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Abstract—Independent low-rank matrix analysis (ILRMA) is
a fast and stable method of blind audio source separation. Con-
ventional ILRMAs assume time-variant (super-)Gaussian source
models, which can only represent signals that follow a super-
Gaussian distribution. In this article, we focus on ILRMA based on
a generalized Gaussian distribution (GGD-ILRMA) and propose a
new type of GGD-ILRMA that adopts a time-variant sub-Gaussian
distribution for the source model. We propose a new update scheme
called generalized iterative projection for homogeneous source
models (GIP-HSM) and obtain a convergence-guaranteed update
rule for demixing spatial parameters by combining the GIP-HSM
scheme and the majorization-minimization (MM) algorithm. Fur-
thermore, a new extension of the MM algorithm is proposed
for the convergence acceleration by applying the majorization-
equalization algorithm to a multivariate case. In the experimental
evaluation, we show the versatility of the proposed method, i.e., the
proposed time-variant sub-Gaussian source model can be applied
to various types of source signal.

Index Terms—Blind source separation, independent low-rank
matrix analysis (ILRMA), generalized Gaussian distribution.

I. INTRODUCTION

B LIND source separation (BSS) [1]–[14] is a technique of
extracting specific sources from an observed multichannel

mixture signal without knowing a priori information about the
mixing system. Independent component analysis (ICA) and
its extensions, such as independent vector analysis (IVA) [5],
[6], are the most commonly used approaches for BSS in an
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(over)determined case (the number of microphones is greater
than or equal to that of sources). As a state-of-the-art ICA-based
BSS method, Kitamura et al. proposed independent low-rank
matrix analysis (ILRMA) [10], [14], which is a unification
of IVA and nonnegative matrix factorization (NMF) [15]. IL-
RMA assumes both statistical independence between sources
and a low-rank time-frequency structure for each source, and
the frequency-wise demixing systems are estimated without
encountering the permutation problem [3], [4]. ILRMA is
a faster and more stable algorithm than multichannel NMF
(MNMF) [16]–[18], which is an algorithm for BSS that estimates
the mixing system on the basis of spatial covariance matrices.

The original ILRMA based on Itakura–Saito (IS) divergence
assumes a time-variant isotropic (zero-mean and circularly sym-
metric) complex Gaussian distribution for a source generative
model. Hereafter, we refer to the original ILRMA as IS-ILRMA.
Recently, various types of source generative model have been
proposed for ILRMA for high-performance BSS. In particular,
t-ILRMA [11] and GGD-ILRMA [12], [13] have been proposed
as generalizations of IS-ILRMA with a complex Student’s t
distribution and a complex generalized Gaussian distribution
(GGD) [19], respectively. Their update rules for the demix-
ing matrix can be derived by a combined technique of the
majorization-minimization (MM) algorithm [20] and iterative
projection (IP), where IP is a fast and convergence-guaranteed al-
gorithm introduced first for auxiliary-function-based ICA (Aux-
ICA) [8] and auxiliary-function-based IVA (AuxIVA) [9]. In
t-ILRMA and GGD-ILRMA, the kurtosis of the source genera-
tive models’ distributions can be parametrically changed along
with the degree-of-freedom parameter in Student’s t distribution
and the shape parameter in the GGD. By changing the kurto-
sis of the distributions, we can control how often the source
signal outputs outliers or its expected sparsity. In particular, in
sub-Gaussian models, i.e., models that follow distributions with
a platykurtic shape, the source signal rarely outputs outliers,
where platykurtic means that the kurtosis is lower than that
of a Gaussian distribution. Therefore, the sub-Gaussian mod-
eling of sources is expected to accurately estimate the source
spectrogram without ignoring its important spectral peaks. Fur-
thermore, many audio sources follow platykurtic distributions;
it is known that musical instrument signals obey sub-Gaussian
distributions [21].
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Fig. 1. Versatility of proposed time-variant sub-Gaussian model for super-
and sub-Gaussian source signals.

However, neither conventional t-ILRMA nor GGD-ILRMA
assumes that the source generative model follows a sub-
Gaussian distribution. Both t-ILRMA and GGD-ILRMA can
adopt only a super-Gaussian (or Gaussian) model, i.e., a model
that follows distributions with a leptokurtic shape, as the source
model, where leptokurtic means that the kurtosis is higher
than that of a Gaussian distribution. This is so in t-ILRMA
because the complex Student’s t distribution becomes only
super-Gaussian for any degree-of-freedom parameter. On the
other hand, this is so in GGD-ILRMA because the estimation
algorithm for the demixing matrix has not yet been derived for a
sub-Gaussian case, although the GGD itself can represent a sub-
Gaussian distribution depending on its shape parameter. More
specifically, the conventional algorithm, i.e., the combination
of the MM algorithm and conventional IP, cannot be applied
to sub-Gaussian-based GGD-ILRMA owing to mathematical
difficulties.

