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SpEx: Multi-Scale Time Domain Speaker
Extraction Network
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Abstract—Speaker extraction aims to mimic humans’ selective
auditory attention by extracting a target speaker’s voice from a
multi-talker environment. It is common to perform the extrac-
tion in frequency-domain, and reconstruct the time-domain sig-
nal from the extracted magnitude and estimated phase spectra.
However, such an approach is adversely affected by the inherent
difficulty of phase estimation. Inspired by Conv-TasNet, we propose
a time-domain speaker extraction network (SpEx) that converts
the mixture speech into multi-scale embedding coefficients instead
of decomposing the speech signal into magnitude and phase spec-
tra. In this way, we avoid phase estimation. The SpEx network
consists of four network components, namely speaker encoder,
speech encoder, speaker extractor, and speech decoder. Specifically,
the speech encoder converts the mixture speech into multi-scale
embedding coefficients, the speaker encoder learns to represent the
target speaker with a speaker embedding. The speaker extractor
takes the multi-scale embedding coefficients and target speaker
embedding as input and estimates a receptive mask. Finally, the
speech decoder reconstructs the target speaker’s speech from the
masked embedding coefficients. We also propose a multi-task learn-
ing framework and a multi-scale embedding implementation. Ex-
perimental results show that the proposed SpEx achieves 37.3%,
37.7% and 15.0% relative improvements over the best baseline
in terms of signal-to-distortion ratio (SDR), scale-invariant SDR
(SI-SDR), and perceptual evaluation of speech quality (PESQ)
under an open evaluation condition.

Index Terms—Time-domain, speaker extraction, depth-wise
separable convolution, multi-scale, multi-task learning.
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I. INTRODUCTION

THE human brain is able to focus auditory attention on a
particular voice by masking out the acoustic background

in the presence of multiple talkers and background noises [1],
[2]. This is called cocktail party effect or cocktail party problem.

Infants as young as five months have developed the ability to
give special attention to their own names [3]. Behavioral studies
have shown that both the abilities to selectively attend to relevant
stimuli and to effectively ignore irrelevant stimuli are developed
progressively with increasing age across childhood [4]. These
remarkable abilities are implemented with accurate processing
of low-level stimulus attributes, segregation of auditory infor-
mation into coherent voices, and selectively attending to a voice
at the exclusion of others to facilitate higher level processing [5].

Humans’ ability of selective auditory attention has been
clearly shown using multi-electrode surface recordings from the
auditory cortex [6]. Attention is not a static, one way information
distillation process. It is believed to be a modulation of focus
between the bottom-up sensory-driven factors, such as a loud
explosion that would attract attention, and the top-down task
specific goal, such as a flight announcement of one’s interest in
a busy airport [7]. The modulation is done rapidly at real-time
in response to the input acoustic stimulus and the top-down
attention task in the cognitive process.

Recent physiological studies reveal that such attentional mod-
ulation takes place both locally by transforming the receptive
field properties of the individual neurons and globally through-
out the auditory cortex by rapid neural adaptation, or plasticity,
of the cortical circuits [7]. Computationally, the selective atten-
tion to an acoustic stimulusE(t) of interest can be described by a
spectro-temporal receptive field, M(t), which acts as a spectro-
temporal mask. The modulated response S(t) [7] to E(t) can
be expressed as the element-wise multiplication between the
stimulus and the mask, S(t) = M(t)⊗ E(t), where M(t) can
be seen as the modulation of the input stimulus by a top-down
voluntary focus, or top-down attention.

The top-down attention tasks vary with the application scenar-
ios, for example, the flight announcement from a busy airport, the
singing vocal from a music, or the speech of particular speaker
from a multi-talker acoustic environment. In this paper, we are
interested in how to pay a selective attention to a target speaker,
a task which we call speaker extraction. Speaker extraction is
highly demanded in real-world applications, such as, hearing
aids [8], speech recognition [9]–[11], speaker verification [12],
speaker diarization [13], and voice surveillance. A speaker
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independent speaker extraction system is expected to work for
any target speaker unseen during the training, that we call open
condition.

Building on the idea of spectro-temporal receptive field,
there have been attempts to perform speaker extraction in
frequency-domain through a spectro-temporal mask. The studies
on computational auditory scene analysis (CASA) [14]–[19],
non-negative matrix factorization (NMF) [20]–[25], and fac-
torial HMM-GMM [26]–[28], provide invaluable findings for
solving the cocktail party problem. With the advent of deep
learning, an idea was implemented to optimize the mask of
individual speakers with deep recurrent neural networks for
source separation of known speakers [29]. However, machines
have yet to achieve the same attention ability as humans in
the presence of background noise or interference of competing
speakers. The question is how to equip a network the ability to
estimate the mask at run-time for a new speaker that is unseen
by the system during training.

The studies on speaker-independent speech separation have
seen major progress recently such as deep clustering (DC)
[30]–[32], deep attractor network (DANet) [33], [34], permu-
tation invariant training (PIT) [35]–[38], and time-domain au-
dio separation network (TasNet) [39]–[42]. Speech separation
approaches mimic the human’s bottom-up sensory-driven atten-
tion. In general, speech separation methods require knowing or
estimating the number of speakers in the mixture in advance.
However, the number of speakers couldn’t always be known in
advance in real world applications. Furthermore, speech separa-
tion methods may suffer from what is called global permutation
ambiguity, where the separated voice for the same speaker
may not stick to the same output stream when crossing long
pauses or utterances because the separation is done utterance by
utterance [42].

Speaker extraction [43]–[51] represents one of the solutions
to the problem of unknown number of speakers and global
permutation ambiguity. The idea is to provide a reference speech
from a new speaker that is unseen during training. The system
then uses such reference speech to direct the attention to the
attended speaker, that emulates human’s top-down voluntary
focus, as shown in Fig. 1. Such speaker extraction technique
is particularly useful when the system is expected to respond
to a specific target speaker, for example, in speaker verifica-
tion [12], where the reference speech of the target speaker is
available through an enrolment process. In the prior work [43]–
[50], a common approach is to perform speaker extraction in
frequency-domain, and reconstruct the time-domain signal from
the extracted magnitude and estimated phase spectra. Others
have also studied complex ratio mask [52]–[54] in speech en-
hancement. The frequency-domain process relies on short-time
Fourier transform (STFT) that faces the windowing effect, and
phase estimation problem.

Inspired by Conv-TasNet [41], [42] for speech separation, we
propose a novel end-to-end network architecture for speaker ex-
traction (SpEx). SpEx is composed of four network components:
a speech encoder that encodes the time-domain mixture speech
into spectrum-like feature representation that we call embedding
coefficients, a speaker encoder that learns to represent the target

Fig. 1. Emulating humans’ ability of selective auditory attention with speaker
extraction network, where a reference speech of target speaker is used to direct
the top-down voluntary focus.

speaker with a speaker embedding, a speaker extractor that
estimates a receptive mask for the reference speech of the target
speaker, and a speech decoder that reconstructs the clean speech
for the target speaker by modulating the receptive mask with
the embedding coefficients of the mixture speech. The SpEx
architecture allows the joint training of all these four modules
to take place with a multi-task learning algorithm.

