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Abstract—Deep learning-based models have greatly advanced
the performance of speech enhancement (SE) systems. However,
two problems remain unsolved, which are closely related to model
generalizability to noisy conditions: (1) mismatched noisy condition
during testing, i.e., the performance is generally sub-optimal when
models are tested with unseen noise types that are not involved in the
training data; (2) local focus on specific noisy conditions, i.e., models
trained using multiple types of noises cannot optimally remove a
specific noise type even though the noise type has been involved in
the training data. These problems are common in real applications.
In this article, we propose a novel denoising autoencoder with
a multi-branched encoder (termed DAEME) model to deal with
these two problems. In the DAEME model, two stages are involved:
training and testing. In the training stage, we build multiple compo-
nent models to form a multi-branched encoder based on a decision
tree (DSDT). The DSDT is built based on prior knowledge of
speech and noisy conditions (the speaker, environment, and signal
factors are considered in this paper), where each component of the
multi-branched encoder performs a particular mapping from noisy
to clean speech along the branch in the DSDT. Finally, a decoder
is trained on top of the multi-branched encoder. In the testing
stage, noisy speech is first processed by each component model.
The multiple outputs from these models are then integrated into
the decoder to determine the final enhanced speech. Experimental
results show that DAEME is superior to several baseline models in
terms of objective evaluation metrics, automatic speech recognition
results, and quality in subjective human listening tests.

Index Terms—Deep neural networks, ensemble learning,
dynamically-sized decision tree, generalizability, speech
enhancement.
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I. INTRODUCTION

S PEECH enhancement (SE) aims to improve the quality
and intelligibility of distorted speech signals, which may

be caused by background noises, interference and recording
devices. SE approaches are commonly used as pre-processing
in various audio-related applications, such as speech communi-
cation [1], automatic speech recognition (ASR) [2]–[5], speaker
recognition [6], [7], hearing aids [8]–[10], and cochlear im-
plants [11]–[13]. Traditional SE algorithms design the denois-
ing model based on statistical properties of speech and noise
signals. One class of SE algorithms computes a filter to generate
clean speech by reducing noise components from the noisy
speech signals. Essential approaches include spectral subtrac-
tion [14], Wiener filtering [15], and minimum mean square error
(MMSE) [16], [17]. Another class of SE algorithms adopts a
subspace structure to separate the noisy speech into noise and
clean speech subspaces, and the clean speech is restored based
on the information in the clean speech subspace. Well-known
approaches belonging to this category include singular value
decomposition (SVD), generalized subspace approach with pre-
whitening [18], Karhunen-Loeve transform (KLT) [19], and
principal component analysis (PCA) [20]. Despite being able
to yield satisfactory performance under stationary noise condi-
tions, the performance of these approaches is generally limited
under non-stationary noise conditions. A major reason is that tra-
ditional signal processing-based solutions cannot accurately es-
timate noise components, consequently causing musical noises
and suffering significant losses in both quality and intelligibility
of enhanced speech.

Recent work has seen the emergence of machine learning
and deep learning-based SE methods. Different from traditional
methods, machine learning-based SE methods prepare a model
based on training data in a data-driven manner without imposing
strong statistical constraints. The prepared model is used to
transform noisy speech signals to clean speech signals. Well-
known machine learning-based models include non-negative
matrix factorization [21]–[23], compressive sensing [24], sparse
coding [25], [26], and robust principal component analysis
(RPCA) [27]. Deep learning models have drawn great interest
due to their outstanding nonlinear mapping capabilities. Based
on the training targets, deep learning-based SE models can
be divided into two categories: masking-based and mapping-
based. The masking-based methods compute masks describing
the time-frequency relationships of clean speech and noise
components. Various types of masks have been derived, e.g.,
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ideal binary mask (IBM) [28], ideal ratio mask (IRM) [29],
target binary mask [30], spectral magnitude mask [31] and phase
sensitive mask [32]. The mapping-based methods, on the other
hand, treat the clean spectral magnitude representations as the
target and aim to calculate a transformation function to map
noisy speech directly to the clean speech signal. Well-known
examples are the fully connected neural network [33], [34],
deep denoising auto-encoder (DDAE) [35], [36], convolutional
neural network (CNN) [37]–[39], and long-short-term memory
(LSTM) along with their combinations [40], [41].

Although deep learning-based methods can provide outstand-
ing performance when dealing with seen noise types (the noise
types involved in the training data), the denoising ability is
notably reduced when unseen noise types (the noise types not
involved in the training data) are encountered. In real-world
applications, it is not guaranteed that an SE system always deals
with seen noise types. This may limit the applicability of deep
learning-based SE methods. Moreover, a single and universal
model, trained with the entire set of training data consisting of
multiple conditions, may have constrained capability to perform
well in a specific condition, even though the condition has
been involved in the training set. In SE tasks, the enhancement
performance for a particular noise type (even if involved in the
training data) can thus be weakened. This problem, caused by
variances between different clusters of training data has been
reported in many previous works [42]–[44]. In this study, we
intend to design a new framework to increase deep learning
SE model generalizability, i.e., to improve the enhancement
performance for both seen and unseen noise types.

Ensemble learning algorithms have been proven to effectively
improve the generalization capabilities of different machine
learning tasks. Examples include acoustic modeling [45], image
classification [46], and bio-medical analysis [47]. Ensemble
learning algorithms have also been used for speech signal pro-
cessing, e.g., speech dereverberation [48] and SE. Lu et al.
investigated ensemble learning using unsupervised partitioning
of training data [49]. Kim, on the other hand, proposed an online
selection from trained models. The modular neural network
(MNN) consists of two consecutive DNN modules: the expert
module that learns specific information (e.g. SNRs, noise types,
genders) and the arbitrator module that selects the best expert
module in the online phase [50]. In [51], the authors investi-
gated a mixture-of-experts algorithm for SE, where the expert
models enhance specific speech types corresponding to speech
phonemes. Additionally, in [52], [53], the authors proposed a
joint estimation of different targets with enhanced speech as the
primary task to improve the SE performance.

