
the two systems. Hypothetically speaking, given a perfect ASR
system, there is no difference between TTS and VC systems.
Specifically, the PPG-based VC system [36] is essentially a TTS
model stacked on top of an ASR model. Polyak et al. [55] trained
a TTS with the target voice by combining any-to-one VC and
robot-voice TTS systems [55]. In this paper, we focus not only
on improving the performance of TTS and VC individually but
also on developing a unified system which can perform both
tasks with high consistency. Such systems would be useful for
many practical application scenarios.

III. VERSATILE VOICE CLONING FRAMEWORK

Our proposed system is a multimodal neural network [5],
[6], that can be used as TTS [22] or VC [23]. It is not just a
combination of conventional TTS and VC systems [40] but a
carefully designed system that has the ability to clone unseen
voices using either transcribed or untranscribed speech [22].
The core concept is to train a latent linguistic embedding (LLE)
to use as a stand-in for text when transcription is difficult to
obtain. The architecture of our multimodal system resembles
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Fig. 1. The proposed system comprises of a text encoder (7"Enc), a speech
encoder (SEnc), a text decoder (T'Dec), a speech decoder (S Dec), and a
neural vocoder (Voc). Where « is a text (phoneme) representation, y is a
speech (acoustic) representation, o is a waveform representation, while z is
a latent linguistic embedding. &, ¥, and 6 are approximations of the respective
representations produced by the neural networks. 10ss¢44; is a placeholder for
either loss¢ts, 10sSsts, 108Sse¢, or lossgt¢ depending on the encoder/decoder
combination. Specific to the experiments in this paper, the speech generation
tasks use the mean absolute error (MAE) while the speech recognition tasks use
cross entropy (CE) as a cost function. CE is also used to for 10854c to train
the neural vocoder, while the KL divergence (KLD) is used as the latent tying
loss loss¢;e. The black box with the word “spk” indicates the module contains
speaker-dependent components. The encoders output the mean (y4) and standard
deviation (o) of the latent features and then generate the features by using a
random value (¢) drawn from a standard normal distribution.

the model proposed by Karita et al. [53]; however, they focus on
the performance of ASR system instead of speaker adaptation.
While the emphasis on linguistic latent features is similar to
the PPG-based VC system proposed by Sun et al. [36], their
phonetic representation extractor is trained independently with
the VC model while our linguistic latent features are jointly
trained with the speech generation model. Given the similarity
in techniques, we will compare our system with the PPG-based
VC system in the experiments.

A. Training the Text-Speech Multimodal Neural Network

The main components of the framework are presented in
Fig. 1. The multimodal neural network is essential for our voice
cloning methodology. While the neural vocoder is optional,
we included it since it is necessary for generating high-quality
speech in most recent setups [9], [17]. The proposed system
contains four modules, which are encoders and decoders of
either text, o, or speech, y. In combinations of encoders and
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decoders, the modules can perform four transformations: text-
to-speech (TTS), speech-to-speech (STS), speech-to-text (STT),
and text-to-text (TTT). These modules have synergies when
trained together. The speech encoder helps the TTS system adapt
with untranscribed speech [22], while the text encoder helps the
VC system disentangle speaker from the linguistic [23]. The text
decoder is the new addition in this paper. While Karita ef al. [53]
use a similar setup for speech recognition, we focus on speech
generation and the text decoder is only used as a regularizer.

Our methodology is designed around the training of a speaker-
disentangled LLE, z. The LLE in our setup plays the same
role as the PPG proposed for VC [35]. However, the LLE is
jointly trained with the speech generation modules and contains
linguistic information as a whole (instead of phoneme). There
are several ways to train the multimodal neural network. It
can be trained stochastically [56], step-by-step [54], or jointly
[50], [53]. We proposed two methods for the joint training
in our previous work [50]: 1) joint-goal where several losses
calculated between an output inferred by each decoder and its
ground-truth are combined, and 2) tied-layer, where the distance
or distortion between two latent spaces obtained from encoders
are constrained to be identical. Using one or the other is enough
[22], [50], but as they are complementary, we could use them
together:

108S¢rain = lossgoals + ﬂ lossye (D

Here, 10ssg0q15 1 @ weighted combination of several types of
10884041, Which is a placeholder for the training losses created by
combining different encoders and decoders of the multimodal
networks. Specifically, given the text-speech multimodal system
illustrated in Fig. 1, we used the following equation as the joint-
goal loss to train the initial model:

108Sgoats = 108Ss1s + Cusps 1088515 + Crgyr l0sssyy ,  (2)

where loss;;s is the TTS loss defined by the text encoder and
speech decoder, it is also used as the anchor to adjust other
hyperparameters; lossg;s is the STS loss defined by the speech
encoder and speech decoder, it is de-emphasized by the weight-
ing parameter «gs; and lossgy is the STT loss defined by the
speech encoder and text decoder, even though speech-to-text
is not a target task, lossg; is included to encourage the latent
space to focus more on phonemes (but not entirely). Some other
works have shown that an auxiliary phoneme classifier helps
in boosting the quality of speech generation systems in general
[13]. The TTT loss defined by the text encoder and text decoder,
loss;¢+, is not included as we do not think that it helps.

In each training step, we calculate each term of the 10SS¢,qin
using a transcribed speech sample and then optimize all parame-
ters in a supervised manner. Karita ef al. [53] used a similar loss
to jointly train their system but with one important difference,
two separated speech samples, one with its transcription and
another without, are used to calculate a single training loss.
Specifically, loss;ss, lossstt, and loss;. are calculated using the
transcribed sample, while losss;s and loss;; are calculated on
the untranscribed sample. This semi-supervised training strategy
was proposed to take advantage of an abundant unlabeled corpus
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[53]. Our system can also benefit from this semi-supervised
strategy, but we only focus on supervised training in this work.

