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Abstract—In this article, we propose a new blind speech ex-
traction (BSE) method that robustly extracts a directional speech
from background diffuse noise by combining independent low-rank
matrix analysis (ILRMA) and efficient rank-constrained spatial co-
variance matrix (SCM) estimation. To achieve more accurate BSE
than ILRMA, which assumes each source to be a point source (rank-
1 spatial model), the proposed method restores the lost spatial basis
for the full-rank SCM of diffuse noise. We adopt the multivariate
complex generalized Gaussian distribution (GGD) as the statistical
generative model to express various types of observed signal. To
estimate the model parameters for an arbitrary shape parameter
of the multivariate GGD, we derive a new inequality for rank-
constrained SCMs. Also, we propose new acceleration methods to
accomplish much faster extraction than conventional blind source
separation methods. In BSE experiments using simulated and real
recorded data, we confirm that the proposed method achieves more
accurate and faster speech extraction than conventional methods.

Index Terms—Blind speech extraction, diffuse noise, spatial
covariance matrix, multivariate complex generalized Gaussian
distribution.

I. INTRODUCTION

B LIND source separation (BSS) [1] is a technique for sepa-
rating an observed multichannel signal, which is a mixture

of multiple sources, into each source without any prior infor-
mation about the sources or the mixing system. In a determined
or overdetermined situation (number of sensors ≥ number of
sources), frequency-domain independent component analysis
(FDICA) [2]–[4], independent vector analysis (IVA) [5]–[7], and
independent low-rank matrix analysis (ILRMA) [8]–[13] have
been proposed for audio BSS problems. In particular, ILRMA
assumes low-rankness for the power spectrogram of each source
using nonnegative matrix factorization (NMF) [14], [15] in
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addition to statistical independence between sources, and
achieves efficient and accurate separation [8]. These methods
assume a rank-1 spatial model; the frequency-wise acoustic path
of each source can be represented by a single time-invariant
spatial basis, which is often called a steering vector. Under
this assumption, the determined BSS problem reduces to the
estimation of a demixing matrix for each frequency. However,
the assumption in the rank-1 spatial model becomes invalid
in actual situations. For instance, when a target speech source
(directional source) and diffuse noise that arrives from all di-
rections are mixed, FDICA, IVA, and ILRMA cannot extract
only the target speech in principle [16], and the estimated
target speech includes residual diffuse noise. We often call
this problem blind speech extraction (BSE). To address this
problem, for example, blind spatial subtraction array (BSSA)
has been proposed [17], where FDICA-based dynamic noise
power estimation and spectral subtraction-based postfiltering
are combined. In this method, since processing after FDICA is
mainly performed in the single-channel domain, the extraction
ability is limited, causing considerable speech distortion.

As a method expected to address the above-mentioned prob-
lem, multichannel NMF (MNMF) [18]–[20] has been proposed.
MNMF is theoretically equivalent to ILRMA except for the
mixing model, namely, MNMF employs a full-rank spatial
covariance matrix (SCM) [21]. This model can represent not
only the acoustic path but also the spatial spread of each source
or diffuse noise, while its optimization has a huge computa-
tional cost and lacks robustness against the initialization [8].
To accelerate the parameter estimation, FastMNMF has been
proposed [22], [23], although its performance still depends on
the initial values of parameters. On the other hand, to increase
the stability of its performance, ILRMA-based initialization was
utilized for MNMF in [8], [24]. However, the improvement is
still limited because of the complexity of optimization with a
large number of parameters.

In this paper, we propose rank-constrained SCM estimation
to extract only the directional target speech efficiently and ro-
bustly. Although the directional target speech can be expressed
using a rank-1 (rank-constrained) SCM, diffuse noise requires a
full-rank SCM because of its spatial spread. To achieve robust
and computationally efficient extraction in this BSE situation,
we propose a new approach partially using the BSS methods
such as ILRMA. It utilizes the fact that the demixing filters for
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diffuse noise can cancel the directional target speech in the BSS
methods based on the rank-1 spatial model [17], resulting in
the accurate estimation of a rank-(M−1) diffuse noise SCM,
where M denotes the number of microphones. We restore one
lost spatial basis of diffuse noise by using maximum a posteriori
estimation. Furthermore, we model the observed signal using the
multivariate complex generalized Gaussian distribution (GGD).
In past studies, GGD-based IVA [25]–[27] and GGD-based IL-
RMA have been reported [10]–[12]. The advantage of the GGD
as a super-Gaussian distribution was discussed in [10], [11],
[25]–[27] and that of the sub-Gaussian GGD was investigated
in [12] in detail. Motivated by these works, we introduce the
multivariate GGD into the statistical model of the full-rank SCM,
which is the world’s first attempt to the best of our knowledge.
One of the notable points of the proposed method is the flex-
ibility of its model; by changing the shape parameter of the
multivariate GGD to an arbitrary positive value, we can model
various types of observed signal with a super- or sub-Gaussian
distribution.

Although the number of parameters to be estimated is smaller
than that of conventional methods, the naive iterative algorithm
of the rank-constrained SCM estimation requires inversions of
matrices of order M at each time-frequency slot. This time-
consuming operation becomes a bottleneck of the entire al-
gorithm. The heavy computational load induced by such an
operation restricts its implementation on low-resource hardware,
such as hearing-aid devices and smartphones. In this paper,
we also propose acceleration methods by making use of the
expansion of matrix inversion. Although FastMNMF realizes
acceleration by introducing an approximation on SCMs, the
proposed accelerated update rules are analytically identical to
the naive update rule. Thus, we can achieve much faster updates
than by other conventional methods including FastMNMF while
retaining its high-quality extraction.

The rest of this paper is organized as follows. Section II
shows the formulation of BSS and outlines ILRMA, MNMF,
and FastMNMF as conventional methods. In Section III, we
propose framework of the rank-constrained SCM estimation
and its parameter estimation method. In Section IV, accelerated
algorithms for rank-constrained SCM estimation are described
in detail. BSE experiments with simulated and real recorded
data show the efficacy of rank-constrained SCM estimation
in Sections V and VI. The conclusions of this paper are pre-
sented in Section VII. Note that this paper is partially based
on international conference papers [28], [29] written by the
authors. Additional contributions of this paper are that we gen-
eralize the statistical model using the multivariate GGD, employ
the majorization-minimization (MM) [30] and majorization-
equalization (ME) [31] algorithms for better parameter opti-
mization, and conduct BSE experiments under extended acoustic
conditions including real recorded data. It is worth mentioning
that we cannot directly apply the method proposed in [28] to
the multivariate GGD model because the method is based on
the simple expectation-maximization (EM) algorithm. In this
paper, we propose the MM and ME algorithms to address the
GGD-related optimization problem that cannot be solved by the
EM algorithm.

II. CONVENTIONAL METHODS

A. Definitions

Let us denote a multichannel observed signal that is ob-
tained via a short-time Fourier transform (STFT) as xij =
(xij,1, . . . , xij,m, . . . , xij,M )T ∈ CM , where i = 1, . . . , I , j =
1, . . . , J , and m = 1, . . . ,M are the indices of the frequency
bins, time frames, and microphones, respectively, and T de-
notes the transpose. Also, source signals (dry sources) are de-
noted as sij = (sij,1, . . . , sij,n, . . . , sij,N )T ∈ CN , where n =
1, . . . , N is the index of the sources and N is the number of
sources.