Despite the aforementioned ensemble learning models having
achieved notable improvements, a set of component models is
generally prepared for a specific data set and may not be suitable
when applied to different large or small data sets with different
characteristics. Therefore, it is desirable to build a system that
can dynamically determine the complexity of the ensemble
structure using a common prior knowledge of speech and noise
characteristics or attributes. In this study, we propose a novel
denoising autoencoder with multi-branched encoder (DAEME)
model for SE. A dynamically-sized decision tree (DSDT) is
used to guide the DAEME model, thereby improving the

generalizability of the model to various speech and noise con-
ditions. The DSDT is built based on prior knowledge of speech
and noise characteristics from a training data set. In building
the DSDT, we regard the speaker gender and signal-to-noise
ratio (SNR) as the utterance-level attributes and the low and
high frequency components as the signal-level attributes. Based
on these definitions, the training data set is partitioned into
several clusters based on the degree of attributes desired. Then,
each cluster is used to train a corresponding SE model (termed
component model) that performs spectral mapping from noisy to
clean speech. After the first phase of training, each SE model is
considered to be a branch of the encoder in the DAEME model.
Finally, a decoder is trained on top of the multiple component
models. In the testing stage, noisy speech is first processed
by each component model. The multiple outputs from these
models are then integrated into the decoder to determine the
final enhanced speech. That is, we intend to prepare multiple
“matched” SE components models, and thus a decoder can incor-
porate “local” and “matched” information from the component
models to perform SE for each specific noise condition. When
the amount of training data is limited or the hardware resources
for online processing are constrained, we can select fewer com-
ponent models based on the DSDT tree (i.e., component models
corresponding to the upper nodes of the DSDT tree) to train the
decoder. Accordingly, the system complexity can be determined
dynamically in the training stage.

Experimental results show that DAEME is superior to con-
ventional deep learning-based SE models not only in objective
evaluations, but also in the ASR and subjective human listening
tests. We also investigated different types of decoders and tested
performance using both English and Mandarin datasets. The
results indicate that DAEME has a better generalization ability
to unseen noise types than other models compared in this paper.
Meanwhile, extending from our previous work [49], this paper
further verifies the effectiveness of the signal-level attribute tree
and knowledge-based decision tree.

The rest of this paper is organized as follows. We first review
several related learning-based SE approaches in Section II as
our comparative baseline models. Then, we elaborate on the
proposed DAEME algorithm in Section III. In Section IV, we
describe the experimental setup, report the experimental results,
and discuss our findings. Finally, we conclude our work in
Section V.

II. RELATED WORKS

Typically, in a learning-based SE task, a set of paired training
data (noisy speech and clean speech) is used to train the model.
For example, given the noisy speechSy , the clean speechSx can
be denoted as Sx = g(Sy), where g(.) is a mapping function.
The objective is to derive the mapping function that transforms
Sy to Sx , which can be formulated as a regression function.
Generally, a regression function can be linear or non-linear. As
mentioned earlier, numerous deep learning models have been
used for SE, e.g., deep fully connected neural network [33],
DDAE [35], [36], RNN [32], LSTM [40], [41], CNN [37],
[39], and the combination of these models [54], [55]. In this
section, we first review some of these nonlinear mapping models
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along with a pseudo-linear transform, which will be used as
independent and combined models for baseline comparisons
in the experiments. Then, we review the main concept and
algorithms of ensemble learning.

A. SE Using A Linear Regression Function

In the linear model, the predicted weights are calculated
based on a linear function of the input data with respect to the
target data. In spectral-mapping based SE approaches, we first
convert a speech waveform into a sequence of acoustic features
(the log-power-spectrogram (LPS) was used in this study). The
spectral features for the clean speech and the noisy speech are
denoted as X and Y, respectively, where X = [x1,x2, . . .,xT ]
and Y = [y1,y2, . . .,yT ], with T feature vectors. When apply-
ing linear regression to SE, we assume that the correlation of
the noisy spectral features, Y, and the clean spectral features,
X, can be modeled by X = WY, where W denotes the affine
transformation. The Moore-Penrose pseudo inverse [56], which
can be calculated using an orthogonal projection method, is
commonly involved to solve the large size matrix multiplication.
Thus, we can have

W = (C+YYT )−1YTX, (1)

where C denotes a scalar matrix.
On the other hand, neural network-based methods aim to

minimize reconstruction errors of predicted data and reference
data based on a non-linear mapping function. We will briefly
describe some models adopted in this study below.

B. SE Using Non-Linear Regression Functions: DDAE and
BLSTM

The DDAE [35], [36] has shown impressive performance
in SE. In [35], the encoder of DDAE first converts the noisy
spectral features to latent representations, and then the decoder
transforms the representations to fit the spectral features of
the target clean speech. For example, given the noisy spectral
features Y = [y1,y2, . . .,yT ], we have:

q1(yt) = σ(W1yt + b1)

q2(yt) = σ(W2q1(yt) + b2)

· ··
qL(yt) = σ(WLqL−1(yt) + bL)

x̂t = WL+1qL(yt) + bL+1, (2)

where σ(.) is a non-linear activation function, Wl and bl

represent the weight matrix and bias vector for the l-th layer,
respectively. From q1(.) to qL(.), the encoding-decoding process
forms a non-linear regression function. The model parameters
are estimated by minimizing the difference between the en-
hanced spectral features, X̂ = [x̂1, x̂2, . . ., x̂T ], and the clean
spectral features, X = [x1,x2, . . .,xT ]. As reported in [48], the
DDAE with a highway structure, termed HDDAE, is more robust
than the conventional DDAE, and thus we will focus on the
HDDAE model in this study. This HDDAE model includes a
link that copies the front hidden layers to the later hidden layers
to incorporate low-level information into the supervised stage.

BLSTM models [40], [41] provide bilateral information ex-
change between series of parallel neurons, proving effective
for dealing with temporal signals. The output activation from
the previous layer hl−1

t and the activation of the previous
time frame hl

t−1 are concatenated as the input vector ml
t =

[(hl−1
t )T , (hl

t−1)
T ]T for the l-th layer at time frame t. The

equations within a memory block, according to [57], can then
be derived as follows:

forget gate: f l
t = σg(W

l
fm

l
t +Ul

fc
l
t−1 + bl

f )

input gate: ilt = σg(W
l
im

l
t +Ul

ic
l
t−1 + bl

i)

cell vector: clt = f l
t ◦ clt−1 + ilt ◦ σc(W

l
cm

l
t + bl

c)

output gate: ol
t = σg(W

l
om

l
t +Ul

oc
l
t + bl

o)

output activation: hl
t = ol

t ◦ σh(c
l
t), (3)

where σg , σc, and σh are activation functions; ◦ denotes the
Hadamard product (element-wise product). Finally, an affine

transformation is applied to the final activation
−→
hL
t and

←−
hL
t of

the L-th layer in both directions on the time axis as:

x̂t =
−−−→
WL+1

−→
hL
t +
←−−−
WL+1

←−
hL
t + bL+1, (4)

where
−−−→
WL+1 and

←−−−
WL+1 are transformation matrices.

