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Sequence-to-Sequence Voice Conversion
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Abstract—This article proposes a voice conversion (VC) method
using sequence-to-sequence (seq2seq or S2S) learning, which flex-
ibly converts not only the voice characteristics but also the pitch
contour and duration of input speech. The proposed method, called
ConvS2S-VC, has three key features. First, it uses a model with a
fully convolutional architecture. This is particularly advantageous
in that it is suitable for parallel computations using GPUs. It is
also beneficial since it enables effective normalization techniques
such as batch normalization to be used for all the hidden layers
in the networks. Second, it achieves many-to-many conversion
by simultaneously learning mappings among multiple speakers
using only a single model instead of separately learning mappings
between each speaker pair using a different model. This enables the
model to fully utilize available training data collected from multiple
speakers by capturing common latent features that can be shared
across different speakers. Owing to this structure, our model works
reasonably well even without source speaker information, thus
making it able to handle any-to-many conversion tasks. Third, we
introduce a mechanism, called the conditional batch normalization
that switches batch normalization layers in accordance with the
target speaker. This particular mechanism has been found to be
extremely effective for our many-to-many conversion model. We
conducted speaker identity conversion experiments and found that
ConvS2S-VC obtained higher sound quality and speaker similarity
than baseline methods. We also found from audio examples that it
could perform well in various tasks including emotional expression
conversion, electrolaryngeal speech enhancement, and English ac-
cent conversion.

Index Terms—Attention, fully convolutional model, many-to-
many VC, sequence-to-sequence learning, voice conversion (VC).

I. INTRODUCTION

VOICE conversion (VC) is a technique for converting
para/non-linguistic information contained in a given utter-

ance such as the perceived identity of a speaker while preserving
linguistic information. Potential applications of this technique
include speaker-identity modification [1], speaking aids [2], [3],
speech enhancement [4]–[6], and accent conversion [7].
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Many conventional VC methods are designed to use parallel
utterances of source and target speech to train acoustic models
for feature mapping. A typical pipeline of the training process
consists of extracting acoustic features from source and target
utterances, performing dynamic time warping (DTW) to obtain
time-aligned parallel data, and training an acoustic model that
maps the source features to the target features frame-by-frame.
Examples of the acoustic model include Gaussian mixture
models (GMM) [8]–[10] and deep neural networks (DNNs)
[11]–[15]. Some attempts have also been made to develop
methods that require no parallel utterances, transcriptions, or
time alignment procedures. Recently, deep generative models
such as variational autoencoders (VAEs), cycle-consistent gen-
erative adversarial networks (CycleGAN), and star generative
adversarial networks (StarGAN) have been used with notable
success for non-parallel VC tasks [16]–[20].

One limitation of conventional methods including those men-
tioned above is that they are focused mainly on learning to
convert only the local spectral features and less on converting
prosodic features such as the fundamental frequency (F0) con-
tour, duration, and rhythm of the input speech. This is because
the acoustic models in these methods are designed to describe
mappings between local features only. This prevents a model
from discovering word-level or sentence-level suprasegmental
conversion rules. In most methods, the entire F0 contour is
simply adjusted using a linear transformation in the logarith-
mic domain while the duration and rhythm are usually kept
unchanged. However, since these features play as important a
role as local spectral features in characterizing speaker identities
and speaking styles, it would be desirable if these features could
also be converted more flexibly. To overcome this limitation, we
need a model that can learn to convert entire feature sequences
by capturing and utilizing long-term dependencies in source and
target speech. To this end, we adopt a sequence-to-sequence
(seq2seq or S2S) learning approach.

The S2S learning approach offers a general and powerful
framework for transforming one sequence into another variable
length sequence [21], [22]. This is made possible by using
encoder and decoder networks, where the encoder encodes an
input sequence to an internal representation whereas the decoder
generates an output sequence in accordance with the inter-
nal representation. The original S2S model employs recurrent
neural networks (RNNs) to model the encoder and decoder
networks, where common choices for the RNN architectures
involve long short-term memory (LSTM) networks and gated
recurrent units (GRU). This approach has attracted a lot of
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attention in recent years after being introduced and applied with
notable success in various tasks such as machine translation, au-
tomatic speech recognition (ASR) [22] and text-to-speech (TTS)
[23]–[29].

The original S2S model suffers from the constraint that all
input sequences are forced to be encoded into a fixed length
internal vector. This limits the ability of the model especially
when it comes to long input sequences, such as long sentences
in text translation problems. To overcome this limitation, a
mechanism called “attention” [30] has been introduced, which
enables the network to learn where to pay attention in the input
sequence for each item in the output sequence.

While RNNs are a natural choice for modeling long sequential
data, recent work has shown that convolutional neural networks
(CNNs) with gating mechanisms also have excellent potential
for capturing long-term dependencies [31], [32]. In addition,
they are suitable for parallel computations using GPUs unlike
RNNs. To exploit this advantage of CNNs, an S2S model was
recently proposed that adopts a fully convolutional architec-
ture [33]. With this model, the decoder is designed using causal
convolutions so that it enables the model to generate an output
sequence autoregressively. This model with an attention mecha-
nism is called the ConvS2S model and has already been applied
successfully to machine translation [33] and TTS [27], [28].
Inspired by its success in these tasks, we propose a VC method
based on the ConvS2S model, which we call ConvS2S-VC,
along with an architecture tailored for use with VC.

In a wide sense, VC is a task of converting the domain of
speech. Here, the types of domain include speaker identities,
emotional expressions, speaking styles, and accents, but for
concreteness, we will restrict our attention to speaker identity
conversion tasks in the following. When we are interested in
converting speech among multiple speakers, one naive way of
applying the S2S model is to prepare and train a model for
each speaker pair. However, this can be inefficient since the
model for one pair of speakers fails to use the training data of
the other speakers for training, even though there must be a
common set of latent features that can be shared across different
speakers, especially when the languages are the same. To fully
utilize available training data collected from multiple speakers,
we further propose an extension of the ConvS2S model that
allows for many-to-many VC, which can learn mappings among
multiple speakers using only a single model.