B. ILRMA

As a BSS method for determined or overdetermined (M ≥ N )
situations, ILRMA [8], [9] assumes that each source is a point
source and the reverberation time is sufficiently shorter than
the window length in an STFT. Under these assumptions, there
exists a mixing matrix Ai = (ai,1 · · ·ai,N ) ∈ CM×N for each
frequency bin and the observed signal is approximated as

xij = Aisij , (1)

where ai,n is the steering vector of source n at frequency i.
After dimensionality reduction is used so that M = N , if Ai is
invertible, the separated signal yij = (yij,1, . . . , yij,N )T ∈ CN

can be obtained by estimating the demixing matrix Wi =
(wi,1 . . .wi,N )H = A−1i as

yij = Wixij , (2)

where H denotes the Hermitian transpose.
In ILRMA, as the generative model of source signals, the

following complex Gaussian distribution is assumed:

sij,n ∼ Nc (0, rij,n) , (3)

where rij,n is the time-frequency-varying variance (power spec-
trogram model of sij,n). Also, rij,n is modeled by NMF [32]
as rij,n =

∑
k tik,nvkj,n, where tik,n ≥ 0 and vkj,n ≥ 0 are the

NMF variables,k = 1, . . . ,K is the index of the NMF bases, and
K is the number of bases. Combining (1) and (3), the generative
model of the observed signal becomes

xij ∼ Nc

(

0,
∑

n

rij,nai,na
H
i,n

)

. (4)

From the viewpoint of SCMs, each source has a rank-1 SCM
expressed as ai,na

H
i,n, whereby (1) is called a rank-1 spatial

model.
The cost function in ILRMA is defined as the negative log-

likelihood function of (4) as

L({Wi, tik,n, vkj,n})

=
∑

i,j,n

(
|yij,n|2∑
k tik,nvkj,n

+ log
∑

k

tik,nvkj,n

)

= −2J
∑

i

log | detWi|+ const., (5)
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where yij,n = wH
i,nxij , {Wi, tik,n, vkj,n} is the set of objective

variables, and const. includes constant terms that do not depend
on objective variables (we use this notation throughout the
paper). The separation filter wi,n and the NMF variables tik,n
and vkj,n can be estimated in the maximum likelihood sense
(minimization of (5)) by iterating the following update rules [8].
For the separation filter, the method called iterative projection [7]
is utilized, which has the update rule

Gi,n =
1

J

∑

j

1

rij,n
xijx

H
ij , (6)

wi,n ← (WiGi,n)
−1en, (7)

wi,n ← wi,n(w
H
i,nGi,nwi,n)

− 1
2 , (8)

where en denotes the nth column vector of the M ×M identity
matrix. For the NMF variables, we minimize the Itakura–Saito
divergence between |yij,n|2 and

∑
k tik,nvkj,n, which yields the

update rule

tik,n ← tik,n

√
√
√
√

∑
j

|yij,n|2
(
∑

k′ tik,′nvk′j,n)2
vkj,n

∑
j

1∑
k′ tik,′nvk′j,n

vkj,n
, (9)

vkj,n ← vkj,n

√
√
√
√

∑
i

|yij,n|2
(
∑

k′ tik,′nvk′j,n)2
tik,n

∑
i

1∑
k′ tik,′nvk′j,n

tik,n
. (10)

The update rules in (6)–(10) provide convergence-guaranteed
optimization, i.e., the value of the cost function does not increase
via the iterative parameter update.

Although ILRMA achieves efficient and initialization-robust
estimation, its performance is limited if some sources are not
point sources. In theory, an SCM of diffuse noise has a rank of
two or more and the rank-1 spatial model does not hold. This
leads to a discrepancy from the model of ILRMA.

C. MNMF and FastMNMF

Compared with ILRMA, the full-rank SCM can model diffuse
sources more appropriately [21]. MNMF [18], [19] unifies the
NMF source model and full-rank SCM and improves BSS per-
formance. However, it suffers from a heavy computational cost
and dependence on parameter initialization owing to its many
degrees of freedom. To accelerate its algorithm, FastMNMF
has been proposed [22], [23]. FastMNMF assumes that SCMs
are jointly diagonalizable to greatly reduce the computational
complexity, but nevertheless it highly depends on the initial
value. Unlike (2) in ILRMA, both MNMF and FastMNMF firstly
estimate the full-rank SCMs and secondly apply the multichan-
nel Wiener filter constructed with the SCM to the observed signal
to output the separated signals.

III. PROPOSED FRAMEWORK FOR BSE

A. Motivation and Strategy

In this paper, we deal with a BSE situation where one direc-
tional target speech and diffuse background noise are mixed. As
mentioned in Section II-B, ILRMA cannot accurately express

Fig. 1. SIR improvement obtained by ILRMA averaged over 10 parameter-
initialization random seeds, four target directions, and six speech sources, where
directional target speech and each diffuse noise were mixed and number of
microphones was four (remaining experimental conditions are described in
Section V-A and VI).

diffuse noise; instead, BSS based on a full-rank SCM, such
as MNMF or FastMNMF, should be applied in this situation.
However, the estimation of the full-rank SCM has a relatively
large computational cost, and its performance is always more
unstable than the performance of ILRMA [8] because of the large
number of spatial parameters, INM2, which can be reduced to
INM using the rank-1 spatial model (ILRMA).

For this reason, to achieve efficient and robust BSE, we
propose a new SCM estimation method, rank-constrained SCM
estimation, as a multichannel-information-preserving postpro-
cessing method of ILRMA. Although the sources are cate-
gorized into two groups (target and noise), we assume that
one directional target speech and M − 1 noise components are
mixed (N = M ) when ILRMA performs BSS. This assumption
allows us to model diffuse noise using M − 1 spatial bases
(rank-(M−1) SCM). The extraction of the directional target
speech by ILRMA is still difficult because components of diffuse
noise exist in the same direction as the target source. However,
it is expected that ILRMA can separate diffuse noise with high
accuracy even if one spatial basis for diffuse noise is lacking.
Fig. 1 shows the average separation performance (source-to-
interference ratio (SIR) [33]) obtained by ILRMA, where the
directional target speech and diffuse noise are mixed and the
experimental conditions are described in Section V-A and VI.
It can be seen that diffuse noise is accurately estimated (almost
perfectly with more than around 15 dB accuracy) rather than the
directional target speech, where diffuse noise is modeled using
the rank-(M−1) SCM. This is because the demixing filters for
diffuse noise can precisely cancel the directional target speech,
which is a point source [17], meaning that the steering vector
of the directional target speech can be estimated by ILRMA
with high accuracy. This implies that we can fix some spatial
parameters in the full-rank SCM for diffuse noise by utilizing
the estimates obtained by ILRMA in advance.

On the basis of the above motivation, we propose the fol-
lowing new estimation method for the full-rank SCM of diffuse
noise: (a) the rank-1 SCM for the directional target speech and
rank-(M−1) SCM for diffuse noise are estimated by ILRMA
and fixed, (b) the lost spatial basis for diffuse noise is restored to
estimate noise components in the direction of the target speech,
and (c) a multichannel Wiener filter is applied to suppress the
noise components remaining in the separated directional target
speech. Also, we re-estimate the variance of the directional



KUBO et al.: BLIND SPEECH EXTRACTION BASED ON RANK-CONSTRAINED SPATIAL COVARIANCE MATRIX ESTIMATION 1951

Fig. 2. Examples of univariate real-valued GGD with unit variance. By chang-
ing shape parameter of GGD to arbitrary positive value, we can represent various
types of distribution, e.g., super- or sub-Gaussian distribution.

target speech and diffuse noise simultaneously because ILRMA-
estimated directional target speech is contaminated with noise
components (e.g., in Fig. 1, the SIR of the directional target
speech is degraded to around 10 dB).

In addition, we introduce the multivariate GGD as the statisti-
cal generative model of the observed signal to represent various
types of observed signal by changing its shape parameter. We
propose MM-algorithm-based and ME-algorithm-based update
rules for an arbitrary shape parameter, making use of newly
introduced mathematical formulae.

B. Model and Speech Extraction

Here, we summarize the theoretical assumptions of the rank-
constrained SCM estimation as follows:
� Target speech source

– spatial assumption: a point source
– statistical assumption: the power spectrogram is sparse

� Noise
– spatial assumption: diffuse and not a point source
– statistical assumption: no assumption

These assumptions are valid in many practical acoustic appli-
cations, e.g., general multichannel speech enhancement [34],
hands-free speech recognition [17], and hearing-aid system [35].