For the tied-layer loss, we calculated the symmetrized
Kullback-Leibler divergence between the outputs of the text and
speech encoders instead of the asymmetric one [22]:

lossyie = % Lirp(TEnc(x), SEnc(y))

+ % Ligrp(SEnc(y), TEnc(x)) (3)

The constraints help obtaining a consistent latent space between
the text and speech encoders. Through experiments we found
that KL divergence is an effective tied-layer loss [22].2

As the text and speech encoders output the mean (u) and
standard deviation (o) of the LLE similarly to the VAE network,
we need to apply the reparameterization trick so that the network
can be trained with the backpropagation algorithm:

z=p+o0e, GNN(O71) “4)

The same process is used in the inference step to generate an LLE
sequence. As € is drawn from a normal distribution, this trick can
also be interpreted as a noise augmenting process, which means
the text and speech decoders are trained in a denoising fashion.
This, in turn, makes them robust to unseen samples, which is
helpful for speaker adaptation. To push the speech generation
system toward an E2E setup, we include a neural vocoder to
generate a waveform from the acoustic representation instead of
using a conventional vocoder. In the training stage, the neural
vocoder is trained separately from the rest of the system on
natural speech samples:

/
1088} g5, = 10SSyoc 5)

We used an autoregressive WaveNet [14] conditioned on mel-
spectrogram and trained on multi-speaker corpus as the neural
vocoder in this paper. However, our voice cloning procedure is
applicable to any type of neural vocoder.

B. Speaker Adaptation Framework

The multimodal network trained in the previous stage is
essentially a multi-speaker TTS/VC system; however our goal
is to perform voice cloning for unseen speakers. The following
subsections describe the cloning protocols for the unsupervised
scenario, which uses untranscribed speech, and the supervised
scenario, which uses transcribed speech.

1) Cloning Voice Using Untranscribed Speech: The core
mechanism for unsupervised speaker adaptation is the same as
our prior work [22], [23]; however, the detail of the executions
have been updated. The voice cloning stage now contains three
steps, which takes the neural vocoder into account.

Step 1 - Adaptation: This is essentially our legacy unsuper-
vised adaptation stage [22] in which the speech decoder and neu-
ral vocoder are adapted separately. We first remove all speaker

ZKarita et al. [53] reported that KL divergence is unstable for training. The
reason for this contrast is that in their work the autoencoder-based latent space
is assumed to be Gaussian distribution while in our case it is forced to be an
isotropic Gaussian distribution through VAE-like structure [57].
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(a) Step 1 - Adaptation

Fig. 2.

(b) Step 2 - Welding
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(c) Step 3 - Inference

Cloning procedure with untranscribed speech of the target speaker. The black background indicates modules that were or will be adapted to target speaker’s

data, while the orange background indicates modules that were trained on a multi-speaker corpus in the training stage, and are, supposedly, universal. The trainable
modules in each step are indicated by the dashed border with the word “trainable” near it. In the welding and inference step, the mean-value LLE tactic is applied
to the speech encoder by assigning zero to the e instead of sampling from a normal distribution.

components and then fine-tune the remaining parameters of the
speech decoder using the following loss:

(6)

The speech distortion loss s by itself is enough for the adapta-
tion [22], but we further add a linguistic cycle consistent term
loss.ycie to try to improve the performance. 10ss.y;e is the KL
divergence between LLE distributions of natural speech and
reconstructed speech as follows:

lossa(la,pt = lossgss + 8 lOSS(:ycle

1 -
losscycle = 5 LKLD(SEnC(y)a SEnc(y))

1
+ 3 Likrp(SEnc(y),SEnc(y)) (7)

Even though both loss,;,; and loss.y.e try to force the recon-
structed features to be close to natural speech, they focus on
different aspects; lossgs is either [y or Iy frame-based hard
distortion of the acoustic features, while loss.,;. focuses on
linguistic content with soft divergence. We adapt the neural
vocoder in a similar manner using its goal loss:

!

lossadapt =

®)

As aneural vocoder depends on speech only, it can be used in an
unsupervised adaptation strategy. This is a simple yet effective
approach [17].

Step 2 - Welding: Even though fine-tuning the acoustic
model and the neural vocoder separately can produce sufficient
quality [17], there are still mismatches between the generated
features and the natural features used to train the vocoder. For
text-to-speech systems, Zhao et al. [58] fine-tuned an acoustic
model with the losses propagating from a neural vocoder, while
Ping et al. [41] jointly trained them together. For voice conver-
sion, due to the duration mismatch between source and target

10sS o

utterances, Huang et al. proposed that the WaveNet vocoder
be fine-tuned by using reconstructed acoustic features of a
target speaker [59]. Motivated by them, we deploy a “welding”
strategy, illustrated in Fig. 2b, that conducts fine-tuning by using
the reconstructed features of the target speaker in a similar way
to Huang’s approach [59], but, for both the speech decoder and
neural vocoder like Ping’s method [41] based on the loss function
below:

€))

where lossgs is included to preserve the acoustic space even
after the welding process as the speech decoder is assumed to
be autoregressive in the domain.

Two practical tactics are further introduced for this step. 1)
mean-value LLE: to let the acoustic model learn fine-grained
details, we remove the sampling process from the speech encoder
and use the mean value instead. 2) mix-in: as losses propagating
from the neural vocoder can overpower the speech decoder
[58], we propose a mix-in tactic, inspired by drop-out, to ease
this problem. Specifically the output of the speech decoder is
randomly mixed with natural frames by a percentage to reduce
the amount of losses propagated back and act as a form a
regularization to prevent overfitting to the generated frames.