One important advantage of using fully convolutional net-
works is that it enables the use of batch normalization in all
the hidden layers. This is practically beneficial since batch
normalization is known to be significantly effective in not only
accelerating training but also improving the generalization abil-
ity of the resulting models. Indeed, as described later, it also
positively affected our pairwise model. However, as for the
many-to-many model, the distributions of the layer inputs can
change depending on the source and target speakers, which may
affect model training. To stabilize layer input distributions, we
introduce a mechanism, called the conditional batch normaliza-
tion, that switches batch normalization layers in accordance with
the source and target speakers. This particular mechanism was
experimentally found to work very well.

II. RELATED WORK

Note that some attempts have recently been made to apply
S2S models to VC problems, including the ones we proposed
previously [34], [35]. Although most S2S models typically
require sufficiently large parallel corpora for training, collecting
a sufficient number of parallel utterances is not always feasible.
Thus, particularly in VC tasks, one challenge is how best to train
S2S models using a limited amount of training data.

One idea involves using text labels as auxiliary information
for model training, assuming they are readily available. For
example, Miyoshi et al. proposed combining acoustic models
for ASR and TTS with an S2S model [36], where an S2S model
is used to convert the context posterior probability sequence
produced by the ASR model and the TTS model is finally
used to generate a target speech feature sequence. Zhang et al.
also proposed an S2S model-based VC method guided by an
ASR system, which augments inputs with bottleneck features
obtained from a pretrained ASR system [37]. Subsequently,
Zhang et al. proposed a shared model for TTS and VC tasks,
which enables joint training of the TTS and VC functions [38].
Recently, Biadsy et al. proposed an end-to-end VC system called
Parrotron, which is designed to train the encoder and decoder
along with an ASR model on the basis of a multitask learning
strategy [39]. Our method differs from these methods in that our
model does not rely on ASR or TTS models and requires no text
annotations for model training. Instead, we introduce several
techniques to stabilize training and test prediction.

Haque et al. proposed a method that enables many-to-many
VC similar to ours [40]. As detailed in Subsection IV-C, our
many-to-many model differs in that it does not necessarily re-
quire source speaker information for the encoder, thus enabling
it to also handle any-to-many VC tasks.

In addition, our method differs from all the methods men-
tioned above in that it adopts a fully convolutional model, which
can be potentially advantageous in several ways, as already
mentioned.

III. CONVS2S-VC

In this section, we start by describing a pairwise one-to-one
conversion model and then present its multi-speaker extension
that enables many-to-many VC. The overall architecture of the
pairwise conversion model is illustrated in Fig. 1.

A. Feature Extraction and Normalization

First, we define acoustic features to be converted. Although
one interesting option would be to consider directly converting
time-domain signals, given the recent significant advances in
high-quality neural vocoder systems [32], [41]–[50], we find
it reasonable to consider converting acoustic features such as
the mel-cepstral coefficients (MCCs) [51] and log F0, since
we would expect to generate high-fidelity signals by using a
neural vocoder if we could obtain a sufficient set of acoustic
features. In such systems, the model size for the convertor can
be made small enough to enable the system to work well even
when a limited amount of training data is available. Hence, in
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Fig. 1. Overall structure of the pairwise ConvS2S model.

this paper we choose to use the MCCs, log F0, aperiodicity,
and voiced/unvoiced indicator of speech as acoustic features as
detailed below.

We first use the WORLD analyzer [52] to extract the spec-
tral envelope, the log F0, the coded aperiodicity, and the
voiced/unvoiced indicator within each time frame of a speech
utterance, then compute I MCCs from the extracted spectral
envelope, and finally construct an acoustic feature vector by
stacking the MCCs, the log F0, the coded aperiodicity, and the
voiced/unvoiced indicator. Thus, each acoustic feature vector
consists of I + 3 elements. Here, the log F0 contour is as-
sumed to be filled with smoothly interpolated values in unvoiced
segments. At training time, we normalize each element xi,n

(i = 1, . . . , I) of the MCCs and the log F0 xI+1,n at frame n
to xi,n ← (xi,n − μi)/σi where i, μi and σi denote the feature
index, the mean, and the standard deviation of the i-th feature
within all the voiced segments of the training samples of the
same speaker.

To accelerate and stabilize training and inference, we have
found it useful to use a similar trick introduced by Wang
et al. [53]. Specifically, we divide the acoustic feature sequence
obtained above into non-overlapping segments of equal length r
and use the stack of the acoustic feature vectors in each segment
as a new feature vector so that the new feature sequence becomes
r times shorter than the original feature sequence. Furthermore,
we add the sinusoidal position encodings [54] to the reshaped
version of the feature sequence before feeding it into the
model.

B. Model

We hereafter use X(s) = [x
(s)
1 , . . . ,x

(s)
Ns

] ∈ RD×Ns and

X(t) = [x
(t)
1 , . . . ,x

(t)
Nt
] ∈ RD×Nt to denote the source and target

speech feature sequences of non-aligned parallel utterances,
where Ns and Nt denote the lengths of the two sequences and
D denotes the feature dimension. We consider an S2S model
that aims to map X(s) to X(t). Our pairwise conversion model
is inspired by and built upon the models presented by Vaswani
et al. [54] and Tachibana et al. [27], with the difference being
that it involves an additional network, called a target reconstruc-
tor. This network plays an important role in ensuring that the
encoders preserve contextual information about the source and
target speech, as explained below. Our model thus consists of
four networks: source and target encoders, a target decoder, and
a target reconstructor.