We assume that the observed signal xij follows the multivari-
ate GGD as

p(xij ;0,R
(x)
ij , ρ) =

C(ρ)

detR
(x)
ij

exp(−(xH
ij(R

(x)
ij )−1xij)

ρ
2 ),

(11)

where ρ > 0 is the shape parameter of the multivariate GGD,
C(ρ) is the normalizing constant of the multivariate GGD, which
only depends on ρ, and R

(x)
ij ∈ CM×M is the SCM of the

observed signal. Fig. 2 shows examples of GGD; we only show
a univariate real-valued case for readers’ easy understanding.
For ρ = 2, the multivariate GGD corresponds to the complex
Gaussian distribution. R(x)

ij is modeled as the sum of the SCMs
of the directional target speech and diffuse noise as

R
(x)
ij = r

(t)
ij a

(t)
i (a

(t)
i )H + r

(n)
ij R

(n)
i , (12)

where r(t)ij > 0 and r
(n)
ij > 0 are the variances of the directional

target speech and diffuse noise, respectively, a(t)
i ∈ CM is the

ntth steering vector, i.e., a(t)
i := ai,nt

, where nt denotes the
index of the directional target speech, ai,1, . . . ,ai,M are the

steering vectors estimated by ILRMA, and a
(t)
i (a

(t)
i )H repre-

sents the rank-1 SCM of the directional target speech. R(n)
i ∈

CM×M denotes the full-rank SCM of diffuse noise. To impose
sparsity and improve the estimation performance for speech,
we introduce an a priori distribution for r(t)ij using the inverse
gamma distribution [36]

p(r
(t)
ij ;α, β) =

βα

Γ(α)

(
r
(t)
ij

)−α−1
exp

(

− β

r
(t)
ij

)

, (13)

where α > 0, β > 0, and Γ(·) are the shape parameter, scale
parameter, and gamma function, respectively. In contrast, we
do not assume any a priori distribution on the variance r

(n)
ij to

represent many kinds of noises. R(n)
i is expressed by the sum of

two components as

R
(n)
i = R

′(n)
i + λibib

H
i , (14)

R
′(n)
i =

1

J

∑

j

ŷ
(n)
ij (ŷ

(n)
ij )H, (15)

ŷ
(n)
ij = W−1

i (wH
i,1xij , . . . ,w

H
i,nt−1xij , 0,

wH
i,nt+1xij , . . . ,w

H
i,Nxij)

T, (16)

where R
′(n)
i ∈ CM×M is the specific SCM of diffuse noise

estimated by ILRMA; since R
′(n)
i consists of M − 1 noise

estimates, its rank is M − 1. bi ∈ CM is a vector satisfying the
condition that the column vectors of R′(n)i and bi are linearly
independent, and λi is a scalar variable. For example, bi can be
set toa(t)

i or the unit eigenvector ofR′(n)i that corresponds to the

zero eigenvalue. ŷ(n)
ij is the source image of diffuse noise, whose

scale is fixed using a back-projection operation [37]. To restore
the lost spatial basis in R

′(n)
i , we simultaneously estimate the

scalar weightλi, the variance of the directional target speech r(t)ij ,

and the variance of diffuse noise r(n)ij witha(t)
i , the rank-(M−1)

SCM R
′(n)
i , and bi fixed. In summary, the number of spatial

parameters to be estimated in the proposed method is INM (for
ILRMA) + I (for λi), i.e., I(NM + 1), which is much less than
those of MNMF (INM2) and FastMNMF (IM2 + INM ).

For the estimation of the parameters r(t)ij , r(n)ij , and λi, the cost
function to be minimized is defined as the following negative log
posterior of (11) with the prior distribution (13):

L(Θ) = −
∑

i,j

log
(
p(xij |Θ; ρ)p(r

(t)
ij ;α, β)

)

=
∑

i,j

[

(xH
ij(R

(x)
ij )−1xij)

ρ
2 + log detR

(x)
ij

+ (α+ 1) log r
(t)
ij +

β

r
(t)
ij

]

+ const., (17)
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where Θ = {r(t)ij , r
(n)
ij , λi} is the set of objective variables. The

variables are estimated so that they minimize L(Θ) in an itera-
tive manner after the initialization using the ILRMA estimates,
whose detail is given in Sections III-C, III-D, III-E, III-F, and III-
G. We initialize r

(t)
ij and r

(n)
ij as follows:

r
(t)
ij =

∑

k

tik,nt
vkj,nt

, (18)

r
(n)
ij =

1

M
(ŷ

(n)
ij )H(R

′(n)
i )+ŷ

(n)
ij , (19)

where tik,nt
and vkj,nt

are the components of the NMF source
model of the directional target speech estimated by ILRMA
and + denotes the pseudoinverse. Also, we initialize λi as the
minimum nonzero eigenvalue of R′(n)i . After the initialization
and estimation of the parameters, we extract the source image
of the directional target speech using the multichannel Wiener
filter as

ŝ
(t)
ij = r

(t)
ij a

(t)
i (a

(t)
i )H(R

(x)
ij )−1xij . (20)

The definition of the multichannel Wiener filter is the same as
that in [21].

C. Optimization Framework

Since it is difficult to minimize (17) directly, we employ the
MM and ME algorithms [30], [38], [31]. We prepare an auxiliary
function Q(Θ,Ω) that satisfies

L(Θ) ≤ Q(Θ,Ω) (∀Θ, ∀Ω), (21)

L(Θ) = min
Ω

Q(Θ,Ω) (∀Θ), (22)

where Ω is a set of auxiliary variables. Note that the definition
of the auxiliary function here is identical to the one used in [38],
which is a general definition and introduces auxiliary variables
explicitly. In the MM and ME algorithms, we iterate the follow-
ing two updates: First, we update the auxiliary variable using
up-to-date objective variables Θ̃ as

Ω̃← argmin
Ω

Q(Θ̃,Ω). (23)

Next, we update the objective variables using up-to-date auxil-
iary variables in the MM algorithm as

Θ← argmin
Θ̂

Q(Θ̂, Ω̃) (24)

and in the ME algorithm as

Θ← Θ̂ s.t. Q(Θ̂, Ω̃) = Q(Θ̃, Ω̃), Θ̂ 	= Θ̃. (25)

These algorithms guarantee the monotonic non-increase of the
cost function L(Θ). In particular, it has been experimentally
found that the ME algorithm achieves faster convergence than
the MM algorithm in a univariate model because the changes in
parameters are larger [31]. However, it is difficult to determine
or even to find Θ̂ that does not change the value of the auxiliary
function in a multivariate case, and an ME-based update rule for
MNMF or FastMNMF has not yet been proposed.

D. Generic Inequality and Identity for
Rank-Constrained SCM Estimation

We first design auxiliary functions depending on ρ for use
in the MM and ME algorithms. For each of the terms in (17)
except the power of the quadratic term (xH

ij(R
(x)
ij )−1xij)

ρ
2 , we

can utilize inequalities proposed in [19], [39]. Regarding the
power of the quadratic term, if we have an auxiliary function
Q(Θ,Ω) for the quadratic term satisfying

xH
ij(R

(x)
ij )−1xij ≤ Q(Θ,Ω), (26)

then we can construct a new auxiliary function Q̃(Θ,Ω) as

(xH
ij(R

(x)
ij )−1xij)

ρ
2 ≤ (Q(Θ,Ω))

ρ
2 =: Q̃(Θ,Ω). (27)

However, for the quadratic term xH
ij(R

(x)
ij )−1xij , the inequality

used in [19] assumes the SCM of each source to be full-rank
(positive definite), which does not hold for the rank-constrained
SCM estimation. Therefore, we derive the following new generic
inequality so as to design the auxiliary function for the quadratic
term with positive semi-definite SCMs.

Theorem 1: Suppose that positive semi-definite Her-
mitian matrices Rn ∈ CM×M (n = 1, . . . , N ′) satisfy
rank(

∑
n Rn) = M . Then, it holds that

tr((
∑

n Rn)
−1X) ≤∑n tr

(
ΦH

nR
+
nΦnX

)
(28)

for any positive semi-definite Hermitian matrix X ∈ CM×M

and matrices Φn ∈ CM×M that satisfy the following equations:

KerΦn = KerX (∀n), (29)

ImΦn = ImRn (∀n), (30)
∑

n

Φn = P, (31)

where Ker and Im denote the kernel and column spaces, respec-
tively. Here, P ∈ CM×M is the projection matrix to the column
space of X.

Equality holds if and only if the following holds:

Φn = Rn

(
∑

n′
Rn′

)−1
P (∀n). (32)

Proof: To prove the inequality (28) and the equality condition
(32), we formulate the optimization problem as

(P)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

minimize
{Φn}N ′n=1

∑
n tr

(
ΦH

nR
+
nΦnX

)

subject to
∑

n Φn = P,

KerΦn = KerX (∀n),
ImΦn = ImRn (∀n).

The objective function is strictly convex as long as the kernel
space of Φn is equivalent to that of X. Therefore, an optimal
solution of (P) exists and is unique. In the following, we prove
that the unique optimal solution is (32) and the optimal value
is identical to the left-hand side of (28) using the method of
Lagrange multipliers.