The proposed SpEx is different from our earlier work [51]
where the speaker embedding, i-vector [55], is not involved in
model training. It is also different from [43], [44], [46], [48]
where the speaker embedding is only trained to optimize the
signal reconstruction loss. We will further discuss the difference
between SpEx and TasNet in Section II-D. This paper makes the
following contributions:

1) We emulate human’s ability of selective auditory atten-
tion by mimicking the top-down voluntary focus using a
speaker encoder.

2) We propose a time-domain solution as an extension to
Conv-TasNet from speech separation to speaker extrac-
tion, that avoids the phase estimation in frequency-domain
approaches.

3) We propose a multi-task learning algorithm to jointly
optimize the four network components of SpEx with an
unified training process.

4) We propose a multi-scale encoding and decoding scheme
that captures multiple temporal resolutions for improved
voice quality.

The rest of the paper is organized as follows. We introduce the
novel time-domain speaker extraction network in Section II. In
Section III, we discuss the experimental setup. In Section IV, we
report the experimental results. Section V concludes the study.

II. TIME-DOMAIN SPEAKER EXTRACTION NETWORK

A speaker extraction network can be generally described in
Fig. 2. It consists of four network components. The speaker
encoder encodes the reference speech x(t) into a speaker em-
bedding, that is the feature representation of the target speaker.
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Fig. 2. The block diagram of a general speaker extraction network, that consists of a speaker encoder (in green), a speech encoder (in cyan), a speaker extractor
(in purple), and a speech decoder (in cyan). The network components in Fig. 2 and 3 share the same color codes for ease of cross reference. The speaker encoder
emulates the top-down voluntary focus of cognitive process with the target speaker as the attention task. In the prior work [51], the speaker encoder is independently
trained. In this paper, it is trained as part of the SpEx network.

The speech encoder encodes the time-domain mixture speech
y(t) into spectrum or spectrum-like feature representation. The
speaker extractor estimates a mask that only lets pass the target
speaker’s voice. Finally the speech decoder reconstructs the
time-domain speech signal from the masked spectrum of the
mixture speech. From the viewpoint of selective auditory atten-
tion, the masked spectrum is called the modulated response [7].

In a frequency-domain implementation, a STFT module
serves as the speech encoder that transforms time-domain speech
signal into spectrum, with magnitude and phase, while an inverse
STFT serves as the speech decoder. Similar to TasNet [39],
[42], we opt for a trainable neural network to serve as the
speech encoder in time-domain speaker extraction. The speaker
encoder is trained to convert time-domain speech signal into
spectrum-like embedding, also called embedding coefficients.
The proposed time-domain speaker extraction network (SpEx)
is depicted in Fig. 3 in detail.

Suppose that a signal y(t) of T samples is the mixture of
the target speaker’s voice s(t) and I interference voices or
background noise b(t). We have,

y(t) = s(t) +

I∑

i=1

b(t), t = 1, . . . , T (1)

where I might be any number of interference, and b(t) might be
either interference speech or background noise.

During the inference at run-time, given a mixture signal y(t)
and a reference speech x(t), the speaker extractor is expected
to estimate ŝ(t) that is close to s(t) subject to an optimization
criterion.

A. SpEx Architecture

1) Speaker Encoder: In text-independent speaker recogni-
tion, it is common that we represent the speech with a fixed
dimensional vector, such as i-vector [55], x-vector [56] and
other similar feature representations [57], that characterize the
voiceprint of a speaker. The model that converts speech samples
x(t) into feature representation is called speaker encoder g(·),

and the resulting feature representation g(x) is called speaker
embedding.

In [50] and [51], a speaker encoder is pre-trained indepen-
dently to extract a d-vector and i-vector for the target speaker. As
such speaker encoders are pre-trained independently of speaker
extraction systems, they are not optimized directly for speaker
extraction purposes. Another idea is to train speaker encoders
jointly with the speaker extraction system [43], [44], [46], [48]
with the loss (i.e., mean square error) between the extracted and
clean speeches. Such speaker encoders are trained to optimize
the signal reconstruction for speaker extraction, however, they
do not aim directly to characterize nor discriminate the speakers.

To benefit from the idea of speaker encoder [50], [51] and
task-oriented optimization [43], [44], [46], [48], we propose a
multi-task learning algorithm to incorporate the speaker encoder
as part of the SpEx network. The speaker encoder is jointly
optimized by weighting a cross-entropy loss for speaker classi-
fication and a signal reconstruction loss between the extracted
and clean speeches for speaker extraction. In practice, we use
a bidirectional long-short term memory (BLSTM) to encode
the context information of the reference speech into a speaker
embedding with a mean pooling layer. In the multi-task learning
process, the gradients from both the cross-entropy loss and the
signal reconstruction loss are back-propagated to optimize the
speaker encoder network. The details of the learning algorithm
will be discussed in Section II-B and II-C.

2) Speech Encoder: There have been studies on how to
address the phase estimation problem for frequency-domain
methods. One is to optimize the real and imaginary parts sep-
arately [52]–[54], another is to compensate the phase in the
training process [32], [58], [59]. Such attempts have achieved
limited successes due to the inexact phase estimation. Similar
to Conv-TasNet [41], [42], we opt for a time-domain approach,
that transforms the time-domain mixture signal directly into a
feature representation using a convolutional network.

In a frequency-domain approach, by applying Fourier trans-
form, a speech signal is decomposed into an alternate rep-
resentation, characterized by sines and cosines. Similarly, in
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Fig. 3. The block diagram of the proposed SpEx network, that consists of a speaker encoder (in green), a speech encoder (in cyan), a speaker extractor (in purple),
and a speech decoder (in cyan). The network components in Fig. 2 and 3 share the same color codes for ease of cross reference. ©R is an operator that concatenates
the speaker vector repeatedly to the intermediate representations of mixture speech along the channel dimension. ©X refers to the element-wise multiplication. The
“conv” and “deconv” are 1-D convolutional and de-convolutional operations. “relu” and “sigmoid” are the rectified linear unit (ReLU) and sigmoid functions.
The structure of the “tcn” block is similar to Conv-TasNet as shown in Fig. 4. The extracted signal s1 is chosen as the ultimate output of the system at run-time
inference.

a time-domain approach, we can consider the filters in the
convolutional layers as the basis functions in analogy to the
sines and cosines in the frequency-domain [60]. The feature
representations are considered as the embedding coefficients.
After all, the time-domain encoding is different from Fourier
transform in that a) the feature representations don’t handle the
real-and-imaginary parts separately; b) the basis functions are
not pre-defined as sines or cosines, but rather trainable from the
data.