As with many S2S models, our model has an encoder-decoder
structure (Fig. 1). The source and target encoders are expected
to extract contextual information from source and target speech.
Given the contextual vector sequence pair produced by the
encoders, we can compute a contextual similarity matrix be-
tween the source and target speech, which can be used to
warp the time-axis of the source speech. We can then generate
the feature sequence of the target speech by letting the target
decoder transform each element of the time-warped version of
the contextual vector sequence of the source speech. This idea
can be formulated as follows.

The source encoder takes X(s) as the input and produces
two internal vector sequences K,V ∈ RD′×Ns and the target
encoder takes X(t) as the input and produces an internal vector
sequence Q ∈ RD′×Nt :

[K;V] = SrcEnc(X(s)), (1)

Q = TrgEnc(X(t)), (2)

where [; ] denotes vertical concatenation of matrices (or vectors)
with compatible sizes andD′ denotes the dimension of the inter-
nal vectors.K,V andQ can be metaphorically interpreted as the
queries and the key-value pairs in a hash table. By using the query
and key pair, we can define an attention matrix A ∈ RNs×Nt as

A = softmax
(
KTQ/

√
D′

)
, (3)

where softmax denotes a softmax operation performed on the
first axis. A can be seen as a similarity matrix, where the
(n,m)-th element indicates the similarity between the n-th and
m-th frames of source and target speech. The peak trajectory
of A can therefore be interpreted as a time-warping function
that associates the frames of the source speech with those of
the target speech. The time-warped version of the value vector
sequence V is thus given as

R = VA, (4)

which will be passed to the target decoder to generate an output
sequence:

Y = TrgDec(R). (5)

Since the target speech feature sequence X(t) is of course not
accessible at test time, we want to use a feature vector that the
target decoder has generated as the input to the target encoder
for the next time step so that feature vectors can be generated
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one-by-one recursively. To enable the model to behave in this
way, first, we must ensure that the target encoder and decoder
must not use future information when producing an output vector
at each time step. This can be ensured by simply constraining
the convolution layers in the target encoder and decoder to be
causal. Note that causal convolution can be easily implemented
by padding the input by δ(κ− 1) elements on both the left and
right sides with zero vectors and removing δ(κ− 1) elements
from the end of the convolution output, where κ is the kernel
size and δ is the dilation factor. Second, the output sequence Y
must correspond to a time-shifted version of X(t) so that at each
time step the decoder will be able to predict the target speech
feature vector that is likely to be generated at the next time step.
To this end, we include an L1 loss

Ldec = 1
Nt
‖Y:,1:Nt−1 −X

(t)
:,2:Nt
‖1, (6)

in the training loss to be minimized, where we have used the
colon operator : to specify the range of indices of the elements
in a matrix or a vector we wish to extract. For ease of notation, we
use : itself to represent all elements along an axis. For example,
X

(t)
:,2:Nt

denotes a submatrix consisting of the elements in all the

rows and columns 2, . . . , Nt of X(t). Third, the first column
of X(t) must correspond to an initial vector with which the
recursion is assumed to start. We thus assume that it is always
set at an all-zero vector.

The source and target encoders are free to ignore the infor-
mation contained in the feature vector inputs when finding a
time alignment between source and target speech. One natural
way to ensure that K, V, and Q contain necessary information
for finding an appropriate time alignment is to assist K, V, and
Q to preserve sufficient information for reconstructing the input
feature sequence. To this end, we introduce a target reconstructor
that aims to reconstruct the feature sequence of target speech
X(t) from K, V, and Q:

Y = TrgRec(R), (7)

and include a reconstruction loss

Lrec = 1
M ‖Y −X(t)‖1, (8)

in the training loss to be minimized. This idea was introduced in
our previous work [35]. We call Eq. (8) the context preservation
loss. Although the reconstructor and the decoder may appear
to have similar roles, the difference is that the reconstructor is
only responsible for making each column ofR contain sufficient
information about the current value of the target feature sequence
so that the decoder can concentrate on predicting the future value
using that information.

As detailed in Subsection V-B, all the networks are designed
using fully convolutional architectures using gated linear units
(GLUs) [31] with residual connections. The output of the GLU
block used in the present model is defined as GLU(X) =
B1(L1(X))� sigmoid(B2(L2(X))) where X is the layer input,
L1 and L2 are dilated convolution layers, B1 and B2 are batch
normalization layers, and sigmoid is a sigmoid gate function.
Similar to LSTMs, GLUs can reduce the vanishing gradient

Fig. 2. Plots of WNs×Nt (0.3) (left) and WNs×Nt (0.1) (right) where the
lengths of the source and target speech are 2.4 [s] and 3.0 [s], respectively.

problem for deep architectures by providing a linear path for
the gradients while retaining non-linear capabilities.

C. Constraints on Attention Matrix

It would be natural to assume that the time alignment between
parallel utterances is usually monotonic and nearly linear. This
implies that the diagonal region in the attention matrix A should
always be dominant. We expect that imposing such restrictions
on A can significantly reduce the training effort since the search
space for A can be greatly reduced. To penalize A for not
having a diagonally dominant structure, we introduce a diagonal
attention loss (DAL) [27]:

Ldal =
1

NsNt
‖WNs×Nt(ν)�A‖1, (9)

where� is the elementwise product and WNs×Nt(ν) ∈ RNs×Nt

is a non-negative weight matrix whose (n,m)-th element wn,m

is defined as wn,m = 1− e−(n/Ns−m/Nt)
2/2ν2

. Fig. 2 shows
plots of WNs×Nt(ν).