In this paper, we propose a new type of ILRMA that as-
sumes time-variant sub-Gaussian source models. This paper
includes four novelties. The first novelty is a new update scheme
for the demixing matrix called generalized IP for homoge-
neous source models (GIP-HSM). The second novelty is a
convergence-guaranteed update rule for the demixing matrix
in GGD-ILRMA when the shape parameters are between two
and four. To the best of our knowledge, this is the world’s
first attempt to model source signals with a time-variant sub-
Gaussian distribution. We derive the update rule by combining
the above-mentioned GIP-HSM scheme and the MM algorithm.
The third novelty is that we propose a new extension of the
MM algorithm for the convergence acceleration by applying the
majorization-equalization (ME) algorithm [22] to a multivariate
case. The fourth novelty is that we show the validity of the
proposed sub-Gaussian GGD-ILRMA via BSS experiments on
music and speech signals. In Fig. 1, we summarize the versatility
of the proposed method in source modeling. The proposed
time-variant sub-Gaussian model can represent super-Gaussian
or Gaussian signals as well as sub-Gaussian signals owing to
its time-variant nature, whereas conventional models can only
represent super-Gaussian or Gaussian signals. The details of this
versatility will be discussed in Section-IV.A.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of BSS and derive the cost function

to be minimized. In Section III, we introduce the conventional
update rules in super-Gaussian GGD-ILRMA. In Section IV,
we propose GIP-HSM and derive the update rules in sub-
Gaussian GGD-ILRMA. In Section V, we propose the accel-
eration method of the update rule based on the ME algorithm.
In Section VI, we show the results of experimental evaluations.
The conclusions of this paper are presented in Section VII. Note
that this paper is partially based on an international conference
paper [23] written by the authors. This paper has the following
additional contributions: the derivation of the more generalized
update rules when the shape parameter ranges between two
and four, the acceleration of the update rules using the ME
algorithm, and more detailed experimental evaluations including
the comparison with various conventional methods.

II. FORMULATION

A. Formulation of Demixing Model

Let N and M be the numbers of sources and channels,
respectively. The short-time Fourier transforms (STFTs) of the
multichannel source and observed signals are defined as

sij = [sij1 · · · sijN ]� ∈ CN , (1)

xij = [xij1 · · · xijM ]� ∈ CM , (2)

where i = 1, . . . , I; j = 1, . . . , J ; n = 1, . . . , N ; and m =
1 . . . ,M are the indices of the frequency bins, time frames,
sources, and channels, respectively, and � denotes the transpose.
We assume the mixing system

xij = Aisij , (3)

where Ai = [ai1 · · · aiN ] ∈ CM×N is a frequency-wise mix-
ing matrix andain is the steering vector for thenth source. When
M = N and Ai is not a singular matrix, the source signals can
be estimated as

sij ≈ yij = W ixij , (4)

where

yij = [yij1 · · · yijN ]� ∈ CN (5)

is the STFT of the estimated signals, W i = [wi1 · · · wiN ]H

is the demixing matrix, win is the demixing filter for the nth
source, and H denotes the Hermitian transpose. ILRMA esti-
mates both W i and yij from only the observation xij assuming
statistical independence between sijn and sijn′ , where n �= n′.

B. Generative Model and Cost Function in GGD-ILRMA

GGD-ILRMA utilizes the isotropic complex GGD. The prob-
ability density function of the GGD is

p(z) =
β

2πr2Γ(2/β)
exp

(
−|z|

β

rβ

)
, (6)

where β is the shape parameter, r is the scale parameter, and
Γ(·) is the gamma function. Fig. 2 shows the shapes of the
GGD with β = 2 and β = 4. When β = 2, (6) corresponds
to the probability density function of the complex Gaussian
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Fig. 2. Examples of shapes of complex GGD. (a) When β = 2, shape of
GGD corresponds to that of Gaussian distribution. (b) When β = 4, GGD is
platykurtic.

distribution with a mesokurtic shape, where mesokurtic means
that the kurtosis is equal to that of a Gaussian distribution. In
the case of 0 < β < 2, the distribution becomes super-Gaussian
with a leptokurtic shape. In the case of β > 2, the distribution
becomes sub-Gaussian with a platykurtic shape.

In GGD-ILRMA, we assume the time-variant isotropic com-
plex GGD as the generative model for the nth source, which is
independently defined in each time-frequency slot as follows:

p({yijn}i,j) =
∏
i,j

p(yijn)

=
∏
i,j

β

2πrijn2Γ(2/β)
exp

(
−|yijn|

β

rijnβ

)
, (7)

rijn
ρ =

∑
k

tiknvkjn, (8)

where {yijn}i,j is the set {yijn | i = 1, . . . , I, j = 1, . . . , J}
and the local distribution p(yijn) is defined as a circularly
symmetric complex Gaussian distribution, i.e., the probability
of p(yijn) only depends on the power of the complex value yijn.
rijn is the time-frequency-varying scale parameter and ρ is the
domain parameter in NMF modeling. Moreover, the variables
tikn and vkjn are the elements of the basis matrix T n ∈ RI×K

≥0
and the activation matrixV n ∈ RK×J

≥0 , respectively, where R≥0
denotes the set of nonnegative real numbers. k = 1, . . . ,K is the
index, and K is set to a much smaller value than I and J , which
leads to the low-rank approximation. From (7), the negative
log-likelihood function LGGD of the observed signal xij can be
obtained as follows by assuming independence between sources:

LGGD := − log p({xijm}i,j,m)

= −2J
∑
i

log |detW i| −
∑
n

log p({yijn}i,j)

= −2J
∑
i

log |detW i|

+
∑
i,j,n

( |wH
inxij |β
rijnβ

+ 2 log rijn

)
+ const., (9)

where {xijm}i,j,m is the set {xijm | i = 1, . . . , I, j = 1,
. . . , J, m = 1, . . . ,M}. We used the transformation of random

Fig. 3. Principle of source separation in GGD-ILRMA, where x̃m and ỹn
are time-domain signals of xijn and yijn, respectively.

variables from xij to yij as denoted in (4). The cost func-
tion (9) of GGD-ILRMA coincides with that of IS-ILRMA
when β = ρ = 2. By minimizing (9) w.r.t. W i and rijn under
limitation (8), we estimate the demixing system that maximizes
the independence between sources.