Step 3 - Inference: Even though we use the speech encoder to
tune the speech decoder and neural vocoder in the adaption and
welding steps, the text encoder can utilize these tuned modules
without any further adjustment in inference (See Fig. 2¢) thanks
to the consistency between the latent spaces of the text and
speech encoders. As our cloning method tunes entire modules,
the more data available, the better the performance.

2) Alternative Strategy to Cloning voices With Transcribed
Speech: The strategy for supervised speaker adaptation using
transcribed speech was also refined compared with our previous
work [22]. Instead of using exactly the same strategy as those

108Sye1d = l0sssts + Y lossyoc 5
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trainable

X

(a) Step 1 - Adaptation (supervised alternative)

Fig. 3. Cloning procedure with transcribed speech of a target speaker. The
welding and inference steps are identical to the procedure with untranscribed
speech. In this figure, 108s404; is @ placeholder for either loss;¢s or lossses
depending on the encoder/decoder combination.

for the above unsupervised strategy, we first tune the speech
decoder and text encoder together using the transcribed speech
since transcriptions could benefit the TTS system.

Step 1 - Adaptation (supervised alternative): The super-
vised strategy for the adaptation step is illustrated in Fig. 3a.
We adapt both the speech decoder and text encoder using the
following function.

"

1088 gapr = 1088115 + a108s515 + B 10SSyie (10)

The optimizing loss is similar to that used in the training stage
(Equation 1). We use losss¢s and 10ss;. to maintain the linguistic
latent space for VC. The welding and inference steps are the same
as the unsupervised strategy.

IV. DETAILS OF NAUTILUS SYSTEM

The methodology explained in Section III can be applied to
any neural architecture from the conventional acoustic model
[22] to end-to-end (E2E) model [9]. Next we give the details on
our system used in the experiments. It is not a fully E2E system
but inspired by the E2E model in various ways.

A. Text-Speech Multimodal System

Our system is shown in Fig. 4. The text representation x is
a phoneme sequence and the speech representation y is mel-
spectrogram.

1) Text Encoder: the text encoder transforms a compact
phoneme sequence x into the LLE sequence z, which has the
same length as the acoustic sequence. Our specifications for
the text encoder are illustrated in Fig. 4a. The input phoneme
sequence is represented as one-hot vectors. As engineered lin-
guistic features are no longer provided, tenc-linguistic-context
is used to learn the linguistic context. This is a direct imitation
of Tacotron 2 [9] but with quasi-RNN [60] used in place of the
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standard RNN to speed up the training. The attention mechanism
is essential in a E2E setup to unroll the phoneme sequence;
our setup, however, uses an explicit duration/alignment mod-
ule called “tenc-alignment” in training and inference to have
direct control over the generated sample prosody.’ The coarse
linguistic features, then, go through several dilated convolution
layers called “fenc-latent-context” to capture the local context
and smooth out the coarseness. fenc-latent-context has essen-
tially the same design as the acoustic models used in our prior
work [22], which used residual, skip connection and filter-gate
function (Fig. 4a in [22]) to help the gradient flow:

h; = tanh(W{hi_1 +¢]) @ o(Wihiy +¢f), (11

where h; is the output of the [-th layer, and w s Wzg s clf , and

c{ are the weights and biases for filters and gates. The output of

the text encoder consists of the mean and standard deviation of
a text-encoded LLE sequence.

2) Speech Decoder: the speech decoder takes in an LLE
sequence z to generate a respective acoustic sequence y with a
particular voice. Itis essentially a multi-speaker speech synthesis
model and there are three components that significantly affect the
performance: temporal context capturing [62], autoregressive
mechanism [61], [63], and speaker modeling [44]. sdec-context-
blk captures LLE temporal context by using time-domain con-
volution layers, which also contain speaker biases in their filters
and gates (Fig. 4b in [22]):

h; = tanh(W{h;_1 + ¢/ +b"™)
©a(Wih 1 +cl +b0") | (12)

where blf ‘*) and blf ‘®) are the speaker biases of k-th speaker
in the training speaker pool. The effective type of speaker com-
ponent depends on the network structure as well as the acoustic
features [44]. We previously found that speaker biases work the
best for our setup [22].

An autoregressive mechanism is introduced to improve the
overall naturalness. sdec-prenet is responsible for the autore-
gressive dependency that captures the past outputs using causal
layers. This is a direct imitation of the AudioEnc proposed by
Tachinaba et al. [27]. The layers in sdec-prenet use the highway
function in the same way as [27] as follows:

hf =W{h (13)
hi =o(W{h;_1), (14)
hi=h] ©hj +h_; © (1 - h) (15)

The linguistic context and the past-state token are fed into more
causal layers before being transformed into the acoustic features.
The architecture of the speech decoder is shown in Fig. 4b. We
use the mean absolute error (MAE) as the loss function for the
speech generation goals. In the adaptation stage, speaker biases
are removed from the speech decoder.

3The tenc-alignment could be replaced with attention mechanism for conve-
nience, and this could also potentially improve the quality further [61].
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speaker bias components.

3) Speech Encoder: the speech encoder extracts the LLE z
from a given acoustic sequence y while stripping unnecessary
information (i.e. speaker characteristics). It is similar to an ASR
model as the output needs to be independent from training speak-
ers, and the model needs to be generalized to unseen targets. We
have no strong preference for speech encoder specification and
simply use several dilated layers to capture the local context as
illustrated in Fig. 4d.