Each time point of the target feature sequence must corre-
spond to only one or at most a few time points of the source
feature sequence. This implies that two different columns in A
must be as orthogonal as possible. Although the DAL with a
sufficiently small ν value can induce orthogonality, it may also
lead to undesirable situations where the time alignment between
the two sequences is forced to be always strictly linear. Thus, ν
must not be set to a value too small to enable reasonably flexible
time alignments. To achieve orthogonality while enabling ν to
be a moderately greater value, we propose introducing another
loss to constrain A, which we call the orthogonal attention loss
(OAL):

Loal =
1

N2
s
‖WNs×Ns(ρ)� (AAT)‖1. (10)

D. Training Loss

Given examples of parallel utterances, the total training loss
for the ConvS2S-VC model to be minimized is given as

L = EX(s),X(t) {Ldec + λrLrec + λdLdal + λoLoal} , (11)

where EX(s),X(t){·} is the sample mean over all the training
examples and λr ≥ 0, λd ≥ 0 and λo ≥ 0 are regularization
parameters, which weigh the importances of Lrec, Ldal and Loal

relative to Ldec.
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Fig. 3. Attention matrices predicted without (left) and with (right) forward
attention.

E. Conversion Process

At test time, we can convert a source speech feature sequence
X via the following recursion:

[K;V] = SrcEnc(X), Y ← 0
for m = 1 to M ′ do
Q = TrgEnc(Y)
A = softmax(KTQ/

√
D′)

R = VA
Y = TrgDec(R)
Y ← [0,Y]

end for
return Y

However, as Fig. 3 shows, it transpired that with this algo-
rithm the attended time point does not always move forward
monotonically and continuously and can occasionally become
stuck at the same time point or suddenly jump to a distant
time point even though the diagonal and orthogonal losses are
considered in training. To assist the attended point to move
forward monotonically and continuously, we limit the paths
through which the attended point is allowed to move by forcing
the attentions to the time points distant from the peak of the
attention distribution obtained at the previous time step to zeros.
This can be implemented for instance as follows:

[K;V] = SrcEnc(X), Y ← 0
for m = 1 to M do
Q = TrgEnc(Y)
A = softmax(KTQ/

√
D′)

if m > 1 then
a = A1:N,m

a1:max(1,n̂−N0) = 0, amin(n̂+N1,N):N = 0
a← a/sum(a)
A← [A1:N,1:m−1,a]

end if
n̂ = argmaxn An,m

R = VA
Y = TrgDec(R)
Y ← [0,Y]

end for
return Y

where sum(·) denotes the sum of all the elements in a vector.
Note that we set N0 and N1 at the nearest integers that cor-
respond to 160 [ms] and 320 [ms], respectively. Fig. 3 shows
an example of how attention matrices look different when this
procedure has been undertaken. After we obtain R with the
above algorithm, we can use the target reconstructor to compute
Ỹ = TrgRec(R) and use it instead ofY as the feature sequence
of the converted speech.

Once Y or Ỹ has been obtained, we adjust the mean and
variance of the generated feature sequence so that they match the
pretrained mean and variance of the feature vectors of the target
speaker. We can then generate a time-domain signal using the
WORLD vocoder or any recently developed neural vocoder [32],
[41]–[50]. Note that in the following experiments, we chose to
use Ỹ for final waveform generation as it resulted in better-
sounding speech.

F. Real-Time System Design

Real-time requirements must be considered when building
VC systems. If we want our model to work in real-time, first,
we must not allow the source encoder to use future informa-
tion as with the target encoder and decoder during training.
This requirement can easily be implemented by constraining
the convolution layers in the source encoder (and the target
reconstructor, if we assume it is used to generate the converted
feature sequence) to be causal. Another point we must consider
is that the speaking rate and rhythm of input speech cannot be
changed drastically at test time. One simple way of keeping
them unchanged is to set A to an identity matrix. In this way,
the autoregressive recursion will be no longer needed and the
conversion can be performed in a sliding-window fashion as:

[K;V] = SrcEnc(X)
Y = TrgDec(V) or Y = TrgRec(V)
return Y

We will show later how these modifications can affect the VC
performance. Note that even under this setting, the ability to learn
and apply conversion rules that capture long-term dependencies
is still effective.

G. Impact of Batch Normalization

As mentioned earlier, using fully convolutional architectures
allows the use of batch normalization for all the hidden layers
in the networks, which is not straightforward for architectures
including recurrent modules. One benefit of using batch nor-
malization layers is that it enables the networks to use a higher
learning rate without vanishing or exploding gradients. It is
also believed to help regularize the networks such that it is
easier to generalize and mitigate overfitting. The effect of batch
normalization will be verified experimentally in Section V.

IV. MANY-TO-MANY CONVS2S-VC

A. Model and Training Loss

We now describe an extension of the ConvS2S model that
enables many-to-many VC. Here, the idea is to use a single
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model to achieve mappings among multiple speakers. The model
consists of the same set of the networks as the pairwise model.
The only difference is that each network takes a speaker index
as an additional input.

Let X(1), . . . ,X(K) be examples of the acoustic feature
sequences of speech in different speakers reading the same
sentence. Given a single pair of parallel utterances X(k) and
X(k′), where k and k′ denote the source and target speaker
indices (integers), the source encoder takes X(k) and the source
speaker index k as the inputs and produces two internal vector
sequences K(k),V(k), whereas the target encoder takes X(k′)

and the target speaker index k′ as the inputs and produces an
internal vector sequence Q(k′):

[K(k);V(k)] = SrcEnc(X(k), k), (12)

Q(k′) = TrgEnc(X(k′), k′). (13)

The attention matrix A(k,k′) and the time-warped version of
V(k) are then computed using K(k) and Q(k′):

A(k,k′) = softmaxn
(
K(k)TQ(k′)/√D′

)
, (14)

R(k,k′) = V(k)A(k,k′). (15)

The outputs of the reconstructor and decoder given the input
R(k,k′) with target speaker conditioning are finally given as

Ỹ(k,k′) = TrgRec(R(k,k′), k′), (16)

Y(k,k′) = TrgDec(R(k,k′), k′). (17)