The input mixture speech y(t) ∈ R1×T can be encoded to
embedding coefficients using a convolutional neural network in a
similar way as other end-to-end speech processing systems [42],
[61], [62]. Inspired by [63], [64], this paper proposes to encode
the mixture speech into multi-scale speech embeddings using
several parallel 1-D CNNs with N filters each for various tem-
poral resolutions. While the number of multiple scales can vary,
we only study three different time scales in this work, without
loss of generality. The filters of the parallel 1-D CNNs are of
different lengths, L1(short), L2(middle), L3(long) samples,
to cover different window sizes. The CNNs are followed by a
rectified linear unit (ReLU) activation function to produce the
speech embedding E = [E1E2E3] ∈ RK×3N .

To concatenate the embeddings across different time-scale,
we align them by keeping the same stride,L1/2, across different

scales. With the varying filter lengths, the encoder learns rep-
resentations in multiple scales, for example, the short window
has good resolution at high frequency and long window has
high resolution at low frequency. Without trading the temporal
resolution with frequency resolution like in STFT, we encode
the time-domain signal into three temporal resolutions in the
embedding E. The embedding coefficients Ei in each scale
consist of a sequence of vectors, Ei,k, which are defined as,

Ei,k = ReLU(yi,kUi), k = 1, . . . ,K, i = 1, 2, 3 (2)

where K = 2(T − L1)/L1 + 1, and yi,k ∈ R1×Li is the kth

segment of y(t) that has a window of Li samples shifting every
L1/2 samples. Ui ∈ RN×Li is also called the encoder basis.

3) Speaker Extractor: One of the earliest theories of atten-
tion is Broadbent’s filter model [65]. In psychoacoustic experi-
ments, the stimuli are first processed according to their physical
properties such as color, loudness, and pitch. The selective
filters of listeners then allow for certain stimuli to pass through
for further processing while other stimuli are rejected. The
selective filter can be modelled by a mask that has been well
studied in speech separation literature, such as ideal binary
mask (IBM) [66], ideal ratio mask (IRM) [67], ideal amplitude
mask (IAM) [68], wiener-filter like mask (WFM) [69] and phase
sensitive mask (PSM) [69].



1374 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

In the SpEx framework, the speaker embedding describes the
physical properties of the auditory source, a target speaker in
this case, as the focus of the attention. The speaker extractor,
as shown in Fig. 3, is conditioned on the speaker embedding
both during training and at run-time inference to estimate a filter
mask, that is referred to as the receptive mask. We obtain the
modulated response Si [7] for each scale i = 1, 2, 3 of the target
speaker by applying the receptive mask Mi on the embedding
coefficients Ei of the mixture signal in each scale,

Si = Mi ⊗ Ei

= f(E, g(x))⊗ Ei (3)

where ⊗ is an operator for element-wise multiplication. E is the
multi-scale embedding coefficients. f(·) and g(·) are the func-
tions representing the speaker extractor and speaker encoder.
x(t) is the reference speech of the target speaker to form an
attention.

Specifically, the multi-scale embedding coefficients E are
firstly normalized by its mean and variance on channel dimen-
sion scaled by the trainable bias and gain parameters. Then, a
1-D CNN with 1× 1 kernel size, that is called 1× 1 CNN, is
applied. The 1× 1 CNN with O filters is performed to adjust
the number of channels for the inputs and residual path of the
subsequent blocks of temporal convolutional network (TCN).
In this way, we have the multi-scale embedding coefficients as
Ẽ ∈ RK×O. At the same time, the speaker embedding vector
g(x) ∈ R1×D from the speaker encoder is concatenated repeat-
edly to Ẽ. The multi-scale embedding coefficients with speaker
information are then defined as Ê ∈ RK×(O+D). Similarly, the
speaker embedding vector is also concatenated repeatedly with
the representations along the subsequent TCN blocks as shown
in Fig. 3.

Similar to Conv-TasNet, we stack the TCN blocks by expo-
nentially increasing the dilation factor to capture the long-range
dependency of the speech signal. Each TCN block, as shown
in Fig. 4, applies a dilated depth-wise separable convolution to
reduce the number of parameters. The dilated depth-wise sep-
arable convolution consists of a dilated depth-wise convolution
(“d-conv” in Fig. 4) and a following 1× 1 CNN with O filters.
Since the number of input channels of the TCN block may be
different from the number of the filters of the dilated depth-wise
convolution, a 1× 1 CNN with P filters is applied in advance to
turn the number of input channels to P . The dilated depth-wise
convolution has a kernel size of 1×Q, a number of P filters
and a dilation factor of 2(B−1). B is the number of TCN blocks
in a stack. Such a stack is repeated for R times as shown in the
speaker extractor in Fig. 3.

To apply the mask Mi on Ei, Mi must have the same di-
mensions as Ei. As the output channels O from the last TCN
block may be different from the channels N of the encoded
representations Ei ∈ RK×N , we apply one 1× 1 CNN to trans-
form the dimension of the output channels from the last TCN
block to be same as the encoded representations Ei ∈ RK×N .
The elements of the mask Mi ∈ RK×N are estimated through
a Sigmoid activation function to keep the range within [0,1].
Finally, the masked embedding coefficients Si ∈ RK×N of the

Fig. 4. The “tcn” block is a temporal convolutional network similar to that in
Conv-TasNet. ©+ denotes the residual connection. The “d-conv” is depth-wise
convolution which forms a depth-wise separable convolution together with the
last “1x1 conv”. “prelu” is the parametric rectified linear unit (PReLU). “g-norm’
is the mean and variance of both time frames and channels scaled by the trainable
bias and gain parameters [42].

target speaker, that are also called the modulated responses [7],
are estimated by Eq. 3.

4) Speech Decoder: The decoder reconstructs the time-
domain speech signal from the modulated responses. Embed-
ding coefficients at each scale lead to a modulated response.
We reconstruct the multi-scale modulated response into time-
domain signals (s1, s2, s3) with the decoder bases V1 ∈ RN×L1 ,
V2 ∈ RN×L2 , and V3 ∈ RN×L3 through a de-convolutional pro-
cess. The decoder basis consists of the learned filters during
training just as a Fourier basis that is composed of sine and
cosine functions.

B. Multi-Scale Encoding and Decoding

Speech has a rich temporal structure over multiple time scales
presenting phonemic, prosodic and linguistic content [64]. It
was shown that speech analysis of multiple temporal resolu-
tions leads to improved speech recognition performance [70].
As shown in Fig. 3, we implement multi-scale encoding in
speech encoder and speaker extractor. The speaker encoder
first encodes the mixture signal into a multi-scale embedding
coefficients E = [E1E2E3]. The speaker extractor then esti-
mates multi-scale masks M1,M2,M3, and generates the multi-
scale modulated responses S1, S2, S3. We finally reconstruct
the multi-scale modulated responses into time-domain signals
s1, s2, s3 at multiple scales with the speaker decoder.

During training, we calculate a multi-scale scale-invariant
signal-to-distortion ratio (SI-SDR) loss, defined as J1, that aims
to minimize the signal reconstruction error,

J1 = −[(1− α− β)ρ(s1, s) + αρ(s2, s) + βρ(s3, s)] (4)

where α and β are the weights. s1, s2 and s3 are the signals
reconstructed from the modulated responses S1, S2 and S3,
respectively. s is the clean speech signal serving as the training
target. We use the SI-SDR loss [71], denoted as ρ(·, ·), as the
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measure of reconstruction error.