4) Text Decoder: the text decoder takes an LLE sequence z
and predicts the phoneme posterior = at each frame. This is a
new component introduced in this work compared with previous
ones [22]. Unlike other modules that would be reused in various
stages, the shallow text decoder is included in the training only
and acts as an auxiliary regularizer. Its purpose is forcing the
latent linguistic embedding to focus more on phoneme informa-
tion, which we found important for generating utterances with
clear pronunciation. The balance between phoneme and other
linguistic information is adjustable using the joint-goal weight
o+ and the representative power of the text decoder itself. This
is why we use a couple of layers only to model the text decoder
(Fig. 4c). The cross-entropy criterion is used as the loss function
of the phoneme classifier.

B. WaveNet Vocoder

An auto-regressive WaveNet model conditioned on a mel-
spectrogram [9], [17], [64] is used as the neural vocoder of our
setup. WaveNet is trained on either 22.05kHz or 24kHz speech
depending on the scenarios. Waveform amplitudes are quantized
by using 10-bit pu-law. The network consists of 40 dilated causal
layers containing speaker biases. Both the residual and skip
channels are set at 128. This is a typical setup for WaveNet
[14]. In the adaptation stage, speaker biases are removed before
fine-tuning.

C. Training, Adapting, and Inferring Configurations

The General American English lexicon [65] was used for
text representation, and 56 distinct phonemes were found in
our training data. An 80-dimensional mel-spectrogram was used
as acoustic representation. The mel-spectrogram was calculated
by using a 50-ms window size and 12.5-ms shift size. This was
inspired by the setup of E2E TTS model [9], [27]. The weighting
parameters of the optimizing losses were o = 0.1, 3 = 0.25
and v = 0.01. The learning rate was set at 0.1 for all optimizing
stages. The dropout rate was set at 0.2 for most components apart
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from tenc-linguistic-context and sdec-prenet, for which the rate
was set at 0.5. The training was stopped when loss on validation
stopped improving for ten consecutive epochs.

One hundred speakers of the VCTK corpus [66] were used
to train the multi-speaker text-speech system and the WaveNet
vocoder. The sampling rate was converted to the target scenarios.
Among the remaining speakers, one male and one female with
an American accent were used as targets for an experiment
described in Section V-B. All common sentences were removed
from the training so they could be used for evaluation. As
VCTK lacks diversity in linguistic content, we first used 24-kHz
LibriTTS corpus [67] to warm-up the text-speech network. Only
train-clean-100 and train-clean-360 sets, which are 245 hours
in total, were used to reduce the warming time. The phoneme
alignments of each corpus were extracted using an ASR model
trained on the same corpus using the KALDI toolkit [68]. For
evaluated utterances, the model trained on the LibriTTS corpus
is used to extract their phoneme alignments.

There were two voice cloning experiments, scenarios A and
B. For the voice cloning stage, the number of epochs was fixed to
create a uniform process. Specifically, for scenario A described
in Section V-A, we first adapted the text-speech model for 256
epochs, the vocoder for 128 epochs, and then welded them
together for 64 more. For scenario B described in Section V-B,
the number of epochs was 256, 64, and 32, respectively. The
mix-in rate in the welding step was set at 0.9.

For the inference stage, the speech encoder used its mean
output for VC while text encoder sampled a LLE sequence from
Gaussian distributions for TTS as shown in Fig. 2c. To maintain
stochasticity but reduce the chance of sampling undesirable
outliers, we multiplied the standard deviation output of the text
encoder by 0.1 before random sampling.

D. Evaluation Measurements

We treated our system as a whole, instead of focusing on
individual techniques, and we compared it with other third-party
systems. For objective evaluations, we used an ASR model* to
calculate the word error rate (WER) of the generated speech.
Note that WER should be treated as a secondary reference since
it is highly sensitive to the training data of the ASR model.
As a large-scale English corpus of native speakers was used
to train the speech recognition model, we can interpret lower
WER as indicating better pronunciation and/or greater similarity
to the voices of speakers in the training set. For subjective
evaluations, we used MOS on a 5-point scale for quality and
DMOS on a 4-point scale for speaker similarity [31]. In most
of the questions on speaker similarity, participants were asked
to compare the speaker similarity of a generated utterance with
a natural utterance. However, scenario A included additional
questions for comparing speaker similarity between generated
utterances. In scenario B, the participants were also asked to
do several AB tests on quality and speaker similarity. In the
AB test, two speech samples were shown at each test page and

4 A chain system based on TDNN-F pretrained on the Librispeech corpus [69]
was used for the calculation (http://kaldi-asr.org/models/m13).
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TABLE I
TARGET SPEAKERS OF SCENARIO A

Speaker Database Gender  Accent Quantity ~ Duration
VCC2TF1 VCC2018  female American 81 utt. 5.2 min
VCC2TF2 VCC2018 female  American 81 utt. 5.0 min
VCC2TM1  VCC2018 male American 81 utt. 5.2 min
VCC2TM2  VCC2018  male American 81 utt. 5.3 min

participants were asked to choose the better of the two. These
questions were used to highlight the fine-grained differences
between generation systems. Each participant in our subjective
listening tests was asked to do ten sessions.

V. EXPERIMENT SCENARIOS AND EVALUATIONS

As our system can clone voices by using either transcribed or
untranscribed speech and can be used as TTS or VC systems,
it would be difficult to evaluate all of these tasks in a single
experiment. Therefore, we tested its performance and versatility
under two separate scenarios. The first scenario focuses more
on VC and cloning voices with untranscribed speech, while the
second scenario focuses more on TTS and performance of the
supervised and unsupervised speaker adaptation strategies.’