Fig. 3 shows a conceptual model of GGD-ILRMA. When
each of the original sources has a low-rank spectrogram, the
spectrogram of their mixture should be more complicated, where
the rank of the mixture spectrogram will be greater than that
of the source spectrogram. On the basis of this assumption,
in GGD-ILRMA, the low-rank constraint for each estimated
spectrogram is introduced by NMF. The demixing matrix W i

is estimated so that the spectrogram of the estimated signal
becomes a low-rank matrix modeled by T nV n, whose rank is
at most K. The estimation of W i,T n, and V n can consistently
be carried out by minimizing (9) in a fully blind manner.

III. CONVENTIONAL METHOD

A. Update Rule for Demixing Matrix

In IS-ILRMA, the demixing matrix W i can be efficiently
updated by IP, which can be applied only when the cost function
is the sum of− log | detW i| and the quadratic form ofwin (this
corresponds to GGD-ILRMA with β = 2). In GGD-ILRMA,
the update rule of W i is also derived using the MM algo-
rithm [20]. When 0 < β ≤ 2, we can use the following in-
equality of weighted arithmetic and geometric means (weighted
AM–GM inequality) to design the majorization function:

|wH
inxij |β ≤ β

2

|wH
inxij |2

αijn
2−β +

(
1− β

2

)
αijn

β , (10)

whereαijn is an auxiliary variable and the equality of (10) holds
if and only if αijn = |yijn|. By applying (10) to (9), we can
design the majorization function of (9) as

LGGD ≤ −2J
∑
i

log |detW i|

+ J
∑
i,n

wH
inF inwin + const., (11)

F in =
β

2 J

∑
j

1

αijn
2−β(

∑
k tiknvkjn)

β
p

xijx
H
ij ,

(12)

where the constant term is independent of win. By applying IP
to (11) and substituting the equality conditionαijn = |yijn| into
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(12), we can derive the update rule for W i as

F in =
β

2 J

∑
j

1

|yijn|2−β (
∑

k tiknvkjn)
β
p

xijx
H
ij , (13)

win ← F−1in W
−1
i en, (14)

win ← win

√
1/(wH

inF inwin), (15)

where en is an N -dimensional vector whose nth element is
one and whose other elements are zero. When β = ρ = 2,
these update rules (13)–(15) coincide with those in IS-ILRMA.
The update rules (13)–(15) are sequentially calculated for each
frequency and source (i and n). This calculation guarantees a
monotonic decrease in the value of cost function (9), resulting
in the maximization of independence between sources and the
separation of mixed sources [9].

Note that the update rules (13)–(15) are valid only when 0 <
β ≤ 2, which is equivalent to the condition that inequality (10)
holds. In fact, when β > 2, it is thought to be impossible to
design a majorization function to which we can apply IP because
no quadratic function w.r.t. x can majorize xβ .

Conventional GGD-ILRMA achieves various types of source
generative model: when β = 2, the entry of the source spec-
trogram follows a complex Gaussian distribution (the same
model as that of IS-ILRMA), and when β < 2, the entry of the
source spectrogram follows a complex leptokurtic distribution.
However, a source generative model that follows a platykurtic
complex GGD is yet to be achieved. Since the global distribution
of the time-variant super-Gaussian or Gaussian model w.r.t. the
time frame becomes only super-Gaussian, any signals that follow
sub-Gaussian distributions, such as some music signals, cannot
be appropriately dealt with by conventional GGD-ILRMA.

B. Update Rule for Low-Rank Source Model

The update rules for T n and V n in IS-ILRMA and GGD-
ILRMA can be derived by the MM algorithm, which is a popular
approach for NMF. We obtain the following update rules:

tikn ← tikn

⎛
⎜⎜⎜⎜⎝
β
∑

j

|yijn|β
(
∑

k′ tik′nvk′jn)
β
ρ+1

vkjn

2
∑

j

1∑
k′ tik′nvk′jn

vkjn

⎞
⎟⎟⎟⎟⎠

ρ
β+ρ

, (16)

vkjn ← vkjn

⎛
⎜⎜⎜⎜⎝
β
∑

j

|yijn|β
(
∑

k′ tik′nvk′jn)
β
ρ+1

tikn

2
∑

j

1∑
k′ tik′nvk′jn

tikn

⎞
⎟⎟⎟⎟⎠

ρ
β+ρ

. (17)

See [12] for their detailed derivation.
In GGD-ILRMA, cost function (9) is minimized by alter-

nately repeating the update of the demixing matrix W i using
(13)–(15) and the update of the low-rank source models T n and
V n using (16) and (17), respectively. The demixing matrix W i

is updated so that (9) monotonically decreases with the source
models T n and V n fixed, and then the source models T n and

V n are updated so that (9) monotonically decreases with the
demixing matrix W i fixed; i.e., these optimization steps are
based on a coordinate descent algorithm. Thus, a monotonic
decrease in cost function (9) is always guaranteed owing to the
monotonic-decrease-guaranteed update rules (13)–(17) for all
the variables win, tikn, and vkjn.