The loss functions to be minimized given this single training
example are given as

L(k,k′)
dec = 1

Nk′
‖Y(k,k′)

:,1:Nk′−1 −X
(k′)
:,2:Nk′

‖1, (18)

L(k,k′)
dal = 1

NkNk′
‖WNk×Nk′ (ν)�A(k,k′)‖1, (19)

L(k,k′)
oal = 1

Nk
2 ‖WNk×Nk

(ρ)� (A(k,k′)A(k,k′)T)‖1, (20)

L(k,k′)
rec = 1

Nk′
‖Ỹ(k,k′) −X(k′)‖1. (21)

With the above model, the case where k = k′ would be rea-
sonable to also consider. Minimizing this loss corresponds to
ensuring that the input feature sequence X(k) will remain un-
changed when the source and target speakers are the same. We
call this loss the identity mapping loss (IML). The effect given
by this loss will be shown later. Hence, the total training loss to
be minimized becomes

L =
∑

k,k′ 	=k

E
X(k),X(k′)

{
L(k,k′)

all

}
+ λi

∑
k

EX(k)

{
L(k,k)

all

}
,

L(k,k′)
all = L(k,k′)

dec + λrL(k,k′)
rec + λdL(k,k′)

dal + λoL(k,k′)
oal , (22)

where E
X(k),X(k′) [·] and EX(k) [·] denote the sample means over

all the training examples of parallel utterances in speakers k and

Fig. 4. Examples of the attention matrices predicted from test input female
speech using the many-to-many model: with batch normalization (left) and with
conditional batch normalization (right).

k′, and λi ≥ 0 is a regularization parameter, which weighs the
importance of the IML.

B. Conditional Batch Normalization

The left figure in Fig. 4 shows the attention matrix predicted
from input female speech using the many-to-many model with
regular batch normalization layers. As this example shows,
attention matrices predicted by the many-to-many model tended
to become blurry, mostly resulting in unintelligible speech. We
conjecture that this was caused by the fact that the distributions
of the inputs to the hidden layers can change in accordance
with the source and/or target speakers. To normalize layer
input distributions on a speaker-dependent basis, we propose
using conditional batch normalization layers for the many-to-
many model. Each element yb,d,n of the output of a regular
batch normalization layer Y = B(X) is defined as yb,d,n =

γd
xb,d,n−μd(X)

σd(X) + βd, where X denotes the layer input given by
a three-way array with batch, channel, and time axes, xb,d,n de-
notes its (b, d, n)-th element,μd(X) andσd(X) denote the mean
and standard deviation of the d-th channel components of X
computed along the batch and time axes, and γ = [γ1, . . . , γD]
and β = [β1, . . . , βD] denote the parameters to be learned. In
contrast, the output of a conditional batch normalization layer
Y = Bk(X) is defined as yb,d,n = γk

d
xb,d,n−μd(X)

σd(X) + βk
d , where

the only difference is that the parametersγk = [γk
1 , . . . , γ

k
D] and

βk = [βk
1 , . . . , β

k
D] are conditioned on speaker k. Note that a

similar idea, called the conditional instance normalization, has
been introduced to modify the instance normalization process
for image style transfer [55] and non-parallel VC [56].

C. Any-to-Many Conversion

With the models presented above, the source speaker must be
known and specified during both training and inference. How-
ever, there can be certain situations where the source speaker
is unknown or arbitrary. We call VC tasks in such scenarios
any-to-one or any-to-many VC. Our many-to-many model can
be modified to handle any-to-many VC tasks by not allowing
the source encoder to take the source speaker index k as an
input at both training and test time. The modified version can be
formulated by simply replacing Eq. (12) in the many-to-many
model with

[K(k);V(k)] = SrcEnc(X(k)). (23)
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TABLE I
NOTATIONS FOR NETWORK ARCHITECTURE DESCRIPTIONS

TABLE II
NETWORK ARCHITECTURES OF PAIRWISE AND MANY-TO-MANY MODELS

V. EXPERIMENTS

A. Experimental Settings

To evaluate the effects of the ideas presented in Sections III
and IV, we conducted objective and subjective evaluation ex-
periments involving a speaker identity conversion task. For the
experiment, we used the CMU Arctic database [57], which
consists of recordings of 1132 phonetically balanced English
utterances spoken by four US English speakers. We used all
the speakers (clb (female), bdl (male), slt (female), and rms
(male)) for training and evaluation. Thus, in total there were
12 different combinations of source and target speakers. The
audio files for each speaker were manually divided into 1000
and 132 files, which were provided as training and evalua-
tion sets, respectively. All the speech signals were sampled
at 16 kHz. As already detailed in Subsection III-A, for each
utterance, the spectral envelope, log F0, coded aperiodicity, and
voiced/unvoiced information were extracted every 8 ms using
the WORLD analyzer [52]. Then, 28 MCCs were extracted
from each spectral envelope using the Speech Processing Toolkit
(SPTK) [58]. The reduction factor r was set to 3. Hence, the
dimension of the acoustic feature was D = (28 + 3)× 3 = 93.

B. Network Architectures

We use the notations in Table I to describe the network ar-
chitectures. The architectures of all the networks in the pairwise
and many-to-many models are detailed in Table II. Note that in
Table II the layer index is omitted for simplicity of notation and
each layer has a different set of free parameters even though the
same symbol is used.