C. Ensemble Learning

Ensemble learning algorithms learn multiple component
models along with a fusion model that combines the comple-
mentary information from the component models. Ensemble
learning has been confirmed as an effective machine learning
algorithm in various regression and classification tasks [58]. In
the speech signal processing field, various ensemble learning
algorithms have been derived. These algorithms can be roughly
divided into three categories. For the first category, the whole
training set is partitioned into subsets, and each of component
models is trained by a subset of the training data. Notable
examples include [45], [49], [50], [59]. The second category
of approaches build multiple models based on different types
of acoustic features. Well-known approaches include [52], [60].
The third category constructs multiple models using different
model types or structures. Successful approaches belonging
to this category include [53], [61]. By exploiting complemen-
tary information from multiple models, ensemble learning ap-
proaches can yield more robust performance compared to con-
ventional machine learning algorithms.

Despite the impressive performance in speech signal process-
ing tasks, there are three possible limitations to implementing a
typical ensemble learning model in a real-world SE application:
First, it is difficult to tell the contribution of each component
model. Second, the amount of training data for training multiple
models may not be sufficient since the training data for each
component model is a subset of all training data. Third, it is not
easy to dynamically determine which component models should
be kept and which should be removed.

To overcome the above three limitations, we propose a novel
DAEME SE algorithm, which comprises training and testing
stages. In the training stage, a DSDT is constructed based on the
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Fig. 1. The overall architecture of the DAEME approach.

attributes of speech and noise acoustic features. Since the DSDT
is constructed in a top-down manner, a node in a higher layer
consists of speech data with broad attribute information. On the
other hand, a node in a lower layer denotes the speech data with
more specific attribute information. An SE model is built for each
node in the tree. The models corresponding to higher layers of the
DSDT tree are trained with more training data and can be used as
initial models to estimate component models corresponding to
lower layers of the DSDT tree. These SE models are then used
as component models in the multi-branched encoder. Next, a
decoder is trained in order to combine the results of the multiple
models. In the testing stage, a testing utterance is first processed
by the component models; the outputs of these models are then
combined by the decoder to generate the final output. Since the
DSDT has a clear physical structure, it becomes easy to analyze
the SE property of each component model. Moreover, based
on the DSDT, we may dynamically determine the number of
SE models according to the amount of training data and the
hardware limitation in the training stage. Last but not least,
in [62], the authors proposed a special “overfitting” strategy
to interpret the effectiveness of a component model. When
training ensemble models, we intend to implement a “condi-
tional overfitting” strategy, which aims to train each component
model to overfit to (or perfectly match) its training data (i.e.,
the training data corresponding to each node in the tree in our
work). The DAEME algorithm has better interpretability by
using attribute-fit regressions based on the DSDT.

III. PROPOSED DAEME ALGORITHM

The overall architecture of the proposed DAEME approach is
depicted in Fig. 1. In this section, we will detail the training and
testing stages.

A. Training Stage

In the training stage, we first build a tree based on the attributes
of the training utterances in a top-down manner. The root of
the tree includes the entire set of training data. Then, based
on the utterance-level attributes, we create the branches from
the root node. As the layers increase, the nodes represent more
specific utterance-level attribute information. Next, we process
signal-level attributes to create branches upon the nodes. Finally,
we have a tree with multiple branches. As shown in Fig. 2,
based on the utterance-level and signal-level attributes, we build

Fig. 2. The tree built on the utterance-level attribute (UAT) and signal-level
attribute (SAT).

UAT and SAT, respectively. In the following subsection, we will
introduce the UAT and SAT in more detail.

1) Utterance-Level Attribute Tree (UAT): The utterance-
level attributes include speaker and speaking environment fac-
tors, such as the gender, age, accent, or identity for the speaker
factor, and the signal-to-noise ratio (SNR), noise type, and
acoustic environment for the environment factor. As reported
in [63], three major factors that affect the SE performance are
the noise type, speaker, and SNR. In real-world scenarios, the
noise type is usually inaccessible beforehand. Accordingly, we
only consider the speaker and SNR factors when building the
attribute tree in this study. The root node includes all the training
utterances. Next, we create two branches from the root node for
male and female speakers. Therefore, each node in the second
layer contains the training utterances of male or female speakers.
Then, the two nodes in the second layer are further divided to
four nodes in the third layer, each containing the training data
of “male with high SNR”, “male with low SNR”, “female with
high SNR” or “female with low SNR”.

2) Signal-Level Attribute Tree (SAT): For the signal-level
attributes, we segment the acoustic features into several groups,
each with similar properties. For SE, it has been reported that
considering low and high frequency properties can give im-
proved performance [64]. In this study, we segment the acoustic
features into high-frequency and low-frequency parts by two
methods: spectral segmentation (SS) and wavelet decomposi-
tion (WD). With the signal-level attributes, we can create an
additional layer for each node of the tree constructed using the
utterance-level attributes, forming final binary branches from
each node.

3) Models of Multi-Branched Encoder and Decoder: The
overall procedure of the training stage is shown in Fig. 1(a). We
estimate a component model for each node in the tree. The input
and output of the model is paired by noisy and clean features, and
the objective is to estimate the mapping function between the
paired features. We reason that the model at the highest layer (the
root node) characterizes the mapping function globally, rather
than considering specific local information. In our case, the local
information includes the speaker attributes and environment
features segmented by each layer and node in the DSDT. On the
other hand, the model corresponding to a node in a lower layer
characterizes a more localized mapping of paired noisy and clean
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features. More specifically, each model characterizes a particular
mapping in the overall acoustic space. Given the component
SE models, we then estimate a decoder. Note that by using the
component models to build multiple SE mapping functions, we
can factorize the global mapping function (the mapping of the
root node in our system) into several local mapping functions;
the decoder uses the complementary information provided by the
local mappings to obtain improved performance as compared
to the global mapping. This also follows the main concept
of ensemble learning: building multiple over-trained models,
each specializing in a particular task, and then computing a
fusion model to combine the complementary information from
the multiple models. Assume that we have J ×K component
models built by UAT and SAT, the SE can be derived with the
component models as

Z1,1 = F
(E)
1,1 (Y)

Z1,2 = F
(E)
1,2 (Y)

..