A. Cloning Voices Using Untranscribed Speech

In the first scenario, scenario A, we tested the ability to clone
voices by using a small amount of untranscribed speech (about
five minutes). A system showing good performance under this
scenario is expected to have the capability to clone thousands of
voices efficiently and cheaply.

1) Experiment Setups: we re-enacted the SPOKE task of
Voice Conversion Challenge 2018 (VCC2018) [31] for this
scenario. The original goal of the task was to build VC systems
for 4 target English speakers (2 males and 2 females) using 81
utterances (Table I). These systems were used to convert the
speech of 4 source speakers (2 males and 2 females) into each
of the target voices. We followed the VCC2018 guideline [31]
faithfully with one extension — we evaluated TTS systems as
well as VC systems at the same time. These TTS systems were
required to train on the untranscribed speech of the target speak-
ers. In the inference stage, transcriptions of source utterances
were used to generate speech with TTS systems. As there were
only 35 unique sentences, we generated each sentence twice.
In summary, each TTS system produced 70 utterances for each
target speaker while each VC system produced 140 utterance.
We split each VC system into two entities, one for same-gender
conversion denoted by the superscript “="" and the other for
cross-gender denoted by “x”.

2) Evaluated Systems: We evaluated the following TTS and
VC systems in scenario A:

® XV: a speaker-adaptive E2E TTS system using the x-

vector [18], [21], [49]. XV was used as a third-party un-
supervised TTS baseline. We used the libritts.tacotron2.v1
model and the speaker-independent WaveNet vocoder lib-
ritts.wavenet.mol.vl which were trained on the LibriTTS

SThe generated speech samples of both experiment scenarios are available at
https://nii-yamagishilab.github.io/sample- versatile- voice-cloning/


http://kaldi-asr.org/models/m13
https://nii-yamagishilab.github.io/sample-versatile-voice-cloning/

LUONG AND YAMAGISHI: NAUTILUS: A VERSATILE VOICE CLONING SYSTEM

corpus to realize this approach. Both are available at the
ESPnet [70] repository.® As the x-vector is utterance-based,
we randomly picked five utterances (about ten seconds)
from the training pool of target speakers to extract the
x-vector each time we generate an utterance.

e N10: the winner of the VCC2018 SPOKE task. N10 con-
tains a PPG-based acoustic model [36] and a fine-tuned
WaveNet vocoder [17]. It uses a speaker-independent ASR
model trained on hundreds of hours of labeled data to
extract PPG from speech. N10 clones voice without using
the speech data of source speakers.

e N13\N17 (NR): the runners-up of the VCC2018 SPOKE
task in terms of quality and similarity, respectively. To re-
duce the amount of systems, we treat them as one (denotes
as NR) and use N13 in the quality evaluation while using
N17 [71] in the similarity evaluation.

e VCA,: VC mode of the NAUTILUS system which was
adapted to target speaker by using the unsupervised strat-
egy described in Section III-B1. The letter “A” as in “any-
to-one” indicates that the model is not trained on source
speakers. The word unsupervised means that the cloning is
performed with untranscribed speech in the context of our
current work. It is operated at 22.05 kHz to be compatible
with the target speakers.

e TTS,: TTS mode of the NAUTILUS system which was
adapted by using the unsupervised strategy. As we did not
train an automatic duration model, we used the duration
extracted from the same-gender source speakers to gen-
erate speech from text. This means that TTS, shares the
same duration model as VCA; (and other same-gender
VC systems). This reduces the difference in experimental
conditions between them and allows us to make more
insightful observations.

e TO00 and S00: natural utterances of the target and source
speakers used as references, respectively.

3) Evaluation: Twenty-eight native English speakers partic-
ipated in the subjective test for scenario A. They were asked to
answer 18 quality and 22 similarity questions in each session. In
summary, each system was judged 560 times for each measure-
ment, while natural speech systems (T00 and S00) were judged
280 times. The objective and subjective evaluation results are
shown in Table IT and Fig. 5 with many interesting observations.
a) XV had better quality but worse similarity than the runners-up
of VCC2018, while it received the lowest WER for certain speak-
ers. One possible explanation is that the utterances generated by
XV had the characteristics of the speakers in LibriTTS corpus
instead of those of the target speakers, which makes its utterances
more compatible with ASR model trained on LibriSpeech. The
subjective evaluation of the XV speech samples supports this
speculation. b) Our systems had high scores in both subjective
measurements. Interestingly our TTS system had a lower WER
than our VC systems. ¢) Even though we had a lower score
for quality than did N10, the similarity seemed to be higher. d)
Our TTS and VC systems had highly consistent results, while
there was a gap between the same-gender and cross-gender

[Online]. Available: https:/github.com/espnet/espnet
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TABLE II
WORD ERROR RATE FOR OBJECTIVE EVALUATION OF SCENARIO A

System Target speakers (%WER)
VCC2TF1  VCC2TF2 VCC2TM1  VCC2TM2
XV 3.25 2.98 3.66 10.57
N10= 9.21 7.99 11.79 9.89
N10* 9.62 11.52 8.67 9.21
NI13= 23.31 21.68 31.57 27.37
N13% 32.25 24.80 21.41 26.96
N17= 25.47 24.39 33.47 23.71
N17% 38.08 31.44 35.23 25.88
VCA; 25.34 26.02 27.37 25.75
VCA 30.62 27.51 23.71 22.63
TTS. 7.72 8.40 6.23 7.18
Source speakers (%9WER)
VCC2SF3  VCC2SF4  VCC2SM3  VCC2SM4
S00 5.69 4.88 5.69 7.32
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Fig. 5. Subjective results of scenario A. Lines indicate 95% confidence inter-
val. Cross-gender and Same-gender conversion of VC systems were treated as
separate entities.

subsystems of N10. The extra similarity evaluations, between
the generated systems, presented in Fig. 5, shows similar results.
The similarity between our TTS,, and VCA]; systems was higher
than the similarity between TTS,, and N10~.