IV. PROPOSED METHOD

A. Motivation

The conventional methods [10], [12] have the limitation that
a source signal cannot be appropriately represented when the
signal follows a sub-Gaussian distribution. In this paper, we
propose an MM-algorithm-based update rule for GGD-ILRMA
to maximize the likelihood based on the sub-Gaussian source
model.

In contrast to the time-variant super-Gaussian or Gaussian
model, the global distribution of the time-variant sub-Gaussian
model w.r.t. the time frame can be sub-Gaussian as well as
Gaussian or super-Gaussian, depending on the time variance of
the scale parameter rijn, as illustrated in Fig. 1, where the bold
black curves depict the global distributions of time-variant mod-
els. When the scale parameter fluctuates w.r.t. the time frame,
the global distribution always approaches the super-Gaussian
side. This nature can be demonstrated via a simple experiment.
The purpose of this experiment is that (a) we use a zero-mean
uniform distribution as a typical sub-Gaussian distribution, (b)
the fluctuation of the scale parameter is simulated by artificial
modulation, and (c) we show that the uniform distribution with
the time-variant scale parameter approaches the super-Gaussian
distribution by calculating its kurtosis. We assume the following
uniform distribution with a time-variant range parameter:

χj ∼ U(−γj , γj), (18)

whereχj is a random variable with the time index j,U(−γj , γj)
is the uniform distribution whose range is defined as [−γj , γj ],
and γj is the time-variant range parameter. Note that the uniform
distribution corresponds to the univariate GGD with β →∞,
which has the most platykurtic shape in a GGD class. Fig. 4
shows the kurtosis, Kurt = E[χj

4]/E[χj
2]2 − 3, of the ran-

dom variable χj for j = 1, . . . , 106 (J = 106 random samples),
where E[·] denotes the expectation value. Thus, Kurt = 0,
Kurt > 0, or Kurt < 0 respectively represents a Gaussian,
super-Gaussian, or sub-Gaussian distribution. In Fig. 4, we intro-
duced a modulation parameter δ intoγj andω = 2π × 5/J . This
result clearly indicates that the fluctuation of a scale parameter
w.r.t. the time frame increases the kurtosis of the global distribu-
tion even if the fundamental distribution is sub-Gaussian. This
supports that the proposed time-variant sub-Gaussian model
covers distributions with a wider range between platykurtic
and leptokurtic shapes than other conventional source models.
Therefore, the proposed GGD-ILRMA is expected to have a
robust performance against the variation of target signals.

For the above-mentioned reason, we can introduce a more
robust and generalized source model for ILRMA by using the
time-variant sub-Gaussian model. However, as described in
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Fig. 4. Kurtosis drift of time-variant uniform distribution model with var-
ious fluctuations of range parameter, where kurtosis becomes zero, positive,
or negative when distribution is Gaussian, super-Gaussian, or sub-Gaussian,
respectively.

Section III-A, the conventional IP-based MM algorithm (13)–
(15) cannot be utilized for GGD-ILRMA with the sub-Gaussian
model (β > 2). To solve this problem, in Section IV-B, we
extend the problem of demixing matrix estimation by replacing
the quadratic form of win with a more generalized function
fin(win), where the extended problem includes an optimization
of the cost function in GGD-ILRMA with β > 2. Then, we
derive an optimization algorithm called GIP-HSM that can solve
this extended problem. In Section IV-C, the update rule of W i

for GGD-ILRMA with β = 4 is derived by combining GIP-
HSM and the MM algorithm, where one majorization function is
designed and applied to the cost function of GGD-ILRMA with
β = 4. A computationally efficient version of this update rule is
presented in Section IV-D. Finally, in Section IV-E, the update
rules of W i for GGD-ILRMA with 2 < β < 4 are derived,
where another majorization function is further applied to the
majorization function of GGD-ILRMA with β = 4, namely, an
MM algorithm is utilized twice to derive the update rules for
2 < β < 4, which is an analogous derivation to the conventional
IP for 0 < β < 2.

B. Derivation of GIP-HSM

If we represent the second term in (9) as fin(win) =
(1/J)

∑
j(|wH

inxij |β/rijnβ), the cost function of GGD-
ILRMA can be rewritten as

L =
I∑

i=1

[
−2 log |detW i|+

N∑
n=1

fin(win)

]
+ const. (19)

up to the scale 1/J , where the constant term is independent
of win. Note that we only focus on the optimization of win,
and the source scale rijn is assumed to be a fixed parameter
in this section. By generalizing the term fin(win), we can
define the extended optimization problem that includes the cost
function (9) as a special case and covers various types of the
source generative model. Here, we define the generalized term
fin(win) as follows: fin : CN → R is a real-valued function
that satisfies the following three conditions:

(C1) fin(w) is differentiable w.r.t. w at an arbitrary point.
(C2) ∀c > 0, {w ∈ CN | fin(w) ≤ c} is convex (naturally

satisfied when fin(w) is convex).
(C3) ∀η, fin(ηw) = ηdfin(w), namely, fin is a homoge-

neous function of degree d.
Next, we show that the optimization of (19) w.r.t. win is

composed of “direction optimization” and “scale optimization”
for each frequency bin. Letuin be anN -dimensional vector that
satisfies fin(uin) = 1. Then, win can be uniquely represented
as win = ηinuin by C3, where ηin is a positive real value. By
substituting win = ηinuin into (19) and applying C3, we can
rewrite cost function (19) as

L =
I∑

i=1

[
−2 log

∣∣∣∣det
[
ηi1ui1 . . . ηiNuiN

]H
∣∣∣∣

+

N∑
n=1

fin(ηinuin)

]

=

I∑
i=1

[
−2 log

(∏
n

ηin · |detU i|
)

+

N∑
n=1

ηin
dfin(uin)

]

=

I∑
i=1

[
−2 log |detU i|+

N∑
n=1

[−2 log ηin + ηin
d
]]

, (20)

where U i = [ui1 . . . uiN ]H. Therefore, the minimization of
the cost function can be interpreted as the minimization of
− log | detU i| for each frequency bin and the minimization
of −2 log ηin + ηin

d for each source and frequency bin. Since
the variables in (20) are split into two independent variables
(direction vector variable uin and scale variable ηin) and their
related terms are linearly added, these direction optimization
and scale optimization problems are independent of each other.
The optimal ηin can be calculated using a closed form because
the derivative of the cost function w.r.t. ηin can be written as

d

dηin
(−2 log ηin + ηin

d) = − 2

ηin
+ dηin

d−1. (21)

Hence, by letting the right side of (21) be zero, we can obtain
the optimal ηin as

ηin = d
√

2/d. (22)

The actual difficulty in the optimization of the demixing
matrix is the direction optimization, i.e., the minimization of
−2 log | detU i|. Since minimizing − log x2 is equivalent to
maximizing x2, we can reformulate this problem as

maximize |detU i|2 s.t. ∀n, fin(uin) = 1. (23)

Since it is generally difficult to solve this problem using a
closed form, we apply an approach called vectorwise coordinate
descent. In this algorithm, we focus on uin, namely, the Her-
mitian transpose of a particular row vector of U i. By cofactor
expansion, we can deform problem (23) as

maximize
∣∣bH

inuin

∣∣2 s.t. fin(uin) = 1, (24)

where bin is a column vector of the adjugate matrix Bi =
[bi1 . . . biN ]H of U i. Since bin only depends on uin′
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Fig. 5. Intuitive explanation of GIP-HSM. Via steps (a)–(d), we can maximize yellow area that corresponds to (23).

(n′ �= n) and is independent of uin [24], (24) can be regarded as
a function ofuin by fixing the other row vectors ofU i. Using the
method of Lagrange multipliers and C1, we obtain the stationary
condition

bin(b
H
inuin) + λ

∂fin

∂uH
in

(uin) = 0, (25)

where λ is a Lagrange multiplier. Since bH
inuin is a scalar, the

stationary condition can be rewritten as

∂fin

∂uH
in

(uin) ‖ bin, (26)

where the binary relation “x ‖ y” means that x is parallel to y.
In (26), bin is represented in terms of W in as

bin = (detU i)U
−1
i en

= (detU i)(diag(η
−1
i1 , . . . , η−1iN )W i)

−1en

= (detU i)W
−1
i diag(ηi1, . . . , ηiN )en

= (ηin detU i)W
−1
i en, (27)

where diag(c1, . . . , cN ) denotes the N ×N diagonal matrix
whose (n, n)th element is cn. (27) shows that bin and W−1

i en
are unique up to scale and thus they are parallel. Since the level
set of fin is convex from C2, the stationary point of objective
function (24) must also be the optimal point. In addition, (23)
is the problem of estimating all the optimal (stationary) points
given by (24) for all n. Therefore, cost function (20) that in-
cludes (23) monotonically decreases with each update of the
direction uin.

In conclusion, to minimize cost function (19), we update the
vector win by the following two steps in GIP-HSM: (a) Find a
vector w′in that satisfies

∂fin

∂wH
in

(w′in) ‖W−1
i en. (28)

(b) Update win as

win ← w′in
d

√
2/(d · fin(w′in)). (29)

The first step (a) and second step (b) correspond to the direction
and scale optimizations, respectively. Note that w′in calculated
in the first step does not need to satisfy fin(w

′
in) = 1 because

the scale is automatically adjusted in the second step. In fact, if
w′in is represented as w′in = η′inuin, the second step results in

win ← η′inuin · d

√
2/(d · η′ind) = uin

d
√

2/d, (30)

at which point both the direction and the scale are optimized.

Fig. 5 shows the intuitive explanation of GIP-HSM. On the
basis of this figure, we discuss how to solve (23) when N =
2. In Fig. 5(a), two constraints, fi1(ui1) = 1 and fi2(ui2) =
1, are represented with two closed curves. Since | detU i| is
proportional to the yellow area of the triangle surrounded by the
two vectors ui1 and ui2, the goal is to maximize the area. In
GIP-HSM, the vectors ui1 and ui2 are optimized as follows:

1) Maximize the yellow area by sliding the vector ui1 with
ui2 fixed (see Fig. 5(b)).