C. Hyperparameter Settings

λr, λd, λo, and λi were set at 1, 2000, 2000, and 1, respectively.
ν and ρ were set at 0.3 and 0.3 for both the pairwise and many-
to-many models. The L1 norm ‖X‖1 used in (6), (8), (18), and
(21) was defined as a weighted norm

‖X‖1 =
N∑

n=1

1

r

r∑
j=1

31∑
i=1

αi|xij,n|,

where x1j,n, . . . , x28j,n, x29j,n, x30j,n and x31j,n denote the
entries of X corresponding to the 28 MCCs, log F0, coded
aperiodicity and voiced/unvoiced indicator at time n, and the
weights were set atα1 = · · · = α28 = 1

28 ,α29 = 1
10 , andα30 =

α31 = 1
50 , respectively.
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All the networks were trained simultaneously with random
initialization. Adam optimization [59] was used for model train-
ing where the mini-batch size was 16 and 25,000 iterations were
run. The learning rate and the exponential decay rate for the first
moment for Adam were set at 0.00015 and 0.9.

D. Objective Performance Measures

The test dataset consists of speech samples of each speaker
reading the same sentences. Thus, the quality of a converted
feature sequence can be assessed by comparing it with the feature
sequence of the reference utterance.

1) Mel-Cepstral Distortion (MCD): Given two mel-cepstra,
x̂ = [x̂1, . . . , x̂28]

T and x = [x1, . . . , x28]
T, we can use the mel-

cepstral distortion (MCD):

MCD[dB] =
10

ln 10

√
2
∑28

i=2
(x̂i − xi)2, (24)

to measure their difference. Here, we used the average of the
MCDs taken along the DTW path between converted and ref-
erence feature sequences as the objective performance measure
for each test utterance.

2) Log F0 Correlation Coefficient (LFC): To evaluate the F0

contour of converted speech, we used the correlation coefficient
between the predicted and target log F0 contours [60] as the ob-
jective performance measure. Since the converted and reference
utterances were not necessarily aligned in time, we computed
the correlation coefficient after properly aligning them. Here, we
used the MCC sequences X̂1:28,1:N ,X1:28,1:M of converted and
reference utterances to find phoneme-based alignment, assum-
ing that the predicted and reference MCCs at the correspond-
ing frames were sufficiently close. Given the log F0 contours
X̂29,1:N , X29,1:M and the voiced/unvoiced indicator sequences
X̂31,1:N , X31,1:M of converted and reference utterances, we
first warp the time axis of X̂29,1:N and X̂31,1:N in accordance
with the DTW path between the MCC sequences X̂1:28,1:N ,
X1:28,1:M of the two utterances and obtain their time-warped
versions, X̃29,1:M , X̃31,1:M . We then extract the elements of
X̃29,1:M and X29,1:M at all the time points corresponding to the
voiced segments such that {m|X̃31,m=X31,m=1}. If we use
ỹ = [ỹ1, . . . , ỹM ′ ] and y = [y1, . . . , yM ′ ] to denote the vectors
consisting of the elements extracted from X̃29,1:M andX29,1:M ,
we can use the correlation coefficient between ỹ and y

R =

∑M ′
m′=1(ỹm′ − ϕ̃)(ym′ − ϕ)√∑M ′

m′=1(ỹm′ − ϕ̃)2
√∑M ′

m′=1(ym′ − ϕ)2
, (25)

where ϕ̃ = 1
M ′

∑M ′
m′=1 ỹm′ andϕ = 1

M ′
∑M ′

m′=1 ym′ , to measure
the similarity between the two log F0 contours. In the current
experiment, we used the average of the correlation coefficients
taken over all the test utterances as the objective performance
measure for logF0 prediction. Thus, the closer it is to 1, the better
the performance. We call this measure the log F0 correlation
coefficient (LFC).

3) Local Duration Ratio (LDR): To evaluate the speaking
rate and the rhythm of converted speech, we used the local slopes
of the DTW path between converted and reference utterances to

determine the objective performance measure. If the speaking
rate and the rhythm of the two utterances are exactly the same, all
the local slopes should be 1. Hence, the better the conversion, the
closer the local slopes become to 1. To compute the local slopes,
we undertook the following process. Given the MCC sequences
X̂1:28,1:N , X1:28,1:M of converted and reference utterances,
we first performed DTW on X̂1:28,1:N and X1:28,1:M . If we
use (p1, q1), . . . , (pj , qj), . . . , (pJ , qJ ) to denote the obtained
DTW path where (p1, q1) = (1, 1) and (pJ , qJ ) = (M,N), we
computed the slope of the regression line fitted to the 33 local
consecutive points for each j:

sj =

∑j+16
j′=j−16(pj′ − p̄j)(qj′ − q̄j)∑j+16

j′=j−16(pj′ − p̄j)2
, (26)

where p̄j =
1
33

∑j+16
j′=j−16 pj′ and q̄j =

1
33

∑j+16
j′=j−16 qj′ , and

then computed the median of s1, . . . , sJ . We call this measure
the local duration ratio (LDR). The greater this ratio, the longer
the duration of the converted utterance is relative to the reference
utterance. In the following, we use the mean absolute difference
between the LDRs and 1 (in percentages) as the overall measure
for the LDRs. Thus, the closer it is to zero, the better the
performance. For example, if the converted speech is 2 times
faster than the reference speech, the LDR will be 0.5 everywhere,
and so its mean absolute difference from 1 will be 50%.

E. Baseline Methods

1) Sprocket: We chose the open-source VC system called
sprocket [61] for comparison in our experiments. To run this
method, we used the source code provided by its author [62].
Note that this system was used as a baseline system in the Voice
Conversion Challenge (VCC) 2018 [63].

2) RNN-S2S-VC: To evaluate the effect of the fully convo-
lutional architecture adopted in ConvS2S-VC, we implemented
its recurrent counterpart [35], inspired by the architecture intro-
duced in a S2S model-based TTS system called Tacotron [23]
and considered it as another baseline. Although the original
Tacotron used mel-spectra as the acoustic features, the baseline
system was designed to use the same acoustic features as our
system. The architecture was specifically designed as follows.
The encoder consisted of a bottleneck fully-connected prenet
followed by a stack of 1× 1 1D GLU convolutions and a
bi-directional LSTM layer. The decoder was an autoregres-
sive content-based attention network, consisting of a bottleneck
fully-connected prenet followed by a stateful LSTM layer pro-
ducing the attention query, which was then passed to a stack of
two uni-directional residual LSTM layers, followed by a linear
projection to generate the features. Note that we replaced all
rectified linear unit (ReLU) activations with GLUs as with our
model. We also designed and implemented a many-to-many
extension of the above RNN-based model.