Zj,k = F
(E)
j,k (Y)

..

ZJ,K = F
(E)
J,K (Y) (5)

and the decoder as

X̂ = F
(D)
θ (Z1,1,Z1,2, . . .,ZJ,K), (6)

where j and k represents the UAT node index and the SAT node
index, respectively. F (E)

j,k denotes the transformation of the j, k-

th component model,Zj,k is the corresponding output, andF (D)
θ

denotes the transformation of the decoder. The parameter, θ, is
estimated by:

θ̂ = argmin
θ

Diff (X, X̂), (7)

where Diff (·) denotes a function that measures the difference
of paired inputs. In this study, we adopted the mean-square-error
(MSE) function for Diff (·).

B. Testing Stage

The testing stage of the DAEME algorithm is shown in
Fig. 1(b). The input speech is first converted to acoustic features,
and each component model processes these features separately.
The outputs are then combined with a decoder. Finally, the
enhanced acoustic features are reconstructed to form the speech
waveform. As mentioned earlier, based on the tree structure,
we may dynamically determine the number of ensemble models
according to the online processing hardware limitation or the
amount of training data available. Note that, the system com-
plexity is determined in the training stage.

It is important to note that one can use different types of mod-
els and different types of acoustic features to form the component
models in the multi-branched encoder. In this study, we intend
to focus on comparing the effects caused by different attributes
of the speech utterances, so the same neural network model
architecture was used for all components in the multi-branched
encoder. Additionally, we adopted different types of models

to form encoders and decoders to investigate the correlation
between the model types and the overall performance. Please
note that the knowledge, such as gender and SNR information,
is only used in the training stage for building the component
models. Such prior knowledge is not used in the testing stage.

IV. EXPERIMENTS AND RESULTS

We used two datasets to evaluate the proposed algorithm,
namely the Wall Street Journal (WSJ) corpus [65] and the
Taiwan Mandarin version of the hearing in noise test (TMHINT)
sentences [66]. In this section, we present the experimental
setups for the two datasets and discuss the evaluation results.

A. Evaluation Metrics

To evaluate the performance of SE algorithms, we used Per-
ceptual Evaluation of Speech Quality (PESQ) [67] and Short-
Time Objective Intelligibility (STOI) [68]. PESQ and STOI have
been widely used as standard objective measurement metrics in
many related tasks [33], [69], [70]. PESQ specifically aims to
measure the speech quality of the utterances, while STOI aims to
evaluate the speech intelligibility. The PESQ score ranges from
−0.5 to 4.5, a higher score indicating better speech quality. The
STOI score ranges from 0.0 to 1.0, a higher score indicating
higher speech intelligibility.

B. Experiments on the WSJ Dataset

The WSJ corpus is a large vocabulary continuous speech
recognition (LVCSR) benchmark corpus, which consists of
37,416 training and 330 test clean speech utterances. The utter-
ances were recorded at a sampling rate of 16 kHz. We prepared
the noisy training data by artificially contaminating the clean
training utterances with 100 noise types [71] at 31 SNR levels
(20 dB to -10 dB, with a step of 1 dB). Each clean training
utterance was contaminated by one randomly selected noise
condition; therefore, the entire training set consisted of 37,416
noisy-clean utterance pairs. To prepare the noisy test data, four
types of noises, including two stationary types (i.e., car and
pink) and two non-stationary types (i.e., street and babble), were
added to the clean test utterances at six SNR levels (-10 dB,
-5 dB, 0 dB, 5 dB, 10 dB, and 15 dB). Note that the four
noise types used to prepare the test data were not involved in
preparing the training data. We extracted acoustic features by
applying 512-point Short-time Fourier Transform (STFT) with
a Hamming window size of 32 ms and a hop size of 16 ms
on training and test utterances, creating 257-point STFT LPS
features. For the baseline SE system, we used a BLSTM model
with two bidirectional LSTM layers of 300 nodes followed by
a fully connected output layer [32]. For DAEME, similar to
the baseline system, we used two bidirectional LSTM layers
with 300 nodes and one fully connected output layer to form
the components in the multi-branched encoder. Since an essen-
tial objective of DAEME is to provide sufficient information
to be able to generalize the SE models, multiple models are
created, each learning the particular mapping function. A CNN
composed of three convolutional layers and two fully connected
layers, each convolutional layer containing 64 channels and each
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Fig. 3. T-SNE analysis on the utterance-level attributes. (a) Gender: male
(yellow dots) vs. female (purple dots). (b) Male: high SNR (yellow dots) vs. low
SNR (purple dots). (c) Female: high SNR (yellow dots) vs. low SNR (purple
dots). Note that we used the LPS features to draw the T-SNE plots.

fully connected layers containing 1024 neurons, was used to
form the decoder. For a fair comparison, all of the component and
decoder models are trained using the same number of epochs.

C. Prior Knowledge of Speech and Noise Structures

Recent monaural SE studies have mentioned the importance
of attributive generalizability in SE systems. For example,
in [63], Morten et al. compared noise types, speaker, and SNR
level and their potential to enhance the intelligibility of SE
systems. To build the DSDT and the corresponding DAEME
system, we first qualitatively analyzed the acoustic properties
of speech attributes. As mentioned earlier, we assumed that the
noise type is inaccessible and conducted the T-SNE analysis [72]
on the training data of the WSJ dataset. T-SNE performs nonlin-
ear dimensionality reduction on the original data, and the T-SNE
plot has been popularly used for data representation and analysis.
Like other dimensionality reduction techniques, such as PCA,
the two axes may not have physical meanings. The analysis
results are shown in Fig. 3, where in Fig. 3(a), we analyzed the
gender attributes, and in Fig. 3(b) and (c), we analyzed the SNR
attributes.

From Fig. 3(a), we can note a clear separation between male
(yellow dots) and female (purple dots). In Figs. 3(b) (i.e., male
data of different SNR levels) and 3(c) (i.e., female data of
different SNR levels), the T-SNE analysis also shows a clear
separation between high SNR (10 dB and above, yellow dots)
and low SNR (below 10 dB, purple dots) in both gender parti-
tions.

On the other hand, from the signal point of view, most
real-world noises were non-stationary in the time-frequency
domain. This suggests that noise pollution is unlikely to occur
in all frequency bands at the same time even under low SNR
conditions. In our previous studies [59], segmental frequency
bands were proposed to enhance speaker adaptation. In this
study, the signal-level attribute is used to consider the low and
high frequency bands. With the signal-level attribute, the SE
algorithm can obtain more speech structure information even
under noisy conditions.