ρ(ŝ, s) = 10 log10

⎛

⎝ || 〈ŝ,s〉〈s,s〉s||2

|| 〈ŝ,s〉〈s,s〉s− ŝ||2

⎞

⎠ (5)

where ŝ and s are the extracted and target signals of the target
speaker, respectively. 〈·, ·〉 is the inner product. To ensure scale
invariance, the signals ŝ and s are normalized to zero-mean prior
to the SI-SDR calculation.

The calculation of multi-scale SI-SDR J1 loss is required
only during training and not at run-time inference. At run-time
inference, we evaluate the quality of the signals reconstructed at
multiple scales individually, i.e. s1, s2, s3, and collectively as a
weighted summation sw = (1 − α − β)s1 + αs2 + βs3.

C. Multi-Task Learning

We propose to train the speaker encoder together with three
other network components as a whole. The speech encoder,
speaker extractor, and speech decoder are optimized to mini-
mize the multi-scale SI-SDR loss, while the speaker encoder is
optimized with two objective functions, the multi-scale SI-SDR
loss and the cross-entropy loss for speaker classification.

The cross-entropy loss J2 for speaker classification is defined
as,

J2 = −
Ns∑

i=1

pi log(p̂i) (6)

where Ns is the number of speakers in the speaker classification
task. pi is the true class label for speaker i and p̂i is the predicted
speaker probability.

We combine J1 with J2 to optimize the speaker encoder
network in a multi-task learning, as J1 and J2 represent two
different optimization tasks. With the multi-task learning, the
speaker encoder network is trained not only to characterize the
unique properties of the target speaker, but also to contribute
to the overall speaker extraction objective. The total loss J is a
weighted sum of J1 and J2,

J = (1− γ)J1 + γJ2 (7)

D. Relationship With TasNet

SpEx network can be seen as an extension to Conv-
TasNet [41], [42] from speech separation to speaker extraction
applications. A comparison with TasNet framework will help
the understanding of SpEx.

BLSTM-TasNet [39], [40] and Conv-TasNet [41], [42] rep-
resent a successful attempt to address the phase estimation
problem in frequency-domain speech separation. The techniques
employ an encoder-separator-decoder pipeline, and learn train-
able basis functions with a 1-D convolution and de-convolution
instead of Fourier series consisting of sine and cosine functions.
Speech separation is performed by estimating a mask for each
speaker in the mixture using either a BLSTM in BLSTM-TasNet
or a fully convolutional neural network (CNN) in Conv-TasNet.
Conv-TasNet uses a TCN architecture together with a dilated

separable depthwise convolution that represents an effective
time-domain implementation.

The idea of SpEx is similar to that of Conv-TasNet in the sense
that the speaker extractor of SpEx is based on the same TCN
architecture [41], and the encoder-extractor-decoder pipeline
is inspired by the encoder-separator-decoder pipeline of Conv-
TasNet. However, SpEx is also different from Conv-TasNet in
the following ways:

1) Top-Down Voluntary Focus: SpEx features a speaker en-
coder as the top-down voluntary focus in selective auditory
attention. It learns to single out one voice from the multi-talker
mixture by modulating the input stimulus with a top-down atten-
tion. However, Conv-TasNet doesn’t employ such a mechanism.
It learns to segregate two competing voices by estimating two
filtering masks. Just like other speaker extraction techniques,
SpEx addresses the issues of global permutation ambiguity and
unknown number of speakers that we face in speech separation.

2) Multi-Task Learning: As Conv-TasNet doesn’t involve a
speaker encoder, it is trained only to optimize the reconstruction
errors, equivalent to the SI-SDR loss in this paper. SpEx adopts
a multi-task learning algorithm to jointly optimize all network
components, with a cross-entropy loss for speaker classification
and a SI-SDR loss for signal reconstruction. The speaker en-
coder is optimized by the total loss defined in Eq. 7. Such a
total loss is different from the prior works, where the speaker
extraction systems train the speaker encoder with either speaker
classification loss [50], [51], or signal reconstruction loss [43],
[44], [46], [48] as a single task.

3) Multi-Scale Encoding and Decoding: The TCN architec-
ture in Conv-TasNet works well for single time scale embed-
ding coefficients [41], [42]. Multi-scale encoding is effective in
deep neural networks approach to speech recognition [64]. We
believe that, if the TCN architecture is trained with multi-scale
embedding coefficients, it learns to reconstruct the rich temporal
structure of speech in greater detail. This will be an interesting
study of the TCN architecture.

III. EXPERIMENTAL SETUP

A. Database

We simulated a two-speaker (WSJ0-2mix-extr) and a three-
speaker (WSJ0-3mix-extr) mixture databases.1 according to
the well-known WSJ0-2mix and WSJ0-3mix [30]. The speech
signals are sampled at a sampling rate of 8 kHz based on the
WSJ0 corpus [72]. Each database has three datasets: training
set (20,000 utterances), development set (5,000 utterances), and
test set (3,000 utterances).

Same as [30], the training set and development set are gen-
erated by randomly selecting two utterances for two-speaker

1Unlike in speech separation, speaker extraction technique requires a refer-
ence speaker to supervise the voluntary attention. We re-organize the well-known
WSJ0-2mix and WSJ0-3mix with “max” data structure by selecting the first
chosen speaker as the target speaker, while keeping the mixture speech the same.
We rename the simulated database in this work to differentiate from the orig-
inal WSJ0-2mix and WSJ0-3mix database. The simulating codes and the best
baseline are available at: [Online]. Available: https://github.com/xuchenglin28/
speaker_extraction

[Online]. ignorespaces Available: ignorespaces https://github.com/xuchenglin28/speaker_extraction
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database, and three utterances for three-speaker database, from
50 male and 51 female speakers in the WSJ0 “si_tr_s” set at
various signal-to-noise ratio (SNR) between 0dB and 5dB. The
training set is used for the training of network components, while
the development set is for optimizing system configurations.

Similarly, the utterances from 10 male and 8 female speakers
in the WSJ0 “si_dt_05” set and “si_et_05” set are randomly
selected to create the test set. Since the speakers in the test set
are excluded from the training and development sets, and the
reference speech is not used in any of the speech mixing, the
test set is developed for speaker independent evaluation, also
called open condition evaluation.

To include both overlapping and non-overlapping speech in
the dataset, we keep the maximum length of the mixing ut-
terances as the length of the mixture. The speaker of the first
randomly selected utterance is regarded as the target speaker.
At run-time, the speaker extraction process is conditioned on a
reference speech from the target speaker.

As the reference speech is randomly selected, the duration
of the reference speech varies in training, development and test
sets. We call this experimental condition as “Random”. In the
test set, the average duration of the reference speech is 7.3 s with
a standard deviation of 2.7 s, a maximum length of 19.6 s, and a
minimum length of 1.6 s. The experiments are conducted under
this “Random” condition if not stated otherwise.