Let ln := rankRn. Since Rn is a positive semi-definite Her-
mitian matrix, there exists Sn ∈ CM×ln that satisfies Rn =
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SnS
H
n. There also exists Ξn ∈ Cln×M that satisfies Φn =

SnΞnP because ImΦn = ImRn. Using the pseudoinverse,
we have ΦH

nR
+
nΦn = PΞH

nΞnP, and the objective function
is deformed as

∑
n tr(PΞH

nΞnPX) =
∑

n tr(Ξ
H
nΞnX). Thus,

the optimization problem (P) is equivalent to the following
problem:

(P’)

∣
∣
∣
∣
∣

minimize
{Ξn}N ′n=1

∑
n tr

(
ΞH

nΞnX
)

subject to
∑

n SnΞnP = P.

Since the kernel and column spaces of Ξn are unconstrained,
we can solve (P’) by the method of Lagrange multipliers. We
introduce a Lagrange multiplier L ∈ CM×M and thus reduce
the problem to the minimization of the function

g({Ξn}N
′

n=1 ,L) =
∑

n

tr(ΞH
nΞnX)

− Re

⎡

⎣tr

⎛

⎝

(
∑

n

SnΞnP−P

)H

L

⎞

⎠

⎤

⎦ (33)

with respect to {Ξn}N ′n=1 and L, where Re[·] denotes the real
part of the argument. Since the objective function of (P’) is a
convex function of {Ξn}N ′n=1, the optimal points of (P’) can be
acquired by setting the derivative of g with respect to Ξn to O,
where · denotes the conjugate matrix. Therefore, we have the
following equation that gives the optimal points of (P’):

∂g

∂Ξn

= ΞnX− SH
nLP = O. (34)

Left-multiplying Sn to both sides of the equation, we have

ΦnX = RnLP (35)

usingPX = X and the definitions ofSn andΞn. Summing both
sides of (35) with respect to n leads to the following equations:

X =

(
∑

n

Rn

)

LP (36)

⇔
(
∑

n

Rn

)−1
X = LP. (37)

Substituting (37) into (35), we have the unique optimal solution
Φn = Rn(

∑
n′ Rn′)

−1XX+ = Rn(
∑

n′ Rn′)
−1P. The opti-

mal value of (P) coincides with tr((
∑

n Rn)
−1X), which can

be checked by substitution. �
Here, we put N ′ = 2, X = xijx

H
ij , R1 = r

(t)
ij a

(t)
i (a

(t)
i )H,

and R2 = r
(n)
ij R

(n)
i . By introducing the auxiliary variables

Φ
(t)
ij ∈ CM×M and Φ

(n)
ij ∈ CM×M that satisfy Φ

(t)
ij +Φ

(n)
ij =

Pij , we have the following inequality:

xH
ij

(
R

(x)
ij

)−1
xij

= xH
ij

(
r
(t)
ij a

(t)
i

(
a
(t)
i

)H
+ r

(n)
ij R

(n)
i

)−1
xij

≤ |
(
a
(t)
i

)H
Φ

(t)
ij xij |2

r
(t)
ij

+
xH
ij

(
Φ

(n)
ij

)H(
R

(n)
i

)−1
Φ

(n)
ij xij

r
(n)
ij

,

(38)

where Pij = xijx
H
ij/‖xij‖22 is the projection matrix to the col-

umn space of xijx
H
ij . Equality holds if and only if the following

equations hold:

Φ
(t)
ij = r

(t)
ij a

(t)
i (a

(t)
i )H(R

(x)
ij )−1Pij , (39)

Φ
(n)
ij = r

(n)
ij R

(n)
i (R

(x)
ij )−1Pij . (40)

To construct auxiliary functions for any ρ, we expand
(R

(n)
i )−1 using the following claim.

Claim 1: Letui ∈ CM be a vector that satisfiesR′(n)i ui = 0
and bH

i ui = 1. Then, the following holds:

(R
(n)
i )−1 = R̆

(n)

i +
1

λi
uiu

H
i . (41)

Here, R̆
(n)

i = (EM − uib
H
i )(R

′(n)
i )+(EM − biu

H
i ) and EM is

the identity matrix of order M .
Proof: We denote the eigenvalue decomposition of R′(n)i as

R
′(n)
i =

(
Ui

ui

‖ui‖2
)(Di 0

0T 0

)(
UH

i
uH

i

‖ui‖2

)

. (42)

Here, Di ∈ R(M−1)×(M−1) is a diagonal matrix whose entries
are nonzero and Ui ∈ CM×(M−1) is a matrix satisfying the
condition that (Ui ui/‖ui‖2 ) ∈ CM×M is unitary. Note that

from the orthogonality R
′(n)
i ui = 0, we have UH

i ui = 0 and

ui is the eigenvector of R
′(n)
i that corresponds to the zero

eigenvalue. Using this, we have the following equation:

R
(n)
i =

(
Ui bi

)
(
Di 0
0T λi

)(
UH

i

bH
i

)

. (43)

To calculate (R
(n)
i )−1, we use the following equation:

(
UH

i

bH
i

)−1
=
(
(EM − uib

H
i )Ui ui

)
. (44)

This is confirmed by the following calculation using UH
i ui = 0

and bH
i ui = 1:

(
UH

i

bH
i

)
(
(EM − uib

H
i )Ui ui

)

=

(
UH

i Ui −UH
i uib

H
i Ui UH

i ui

bH
i Ui − bH

i uib
H
i Ui bH

i ui

)

=

(
EM−1 0

0T 1

)

= EM . (45)

Using (44), we can calculate (R
(n)
i )−1 as follows:

(R
(n)
i )−1

=

(
UH

i

bH
i

)−1(D−1i 0

0T 1
λi

)
(
Ui bi

)−1

=
(
(EM − uib

H
i )Ui ui

)
(
D−1i 0

0T 1
λi

)
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·
(
UH

i (EM − biu
H
i )

uH
i

)

= (EM − uib
H
i )UiD

−1
i UH

i (EM − biu
H
i ) +

1

λi
uiu

H
i .

(46)

From the positive semi-definiteness and Hermitian property of
R
′(n)
i , the pseudoinverse (R

′(n)
i )+ equals UiD

−1
i UH

i because
its eigenvalue decomposition and singular value decomposition
coincide. �

Finally, we can combine the identity (41) and inequalities (27)
and (38) to obtain the auxiliary function Q̃(Θ,Ω) as

Q̃(Θ,Ω) =

[
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

+
1

r
(n)
ij

(
|uH

i Φ
(n)
ij xij |2
λi

+ xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

)] ρ
2

, (47)

where Ω = {Φ(t)
ij ,Φ

(n)
ij } is the set of auxiliary variables. To

construct the auxiliary function of the cost function (17), we
further bound the right-hand side of (47) for the casesρ > 2 (sub-
Gaussian case) and ρ ≤ 2 (Gaussian or super-Gaussian case)
separately and construct auxiliary functions in Sections III-E
and III-F.

E. Auxiliary Functions for Sub-Gaussian Case (ρ > 2)

For ρ > 2, to bound Q̃(Θ,Ω), we introduce the auxiliary
variables ηij > 0 and ϕij > 0 that satisfy ηij + ϕij < 1 and
use Jensen’s inequality as follows:

Q̃(Θ,Ω)

≤ ηij

(
|(a(t)

i )HΦ
(t)
ij xij |2

ηijr
(t)
ij

) ρ
2

+ ϕij

(
|uH

i Φ
(n)
ij xij |2

r
(n)
ij λiϕij

) ρ
2

+ (1− ηij − ϕij)

⎛

⎝
xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

r
(n)
ij (1− ηij − ϕij)

⎞

⎠

ρ
2

= η
1− ρ

2
ij

(
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

) ρ
2

+
1

(r
(n)
ij )

ρ
2

{

ϕ
1− ρ

2
ij

(
|uH

i Φ
(n)
ij xij |2
λi

) ρ
2

+ (1− ηij − ϕij)
1− ρ

2

(
xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

) ρ
2

}

,

(48)

where equality holds if and only if the following equations hold:

ηij =

|(a(t)
i )HΦ

(t)
ij xij |2

r
(t)
ij

|(a(t)
i )HΦ

(t)
ij xij |2

r
(t)
ij

+
xH

ij(Φ
(n)
ij )H(R

(n)
i )−1Φ(n)

ij xij

r
(n)
ij

, (49)

ϕij =

|uH
iΦ

(n)
ij xij |2

r
(n)
ij λi

|(a(t)
i )HΦ

(t)
ij xij |2

r
(t)
ij

+
xH

ij(Φ
(n)
ij )H(R

(n)
i )−1Φ(n)

ij xij

r
(n)
ij

. (50)