1) The Effectiveness of the UAT: We first analyzed the
DAEME model with a tree built with the utterance-level at-
tributes. As mentioned in Section III-A-1), the root node of the
UAT included the entire set of 37,416 noisy-clean utterance pairs
for training. The entire training set was divided into male and
female in the first layer, each with 18,722 (male) and 18,694
(female) noisy-clean training pairs, respectively. For the next

Fig. 4. Performance comparison of DAEME-UAT(i), i = 2, 4, 6, and a single
model BLSTM SE method in terms of the PESQ score. The results of unpro-
cessed noisy speech, denoted as Noisy, are also listed for comparison.

Fig. 5. Performance comparison of DAEME-UAT(i), i = 2, 4, 6, and a single
model BLSTM SE method in terms of the STOI score. The results of unprocessed
noisy speech, denoted as Noisy, are also listed for comparison.

layer, the gender-dependent training data was further divided
into low and high SNR conditions. Finally, there were four leaf
nodes in the tree, each with 6,971 (female with high SNR),
11,723 (female with low SNR), 7,065 (male with high SNR),
and 11,657 (male with low SNR) noisy-clean training pairs. We
investigated the performance of DAEME with different numbers
of components in the multi-branched encoder, and thus built
three systems. The first system had two component models: male
and female. The second system had four component models:
female with high SNR, female with low SNR, male with high
SNR, and male with low SNR. The third system had six compo-
nent models: female, male, female with high SNR, female with
low SNR, male with high SNR, and male with low SNR. The
three systems are termed DAEME-UAT(2), DAEME-UAT(4),
and DAEME-UAT(6), respectively.

In the first set of experiments, we examined the effectiveness
of the UAT-based DAEME systems versus single model SE algo-
rithms. We selected a single model BLSTM for the benchmark
performance. This BLSTM model was trained with the entire set
of 37,416 noisy-clean utterance pairs. Fig. 4 shows the PESQ
scores of the proposed systems (DAEME-UAT(2), DAEME-
UAT(4), DAEME-UAT(6)) and the single BLSTM model. Fig. 5
shows the STOI scores. In these two figures, each bar indicates
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TABLE I
PESQ SCORES OF THE DAEME-UAT6 SYSTEM AT FOUR NOISE TYPES AND

SIX SNRS. AVG. DENOTES THE AVERAGE SCORES

an average score over six SNR levels for a particular noise
type. From the results in Figs. 4 and 5, we note that all the
DAEME-UAT models outperform the single BLSTM model
methods in all noise types. More specifically, using only the
UAT, the DAEME systems already surpasses the performance
of the single model SE methods by a notable margin. This result
justifies the tree-based data partitioning in training the DAEME
method.

To further verify the effectiveness of the UAT, we constructed
another tree. The root node also contained the entire set of 37,416
noisy-clean utterance pairs. The training utterance pairs were
randomly divided into two groups to form two nodes in the
second layer, where each node contained 18,694 and 18,722
noisy-clean utterance pairs, respectively. In the third layer, the
training utterance pairs of each node in the second layer were
further divided into two groups randomly to form four nodes in
the third layer. Since the tree was built by randomly assigning
training utterances to each node, this tree is termed random
tree (RT) in the following discussion. Based on this RT, we
built three systems, termed DAEME-RT(2), DAEME-RT(4),
and DAEME-RT(6), each consisting of 2, 4, and 6 component
models, respectively. Figs. 6 and 7 compare the PESQ and
STOI scores of different DAEME systems (including DAEME-
UAT(2), DAEME-UAT(4), DAEME-UAT(6), DAEME-RT(2),
DAEME-RT(4), and DAEME-RT(6)) based UAT or RT. From
the figures, we can draw two observations. First, DAEME-
UAT(6) achieve a better performance than their respective coun-
terparts with less component models. Since the same decoder
is used, the performance improvements are mainly contributed
by the specific designs of component models. Based on the
performance improvements, we can also see the advantage of
using the tree structures to design component models in the
DAEME framework. Second, the results of DAEME-UAT(i)

are consistently better than DAEME-RT(i) for i = 2, 4, 6. The
result confirms the effectiveness of the UAT over RT. For ease of
further comparison, we list the detailed PESQ and STOI scores
of DAEME-UAT(6) (the best system in Figs 6 and 7) in Tables I
and II.

2) The Effectiveness of the SAT: As introduced in Section
III-A-2), we can use the SS and WD approaches to build the SAT.
To compare the SS and WD approaches, we used the SAT on
top of DAEME-UAT(6), which achieved the best performance in
Fig. 6 (PESQ) and Fig. 7 (STOI), to build two systems: DAEME-
USAT(SS)(12) and DAEME-USAT(WD)(12), where USAT de-
notes the system using the “UA+SA” tree. Because the SA tree
was built into each node of the UA tree, the total number of
component models for an DAEME-USAT system is the number

TABLE II
STOI SCORES OF THE DAEME-UAT6 SYSTEM AT FOUR NOISE TYPES AND

SIX SNRS. AVG. DENOTES THE AVERAGE SCORES

Fig. 6. Performance comparison of DAEME-UAT(i) and DAEME-RT(i), i =
2, 4, 6 in terms of the PESQ score.

Fig. 7. Performance comparison of DAEME-UAT(i) and DAEME-RT(i), i =
2, 4, 6 in terms of the STOI score.

of nodes in the UA tree multiplied by the number of nodes in
the SA tree. We applied the SS and WD approaches to segment
the frequency bands. For SS, we directly separated the low and
high frequency parts based on the spectrograms. Among the
257 dimensional spectral vector, we used [1:150] and [108:257]
coefficients as the low- and high-frequency parts, respectively.
For WD, we used the Biorthogonal 3.7 wavelet [73], which was
directly applied on the speech waveforms to obtain the low- and
high-frequency parts. In either way, the SA tree had two nodes.
Therefore, we obtained DAEME-USAT(SS)(12) and DAEME-
USAT(WD)(12), respectively, based on DAEME-UAT(6) after
applying the SA trees constructed by the SS and WD approaches.
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TABLE III
PESQ SCORES OF THE DAEME-USAT(SS)(12) AND

DAEME-USAT(WD)(12) SYSTEMS AT FOUR NOISE TYPES AND SIX SNRS.
AVG. DENOTES THE AVERAGE SCORES

TABLE IV
STOI SCORES OF THE DAEME-USAT(SS)(12) AND DAEME-USAT(WD)(12)