2) Maximize the yellow area by sliding the vector ui2 with
ui1 fixed (see Fig. 5(c)).

By iterating 1) and 2) until convergence, we obtain the max-
imal point, ui1 and ui2, as shown in Fig. 5(d).

C. Sub-Gaussian ILRMA Based on GIP-HSM

Using GIP-HSM, we propose a new update rule in GGD-
ILRMA whose shape parameter β is set to four (time-variant
sub-Gaussian model). The cost function of GGD-ILRMA with
β = 4 is written as

J = −2J
∑
i

log |detW i|+
∑
i,j,n

|wH
inxij |4
rijn4

+ const., (31)

where the constant term is independent of win. It seems
possible to apply GIP-HSM to (31) by letting fin(win) =
(1/J)

∑
j(|wH

inxij |4/rijn4). In this case, however, it is difficult
to solve (28), which is reduced to a cubic vector equation w.r.t.
w′in. Instead, we apply an MM algorithm to derive an update
rule that does not contain any cubic vector equations. Hereafter,
we prove the following theorem, and then design a new type of
majorization function of (31) on the basis of the theorem.

Theorem 1: Let f(w) = (1/J)
∑J

j=1(|wHxj |4/rj4) and
g(w) = (wHGw)2, where G is defined in terms of a vector
w̃ as

H =
[

1
r1
x1 . . . 1

rJ
xJ

]
, (32)

q̃ =
[
q̃1 . . . q̃J

]�
= HHw̃, (33)

Q̃ =

⎡
⎢⎢⎢⎢⎢⎣

‖q̃‖2 −q̃1q̃∗2 · · · −q̃1q̃∗J
−q̃2q̃∗1 ‖q̃‖2 · · · −q̃2q̃∗J

...
...

. . .
...

−q̃J q̃∗1 −q̃J q̃∗2 · · · ‖q̃‖2

⎤
⎥⎥⎥⎥⎥⎦
, (34)
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G =
1√

J
∑

j |q̃j |4
HQ̃HH, (35)

where q∗ denotes the complex conjugate of q. Then, g(w)
satisfies f(w) ≤ g(w) for arbitrary w and the equality holds
when w = w̃.

The proof of Theorem 1 is described in Appendix. Applying
Theorem 1, we can design a majorization function of (31) as

J ≤ −2J
∑
i

log |detW i|+ J
∑
i,n

(wH
inGinwin)

2 + const.

=: J +, (36)

where

Hin =
[

1
ri1n

xi1 . . . 1
riJn

xiJ

]
, (37)

q̃in =
[
q̃i1n . . . q̃iJn

]�
= HH

inw̃in, (38)

Q̃in =

⎡
⎢⎢⎢⎢⎢⎣

‖q̃in‖2 −q̃i1nq̃∗i2n · · · −q̃i1nq̃∗iJn
−q̃i2nq̃∗i1n ‖q̃in‖2 · · · −q̃i2nq̃∗iJn

...
...

. . .
...

−q̃iJnq̃∗i1n −q̃iJnq̃∗i2n · · · ‖q̃in‖2

⎤
⎥⎥⎥⎥⎥⎦
, (39)

Gin =
1√

J
∑

j |q̃ijn|4
HinQ̃inH

H
in. (40)

Here, w̃in is an auxiliary variable and the equality of (36)
holds when win = w̃in. Since gin(win) = (wH

inGinwin)
2 is

a differentiable, convex, and homogeneous function of win, we
can apply GIP-HSM to minimize J +. The optimal condition
for the direction of win is determined as

∂gin

∂wH
in

(w′in) = (w′in
H
Ginw

′
in)Ginw

′
in ‖W−1

i en. (41)

Since (w′in
HGinw

′
in) is a scalar, one of the solutions of (41) is

w′in = G−1in W
−1
i en. (42)

Substituting w̃in = win into (38)–(40), we obtain the following
update rules for optimizing the direction of win:

Hin =
[

1
ri1n

xi1 . . . 1
riJn

xiJ

]
, (43)

qin =
[
qi1n . . . qiJn

]�
= HH

inwin, (44)

Qin =

⎡
⎢⎢⎢⎢⎣

‖qin‖2 −qi1nq∗i2n · · · −qi1nq∗iJn
−qi2nq∗i1n ‖qin‖2 · · · −qi2nq∗iJn

...
...

. . .
...

−qiJnq∗i1n −qiJnq∗i2n · · · ‖qin‖2

⎤
⎥⎥⎥⎥⎦ , (45)

Gin =
1√

J
∑

j |qijn|4
HinQinH

H
in, (46)

win ← G−1in W
−1
i en. (47)

Finally, we operate the following scale optimization by
applying (29):

qin =
[
qi1n . . . qiJn

]�
= HH

inwin, (48)

win ← win
4

√
J/(2

∑
j |qijn|4), (49)

which is the scale optimization w.r.t. fin.
In GGD-ILRMA with β = 4, the demixing matrix W i is

updated using (43)–(49) with the low-rank source models T n

and V n fixed, and then the source models T n and V n are
updated using (16) and (17) with the demixing matrixW i fixed;
these optimization steps are alternately repeated. Since these
update rules are derived using the MM algorithm and GIP-HSM
and all the variablesW i,T n, andV n are optimized on the basis
of a coordinate descent algorithm, a monotonic decrease in cost
function (31) is guaranteed as in conventional ILRMA.