Next, by introducing an auxiliary variable Ψij ∈ CM×M , we
have

log detR
(x)
ij ≤ tr(Ψ−1ij (R

(x)
ij −Ψij)) + log detΨij , (51)

where equality holds if and only ifΨij = R
(x)
ij , which evaluates

the second term of (17). Moreover, to derive the update rule
of the objective variables, we introduce the auxiliary variables
χ
(t)
ij > 0, χ(n)

ij > 0, and δi > 0, and bound the first term of the
right-hand side of (51) in the same manner as in [39] as

tr(Ψ−1ij R
(x)
ij )

= r
(t)
ij (a

(t)
i )HΨ−1ij a

(t)
i + r

(n)
ij (λib

H
i Ψ

−1
ij bi + tr(Ψ−1ij R

′(n)
i ))

≤
(
(χ

(t)
ij )

1−ν1(r
(t)
ij )ν1

ν1
+

(

1− 1

ν1

)

χ
(t)
ij

)

(a
(t)
i )HΨ−1ij a

(t)
i

+

(
(χ

(n)
ij )1−ν1(r

(n)
ij )ν1

ν1
+

(

1− 1

ν1

)

χ
(n)
ij

)

·
(
λib

H
i Ψ

−1
ij bi + tr(Ψ−1ij R

′(n)
i )

)

≤
(
(χ

(t)
ij )

1−ν1(r
(t)
ij )ν1

ν1
+

(

1− 1

ν1

)

χ
(t)
ij

)

(a
(t)
i )HΨ−1ij a

(t)
i

+

(
(χ

(n)
ij )1−ν1(r

(n)
ij )ν1

ν1
+

(

1− 1

ν1

)

χ
(n)
ij

)

·
((

δ1−ν1
i λ

ν1
i

ν1
+

(

1− 1

ν1

)

δi

)

bH
i Ψ

−1
ij bi

+ tr
(
Ψ−1ij R

′(n)
i

)
)

, (52)

where ν1 ≥ 1 is set to 1 for the MM algorithm and ρ
2 for the ME

algorithm. For ν1 > 1, equality holds if and only if χ(t)
ij = r

(t)
ij ,

χ
(n)
ij = r

(n)
ij , and δi = λi.

To bound the third and fourth terms of the right-hand side
of (17), we introduce the auxiliary variables ζij > 0 and κij >
0, and obtain the following inequality using the tangent-line
inequality and the inequality in [39]:

(α+ 1) log r
(t)
ij +

β

r
(t)
ij

≤ α+ 1

ν1

(r
(t)
ij )ν1 − (ζij)

ν1

(ζij)ν1
+

α+ 1

ν1
log(ζij)

ν1

+
β

κij

(
1

ν2

κν2
ij

(r
(t)
ij )ν2

+ 1− 1

ν2

)

, (53)
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where ν2 ≥ 1 is set to ρ
2 . Equality holds if and only if ζij = r

(t)
ij

and κij = r
(t)
ij for ν2 > 1.

We can bring together the above-mentioned inequalities to
obtain the auxiliary functions Qρ>2,MM and Qρ>2,ME. For the
MM algorithm, we have the auxiliary function

Qρ>2,MM(Θ,Ωρ>2,MM)

=

[

η
1− ρ

2
ij

(
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

) ρ
2

+
1

(r
(n)
ij )

ρ
2

{

ϕ
1− ρ

2
ij

(
|uH

i Φ
(n)
ij xij |2
λi

) ρ
2

+ (1− ηij − ϕij)
1− ρ

2

(

xH
ij

(
Φ

(n)
ij

)H
R̆

(n)

i Φ
(n)
ij xij

) ρ
2

}

+ tr
(
Ψ−1ij R

(x)
ij

)
+ log detΨij −M + (α+ 1)

r
(t)
ij

ζij

+ (α+ 1)(log ζij − 1) +
β

κij

(
2κ

ρ
2
ij

ρ(r
(t)
ij )

ρ
2

+ 1− 2

ρ

)]

,

(54)

where Ωρ>2,MM = {Φ(t)
ij ,Φ

(n)
ij , ηij , ϕij ,Ψij , ζij , κij} is the

set of auxiliary variables. Also, we have the auxiliary function
for the ME algorithm

Qρ>2,ME(Θ,Ωρ>2,ME)

=

[

η
1− ρ

2
ij

⎛

⎜
⎝
|
(
a
(t)
i

)H
Φ

(t)
ij xij |2

r
(t)
ij

⎞

⎟
⎠

ρ
2

+
1

(r
(n)
ij )

ρ
2

{

ϕ
1− ρ

2
ij

(
|uH

i Φ
(n)
ij xij |2
λi

) ρ
2

+ (1− ηij − ϕij)
1− ρ

2

(

xH
ij

(
Φ

(n)
ij

)H
R̆

(n)

i Φ
(n)
ij xij

) ρ
2

}

+

(
2

ρ

(
χ
(n)
ij

)1− ρ
2

(r
(n)
ij )

ρ
2 +

(

1− 2

ρ

)

χ
(n)
ij

)

·
((

2

ρ
δ
1− ρ

2
i λ

ρ
2
i +

(

1− 2

ρ

)

δi

)

bH
i Ψ

−1
ij bi

+ tr(Ψ−1ij R
′(n)
i )

)

+

(
2

ρ

(
χ
(t)
ij

)1− ρ
2
(
r
(t)
ij

) ρ
2

+

(

1− 2

ρ

)

χ
(t)
ij

)

(a
(t)
i )HΨ−1ij a

(t)
i + log detΨij

−M +
2(α+ 1)

ρ

(r
(t)
ij )

ρ
2

ζ
ρ
2
ij

+
2(α+ 1)

ρ
(log(ζij)

ρ
2 − 1)

+
β

κij

⎛

⎝
2κ

ρ
2
ij

ρ(r
(t)
ij )

ρ
2

+ 1− 2

ρ

⎞

⎠

]

, (55)

where Ωρ>2,ME = {Φ(t)
ij .Φ

(n)
ij , ηij , ϕij ,Ψij , χ

(t)
ij , χ

(n)
ij , δi, ζij ,

κij} is the set of auxiliary variables.

F. Auxiliary Function for Gaussian or
Super-Gaussian Case (ρ ≤ 2)

For ρ ≤ 2, we use the following inequality by introducing an
auxiliary variable γij > 0:

Q̃(Θ,Ω) ≤ ρ

2γ
1− ρ

2
ij

×
[
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

+
1

r
(n)
ij

(
|uH

i Φ
(n)
ij xij |2
λi

+ xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

)

− γij

]

+ γ
ρ
2
ij . (56)

Equality holds if and only if the following equation holds:

γij =
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

+
1

r
(n)
ij

(
|uH

i Φ
(n)
ij xij |2
λi

+ xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

)

. (57)

Combining this inequality with inequalities (51) and (53) with
ν1 = 1 and ν2 = 1, we have the auxiliary function for both of
the MM and ME algorithms as

Qρ≤2,MM/ME(Θ,Ωρ≤2,MM/ME)

=
∑

i,j

[
ρ

2γ
1− ρ

2
ij

(
|(a(t)

i )HΦ
(t)
ij xij |2

r
(t)
ij

+
|uH

i Φ
(n)
ij xij |2

r
(n)
ij λi

+
xH
ij(Φ

(n)
ij )HR̆

(n)

i Φ
(n)
ij xij

r
(n)
ij

)

+
(
1− ρ

2

)
γ

ρ
2
ij

+ tr(Ψ−1ij R
(x)
ij ) + log detΨij −M

+ (α+ 1)
r
(t)
ij

ζij
+ (α+ 1)(log ζij − 1) +

β

r
(t)
ij

]

, (58)

where Ωρ≤2,MM/ME = {Φ(t)
ij ,Φ

(n)
ij , γij ,Ψij , ζij} is the set of

auxiliary variables.