In two-speaker database, we also group the reference speech
for the test set into four duration groups, i.e. 7.5 s, 15 s, 30 s
and 60 s, for the experiment on duration of reference speech, as
reported in Section IV-A8.

While most of the comparative experiments are conducted
on the two-speaker database, we also extend the experiments
beyond two-speaker mixture. A three-speaker database is con-
structed in a similar way as the two-speaker database, except
that the duration of the reference speech in the test set is kept
as 15 s and 60 s. In the experiment for three-speaker mixture,
we train the SpEx network under three conditions, two-speaker
mixture only, three-speaker mixture only, and two-speaker and
three-speaker mixture in combination. The trained SpEx systems
are then evaluated on the two-speaker and three-speaker mixture
test set, respectively.

The network is optimized by the Adam algorithm [73]. The
learning rate begins with 0.001 and halves when the loss in-
creases on the development set for at least 3 epochs. Early
stopping scheme is applied when the loss increased on the
development set for 10 epochs. The utterances in the training and
development set are broken into 4s segments,2 and the minibatch
size is set to 10.

B. Speaker Encoder

The speaker encoder in Fig. 2 translates the reference speech
of the target speech into a top-down voluntary focus that the
speaker extractor network can act upon. In Fig. 3, we propose
a detailed implementation, that is to repeatedly concatenate the
speaker embedding vector with the inputs to TCN blocks. In this

2We discard the segments less than 4 s or containing only silence for the target
speech.

paper, we advocate the idea to incorporate the speaker encoder
network as an integral part of the SpEx architecture during
training and at run-time inference. As a contrastive experiment,
we would like to know how such speaker encoder performs
differently from a traditional i-vector extractor [55]. We choose
i-vector because it has been one of the most effective techniques
for text-independent speaker characterization.

1) I-Vector Extractor: An i-vector extractor converts a
speech sample into a low-dimension vector. We first train the
UBM and total variability matrix with the single speaker (clean)
speech from the training and development sets. The acoustic fea-
tures include 19 MFCCs together with energy, and their 1st- and
2nd-derivatives, followed by cepstral mean normalization [74]
with a window size of 3 seconds. The 60-dimensional acoustic
features are extracted from a window length of 25 ms with a
shift of 10 ms. A Hamming window is applied. An energy based
voice activity detection method is used to remove the silence
frames. The i-vector extractor is based on a gender-independent
UBM with 512 mixtures and a total variability matrix with 400
total factors.

2) Speaker Encoder: We use the same acoustic features as
in the training of i-vector extractor. To leverage the temporal
information of the whole reference speech, a BLSTM with 256
cells in each forward and backward direction is used to capture
the speaker information from the acoustic features. A non-linear
layer with ReLU activation function with 256 nodes is followed
by the BLSTM. Another linear layer with 400 nodes followed
by a mean pooling is applied to extract the speaker embedding
vector, that has the same dimension as the i-vector for fair
comparison.

C. Speaker Extraction Pipeline

The speaker extraction pipeline includes speech encoder,
speaker extractor, and speech decoder. The parameters that are
quoted in this section have been tuned empirically for the best
performance on the development set.

1) Speech Encoder: In the SpEx implementation detailed
in Fig. 3, the speech encoder encodes the mixture speech
input Y ∈ R1×T into embedding coefficients by three paral-
lel 1-D convolution of N(= 256) filters each, followed by
a ReLU activation function. To learn multi-scale embeddings
with different time resolutions, the three 1-D convolutions
had filter lengths of L1(short), L2(middle), L3(long) with
a stride of L1/2 samples. L1, L2, L3 windows are tuned
to cover 20(2.5 ms), 80(10 ms), 160(20 ms) samples in this
work.

2) Speaker Extractor: As shown in Fig. 3, a mean and vari-
ance normalization with trainable gain and bias parameters
is applied to the embedding coefficients E ∈ RK×3N on the
channel dimension, whereK is equal to 2(T − L1)/L1 + 1. A 1
× 1 convolution linearly transformed the normalized embedding
coefficients E to the representations Ẽ ∈ RK×O withO(=256)
channels, which determined the number of channels in the input
and residual path of the subsequent 1× 1 CNN. The number of
input channels P and the kernel size 1×Q of each depthwise
convolution are set to 512 and 1× 3. B(=8) TCN blocks are
formed as a stack and repeated for R(=4) times.
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3) Speech Decoder: The speech decoder in Fig. 3 recon-
structs the time-domain speech signal (s1, s2, s3) from the mod-
ulated responses (S1, S2, S3) through a de-convolution process.
The filter in the de-convolution has the same configuration as
that in the speech encoder, where the number of filters (N ) is
equal to 256 and the filter lengths (L1, L2, L3) are tuned to be
20(2.5 ms), 80(10 ms), 160(20 ms) samples.

D. Reference Baselines

We select 4 systems that represent the recent advances in
single channel target speaker extraction as the baselines, and
implement all of them for benchmarking. The baseline systems
belong to the Speaker Beam Frontend (SBF) [44] family, which
demonstrates state-of-the-art performance of frequency-domain
speaker extraction techniques on databases that are similar to this
paper.
� SBF-IBM [44]: This architecture adopts a speaker adap-

tation layer in a context adaptive deep neural network
(CADNN) [75] to track the target speaker from the input
mixture in the speaker extraction. The weights in the adap-
tation layer are learned from a target speaker’s enrolled
speech in the speaker embedding network. IBM is used
to calculate the mask approximation loss as the objective
function.

� SBF-MSAL [44]: This architecture replaces the IBM ob-
jective function in SBF-IBM with a magnitude spectrum
approximation loss (MSAL) to directly minimize the signal
reconstruction error. It is reported that SBF-MSAL outper-
forms SBF-IBM.

� SBF-MTSAL [46]: This architecture replaces the IBM
objective function in SBF-IBM with a magnitude and
temporal spectrum approximation loss (MTSAL), in which
a temporal constraint is incorporated to ensure the tem-
poral continuity of the output signal. It is reported that
SBF-MTSAL outperforms SBF-MSAL.

� SBF-MTSAL-Concat [46]: This architecture adopts a
BLSTM as the speaker encoder to capture long range
speaker characteristics. While the speaker encoder of SBF-
MTSAL-Concat is similar to that of SpEx, it is trained only
using the magnitude and temporal spectrum approximation
loss without multi-task learning. No speaker classifica-
tion loss is investigated. Nonetheless, it is reported that
SBF-MTSAL-Concat outperforms all the above three SBF
variations.

E. Evaluation Metrics

We follow the same evaluation metrics in the speaker ex-
traction literature [46] for ease of comparison. They are the
signal-to-distortion ratio (SDR) [76] and perceptual evaluation
of speech quality (PESQ) [77]. We also include SI-SDR [71],
because SI-SDR is more suitable and robust for single channel
speech separation or extraction than SDR. Since the speaker
extraction aims to improve the speech quality and intelligibility,
the subjective evaluation of A/B preference test is also conducted
to evaluate the perceptual quality of the extracted speech by
humans.

IV. RESULTS

We report the results of 10 experiments in two groups. The
first 9 experiments are carried out on the two-speaker mixture
database, while the last experiment is on the three-speaker
mixture database.