4) Scenario Conclusion: Even though the naturalness of our
voice cloning system was slightly worse than N10 (again the
best system at VCC2018), generally speaking it has achieved
performance that is comparable to SOTA systems considering
the difference in experimental conditions (e.g., the amount of
data used in the training stage). More importantly, our system
can seamlessly switch between TTS and VC modes with high
consistency in terms of speaker characteristics. This is a desir-
able trait that would be useful for many applications.

B. Capturing Unique Speaker Characteristics

As mentioned earlier, the way voice cloning is differentiated
from speech synthesis is that it should prioritize capturing the
unique characteristics of target speakers. While it is easy for
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TABLE III
TARGET SPEAKERS OF SCENARIO B

Speaker ~ Database = Gender  Accent/L1  Quantity  Duration

p294 VCTK female American 325 utt.  11.2 min

p345 VCTK male American 325 utt.  11.0 min

MF6 EMIME female Mandarin 145 utt.  10.2 min

MM6 EMIME male Mandarin 145 utt.  11.3 min
TABLE IV

‘WORD ERROR RATE FOR OBJECTIVE EVALUATION OF SCENARIO B

System Target speakers (%WER)
VCTK-p294  VCTK-p345 EMIME-MF6 EMIME-MM6
NAT* 6.09 8.69 56.24 43.39
XV 3.50 24.05 5.33 3.81
FT 13.39 20.09 57.53 42.01
VCM,, 22.22 24.05 27.70 27.09
VCM; 23.29 24.81 29.07 29.53
TTS. 8.37 9.74 13.39 14.92
TTSs 9.28 10.05 36.38 38.20
Source speakers (%WER)
VCTK-p299  VCTK-p311 - -
SRC** 5.64 6.51 - -

“calculated on all training utterances of target speakers.
**calculated on natural utterances of source speakers.

listeners to grasp general global characteristics (e.g., average
pitch), it is more difficult to notice local subtle traits (e.g.,
pronunciation of particular words) with just a single reference
utterance. We could use famous individuals as targets [25], but
this assumes that listeners would be familiar with them. In
scenario B, we therefore used non-native speakers as targets
to highlight their unique characteristics. This is convenient for
subjective evaluation as native speakers can generally spot their
distinctiveness without any explanation about the linguistic as-
pect of it [72]. In simple words, the goal of scenario B was
to reproduce the accent of non-native speakers. This scenario
is closely related to reducing accents [73], [74] or controlling
accents [24] tasks.

1) Experiment Setups: the target speakers for this scenario
included two American and two non-native English speakers
who use Mandarin as their native language. Each speaker had
about 10 minutes of speech as listed in Table III. As the base
model was trained with native speakers of English, the speakers
from the VCTK corpus represented the standard easy task while
the speakers from the EMIME corpus [75] represented difficult
and unique target speakers. The evaluated systems were required
to be built with either the transcribed or untranscribed speech of
the targets. Twenty common sentences from the VCTK corpus
were used for the evaluations. Each sentence was generated
twice by each TTS system, which totaled 40 utterances. In the
case of VC, one female (p299) and one male (p311) with a
general American accent included in the training pool are used
as source speakers.

2) Evaluated Systems: The following TTS and VC systems
were used for the evaluation in scenario B:

e XYV: the same x-vector system in scenario A is reused as

the unsupervised baseline of TTS.

e FT: a fine-tuned E2E TTS system was used as the su-

pervised baseline. We used [jspeech.tacotron2.v3, imple-
mented with ESPnet [76], as the initial model. It was
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trained with 24 hours of the transcribed speech of a fe-
male speaker from the LISpeech corpus [77]. An initial
WaveNet vocoder was also trained with the same corpus.
When cloning voices, we fine-tuned both acoustic and
vocoder models with the transcribed speech of the targets.
This system represented a simple supervised approach by
fine-tuning a well-trained single speaker model [19].

e VCM,: VC mode of the NAUTILUS system which was
adapted to target speaker by using the unsupervised strat-
egy described in Section III-B1. The letter “M” as in
“many-to-one” indicates that the source speakers were
included in the training pool of the base model. The system
was operated in 24kHz.

® VCM;: VC mode of the NAUTILUS system which was
adapted to target speaker by using the alternative super-
vised strategy described in Section III-B2. The supervised
strategy is expected to be more relevant to TTS, but we
included its VC counterpart as an anchor for comparison.

e TTS,: TTS mode of the NAUTILUS system which was
adapted by using the unsupervised strategy. The duration
was extracted from the source speakers of VC. This means
our TTS and VC systems share the same duration model.

e TTS: TTS mode of the NAUTILUS system which was
adapted by using the alternative supervised strategy.

e NAT: the natural utterances of the target speakers.

3) Evaluation: Thirty-two native speakers took part in our
subjective evaluation for scenario B. As the participants were
native English speakers living in Japan and many work as
English teachers, we expected that they could quickly pick up
on the non-native accents. Each session had 18 quality and 18
similarity questions that contain utterances of both native and
non-native speakers. Besides the standard MOS tests, we also
included several AB tests in this scenario. In summary, each
system was evaluated 640 times for each assessment. The ob-
jective evaluation result are listed in Table I1I, and the subjective
evaluation results are shown in Fig. 6. Here the results of native
and non-native speakers are separately shown.