SYSTEMS AT FOUR NOISE TYPES AND SIX SNRS. AVG. DENOTES THE

AVERAGE SCORES

The PESQ and STOI scores of DAEME-USAT(SS)(12) and
DAEME-USAT(WD)(12) are listed in Tables III and IV, re-
spectively. From these two tables, we observe that DAEME-
USAT(WD)(12) outperformed DAEME-USAT(SS)(12) in terms
of the PESQ score across 15 dB to -10 dB SNR conditions,
while the two systems achieved comparable performance in
terms of the STOI score. Comparing the results in Tables I
and II and the results in Tables III and IV, we note that both
DAEME-USAT(SS)(12) and DAEME-USAT(WD)(12) achieved
better PESQ and STOI scores than DAEME-UAT(6). In addition
to the average PESQ and STOI scores, we adopted a statistical
hypothesis test, the dependent t-test, to verify the significance
of performance improvements [74], [75]. We compared two
methods by testing the individual average PESQ/STOI scores of
24 matched pairs (4 noise types and 6 SNR levels) and estimated
the p-value. For the t-test, we considered H0 as “method-II
is not better than method-I”, and H1 as “method-II is better
than method-I”. Small p-values imply significant improvements
of method-II over method-I across the 24 matched pairs. A
threshold of 0.01 was used to determine whether the improve-
ments were statistically significant. For the PESQ scores, the
improvements of DAEME-UAT(6), DAEME-USAT(SS)(12) and

DAEME-USAT(WD)(12) over BLSTM are significant with very
small p-values. In addition, the improvements of DAEME-
USAT(SS)(12) and DAEME-USAT(WD)(12) over DAEME-
UAT(6) are significant with very small p-values. For the
STOI scores, the improvements of DAEME-UAT(6), DAEME-
USAT(SS)(12) and DAEME-USAT(WD)(12) over BLSTM are
significant with very small p-values. However, the differences of
DAEME-USAT(SS)(12) over DAEME-USAT(WD)(12) are not
significant. The results first confirm the effectiveness of the
DAEME model in providing better speech quality and intelli-
gibility. The results also confirm the effectiveness of the SA tree
in enabling DAEME to generate enhanced speech with better
quality.

D. Experiments on the TMHINT Dataset

The TMHINT corpus consists of speech utterances of eight
speakers (four male and four female), each utterance corre-
sponding to a sentence of ten Chinese characters. The speech
utterances were recorded in a recording studio at a sampling
rate of 16 kHz. Among the recorded utterances, 1,200 utterances
pronounced by three male and three female speakers (each
providing 200 utterances) were used for training. 120 utterances
pronounced by another two speakers (one male and one female)
were used for testing. There is no overlap between the training
and testing speakers and speech contents. We used 100 different
noise types [76] to prepare the noisy training data at 31 SNR
levels (from -10 dB to 20 dB, with a step of 1 dB). Each clean
utterance was contaminated by several randomly selected noise
conditions (one condition corresponds to a specific noise type
and an SNR level). Finally, we collected 120,000 noisy-clean
utterance pairs for training. For the testing data, four types of
noises, including two stationary types (i.e., car and pink) and
two non-stationary types (i.e., street and babble), were used to
artificially generate noisy speech utterances at six SNR levels
(-10 dB, -5 dB, 0 dB, 5 dB, 10 dB, and 15 dB). As with the setup
for the WSJ task, these four noise types were not included in
preparing the training set.

As we have evaluated the DAEME systems in several dif-
ferent aspects in the previous subsection, we will examine the
DAEME algorithm in other aspects (including the achievable
performance by incorporating other knowledge, for seen noise
types, different component model types, different decoder model
types, and the ASR and listening test results) in this subsection.

1) Incorporating Noise Type and Speaker Identity Infor-
mation: First, we implemented the DAEME by incorporating
other knowledge, namely the noise type and speaker identity.
In previous experiments, we assume that the gender and SNR
information is available for each training utterance, and the UAT
tree can be built based on such information. To compare, we built
a DAEME system that prepares the component models without
using the gender and SNR information. In this comparative
system, we first built an utterance-based noise-type classifier
by using a 2-layered BLSTM followed by one fully-connected
layer. The input and output to the noise-type classifier, re-
spectively, were a sequence of 257-dimensional LPS vectors
and a 100-dimensional one-hot-vector (corresponding to the
100 noise types in the training set). Given an utterance, the
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Fig. 8. Average PESQ and STOI scores of BLSTM(w), BLSTM, DAEME-
NC, DAEME-UAT, and DAEME-UAT(SA).

noise-type classifier predicted the noise type of the utterance.
We fed the entire set of training utterances into this noise-type
classifier and collected the latent representations (each with 200
dimensions) of all of the training utterances. The entire set of
latent representations were then clustered into J clusters. Each
cluster represented a particular cluster of training utterances and
was used to train a component model. Finally, a fusion network
was trained. Because a noise-classifier is used to partition the
training data, this model is termed DAEME-NC. Different from
the DAEME systems presented earlier, DAEME-NC prepared
the component models in a data-driven manner without using the
gender and SNR information. Because we intended to compare
this approach with the UAT, we used 6 component models here
for a fair comparison. The results of DAEME-NC are shown
in Fig. 8. The results of BLSTM and DAEME-UAT are also
listed for comparison. From the figure, we can note that DAEME
with knowledge-based UAT outperforms DAEME-NC, while
DAEME-NC provides better performance than a single BLSTM
model, in terms of both STOI and PESQ. All the improvements
have been confirmed significant with very small p-values.

In [77], a speaker-aware SE system was proposed and shown
to provide improved performance. In this work, we conducted
an additional set of experiments that integrate the speaker-aware
techniques into the DAEME (termed DAEME-UAT(SA)). For
DAEME-UAT(SA), we included the speaker information in the
decoder used on the same approach proposed in [77]. The
results of DAEME-UAT(SA) are also listed in Fig. 8. DAEME-
UAT(SA) yields better performance than DAEME-UAT. The
improvements are significant with very small p-values. The
result confirms the effectiveness of incorporating the speaker
information into the DAEME system.