F. Objective Evaluations

1) Effect of Regularization: First, we evaluated the individ-
ual effects of the regularization techniques presented in Sub-
section III-B and III-C on both the pairwise and many-to-many
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TABLE III
AVERAGE MCDS [DB] OBTAINED WITH THE PAIRWISE AND MANY-TO-MANY MODELS TRAINED WITH AND WITHOUT REGULARIZATION

TABLE IV
AVERAGE LFCS OBTAINED WITH THE PAIRWISE AND MANY-TO-MANY MODELS TRAINED WITH AND WITHOUT REGULARIZATION

TABLE V
AVERAGE LDR DEVIATIONS (%) OBTAINED WITH THE PAIRWISE AND MANY-TO-MANY MODELS TRAINED WITH AND WITHOUT REGULARIZATION

models. Tables III, IV, and V show the average MCDs (with
95% confidence intervals), LFCs, and LDR deviations of the
converted speech obtained using the pairwise and many-to-many
models under different (λr, λo) settings (0, 0), (1, 0), and (1,
2000) for the pairwise conversion model and different (λr, λi, λo)
settings (0, 0, 0), (1, 0, 0), (1, 1, 0), and (1, 1, 2000) for the many-
to-many model. Owing to the limited amount of training data,
the models trained without DAL did not successfully produce
recognizable speech. Thus, we omit the results obtained when
λd = 0. As the results show, although there are a few exceptions,
both the pairwise and many-to-many models performed better

for most speaker pairs in terms of the MCD measure when all
the regularization terms were simultaneously taken into account
during training. We also found that the effects of Lrec and Loal

on the LFC and LDR measures were less significant than on
the MCD measure. Fig. 5 shows examples of how each of
the regularization techniques can affect the prediction of the
attention matrices by the many-to-many model at test time.
As these examples show, the CPL tended to have a notable
effect on promoting monotonicity and continuity of the attention
prediction. However, it also had a negative effect of blurring the
predicted attention distributions. The OAL and IML contributed
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Fig. 5. Examples of the attention matrices predicted from test input female speech using the many-to-many model trained under four settings of (λr, λo, λi):
(0,0,0), (1,0,0), (1,2000,0), and (1,2000,1) (from left to right).

TABLE VI
MCD [DB] COMPARISON OF NORMALIZATION METHODS

TABLE VII
LFC COMPARISON OF NORMALIZATION METHODS

to counteracting this negative effect by sharpening the attention
matrices while keeping them monotonic and continuous.

2) Comparison of Normalization Methods: For normaliza-
tion, there are several choices including instance normalization
(IN) [64], weight normalization (WN) [65], and batch normal-
ization (BN) [66]. For our many-to-many model, other choices
include conditional IN (CIN) and conditional BN (CBN). We
compared the effects of these normalization methods on both the
pairwise and many-to-many models on the basis of the MCD,
LFC, and LDR measures. Note that all the normalization layers
in Table II are excluded in the WN counterparts. The average
MCDs, LFCs, and LDR deviations obtained using these normal-
ization methods are demonstrated in Tables VI, VII, and VIII.

As the results show, BN worked better than IN and WN when
applied to the pairwise conversion model especially in terms
of the MCD and LFC measures. However, naively applying it
directly to the many-to-many model did not work satisfactorily,
as expected in Subsection IV-B. This was also the case with
IN. Although CIN was found to perform poorly, CBN worked
significantly better.

3) Comparisons With Baseline Methods: Tables IX, X, and
XI show the average MCDs, LFCs, and LDRs obtained with
the proposed and baseline methods. As Tables IX and X
show, the pairwise versions of ConvS2S-VC and RNN-S2S-VC
performed comparably to each other and significantly better
than sprocket. The effect of the many-to-many extension was
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TABLE VIII
LDR DEVIATION (%) COMPARISON OF NORMALIZATION METHODS

TABLE IX
AVERAGE MCDS (DB) WITH 95% CONFIDENCE INTERVALS OBTAINED WITH THE BASELINE AND PROPOSED METHODS

TABLE X
LFCS OBTAINED WITH THE BASELINE AND PROPOSED METHODS

noticeable for both ConvS2S-VC and RNN-S2S-VC, revealing
the advantage of exploiting the training data of all the speakers.
The many-to-many ConvS2S-VC performed better than its RNN
counterpart. This demonstrates the effect of the convolutional
architecture. Since sprocket is designed to keep the speaking
rate and rhythm of input speech unchanged, the performance
gains over sprocket in terms of the LDR measure show how well
the competing methods are able to predict the speaking rate and

rhythm of target speech. As Table XI shows, both the pairwise
and many-to-many versions of RNN-S2S-VC and ConvS2S-VC
obtained LDR deviations closer to 0 than sprocket.

As mentioned earlier, one important advantage of the pro-
posed model over its RNN counterpart is that it can be trained
efficiently thanks to the nature of the convolutional architectures.
In fact, whereas the pairwise and many-to-many versions of the
RNN-based model took about 30 and 50 hours to train, the two
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TABLE XI
LDR DEVIATIONS (%) OBTAINED WITH THE BASELINE AND PROPOSED METHODS

TABLE XII
AVERAGE MCDS (DB), LFCS, AND LDR DEVIATIONS (%) OBTAINED WITH

THE ANY-TO-MANY SETTING UNDER A CLOSED-SET CONDITION

versions of the proposed model only took about 4 and 7 hours to
train under the current experimental settings. We implemented
all the algorithms in PyTorch and used a single Tesla V100 GPU
with a 32.0 GB memory for training each model.