For the standard case with native target speakers, the sub-
jective results show high MOS scores for most systems as
shown in Fig. 6a. The new results here are comparisons between
supervised and unsupervised approaches. Comparing the XV
and FT systems, which represent unsupervised and supervised
TTS baselines, we see that the fine-tuned one was significantly
better than the speaker embedding one as it benefited from all
ten minutes of data. Similar to scenario A, XV system has better
WER than FT for many targets. Among our systems, the dif-
ference between the supervised and unsupervised strategies was
marginal, but they were all better than the supervised baseline
FT. One hypothesis is that our approaches are less sensitive to
overfitting thanks to the multi-speaker corpus, speaker factor-
ization and denoising training while FT has a higher possibility
of overfitting when using ten minutes of speech [19], [54]. These
observations are also supported by AB-preference tests (See the
bottom part of Fig. 6a).

For the challenging case with non-native target speakers, the
subjective results revealed more interesting tendencies (Fig. 6b).
This scenario not only showed the robustness of the voice
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non-native natural utterances (NAT)

(a) Native speakers as targets

Fig. 6.

cloning methods but also the listeners’ behaviors. First, we can
see that our systems had higher similarity scores than the TTS
baselines, FT and XV. The differences between our supervised
and unsupervised strategies was more profound in the non-native
cases. TTS; seemed to have higher similarity than TTS,,. Next,
we see that the natural speech of the non-native speakers (NAT)
had lower quality scores than their native counterpart. This
would be because our native listeners perceived the “quality”
of speech with strong non-native accents as low, which made
the quality and similarity results in this case no longer a positive
correlation. The average per-listener results for non-native NAT
are plotted in Fig. 6¢. A negative correlation was found even for
the subjective results of the TTS baselines, FT and XV, indicating
that higher-quality speech corresponded to less accented speech
and hence lower speaker similarity to non-native target speakers.
This highlights the pros and cons of these adaptation methods.
Interestingly, WER of TTS, was worse than that of TTS,
while the natural speech (NAT) had even worse score in the
non-native case. This can be interpreted as that TTS; produces
pronunciation which is more similar to the natural speech than
TTS,,, which means TTS; is better at capturing non-standard
speaker characteristics.

In summary, the proposed system had higher speaker simi-
larity than the baseline systems. Our TTS system, in particular,
benefited from the supervised strategy although the improve-
ment was relatively small. Regarding the TTS,, and the other
two VC systems that had slightly better quality than the natural
speech, we suspect that this is due to the reduced/lack of accents
of their generated speech. This hints at potential uses for other
accent-related tasks [73].

4) Scenario Conclusion: The subjective results have shown
that the fine-tuning approach is better at capturing unique
speaker characteristics than the speaker embedding approach
when data are sufficient. Our systems, in particular, achieved
high performance for native speakers as well as non-native
speakers. Moreover our cloning strategy can be adjusted to
take advantage of the transcriptions if they are available. In the
meantime, the experiment also points out the limitations of the

(b) Non-native speakers as targets

Subjective evaluations of scenario B. The lines used to form the crosses in figure (a) and (b) indicate 95% confidence interval.

subjective evaluation. While the current quality and similarity
questions work well for native speakers, listeners’ judgements
were biased when they needed to evaluate the voices of non-
native speakers.

VI. ANALYSIS AND DISCUSSION
A. Training Robust and Consistent Linguistic Latent Spaces

The linguistic latent spaces obtained in the initial training
stage have critical effect on the performance of the proposed
system, as the rest of the voice cloning procedure functions on
the assumption that LLE is a speaker-disentangled linguistic
feature. Therefore, the training of the text-speech multimodal
system must be carefully designed to guarantee that objective.
If we only consider the text encoder and the speech decoder, then
the proposed system is just a multi-speaker TTS model which
lacks the ability to adapt with untranscribed speech. By adding
a speaker-independent speech encoder, we provide a backdoor
for unsupervised speaker adaptation, which is the topic explored
in our previous publications [22], [50]. If we only consider the
speech encoder and speech decoder, then it is not much different
from a VAE-based multi-speaker non-parallel VC system [35].
However, to avoid the weakness of self-supervised models,
which is the dependence on regularization to shape the latent
space indirectly, we jointly trained the STS stack with the text
encoder and transcribed speech in a supervised fashion. This
ensures that the latent spaces will contain linguistic information
which in turn guarantees a high performance for VC [23].

By jointly training the text and speech encoder, we help the
speech encoder to learn a speaker-disentangled representation,
as it is forced to approximate the text encoder, which is speaker-
independent by nature. Fig. 7a shows the training curves of the
TTS and STS goals, both of which descend over time and gradu-
ally converge to each other. In practice, we have to de-emphasize
lossg;s with a weighting parameter and observe the progress of
the training curves, as there is a risk that the training will focus on
optimizing loss;s and abandon loss;; s completely, as there is al-
ways an easy and uninteresting solution to the autoencoder task.
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Setup Denote TTS. VCM,,
p294  p345  p294  p345
NAUTILUS N 8.37 9.74 2222 24.05
N - welding A 8.98 944 2390 2435
N - loss¢ycle in adaptation B 898 11.11 22.68 2298
N - text decoder in training C 12.33  12.02 2557 25.88
N - all above (A, B & C) D 1035 13.85 27.55 29.38

In summary, a robust and speaker-disentangled latent linguistic
representation is guaranteed by strategic placement of speaker
components, joint training of the TTS and STS stacks, and use of
a large-scale transcribed multi-speaker corpus. Furthermore, the
tied-layer loss is used in conjunction with the join-goal losses
to encourage a consistent representation between text-encoded
and speech-encoded latent spaces. Fig. 7b shows the forward and
backward KL divergence learning curves, which reveals that a
small gap still exists between the two. Finally, the text decoder
was used to force the LLE to focus more on phonetic information
by adding lossg; to the optimizing loss. Interestingly, even
though loss,y; is not optimized, it is still better than lossg, as
can be seen in Fig. 7c.