We further investigated the advantage of the ensemble learn-
ing used in DAEME and thus trained a very wide and complex
BLSTM model, which has exactly the same number of parame-
ters as DAEME-UAT. The wide and complex BLSTM is termed
BLSTM(W ), and the results are also reported in Fig. 8. From
the figure, we note that the performance of BLSTM(W ) is much
worse than DAEME-UAT and other systems. The results well
present a major advantage of the ensemble learning concept: to
implement the target task, it is not needed to train a very wide,
big, and complex model, which may take a lot of computation
power and resource, yet difficult to train. Instead, we can train a
set of simpler (weak) component models and a fusion network,

TABLE V
PESQ SCORES OF SEEN DATA OF BLSTM AND DAEME

TABLE VI
STOI SCORES OF SEEN DATA OF BLSTM AND DAEME

which combines the outputs of these simple component models.
Moreover, in terms of incorporating new knowledge, the ensem-
ble learning approach has much more flexibility than a universal
and complex model.

2) Evaluation Under Seen Noise Types: Next, we examine
the DAEME effectiveness under seen noise conditions. We
prepared testing data that involved two noise types (Cafeteria
and Crowd) that were included in the training set. Then, we
tested the enhancement performance of DAEME on the above
testing noisy data. The PESQ and STOI results are listed in
Tables V and VI, respectively. For comparison, we also listed the
scores of BLSTM. The results in the tables show that DAEME
outperforms the single BLSTM model with a clear margin. The
improvements have been confirmed significant with very small
p-values. The result confirms that DAEME, which preserves lo-
cal information of the training data, can yield better performance
than BLSTM, in which the local information may be averaged
out, for seen noise types.

3) The Component Models of DAEME: We analyzed the
compatibility of the DAEME algorithm with different compo-
nent models. In the previous experiments, we used BLSTM
to build the multi-branched encoder and CNN as the decoder.
First, we followed the setup of the best model DAEME-
USAT(WD)(12) and adopted HDDAE in addition to BLSTM
as the architecture of a component model. The BLSTM-based
component model consisted of two layers, with 300 memory
cells in each layer, and the HDDAE-based component model
consisted of five hidden layers, each containing 2,048 neurons,
and one highway layer [48]. Figs. 9 and 10 present the PESQ and
STOI scores of different systems, including two single model
SE systems (HDDAE, and BLSTM) and two DAEME-based
ensemble systems, (BLSTM)DAEME, and (HDDAE)DAEME,
where BLSTM, and HDDAE were used to build the com-
ponent models in the multi-branched encoder, respectively.
From the figures, we can note that (HDDAE)DAEME, and
(BLSTM)DAEME outperform their single model counterparts
(HDDAE and BLSTM). It is also shown that among the two
single model-based systems, BLSTM outperformed HDDAE.
Among the two DAEME-based systems, (BLSTM)DAEME
achieves the best performance, suggesting that the architecture
of the component model of DAEME indeed affects the overall
performance.

4) The Architecture of Decoder: Next, we investigated
the decoder in the DAEME-based systems. In this set of
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experiments, BLSTM with the same architecture as in the pre-
vious experiments was used to build the component SE models.
We compared four types of decoder: the CNN model used in the
previous experiments and the linear regression as shown in Eq.
(1). We used another nonlinear mapping function based on a fully
connected network. Finally, we used the BF approach, which
selects the most suitable output from the component models as
the final output. More specifically, we assume that the gender
and SNR information were accessible for each testing utterance,
and the BF approach simply selected the “matched” output
without further processing. The results of using different decoder
types are listed in Figs. 11 and 12, which report the PESQ
and STOI scores, respectively. For DAEME(LR), the decoder
is formed by a linear regression function, for DAEME(FC) and
DAEME(CN), the decoder is formed by a nonlinear mapping
function based on a fully connected network and CNN, respec-
tively, and for DAEME(BF), the decoder is formed by the BF
approach. Please note that the way to combine multiple outputs
of encoders depends on the type of decoder. When using BF as
the decoder, only one output from the multi-branched encoder
is used. When using LR, FC, or CN as the decoder, we first
concatenate the encoded feature maps, and then compute the
enhanced speech. We followed Eq. (1) to implement LR. For
FC, we used 2 dense layers, each with 1024 nodes. For CNN,
we used 3 layers of 1-D convolution, each with kernel size 11,
stride 1, and 64 channels, followed by 2 dense layers, each with
1024 nodes. No pooling layer was used for CNN.

From Figs. 11 and 12, it is clear that DAEME(CN) outper-
forms DAEME(FC), DAEME(LR), and DAEME(BF) consis-
tently. The results confirm that when using a decoder that has
more powerful nonlinear mapping capability, the DAEME can
achieve better performance. We also conducted the dependent
t-test to verify whether the improvements are significance. It is
confirmed that the improvements of DAEME(CN) over BLSTM
are significant in terms of both PESQ and STOI scores with very
small p-values, again verifying the effectiveness of the DAEME
model for providing better speech quality and intelligibility over
a single model.

5) ASR Performance: The previous experiments have
demonstrated the ability of the DAEME methods to enhance
the PESQ and STOI scores. Here, we evaluated the applica-
bility of DAEME as a denoising front end for ASR under
noisy conditions. Google ASR [4], [78] was adopted to test
the character error rate (CER) with the correct transcription
reference. The best setup of DAEME for the TMHINT dataset,
i.e., DAEME-USAT(WD)(12), was used to pre-process the input
noisy speech, and the enhanced speech was sent to Google ASR.
The unprocessed noisy speech and the enhanced speech by a
single BLSTM model were also tested for comparison. The CER
results for these three experimental setups are demonstrated in
Fig. 13. It is clear that the single-model BLSTM SE system is
not always helpful. The enhanced speech tends to yield higher
CERs than the unprocessed noisy speech while tested under
higher SNR conditions (0 to 15 dB) and achieve only slightly
lower CERs under relatively noisier conditions (-10 to 0 dB).
On the other hand, the proposed DAEME system achieves lower
CERs under lower SNR conditions (-10 to 0 dB) and maintains
the recognition performance under higher SNR conditions (0 to

Fig. 9. PESQ scores of SE systems using different component models in the
multi-branched encoder. The scores of unprocessed noisy speech are 1.94, 1.78,
1.95, and 2.36 for Babble, Pink, Street, and Car, respectively.

Fig. 10. STOI scores of SE systems using different component models in the
multi-branched encoder. The scores of unprocessed noisy speech are 0.69, 0.71,
0.72, and 0.79 for Babble, Pink, Street, and Car, respectively.