G. MM-Algorithm-Based and ME-Algorithm-Based
Update Rules

To derive the update rules, we minimize Qρ>2,MM

and Qρ≤2,MM/ME, or equalize Qρ>2,ME and Qρ≤2,MM/ME.
Qρ>2,MM has the form

Qρ>2,MM(x,Ωρ>2,MM) =
A

x
ρ
2

+Bx+ C (59)

with respect to each objective variable x (such as r(t)ij in (54)),
where A > 0, B > 0, and C are numbers independent of x but
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dependent on Ωρ>2,MM and the other objective variables. By
setting the derivative of Qρ>2,MM to zero, we have the update
rule

x← argmin
x

Qρ>2,MM(x) =

(
ρA

2B

) 2
ρ+2

. (60)

Next, we consider the ME-algorithm-based update rule for ρ >
2. The auxiliary function Qρ>2,ME has the form

Qρ>2,ME(x) =
A

x
ρ
2

+Bx
ρ
2 + C. (61)

Therefore, we have the following update rule derivation in the
same manner as in [39]:

Qρ>2,ME(x) = Qρ>2,ME(x̃)

⇔ (x
ρ
2 − x̃

ρ
2 )

(

x
ρ
2 − A

Bx̃
ρ
2

)

= 0 (62)

⇔ x = x̃,
1

x̃

(
A

B

) 2
ρ

, (63)

for arbitrary x > 0 and x̃ > 0, which leads to the update rule

x← 1

x

(
A

B

) 2
ρ

. (64)

For the MM-algorithm-based and ME-algorithm-based update
rules forρ ≤ 2, the auxiliary functionQρ≤2,MM/ME has the form

Qρ≤2,MM/ME(x) =
A

x
+Bx+ C, (65)

and therefore, we can acquire the update rules in the same
manner as (60) and (64).

Consequently, the update rule is given by

r
(t)
ij ← r

(t)
ij

⎛

⎜
⎝

cij |xH
ij(R

(x)
ij )−1a(t)

i |2 + β

(r
(t)
ij )2

(a
(t)
i )H(R

(x)
ij )−1a(t)

i + α+1

r
(t)
ij

⎞

⎟
⎠

q

, (66)

r
(n)
ij ← r

(n)
ij

(
cijx

H
ij(R

(x)
ij )−1R(n)

i (R
(x)
ij )−1xij

tr((R
(x)
ij )−1R(n)

i )

)q

, (67)

λi ← λi

(∑
j cijr

(n)
ij |bH

i (R
(x)
ij )−1xij |2

∑
j r

(n)
ij bH

i (R
(x)
ij )−1bi

)q

, (68)

where q equals min(1/2, 2/(ρ+ 2)) for the MM-algorithm-
based update rule and min(1, 2/ρ) for the ME-algorithm-based
update rule, and cij = ρ/(2(xH

ij(R
(x)
ij )−1xij)

1− ρ
2 ). Note that

R
(x)
ij and cij are updated only after the update of r

(n)
ij and

λi. It is expected that the ME-algorithm-based update will
be faster than the MM-algorithm-based one because q for the
ME-algorithm-based update rule is always larger than that for
the MM-algorithm-based one, i.e.,

min

(
1

2
,

2

ρ+ 2

)

< min

(

1,
2

ρ

)

(∀ρ > 0), (69)

which makes the multiplication coefficients more distant from
unity in the multiplicative update. Also, for any shape param-
eter ρ, we can always apply the ME algorithm to minimiza-
tion of L(Θ) because the solution that satisfies Qρ>2,ME(x) =

Qρ>2,ME(x̃) or Qρ≤2,MM/ME(x) = Qρ≤2,MM/ME(x̃) is found in a
closed form.

IV. ACCELERATION OF PARAMETER UPDATE

A. Motivation

The update rule (66)–(68) involves an inverse matrix oper-
ation of M ×M matrices at each time-frequency slot. Thus,
its computational complexity is O(IJM3). Such a heavy com-
putational load restricts its implementation on low-resource
hardware. To avoid this problem, we propose an efficient update
algorithm that greatly accelerates the estimation of parameters
by expanding matrix inversion. The acceleration consists of
two steps: (i) expanding matrix inversion using the Sherman–
Morrison formula (first-stage acceleration) and (ii) expanding
matrix inversion using the pseudoinverse of matrices (second-
stage acceleration). After these expansions, we propose a new
update rule that involves only scalar operations; thus, we can
update parameters with neither matrix inversions nor matrix
multiplications. The proposed update rules described in this
chapter are analytically identical to the naive update rule because
they are based on equivalent expansions of matrix inversions. We
can reduce the computational complexity in each iteration of the
MM and ME algorithms described in Section III.

B. Key Concept

For the first-stage acceleration, we use the Sherman–
Morrison formula to expand the inverse of matrix R

(x)
ij =

r
(t)
ij a
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i (a
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i )H + r
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ij R
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. (70)

Note that R(n)
i = R

′(n)
i + λibib

H
i is invertible. We only need to

calculate (R
(n)
i )−1 at each frequency bin instead of calculating

(R
(x)
ij )−1 at each time-frequency slot. This makes it possible to

reduce the computational complexity of the update rule from
O(IJM3) to O(IM3 + IJM2). The first term O(IM3) corre-
sponds to matrix inversion at each frequency bin and the second
term O(IJM2) corresponds to the multiplication of a matrix
and a vector at each time-frequency slot.

For the second-stage acceleration, we can expand the inver-
sion (R

(n)
i )−1 = (R

′(n)
i + λibib

H
i )
−1 as described by Claim 1

in Section III-D. Since R
′(n)
i is fixed in the rank-constrained

SCM estimation, neither matrix inversion nor pseudoinversion
is necessary in the parameter update step. Hence, it follows that
the number of matrix inversions is reduced from O(I) to zero.
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C. First-Stage Acceleration

Let us define scalar terms as

σ
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Using (70), we can calculate the following:
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where · denotes the complex conjugate. Applying these equa-
tions to (66)–(68), we obtain the first-stage accelerated update

rule as follows:
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Note that μij and cij are updated only after the update of r(n)ij

and λi.

D. Second-Stage Acceleration

Calculating the quadratic terms without matrix inversion en-
ables further acceleration. We define some other quadratic terms
as follows:
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These terms and σ
(au)
i , σ(ux)

ij , and σ
(uu)
i do not depend on the

variables r
(t)
ij , r(n)ij , and λi and can be calculated before the

update iteration. The quadratic terms σ
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ij , σ(xRx)
ij ,

σ
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i , which involve matrix inver-

sion, can be transformed using (41) as follows:
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TABLE I
COMPUTATIONAL COMPLEXITY OF INITIALIZATION AND

ITERATIVE UPDATE FOR EACH METHOD

σ
(bRb)
i =

1

λi
. (103)

We can calculate these terms only by scalar operations and
update parameters by substituting them into the update rule
consisting of (89)–(91).

E. Advantage of Proposed Accelerated Update Rules

In general, the complexity of order-M matrix inversions is
O(M3) and that of multiplications of a matrix and a vector
is O(M2). The iteration-wise computational complexities of
the naive update rule and the proposed update rules with the
first-stage and second-stage accelerations are summarized in
Table I. Note that initialization with (18) and (19) is required for
all methods. The proposed algorithms can reduce the complexity
via the use of (70) and (41). In particular, the second-stage
acceleration has greatly improved efficiency because its compu-
tational cost does not depend on the number of microphones,M .

For example, I = 513 and J = 275 for the conditions de-
scribed in Section V-A. In such a case, the naive update rule
requires IJ = 141075 inverse matrix operations per iteration,
which is no longer necessary for the second-stage acceleration.

V. BSE EXPERIMENT ON SIMULATED DATA

A. Experimental Condition

To confirm the efficacy of the proposed method, we con-
ducted BSE experiments using simulated mixtures of direc-
tional target speech and diffuse noise. We compared eleven
methods, namely, ILRMA [8], independent vector extrac-
tion (IVE) [34], BSSA [17], the multichannel Wiener fil-
ter with single-channel noise estimation (MWF1) [40], the
multichannel Wiener filter with multichannel noise estima-
tion (MWF2) [41], MNMF [19], MNMF initialized by IL-
RMA (ILRMA+MNMF) [8], [24], FastMNMF [23], FastM-
NMF initialized by ILRMA (ILRMA+FastMNMF), and the
rank-constrained SCM estimation initialized by ILRMA with
the proposed MM-algorithm-based and ME-algorithm-based
updates. MWF1 and MWF2 consist of a minimum variance dis-
tortionless response (MVDR) beamformer, which is constructed
using ILRMA estimates (the noise SCM and the steering vector
of the directional target speech), and single-channel Wiener
filtering. In MWF1, the noise power spectrum is estimated
using a minima controlled recursive averaging noise estimation
approach [40]. In MWF2, the noise power spectrum is estimated
using M − 1 outputs of ILRMA that correspond to noise com-
ponents. In both MWF1 and MWF2, the a priori speech-to-noise
ratio is estimated by a decision-directed (DD) approach [42].