4) Performance of Any-to-Many Setting: The modifications
described in Subsection IV-C make it possible to handle any-
to-many VC tasks. We evaluated how these modifications ac-
tually affected the performance. Table XII shows the average
MCDs, LFCs, and LDR deviations obtained with the any-to-
many setting under a closed-set condition, where the speaker
of input speech is unknown but is seen in the training data.
Whereas the pairwise and the default many-to-many versions
must be informed about the speaker of each input utterance at
test time, the any-to-many version requires no information. This
can be convenient in practical scenarios of VC applications, but
because of the disadvantage in the test condition, the problem
becomes more challenging. As the results show, the MCDs and
LFCs obtained with the any-to-many version were only slightly
worse than those obtained with the default many-to-many model
despite this disadvantage. It is also worth noting that they were
better than those obtained with sprocket and the pairwise ver-
sions of ConvS2S-VC and RNN-S2S, all of which were trained
under a speaker-dependent closed-set condition.

TABLE XIII
AVERAGE MCDS (DB), LFCS, AND LDR DEVIATIONS (%) OBTAINED WITH

THE ANY-TO-MANY SETTING UNDER AN OPEN-SET CONDITION

TABLE XIV
AVERAGE MCDS (DB), LFCS, AND LDR DEVIATIONS (%) OBTAINED

WITH SPROCKET UNDER A SPEAKER-DEPENDENT CONDITION

We further evaluated the performance of the any-to-many
model under an open-set condition where the speaker of the test
utterances is unseen in the training data. We used the utterances
of the speaker lnh (female) as the test input speech. The results
are shown in Table XIII. For comparison, Table XIV shows
results of sprocket performed on the same speaker pairs under a
speaker-dependent closed-set condition. As these results show,
the proposed model with the open-set any-to-many setting still
performed better than sprocket, even though sprocket had an
advantage in both the training and test conditions.

5) Performance With Real-Time System Settings: We eval-
uated the MCDs and LFCs obtained with the many-to-many
model under the real-time system setting described in Subsection
III-F. The results are shown in Table XV. As the results show, the
MCDs and LFCs were only slightly worse than those obtained
with the default setting despite the disadvantage of using causal
convolutions for all the networks and forcing attention matrices
to be exactly diagonal (instead of having them be predicted). A
comparison of Table XV with the results obtained with sprocket
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TABLE XV
MCDS AND LFCS OBTAINED WITH THE REAL-TIME SYSTEM SETTINGS

Fig. 6. Results of the MOS test for sound quality.

in Tables IX and X may also show how well the proposed method
can perform with the real-time system setting.

G. Subjective Listening Tests

We conducted mean opinion score (MOS) tests to compare
the sound quality and speaker similarity of the converted speech
samples obtained with the proposed and baseline methods.

With the sound quality test, we included the speech samples
synthesized in the same way as the proposed and baseline
methods (namely the WORLD synthesizer) using the acoustic
features directly extracted from real speech samples. Hence, the
scores of these samples are expected to show the upper limit
of the performance. We also included speech samples produced
using the pairwise and many-to-many versions of RNN-S2S-VC
and sprocket in the stimuli. Speech samples were presented in
random orders to eliminate bias as regards the order of the
stimuli. Ten listeners participated in our listening tests. Each
listener was presented 6 × 10 utterances and asked to evaluate
the naturalness by selecting 5: Excellent, 4: Good, 3: Fair, 2:
Poor, or 1: Bad for each utterance. The results are shown in
Fig. 6. As the results show, the pairwise ConvS2S-VC performed
slightly better than sprocket and significantly better than the two
versions of RNN-S2S-VC. The many-to-many ConvS2S-VC
performed better than all other methods, revealing the effect
of the many-to-many extension, and reached close to the upper
limit obtained with the analysis and synthesis technique.

Fig. 7. Results of the MOS test for speaker similarity.

In the speaker similarity test, each subject was given a con-
verted speech sample and a real speech sample of the corre-
sponding target speaker and was asked to evaluate how likely
they are to be produced by the same speaker by selecting 5:
Definitely, 4: Likely, 3: Fair, 2: Not very likely, or 1: Unlikely.
We used converted speech samples generated by the pairwise
and many-to-many versions of RNN-S2S-VC and sprocket for
comparison as with the sound quality test. Each listener was
presented 5×10 pairs of utterances. As the results in Fig. 7 show,
both the pairwise and many-to-many versions of ConvS2S-VC
performed better than all other methods.

H. Audio Examples of Various Conversion Tasks

Although we only considered a speaker identity conversion
task in the above experiments, ConvS2S-VC can also be ap-
plied to other tasks. Audio samples of ConvS2S-VC tested on
several tasks, including speaker identity conversion, emotional
expression conversion, electrolaryngeal speech enhancement,
and English accent conversion, are provided at [67]. From these
examples, we can expect that ConvS2S-VC can also perform
reasonably well in various tasks other than speaker identity
conversion.

VI. CONCLUSION

This paper proposed a voice conversion (VC) method based
on the ConvS2S learning framework. The proposed method
provides a natural way of converting the F0 contour, speaking
rate, and rhythm as well as the voice characteristics of input
speech and the flexibility of handling many-to-many, any-to-
many, and real-time VC tasks without relying on automatic
speech recognition (ASR) models and text annotations. Through
ablation studies, we demonstrated the individual effect of each
of the ideas introduced in the proposed method. Objective
and subjective evaluation experiments on a speaker identity
conversion task showed that the proposed method could per-
form better than baseline methods. Furthermore, audio exam-
ples showed the potential of the proposed method to perform
well in various tasks including emotional expression conver-
sion, electrolaryngeal speech enhancement, and English accent
conversion.
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