15 dB) as compared to the noisy speech. The average CERs of
noisy, BLSTM-enhanced, and DAEME-enhanced speech across
15 dB to -10 dB SNR levels are 15.85%, 16.05%, and 11.4%,
accordingly. DAEME achieved a relative CER reduction of
28.07% (from 15.85% to 11.4%) over the unprocessed noisy
speech.

6) Listening Test: In addition to the objective evaluations and
ASR tests, we also invited 15 volunteers to conduct subjec-
tive listening tests. The testing conditions included two types
of noises, car noise (stationary noise) and babble noise (non-
stationary noise), under two different SNR levels (car: -5 dB,
-10 dB, babble: 0 dB, 5 dB). We selected different SNRs for
these two noise types because the car noise is more stationary
and thus easier understood as compared to the babble noise;
accordingly a lower SNR should be specified for the car noise
than the babble noise.

First, we asked each subject to register their judgment based
on the five-point scale of signal distortion (SIG) [79]. In the
SIG test, each subject was asked to provide the natural (no
degradation) level after listening to an enhanced speech utter-
ance processed by either BLSTM or DAEME. A higher score
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Fig. 11. PESQ scores of DAEME-based ensemble SE systems using different
types of decoder.

Fig. 12. STOI scores of DAEME-based ensemble SE systems using different
types of decoder.

Fig. 13. CERs of Google ASR applied to noisy and enhanced speech.

indicates that the speech signals are more natural. The results
shown in Fig. 14(a) demonstrate that DAEME can yield a higher
SIG score than BLSTM. We also asked the subjects to judge the
background intrusiveness (BAK) [79] after listening to an utter-
ance. The BAK score ranges from 1 to 5, and a higher BAK score
indicates a lower level of noise artifact perceived. The BLSTM
and DAEME enhanced utterances were tested for comparison.
The results shown in Fig. 14(b) clearly demonstrate that DAEME
outperforms BLSTM in terms of BAK. Finally, we conducted
an AB preference test [80] to compare the BLSTM-enhanced

Fig. 14. Listening test results in terms of SIG, BAK, and AB preference.

speech and the DAEME-enhanced speech. Each subject listened
to a pair of enhanced speech utterances and gave a preference
score. As shown in Fig. 14(c), the DAEME notably outperforms
BLSTM in the preference test. The results in Fig. 14(a), 14(b),
and 14(c) demonstrate that, compared to BLSTM, the speech
enhanced by DAEME is more natural, less noisy, and with higher
quality.

V. CONCLUSION

This paper proposed a novel DAEME SE approach. By
considering the ensemble concept, the proposed method first
exploits the complimentary information based on the multi-
branched encoder, and then uses a decoder to combine the com-
plementary information for SE. We also analyzed and confirmed
that the decoder using CNN-based non-linear transformation
yielded better SE performance than the decoder using 2-layered
fully connected network, linear transformation and the BF ap-
proach. Compared to other learning-based SE approaches, the
proposed DAEME approach has the following three advantages:

1) The DAEME approach yields a better enhancement perfor-
mance under both seen and unseen noise types than its baseline
single model counterparts: As presented in Section III-A, the
DSDT was built based on the utterance-level attributes (UA)
and signal-level attributes (SA) of speech signals. The DSDT
is subsequently used to establish the multi-branched encoder
in the DAEME framework. From the PESQ and STOI scores,
we confirmed the effectiveness of the UA tree and the USAT
(UA+SA) tree over traditional deep-learning-based approaches
and the system using a random tree (RT in Figs. 6 and 7). The
experimental results also confirm that the proposed DAEME has
effectively incorporated the prior knowledge of speech signals
to attain improved enhancement performance as compared to
single model counterparts under both seen and unseen noise
types.

2) The DAEME architecture with a DSDT has better inter-
pretability and can be designed according to the amount of train-
ing data and computation resource constraints: Pre-analyzing
the speech attributes of the target domain using a regression
tree provides informative insights into the development of the
DAEME system. By using the tree map that categorized data
through speech attributes, we can optimally design the archi-
tecture of the multi-branched encoder in the DAEME to strike
a good balance between the achievable performance, training
data, and the system complexity. The component models can
be trained in parallel using respective training subsets. Because
multiple component models can handle different noise condi-
tions well, a simple decoder that is easy to train can already
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provide satisfactory performance. This is confirmed by the ex-
perimental results in Figs. 11 and 12. Therefore, the training of
the fusion layer (decoder) will not require much training time.
Compared to BLSTM, CNN can be much simplified in terms
of hardware and computation costs. Therefore, BLSTM plays a
major part in the total complexity of DAEME. According to [81],
the time complexity of BLSTM can be derived as O((CH)2),
where H is the basic number of cells and C is the width factor.
We can arrange the computation of component models in a
parallel manner that further lowers complexity. For example,
the time complexity of a 6x wider BLSTM model is high (C
= 6), while that of DAEME can be much reduced by a parallel
computation.

3) The DAEME system can incorporate noise-type and
speaker identity information to further improve the perfor-
mance: As presented in Section IV-D-1, we can build the com-
ponent models based on the clustering results of latent repre-
sentations of the training utterances. In this way, data clustering
is implemented in a data-driven manner without the need of
gender and SNR level information. Moreover, we have tried to
incorporate the speaker identity information into DAEME (cf.
Section IV-D-1)). The results also show that the SE capability
can be further improved by incorporating the speaker identity
information. As compared to a big and complex universal model,
DAEME has more flexibility to incorporate new data-driven or
acoustic information.

In the future, we will explore to apply the proposed DAEME to
other speech signal processing tasks, such as speech dereverber-
ation and audio separation. Meanwhile, in the present study, we
did not consider to automatically determine a suitable number
of models based on the testing scenarios. That is, the number
of component models must be specified in the training stage.
An algorithm that can online determine the optimal encoder
architecture based on the complexity and performance also
deserves further investigations. Finally, we will implement the
proposed DAEME system on practical devices for real-world
speech-related applications.

APPENDIX

We summarize the abbreviations used in this article:
� DAEME: denoising autoencoder with multi-branched

encoders.
� HDDAE: DDAE with a highway structure.
� UAT: utterance-level attribute.
� SAT: signal-level attribute.
� USAT: utterance- and signal-level attribute.
� DSDT: dynamically-sized decision tree.
� RT: random tree.
� SS: spectral segmentation.
� WD: wavelet decomposition.
� BF: the best first based decoder in DAEME.
� FC: the fully-connected network based decoder in

DAEME.
� LR: the linear regression based decoder in DAEME.
� CN: the CNN based decoder in DAEME.
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