In ILRMA, the observed signal xij is preprocessed via a
sphering transformation using principal component analysis.

Fig. 3. Recording conditions of impulse responses (when directional target
speech is located at 30◦).

For IVE, the separation filter for the directional target speech
was initialized by ILRMA. For BSSA, we used ILRMA instead
of FDICA in [17] and set the oversubtraction and flooring
parameters to 1.4 and 0, respectively. For MWF1, we used the
same parameter settings as in [40] except for the weighting
factor of the DD approach. For both MWF1 and MWF2, the
weighting factor was set to 0.9. For ILRMA, MNMF, and
FastMNMF, all the NMF variables were initialized by nonneg-
ative random values. The demixing matrix Wi in ILRMA and
the SCMs in MNMF and FastMNMF were initialized by the
identity matrix. For ILRMA+MNMF and ILRMA+FastMNMF,
the NMF variables were taken from ILRMA. Also, SCM
was initialized using ai,na

H
i,n + εEM for ILRMA+MNMF and

ai,na
H
i,n + ε

∑
n′ 	=n ai,n′a

H
i,n′ for ILRMA+FastMNMF, where

ai,n was estimated by ILRMA and ε was set to 10−5. For
the rank-constrained SCM estimation, the hyperparameters in
(13) were set to α = 2.5 and β = 10−16, which were selected
experimentally, the shape parameter ρ of the multivariate GGD
was set to 0.5, 1, 2, 4, and 8, and bi was set to the unit eigenvector
ofR′(n)i that corresponds to the zero eigenvalue. For all methods,
the index of the directional target speech was blindly determined
by finding the separated signal that has the largest kurtosis value
among all the separated signals [43].

For simulated experiments, we prepared four types of diffuse
noise: babble, station, traffic, and cafe noises. As the dry source
of the directional target speech, we selected six different speech
signals from the JNAS speech corpus [44] and separately used
each of them at each speech extraction trial. As the dry sources
of 19 speakers employed as babble noise components, we used
other speech signals obtained from the same corpus. For station,
traffic, and cafe noises, we obtained noise signals from DE-
MAND [45] and split them into 19 short-time periods. These
dry sources were convoluted with the impulse responses shown
in Fig. 3. The directional target speech was located 0◦, 10◦, 20◦,
or 30◦ clockwise from the normal to a microphone array, the
number of microphones was 2, 3, or 4, the 19 loudspeakers used
to simulate diffuse noise were arranged at intervals of 10◦, the
size of the recording room for these impulse responses was 3.9 m
× 3.9 m × 3.5 m, its reverberation time was about 200 ms, and
an STFT was performed using a 64-ms-long Hamming window
with a 32-ms-long shift. The speech-to-noise ratio was set to
0 dB. The source-to-distortion ratio (SDR) [33] was used as a
total evaluation score in terms of separation performance and



KUBO et al.: BLIND SPEECH EXTRACTION BASED ON RANK-CONSTRAINED SPATIAL COVARIANCE MATRIX ESTIMATION 1959

TABLE II
EXPERIMENTAL CONDITIONS

Fig. 4. Average frequency-subband-wise kurtosis of power spectra for ideal
Gaussian, babble, station, traffic, and cafe noises. For station, traffic, and cafe
noises, kurtosis values of simulated and raw noises are shown.

sound distortion. The SDR improvement, defined by the output
SDR minus the input SDR, was obtained in each experiment. The
other conditions are shown in Table II. Note that the number of
iterations for IVE was set to 4000, which is recommended to en-
sure sufficient performance owing to the slow convergence [34].

To assess the realness, we calculated and compared the
frequency-subband-wise kurtosis of power spectra [46] of sim-
ulated and raw noises used in the experiments. Fig. 4 shows the
average frequency-subband-wise kurtosis for each noise. Each
simulated noise has a sufficiently larger kurtosis value than ideal
Gaussian noise, whereas the kurtosis becomes smaller than that
of raw noise owing to the central limit theorem. At our listening,
all of the simulated noises maintain the realness.

B. Comparison Between MM and ME Algorithms

We compared the proposed MM-algorithm-based and ME-
algorithm-based update rules with M = 4 for the Gaussian
(ρ = 2) and super-Gaussian (ρ = 0.5) cases. Also, for refer-
ence, we compared the EM-algorithm-based update rule pro-
posed in our conference paper [28], ILRMA+MNMF, and IL-
RMA+FastMNMF only for the Gaussian case. Note that the
EM algorithm cannot be applied to the super-Gaussian and sub-
Gaussian cases, whereas the proposed MM and ME algorithms
can be used for any cases. The SDR behaviors of these methods
are shown in Fig. 5. Consistent with the supposition in Sec-
tion III-C, the ME-algorithm-based update rule provided faster
convergence than the MM-algorithm-based one. For the Gaus-
sian case, the peak SDR improvement of the ME-algorithm-
based update rule exceeded those of the other methods. The same
tendency was observed for the other ρ andM . Considering these
results, we hereafter use only the ME-algorithm-based update
as the proposed method.

Here, SDR improvement reached the highest value and then
decreased. To clarify the reason of this phenomenon, we com-
pared the SDR improvement of the proposed ME-algorithm-
based update rule by changing the value of hyperparameter α.

Fig. 5. SDR behaviors of conventional methods and proposed MM-algorithm-
based and ME-algorithm-based update rules averaged over 10 parameter-
initialization random seeds, four target directions, six speech sources, and four
noises for cases of (a) ρ = 2 and (b) ρ = 0.5 in GGD.

TABLE III
SDR IMPROVEMENTS FOR EACH SHAPE PARAMETER ρ AND HYPERPARAMETER

α. EACH TERM REPRESENTS “BEST-ITERATION SCORE [DB] /
AFTER-30-ITERATION SCORE [DB]”

Table III shows the best and after-30-iteration SDR improve-
ments of the proposed method for each value of ρ and α. We can
see that the larger value ofα that increases sparsity in r(t)ij makes
the difference between the best SDR and the after-30-iteration
SDR. This would be because the prior distribution for the di-
rectional target speech (13) acted as a sparsifier, which does not
always contribute to the SDR improvement.

C. SDR and SCM Behavior Comparison Between Proposed
and Conventional Methods

We compared the speech extraction performance characteris-
tics of the conventional methods and the proposed method with
various ρ values and numbers of microphones. Tables IV, V, VI,
and VII show the best-iteration SDR improvement and the
after-200-iteration SDR improvement for each method under
babble, station, traffic, and cafe noise conditions, respectively.
These SDR improvements were averaged over 10 parameter-
initialization random seeds, four target directions, and six target
speech sources; thus each SDR improvement score in these table
entries is the average value over 240 trials.

The results in Tables IV–VII show that the proposed method
outperformed the other methods. In particular, the model of the



1960 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE IV
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER BABBLE NOISE CONDITION. EACH TERM REPRESENTS

“BEST-ITERATION SCORE [DB] / AFTER-200-ITERATION (EXCEPT FOR IVE;
AFTER-4000-ITERATION FOR IVE) SCORE [DB]”

TABLE V
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER STATION NOISE CONDITION. EACH TERM REPRESENTS

“BEST-ITERATION SCORE [DB] / AFTER-200-ITERATION (EXCEPT FOR IVE;
AFTER-4000-ITERATION FOR IVE) SCORE [DB]”

full-rank SCM in the proposed method showed an improve-
ment of more than 3 dB compared with the rank-1 spatial
model in ILRMA that cannot express diffuse noise appropri-
ately, and the efficacy of the proposed spatial model extension
was confirmed. Also, we reveal that, even with the assistance
of ILRMA-based initialization, the SDRs of the conventional
MNMFs and FastMNMFs with the full-rank SCM cannot reach
that of the proposed method. As the setting of the shape pa-
rameter ρ, ρ = 0.5 (super-Gaussian modeling) was the best for
the three- and four-microphone cases. On the other hand, for
the two-microphone case, ρ = 1 (super-Gaussian modeling), 2
(Gaussian modeling), and 4 (sub-Gaussian modeling) provided
the best speech extraction performance.