B. Effects of Auxiliary Techniques on Word Error Rates

Beside the new architecture (Section IV) and the large-scale
training corpus, which are the main contributors to the im-
proved performance compared with our previous work [22],
[23], the NAUTILUS system also incorporates many new aux-
iliary/optionally techniques. In this section, we investigate their
effect on the word error rate of generated speech samples. Specif-
ically, several slightly different setups of the proposed system
were evaluated in the unsupervised speaker adaptation scenario.
The experimental environment of scenario B was reused, but
we only evaluated the two native English speakers, as their
results are easier to interpret. Table V lists the WER of the
generated utterances produced by different setups. Setup N is the
unsupervised voice cloning process described in Section III-B1,
A does not include the welding step, B removes 10ss.yc from
the adaptation loss, C is not trained with the text decoder, while

T T T
40000 60000 80000

Step

T T T T
60000 80000 0 20000

Step

(c) Phoneme classification goals

Training curves of different losses available in the training stage of the text-speech multimodal system. The data points are from the training of the model

D removes all three elements from the procedure. In the other
words, D is the most similar to the setup used in our previous
publication [22], [23]. Interestingly, setup A and B have WER
not much different from N, while setup C and D are significantly
worse than the others even though they were all trained and
adapted on the same data. These results suggest that the text
decoder plays a significant role in improving the pronunciations
of the generated utterances. By comparing setup C and D, we
can see that the welding step and the linguistic cycle consistent
also have positive impact on WER but their effects are smaller
and more situational.

Having these complementary techniques at disposal can be
useful for squeezing out the last bit of performance in produc-
tion. If we have reliable automatic metrics, the cloning strategy
can be personalized to accommodate a specific target speaker
or a specific application scenario by searching for the optimal
setup and hyperparameters for the particular situation, which is
atopic that we will explore more in our future works. The speech
samples of these setup can also be found in the accommodated
web page.

C. LLE of the Supervised and Unsupervised Models

As mentioned in earlier sections, the architecture of the NAU-
TILUS system used in this paper is not an E2E system, which is
inconvenient for practical applications but it allows us to have
more control over the duration of the generated utterances. In this
section, we look into the linguistic latent spaces of the adapted
models to understand the behaviors of the supervised and unsu-
pervised cloning strategies. Fig. 8 shows selected dimensions of
the 64-dimensional LLE sequences generated by either the text
or speech encoder of models adapted to either p294 or MF6.
For each target speaker, we used speaker-independent speech
encoder and an utterance not included in their adaptation data to
generate a speech-encoded LLE sequence and then used either
the supervised or unsupervised text encoder and the phoneme
(text) and duration information of the same utterance to gener-
ate text-encoded LLE sequences. This arrangement guarantees
the LLE sequences generated from the encoders are aligned,
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Examples of 64-dimensional LLE sequences generated by the text and speech encoders of models adapted using either the supervised or unsupervised

cloning strategy. An utterance of the target speaker was used to generate the speech-encoded LLE with the speech encoder, while text (phoneme) and alignment
information extracted from the same utterance were used to generate the text-encoded LLE with either the supervised or unsupervised text encoder.

which helps to highlight differences between the supervised and
unsupervised text encoders.

Even though we referred to the outputs of both the text and
speech decoder as LLE, they actually represent slightly different
concepts. The speech-encoded LLE represents the sound spoken
in an utterance input, while the text-encoded LLE represents the
sound that we want to generate from a symbolic phoneme input.
Fig. 8a shows all three LLE sequences are well-aligned to each
other in the case of p294. This suggests that the unsupervised
speaker-independent text encoder was able to correctly map
the symbolic phoneme to the actual spoken sound when the
target is a native English speaker, which left little room for
the supervised strategy to improve upon. It is expected as the
text and speech encoders were initially trained on transcribed
speech of a large-scale native speaker corpus. In contrast, Fig. 8b
shows clear misalignments between the LLE sequences; the
text-encoded LLE sequence of the supervised model seems
to align to the speech-encoded LLE sequence better than its
unsupervised counterpart. From this figure, we can see that
the supervised strategy adjusted the text encoder to map the
symbolic phoneme to the actual (wrong) sound spoken by MF6,
which helps to improve the speaker similarity but degrades the
quality (or pronunciation) of generated utterances. The latent
spaces of the models adapted to p345 and MM6, while not
presented in this paper, also show similar patterns.

VII. CONCLUSION

In this paper, we showed that our voice cloning system,
“NAUTILUS”, can achieve state-of-the-art performance. More

importantly, it can act as a text-to-speech or voice conversion
system with high consistency in terms of speaker characteristics
when switching between the two. With the versatile cloning
strategy, which can be adjusted to specific data situation of a
target speaker, it is potentially useful for many other interesting
tasks like accent reduction [73] or cross-lingual voice cloning
[78], [79]. For future work, we will focus on evaluating our
systems by using different architectures for text-speech sys-
tems [10], [54] or neural vocoders [16], [80] to solve specific
voice cloning scenarios [23], [24]. Finally given the multimodal
structure, extending our system to other speech generation tasks
(e.g., video-to-speech [3]) would be a natural direction toward
a unified voice cloning framework.
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