Fig. 6 shows the intuitive explanation of the proposed update
of W i using GIP-HSM and the MM algorithm for (31). In
Fig. 6(a), although the goal is to maximize the yellow area, it
is difficult to find the optimal ui1 (red point) in a closed form.
Instead, we design a majorization function (the square of the
quadratic term) like Fig. 6(b) and maximize the yellow area.
Since the level set of the majorization function is an ellipse,
the optimal condition can be found as that shown in Fig. 6(c)
by solving a linear equation. The update of ui1 finishes after
aligning the scale of ui1 (see Fig. 6(d)), which becomes close
to the optimal ui1.

D. Computationally Efficient Update Rule

From a practical viewpoint, the update rules (43)–(49) cost
a large amount of calculation compared with IS-ILRMA. This
is because we have to calculate (46), which contains the multi-
plication of N × J , J × J and J ×N matrices (computational
cost: O(NJ2)). This cost can be reduced by focusing on the
behavior of Qin. The matrix Qin can be rewritten using qin as

Qin = ‖qin‖2 I + diag(qi1n, . . . , qiJn)− qinq
H
in. (50)

Therefore, Gin can be calculated as

Gin =
1√

J
∑

j |qijn|4

⎛
⎝‖qin‖2 HinH

H
in+

∑
j

qijn
rijn2

xijx
H
ij

− (Hinqin)(Hinqin)

⎞
⎠

H

, (51)

and its computational cost is O(N2 J). Since the length of the
time frame, J , is much greater than the number of sources, N ,
under practical conditions, the high computational cost can be
reduced by applying (51) to the update rules instead of (45)
and (46).
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Fig. 6. Intuitive explanation of MM-algorithm-based update rule in sub-Gaussian GGD-ILRMA with GIP-HSM.

E. Sub-Gaussian GGD-ILRMA With 2 < β < 4

Hereafter, we discuss the minimization of the cost function
of GGD-ILRMA

I = −2J
∑
i

log |detW i|+
∑
i,j,n

|wH
inxij |β
rijnβ

+ const. (52)

with 2 < β < 4. As noted in Section III-A, the majorization
function of the cost function of conventional GGD-ILRMA
for 0 < β < 2 is designed on the basis of weighted AM–GM
inequality, which bounds |y|β (0 < β < 2) by |y|2. Similarly,
we can bound the term |y|β (2 < β < 4) by |y|4 using weighted
AM–GM inequality and design the majorization function of
(52), to which the proposed update rule can be applied. We apply
the weighted AM–GM inequality

|wH
inxij |β ≤ β

4

|wH
inxij |4

γijn4−β +

(
1− β

4

)
γijn

β (53)

to (52), where γijn is an auxiliary variable and the equality of
(53) holds when γijn = |yijn|. Then, the majorization function
of (52) can be designed as

I ≤
∑
i

⎡
⎣−2J log |detW i|+

N∑
n=1

J∑
j=1

β

4

|wH
inxij |4

γijn4−βrijnβ

⎤
⎦

+ const.

=: I+. (54)

We can apply the combined technique of the MM algorithm
and GIP-HSM proposed in Section IV-C to minimizing (54) and
obtain the following update rules:

lijn = 4

√
|yijn|4−βrijnβ , (55)

Hin =
[

1
li1n

xi1 . . . 1
liJn

xiJ

]
, (56)

qin =
[
qi1n . . . qiJn

]�
= HH

inwin, (57)

Qin =

⎡
⎢⎢⎢⎢⎣

‖qin‖2 −qi1nq∗i2n · · · −qi1nq∗iJn
−qi2nq∗i1n ‖qin‖2 · · · −qi2nq∗iJn

...
...

. . .
...

−qiJnq∗i1n −qiJnq∗i2n · · · ‖qin‖2

⎤
⎥⎥⎥⎥⎦ , (58)

Gin =

√
β

2
√

J
∑

j |qijn|4
HinQinH

H
in, (59)

win ← G−1in W
−1
i en, (60)

win ← win

(
2 J

β
∑

j |wH
inxij |β/rijnβ

)1/β

. (61)

Note that we can also apply the update rules (55)–(61) to the
0 < β ≤ 2 case as well as the 2 < β ≤ 4 case. However, these
update rules seem to be slower than the conventional update
rule. The conventional method is derived with the majorization
function including the quadratic form w.r.t. win, whereas the
proposed method is derived with that including the quartic form
w.r.t.win, which is far apart from the original function compared
with that in the conventional method.

V. MULTIVARIATE ME-ALGORITHM-BASED UPDATE

RULE FOR DEMIXING MATRIX

A. Motivation

In Sections IV-C and IV-E, we derived the convergence-
guaranteed update rule of W i in GGD-ILRMA with 2 < β ≤ 4
by the MM algorithm. However, from our experience, this rule is
not as fast as that of conventional IS-ILRMA, which does not use
the MM algorithm for derivation. To accelerate the convergence,
in this section, we introduce a new ME algorithm, which is
experimentally confirmed to be faster than the MM algorithm.
Note that the basic principle of the original ME algorithm has
been proposed in [22], but this literature presented only the
application to NMF dealing with each scalar variable. The ME
algorithm proposed in this paper, however, is the first attempt at
updating the vector win directly to the best of our knowledge.
This corresponds to a multivariate case and is generally difficult
to solve, as described in Section V-C later.