Generally speaking, in MWF1 and MWF2, the postfilters try
to predict the noise component in the direction of the target
speech to increase the SDRs. However, the experimental results
in Tables IV–VII show that the proposed method achieved better
SDR improvement compared with MWF1 and MWF2. This may
imply that the explicit statistical modeling of one lost spatial
basis λibib

H
i of the noise component enables us to estimate the

full-rank SCM of noise to some extent and to better reduce the

TABLE VI
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER TRAFFIC NOISE CONDITION. EACH TERM REPRESENTS

“BEST-ITERATION SCORE [DB] / AFTER-200-ITERATION (EXCEPT FOR IVE;
AFTER-4000-ITERATION FOR IVE) SCORE [DB]”

TABLE VII
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER CAFE NOISE CONDITION. EACH TERM REPRESENTS “BEST-ITERATION

SCORE [DB] / AFTER-200-ITERATION (EXCEPT FOR IVE;
AFTER-4000-ITERATION FOR IVE) SCORE [DB]”

noise component in the direction of the target speech compared
with the conventional methods.

Compared with the conventional methods based on the full-
rank SCM, e.g., ILRMA+MNMF and ILRMA+FastMNMF, we
can confirm that the proposed method provided better SDR
improvement in Tables IV–VII. To reveal the reason, we ana-
lyzed the accuracy of estimation for SCMs of the directional
target speech and diffuse noise. We calculated the LogDet
divergence [47] between the estimated and true SCMs, where
M = 4, diffuse noise was babble noise, the directional target
speech was located normal to the microphone array, and the
shape parameter ρ was set to 2. Here, we simulated source
images of the target speech and diffuse noise and calculated
their SCMs as true SCMs. LogDet divergence values of SCMs
were summed over all I = 513 frequency bins after dividing
SCMs by their trace values. Fig. 6 shows the LogDet divergence
behaviors of SCMs along with iterations for ILRMA+MNMF,
ILRMA+FastMNMF, and the proposed method. Although the
conventional methods drift their SCMs, the proposed method
can estimate the SCMs more accurately and consistently, es-
pecially for noise SCM (average divergence of noise SCMs in
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Fig. 6. LogDet divergence behaviors between estimated and true SCMs
of (a) directional target speech and (b) noise in ILRMA+MNMF, IL-
RMA+FastMNMF, and proposed method with 10 parameter-initialization ran-
dom seeds under babble noise condition.

each frequency is only 103/513 ≈ 2), which leads to better noise
reduction.

D. Computational Time Comparison

To see the efficacy of the proposed acceleration method, we
compared three methods: MNMF, FastMNMF, and the proposed
rank-constrained SCM estimation. For the rank-constrained
SCM estimation, we compared three update algorithms, namely,
the naive update rule (Naive) and the proposed update rules with
the first and second accelerations (Proposed 1st-stage accel. and
Proposed 2nd-stage accel., respectively). These methods were
implemented in MATLAB (R2019a), and the computation was
performed on an Intel Core i9-7900X (3.30 GHz, 10 cores) CPU.
The signal used in this experiment was 8.7 s long and was mixed
in the manner described in Section V-A.

The average computational time of one iteration for each
method is shown in Fig. 7. The proposed algorithm with the
second-stage acceleration achieved fast computation with com-
plexity independent of the number of microphones. In particular,
under the four-microphone condition, the proposed second-stage
acceleration with ρ = 2was 92 times faster than the naive update
rule and 10 times faster than FastMNMF. Also, the proposed
second-stage acceleration with ρ = 0.5, which achieved the best
SDR improvement, was 57 times faster than the naive update rule
and 6.2 times faster than FastMNMF, showing a slight trade-off
between SDR improvement and computational time.

VI. BSE EXPERIMENT ON REAL RECORDED DATA

To evaluate the proposed method in a more realistic situation,
we recorded directional target speech and diffuse babble and
traffic noises. Diffuse babble noise was recorded in a real room
and diffuse traffic noise was recorded in outdoor space. A mi-
crophone array composed of four microphones with an interval
of 3 cm was located in the room and the outdoor space. For the

TABLE VIII
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER REAL RECORDED BABBLE NOISE CONDITION. EACH TERM

REPRESENTS “BEST-ITERATION SCORE [DB] / AFTER-200-ITERATION

SCORE [DB]”

TABLE IX
SDR IMPROVEMENTS FOR EACH METHOD AND NUMBER OF MICROPHONES

UNDER REAL RECORDED TRAFFIC NOISE CONDITION. EACH TERM

REPRESENTS “BEST-ITERATION SCORE [DB] / AFTER-200-ITERATION

SCORE [DB]”

room, its reverberation time was about 400 ms and size was 3.5 m
× 6.0 m × 3.3 m. For the outdoor space, its reverberation time
was about 90 ms. As the directional target speech, the same dry
source signal was emitted from a loudspeaker located 0◦, 10◦,
20◦, or 30◦ clockwise from the normal to the microphone array
and at a distance of 1.0 m. As diffuse babble noise, 10 people
talked freely at a distance of about 1.5 m from the microphone
array, and their voices were simultaneously recorded. An STFT
was performed using a 256-ms-long Hamming window with a
32-ms-long shift. The other conditions for each method were the
same as those described in Section V-A.

We compared seven methods, namely, ILRMA, BSSA,
MWF1, MWF2, FastMNMF, ILRMA+FastMNMF, and rank-
constrained SCM estimation with the ME-algorithm-based up-
date and second-stage acceleration, where IVE and MNMF
were omitted owing to their slow convergence and huge com-
putational complexity. For rank-constrained SCM estimation,
the hyperparameters were set to α = 0.1 and β = 10−16. Ta-
bles VIII and IX show the best-iteration SDR improvement and
after-200-iteration SDR improvement for each method under
babble and traffic noise conditions, respectively. The proposed
method performed the best for each number of microphones and
noise condition. Fig. 8 shows the SDR behaviors with respect to
the elapsed time in the four-microphone and traffic noise case,
where the shape parameter ρ of the GGD was set to 0.5. The
proposed method achieved the most efficient speech extraction
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Fig. 7. Average computational time of one iteration for each method in cases of 2, 3, and 4 microphones under babble noise condition where directional target
speech is located at 30◦.

Fig. 8. SDR behaviors with respect to elapsed time averaged over 10
parameter-initialization random seeds, four target directions, and six speech
sources.

while providing the highest SDR improvement. From these
results, we confirmed the efficacy of the proposed method in
realistic situations.

By comparing the results of the real and simulated noise cases,
we can discuss when the proposed method can work well. For
example, the best SDR improvement of the proposed method for
simulated babble noise was 8.7 dB, while that for real recorded
babble noise was 7.3 dB. Also, for traffic noise, the best SDR
improvements were 8.3 dB (simulated) and 10.5 dB (real). Such
a difference is due to the accuracy of the rank-(M − 1) noise
SCM estimated by ILRMA. SIR improvement for each noise in
Fig. 1 has the same tendency as the best SDR improvement of
the proposed method for each noise. In the experiment using real
recorded babble noise, the reverberation time was about 400 ms
and the rank-1 spatial model assumption for the target speech
may be violated (for traffic noise, the reverberation times were
200 ms (simulated) and 90 ms (real)). When the reverberation
time greatly exceeds the STFT window size, the target speech no
longer becomes a point source and the estimated rank-(M − 1)
noise SCM becomes inaccurate, which leads to degradation of
speech extraction performance of the proposed method. From
these facts, whether the target speech can be regarded as a point
source affects the performance of the proposed method.

VII. CONCLUSION

In this paper, we proposed a new BSE method to extract only
the directional target speech from background diffuse noise. The
proposed method utilizes ILRMA, which is based on the rank-1
spatial model, as a preprocessing method and further improves
the extraction performance by restoring the lost spatial basis for
the full-rank SCM of diffuse noise. We introduced the multi-
variate GGD into the statistical model of the observed signal
and proved a new inequality to derive the MM-algorithm-based
and ME-algorithm-based parameter update rules for an arbitrary
shape parameter of the multivariate GGD. We also derived new
acceleration algorithms for the proposed framework and realized
a highly efficient update with its computational complexity
independent of the number of microphones.

Through BSE experiments with simulated data, we confirmed
that the proposed method with the ME-algorithm-based param-
eter update outperformed the conventional ILRMA, IVE, multi-
channel Wiener filter, MNMFs, and their combined methods in
terms of SDR improvement, and the proposed method achieved
faster computation than the conventional methods. Also, the
applicability of the proposed method to realistic situations was
shown by experiments with real recorded data.
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