A. Experiments on Two-Speaker Mixture

1) Frequency-Domain vs. Time-Domain: In this experiment,
we would like to compare between two processing paradigms,
the frequency-domain and the proposed time-domain methods.
For frequency-domain implementation, we adopt STFT and
inverse STFT as the speech encoder and decoder in Fig. 2
respectively. For time-domain implementation, we adopt the
speech encoder and decoder proposed in Section II. In both
systems, we adopt i-vector extractor as the speaker encoder. As
the i-vector extractor is trained independently from the speaker
extraction pipeline, this comparison is focused on frequency-
domain and time-domain speaker extraction pipeline. As the
frequency-domain method uses a fixed short-time window of
256 samples, the time-domain systems are also implemented
with a single short-time window, or single scale as opposed to
multi-scale as discussed in Section II-A, for fair comparison.

We observe from Table I, that the time-domain speaker
extraction systems (System 2-13) consistently outperform the
frequency-domain counterpart (System 1), especially when
time-domain systems have fewer than or roughly the same
number of parameters as the frequency-domain system.

The results clearly show the advantage of the trainable speech
encoder and decoder over the static STFT and inverse STFT in
the frequency-domain. We consider that the better performance
is attributed to the use of embedding coefficients in place of
magnitude and phase spectra in the process, that avoids the need
of phase estimation.

2) Single-Scale vs. Multi-Scale: In this experiment, we
would like to validate the idea of multi-scale speech embedding.
We continue to use i-vector extractor as the speaker encoder.
From the experiments reported in Table I, we observe that
systems of more parameters perform better. By varying the
filter length of the convolution layer in the speech encoder from
System 9-13, we observe that the change of time-frequency
resolution of the embedding coefficients has an impact on the
system performance. The best SDR is achieved as 13.1 dB
with a filter length of 20 samples (2.5 ms). The best SI-SDR
is 12.4 dB with the filter length of 20 samples (2.5 ms) and 80
samples (10 ms). The best PESQ is 2.94 with a filter length of
256 samples (32 ms). This finding is similar to that in speech
recognition experiment [64].

To benefit from the different time-frequency resolutions, we
propose to have three 1-D CNNs with different filter length,
short, middle, and long, in the speech encoder. The speaker
extractor and speech decoder are also extended to be compatible
for the multi-scale speech embedding, as shown in Fig. 3. The
speaker extractor estimates the mask for the target speaker at
each scale. The speech decoder reconstructs the time-domain
signal for each scale with the modulated response.
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TABLE I
SDR (DB), SI-SDR(DB) AND PESQ IN A COMPARATIVE STUDY BETWEEN FREQUENCY-DOMAIN AND TIME-DOMAIN UNDER OPEN CONDITION. L1 IS THE FILTER

LENGTH OF THE CONVOLUTION IN THE SPEECH ENCODER FOR SINGLE SCALE IN THIS EXPERIMENT. N, O, P, Q, B, R ARE THE PARAMETERS OF THE EXTRACTOR

DEFINED IN SECTION II-A3. IN THE FREQUENCY-DOMAIN IMPLEMENTATION, WE USE THE PHASE SPECTRUM FROM THE ORIGINAL MIXTURE SPEECH TO

RECONSTRUCT THE SPEECH SIGNAL. “#PARAS” INDICATES THE TOTAL NUMBER OF PARAMETERS IN THE NETWORK. I-VECTOR IS USED AS FEATURE

REPRESENTATION OF REFERENCE SPEAKER

TABLE II
SDR (DB), SI-SDR (DB) AND PESQ IN A COMPARATIVE STUDY BETWEEN SINGLE-SCALE AND MULTI-SCALE UNDER OPEN CONDITION. L1, L2 AND L3 ARE

THE VARIOUS FILTER LENGTHS OF CONVOLUTIONS IN THE SPEECH ENCODER. N (256), O (256), P (512), Q (3), B (8), R (4) ARE THE PARAMETERS OF THE

EXTRACTOR DEFINED IN SECTION II-A3. α AND β ARE THE WEIGHTS DEFINED IN THE MULTI-SCALE SI-SDR LOSS J1 IN EQ. 4. “#PARAS” INDICATES THE TOTAL

NUMBER OF PARAMETERS IN THE NETWORK. sw = (1 − α-β)s1 + αs2 + βs3 DENOTES THE WEIGHTED SUMMATION OF THE RECONSTRUCTED SIGNAL. THE

NUMBER OF PARAMETERS DURING EVALUATION IS LESS THAN THAT OF TRAINING WHEN ONLY PICKING s1 AS THE RECONSTRUCTED SIGNAL. I-VECTOR IS USED

AS FEATURE REPRESENTATION OF REFERENCE SPEAKER

We explore different system configurations that are summa-
rized in System 14–24 of Table II. Comparison between System
9 and System 14 shows that the multi-scale speech encoder
achieves better performance than single-scale speech encoder.
If the speech decoder has multiple outputs with the multi-scale
speech embeddings, we could optimize the SpEx network with
a weighted multi-scale SI-SDR loss, as defined in Eq. 4. With
multi-scale speech encoder and decoder, the best performances
of the SDR, SI-SDR and PESQ are achieved at 13.9 dB, 13.3
dB and 3.00 when the weights α and β in Eq. 4 are tuned
to be 0.10 and 0.10. Comparing with the single-scale system,
the performance of the multi-scale SpEx improves the SDR of
6.1%, the SI-SDR of 7.3%, and the PESQ of 2.7%. Comparisons
between System 16 and System 22–24 present that the best
performance is achieved by picking the output stream s1 with
short window (high temporal resolution). By only picking the
reconstructed signal s1 instead of a weighted summation (sw =
(1 − α −β)s1 + αs2 + βs3), the number of parameters during
evaluation is less than that during training.

3) I-Vector vs. Speaker Embedding: We have observed that
the i-vector is effective in speaker characterization for both

single-scale and multi-scale speaker extraction networks as re-
ported in Tables I and II. We note that the i-vector is extracted
independently of the speaker extraction network. In this exper-
iment, we would like to replace the i-vector extractor with the
speaker encoder. The speaker encoder is trained jointly with
other components of the network using both the cross-entropy
loss for speaker classification and the multi-scale SI-SDR loss
for speaker extraction as System 25 to 31 in Table III.

We obtain the best SDR and SI-SDR of 15.1dB and 14.6dB
when the weight for the sub-loss of the cross-entropy is tuned to
be 0.2. Comparing with the i-vector based system (System 16 in
Table II), we observe that the joint optimization of the speaker
encoder and the speaker extraction pipeline (System 27 in
Table III) with multi-task learning achieves relative improve-
ments of 8.6% in terms of SDR, 9.8% in terms of SI-SDR, 4.7%
in terms of PESQ. As the SpEx network with joint optimization
(Fig. 3) achieves the best performance, we use the configuration
hereafter.

4) Benchmark Against the Baselines: We compare the SpEx
network as illustrated in Fig. 3 with four competitive base-
lines [44], [46]. As can be seen in Table IV, the SpEx network
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TABLE III
SDR (DB), SI-SDR(DB) AND PESQ IN A COMPARATIVE STUDY BETWEEN I-VECTOR AND SPEAKER EMBEDDING AS FEATURE REPRESENTATIONS OF REFERENCE

SPEAKER UNDER OPEN CONDITION. L1 (20), L2 (80) AND L3 (160) ARE THE VARIOUS FILTER LENGTHS OF CONVOLUTIONS IN THE SPEECH ENCODER. N (256),
O (256), P (512), Q (3), B (8), R (4) ARE THE PARAMETERS OF THE EXTRACTOR DEFINED IN SECTION II-A3. α AND β ARE THE WEIGHTS DEFINED IN THE

MULTI-SCALE SI-SDR LOSS J1 IN EQ. 4. γ IS THE WEIGHT OF MULTI-TASK LEARNING DEFINED IN EQ. 7. “MTL” INDICATES WHETHER THE MULTI-TASK

LEARNING IS APPLIED. “#PARAS” INDICATES THE TOTAL NUMBER OF PARAMETERS IN THE NETWORK. sw = (1 − α − β)s1 + αs2 + βs3 DENOTES THE

WEIGHTED SUMMATION OF THE RECONSTRUCTED SIGNAL. THE NUMBER OF PARAMETERS DURING EVALUATION IS LESS THAN TRAINING WHEN ONLY PICKING

s1 AS THE OUTPUT

TABLE IV
SDR (DB), SI-SDR(DB) AND PESQ OF EXTRACTED SPEECH FOR THE

PROPOSED SPEX NETWORK AND OTHER 4 COMPETITIVE BASELINE SYSTEMS

UNDER OPEN CONDITION. “MIXTURE” REFERS TO ORIGINAL INPUT MIXTURE

WITH ZERO EFFORT. “#PARAS” MEANS THE NUMBER OF PARAMETERS

OF THE MODEL

shows 37.3%, 37.7% and 15.0% relative improvements over the
best baseline, SBF-MTSAL-Concat, in terms of SDR, SI-SDR
and PESQ under the open condition.

The time-domain speaker extraction architecture has shown
three clear advantages over its frequency-domain counterparts.

1) Because the SpEx network doesn’t decompose the speech
signal into magnitude and phase spectra, it avoids inexact
phase estimation.

2) The SpEx network benefits from the long-range depen-
dency of the speech signal captured by the stacked di-
lated depth-wise separable convolution with a manageable
number of parameters. Without the recurrent connection,
the SpEx method can be easily parallelized for fast training
and inference.

3) The SpEx network takes advantage of multi-scale speech
embedding to have a good coverage of time-frequency
resolution in the encoding, which doesn’t have to trade
time resolution with frequency resolution like in short-
time frequency analysis.

As an example, we illustrate the speaker extraction from
a female-female mixture speech by the competitive baseline
systems and the proposed SpEx network in Fig. 5. From the
log magnitude spectrum, we observe that the proposed SpEx
network outperforms other baseline systems in terms of the re-
covered signal quality and purification. Some listening examples
are available online,3 of which the first example is the audio
illustrated in Fig. 5.

3[Online]. Available: https://xuchenglin28.github.io/files/taslp2019/index.
html

Fig. 5. The log magnitude spectra of a female-female mixture, its extracted
speech for target speaker by the four baselines, the proposed SpEx network, and
the clean speech from target speaker.

5) Different Gender vs. Same Gender: Generally speaking,
speakers of the same gender sound closer than those of different
gender. We further report the results of the experiments in
Table IV for different and same gender mixture separately. We
observe in Table V that the performance of different gender
mixture is always better than the same gender. This has been

[Online]. ignorespaces Available: ignorespaces https://xuchenglin28.github.io/files/taslp2019/index.html
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TABLE V
SDR (DB) AND PESQ IN A COMPARATIVE STUDY OF DIFFERENT AND SAME

GENDER MIXTURE UNDER OPEN CONDITION

TABLE VI
SDR (DB) OF EXTRACTED SPEECH WHEN WE EVALUATE THE SAME SPEX

SYSTEM ON VARYING DURATION OF REFERENCE SPEECH OF TARGET SPEAKER

AT [0, 1) DB, [1, 3) DB, [3, 5] DB

observed in human listening test as reported by Treisman [78]
in a behavioural study. It was found that difference in voice
(i.e., male versus female) allows more efficient rejection of the
irrelevant signal when messages are mixed and played to both
ears (i.e., diotic).

From Table V, we also observe that the proposed SpEx
network achieves 34.9% and 40.9% relative SDR improvement,
and 15.2% and 15.0% relative PESQ improvement over the best
baseline, SBF-MTSAL-Concat, for different and same gender
conditions.

6) Mixture With Different SNR: It is of interest to investigate
how the proposed SpEx network performs for mixture speech
of different SNR, where we consider the target speech as the
foreground and the interference as the background noise. We
train a SpEx network on the dataset that has the SNR range of
[0–5] as described in Section III-A. The same SpEx network has
been reported in Tables IV and V.

We divide the test set into 3 SNR groups, namely [0, 1) dB,
[1, 3) dB and [3, 5] dB. The results are summarized in Table VI.
Without surprise, test data of higher SNR performs better than
that of lower SNR. We also observe that the proposed SpEx
network achieves 52.9%, 39.6% and 30.4% relative SDR im-
provement over the best baseline system, SBF-MTSAL-Concat,
for [0, 1) dB, [1, 3) dB and [3, 5] dB SNR group respectively.
Since the SNR of the simulated database is limited from 0 dB
to 5 dB, in the future work, we will investigate various SNR
ranges, i.e., from −10 dB to 20 dB.

7) Subjective Evaluation: Since the SBF-MTSAL-Concat
represented the best baseline performance in the objective eval-
uation, we only conducted an A/B preference test between the
proposed SpEx network and the SBF-MTSAL-Concat baseline
to evaluate the signal quality and intelligibility in a listening test.
We randomly selected 20 pairs of listening examples, including

Fig. 6. The A/B preference test result of the extracted target speaker’s voice
between the proposed SpEx method and the best SBF-MTSAL-Concat baseline.
We conducted t-test using a significance level ofp < 0.05which is depicted with
the error bars.

TABLE VII
SDR (DB), SI-SDR(DB) AND PESQ IN A COMPARATIVE STUDY OF DIFFERENT

DURATION OF THE REFERENCE SPEECH. “RANDOM” INDICATES THAT THE

DURATION OF THE REFERENCE SPEECH IS RANDOM

the original target speaker’s reference and two extracted signals
for the target speaker by the proposed SpEx network and the
best baseline system. We invited a group of 13 subjects to select
their preference according to the quality and intelligibility. The
listeners were asked to pay special attention to the amount of
perceived distortion and interference from background. For each
test, the subject listened to three audios in a group, the reference
speech was firstly played, followed by the extracted speech in
random order from the two systems. The subject didn’t have the
information about which speech stemmed from which system.

We observe from Fig. 6 that the listeners clearly favor the
proposed SpEx network with a preference score of 73.5% as
opposed to that of 11.9% for the best SBF-MTSAL-Concat
system. Most listeners significantly favor the SpEx network with
a significance level of p < 0.05, because of lower distortion and
inter-speaker interference than the best baseline.

8) Duration of the Reference Speech: As speaker extraction
relies on the reference speech of the target speaker to develop the
top-down voluntary focus, the duration of the reference speech
plays a role in the process. We further look into the impact of
the duration on speaker extraction performance. In the afore-
mentioned experiments, the duration of the reference speech in
training, development and test sets is at “Random” as described
in Section III-A. Now let’s compare the “Random” setting with
different duration groups (7.5 s, 15 s, 30 s and 60 s) in the test
set. The experimental results are summarized in Table VII.

Since the average duration of the reference speech in the
“Random” condition of the test set is 7.3s, we firstly evaluate
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TABLE VIII
SDRI (DB), SI-SDR(DB) AND PESQ IN A COMPARATIVE STUDY ON THE

WSJ0-2MIX DATASET UNDER THE OPEN CONDITION. “#PARAS” REFERS TO

THE NUMBER OF PARAMETERS OF THE MODEL. ‡ INDICATES THE LATEST

CONV-TASNET WITH AN ADDITIONAL SKIP-CONNECTION IN EACH TCN
BLOCK. ∗INDICATES OUR RE-IMPLEMENTATION OF THE WORK IN [41]. FOR

SPEECH SEPARATION (SS) TASK, WE REPORT THE RESULTS EVALUATED ON

THE ORACLE-SELECTED STREAMS. FOR SPEAKER EXTRACTION (SE) TASK, WE

REPORT THE RESULTS EVALUATED ON THE SPEX-EXTRACTED STREAM

the performance on the test subset with reference speech of a
duration 7.5s. It is noted that the results are similar between
“Random” condition and the 7.5s subset. When we increase the
duration of the reference speech in the test set to 15s, 30s and 60s,
we observe that longer duration leads to better results in general.
When we fix the duration of the reference speech to 15s for the
training and development set, the performance drops slightly
when comparing with those under the “Random” condition.
However, we continue to observe that longer test speech duration
always helps.

9) Comparisons With Speech Separation on WSJ0-2mix:
Most speech separation methods conducted their experiments on
the well-known WSJ0-2mix database. To compare with speech
separation methods, we trained the proposed SpEx model on
WSJ0-2mix database to extract each speaker in the mixture
by giving a reference speech of the corresponding speaker.
In addition, we re-implemented the Conv-TasNet method [41]
with the same optimization scheme as our proposed SpEx as
described in Section III-A.

From Table VIII, we observe that the proposed SpEx achieves
comparable performance as Conv-TasNet [41] with the same
TCN architecture. While SpEx and Conv-TasNet are comparable
in performance, just like other speaker extraction techniques,
SpEx offers its unique advantages over other speech separation
techniques in real-world applications.

As SpEx relies very much on the quality of the speaker
embeddings, we observed that the proposed speaker encoder has
outperformed i-vector encoder (refer to Table III). We will fur-
ther investigate the performance of SpEx on the speaker database
larger than WSJ0-2mix (101 speakers) in the future work.

B. Experiments on Three-Speaker Mixture

The proposed SpEx network has the inherent ability to extract
speech from mixture speech of more than two speakers using the
same network architecture. We train the SpEx system under three
conditions: only two-speaker mixture data, only three-speaker
mixture data, and the combination of two- and three-speaker

TABLE IX
SDR (DB), SI-SDR(DB) AND PESQ IN A COMPARATIVE STUDY OF DIFFERENT

NUMBER OF SPEAKERS IN THE MIXED SPEECH ON WSJ0-2MIX-EXTR AND

WSJ0-3MIX-EXTR DATASETS. THE DURATION OF THE REFERENCE SPEECH IS

RANDOM DURING TRAINING. “#SPEAKERS” INDICATES THE NUMBER OF

SPEAKERS IN THE MIXTURE. “DUR.” INDICATES THE DURATION OF THE

REFERENCE SPEECH

mixture data. We then evaluate the performance of the trained
SpEx systems on two-speaker and three-speaker mixed test data,
respectively. From Section IV-A8, we know that the longer
duration of the reference speech in the test set achieves better
performance. We keep the duration of the reference speech as 15s
and 60s for a comparison for both two-speaker and three-speaker
mixed test data in this experiment.

From Table IX, we observe that the performance of the
two-speaker mixture is always better than the three-speaker
mixture in the SpEx systems under three conditions with dif-
ferent training data. This is consistent with the findings in a
human’s performance of a subject evaluation where both listen-
ing comprehension and auditory attention decrease significantly
as the number of simultaneous audio channels increased [80]. It
further confirms that the longer duration of the reference speech
achieves better performance. Because the longer duration of the
reference speech derives better speaker embedding.

V. CONCLUSION

We propose an end-to-end speaker extraction network (SpEx)
that emulates humans’ ability of selective auditory attention. The
SpEx network forms a top-down voluntary focus by using the
reference speech of the target speaker. It is particularly useful
in cases where speakers are pre-registered to the system, for
example, in speaker verification [12] where the target speaker is
known to the system through enrollment.

The SpEx network also overcomes the phase estimation issue
in frequency-domain speaker extraction. The improvements are
attributed to the dilated convolutional encoder-decoder frame-
work that performs in time-domain, the multi-scale encoding
and decoding, and the multi-task learning algorithm. Our exper-
iments show that the SpEx network significantly outperforms
the frequency-domain counterparts.

The ability of human to detect a particular signal from other
interference speech or background noise is greatly improved
with two ears [81]. Previous studies [82], [83] on multi-channel
speech separation have shown impressive improvements, partic-
ularly in the presence of reverberation and multiple interference
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speakers. Similarly, we may improve the speaker extraction
performance under those adverse conditions by extending the
SpEx network for multi-channel inputs, that will be an extension
of this work. In addition, SpEx could be extended to enable
DPRNN-TasNet [84] for speaker extraction by replacing the
TCN block with a dual path RNN for improved speech quality.

Humans tend to perceive sounds as coming from locations of
visual events [81], for example, when we watch television, where
an actor’s voice appears to be emanating from his mouth regard-
less of where the loudspeaker is located. The speaker encoder
mechanism in this paper allows for an easy implementation of
audio-visual speaker encoder, that will strengthen the top-down
voluntary focus in the selective auditory attention.

Brain computer interaction helps connect human brain with
assistive devices, i.e., hearing aid device. To assist people with
hearing impairment, it would be interesting to study how SpEx
can take non-invasive electro-encephalography (EEG) [85] or
invasive electro-corticography (ECoG) [86] signals, instead of a
reference speech, as input to decode the speech from the attended
speaker.

In summary, the proposed SpEx network marks another step
towards solving the cocktail party problem. It will potentially
improve the performance of many down-stream speech process-
ing applications, such as speaker verification [12] and speaker
diarization.
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