B. Derivation of ME-Algorithm-Based Update Rule

The ME algorithm was proposed as an update algorithm based
on a majorization function. In the MM algorithm, the solution is
updated to the point that minimizes the majorization function. In
the ME algorithm, on the other hand, the solution is updated to
the point in which the value of the majorization function is equal
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to that in the initial point. Since the cost function never increases
during the update in the ME algorithm, the convergence of the
cost function is also guaranteed. Let Q(θ) be a cost function,
θ a set of variables, Q+(θ, θ̃) a majorization function of Q(θ)
(Q+(θ, θ̃) ≥ Q(θ) holds for all θ and θ̃), which touches with
Q(θ) at θ̃ = θ̃0, and θ̃ a set of auxiliary variables. In the ME
algorithm, the initial point θ = θ0 is updated to θ = θ1 that sat-
isfiesQ+(θ0, θ̃0) = Q+(θ1, θ̃0). Then, the following inequality
holds:

Q(θ0) = Q+(θ0, θ̃0) = Q+(θ1, θ̃0) ≥ Q(θ1). (62)

This proves the non-increase property in the ME algorithm. Al-
though it is difficult to mathematically prove the advantage of the
ME algorithm compared with the MM algorithm, by numerical
experiments for several applications, it has been shown that the
update rule by the ME algorithm tends to be faster than that by
the MM algorithm [22].

We propose a faster update rule of the proposed sub-Gaussian
GGD-ILRMA by applying the ME algorithm. In a multivariate
case, the up-to-date variables that satisfy the ME condition (62)
innumerably exist, and it is difficult to determine the optimal one.
However, we discovered that the following update rule satisfies
the ME condition and provides a relatively good update for the
minimization of (19), which will be discussed in Section V-C.
Let ũin be the direction of a demixing filter win before the
update and uMM

in be the direction of win after the update by the
MM algorithm. In the ME algorithm, we update the direction of
win to

uME
in = 2

uMM
in

H
Ginũin

uMM
in

H
GinuMM

in

uMM
in − ũin. (63)

The vector uME
in is a linear combination of ũin and uMM

in . The
following theorem shows that the update rule based on (63)
satisfies the requirement for the ME algorithm:

Theorem 2: When uin is updated to ηinu
ME
in , where uME

in

is defined by (63), the values of the majorization function are
identical before and after the update, i.e.,

J +
∣∣
win=ηinuME

in
= J +

∣∣
win=ηinũin

, (64)

where (64) holds for any value of the scale ηin.
Proof: Let κ1 = uMM

in
H
Ginu

MM
in and κ2 = uMM

in
H
Ginũin.

From (36) and detU in = bH
inuin, it is sufficient to prove the

following two equations:

− log
∣∣bH

inu
ME
in

∣∣2 = − log
∣∣bH

inũin

∣∣2 , (65)
(
uME
in

H
Ginu

ME
in

)2
= (ũH

inGinũin)
2. (66)

First, we prove (65). From (27) and (60), we have

uMM
in = ξG−1in bin, (67)

where ξ is a complex number. Then,

bH
inu

ME
in =

1

ξ∗
uMM
in

H
Gin

(
2
κ2

κ1
uMM
in − ũin

)

=
1

ξ∗

(
2
κ2

κ1
κ1 − κ2

)
=

κ2

ξ∗
= bH

inũin. (68)

Therefore, (65) holds. Next, we prove (66). The following rela-
tion holds:

uME
in

H
Ginu

ME
in − ũH

inGinũin

=

(
2
κ2

κ1
uMM
in − ũin

)H

Gin

(
2
κ2

κ1
uMM
in − ũin

)

− ũH
inGinũin

= 4
κ2κ2

∗

κ1
2

κ1 − 2
κ2

κ1
κ2
∗ − 2

κ2
∗

κ1
κ2 = 0. (69)

Therefore, we obtain (66). �
By inserting (63) into (55)–(61), we obtain the following ME-

algorithm-based update rules of GGD-ILRMA with 2 < β ≤ 4:

lijn = 4

√
|yijn|4−βrijnβ , (70)

Hin =
[

1
li1n

xi1 . . . 1
liJn

xiJ

]
, (71)

qin =
[
qi1n . . . qiJn

]�
= HH

inwin, (72)

Qin =

⎡
⎢⎢⎢⎢⎣

‖qin‖2 −qi1nq∗i2n · · · −qi1nq∗iJn
−qi2nq∗i1n ‖qin‖2 · · · −qi2nq∗iJn

...
...

. . .
...

−qiJnq∗i1n −qiJnq∗i2n · · · ‖qin‖2

⎤
⎥⎥⎥⎥⎦ , (73)

Gin =

√
β

2
√

J
∑

j |qijn|4
HinQinH

H
in, (74)

wMM
in ← G−1in W

−1
i en, (75)

win ← 2
wMM

in
H
Ginwin

wMM
in

H
GinwMM

in

wMM
in −win, (76)

win ← win

(
2 J

β
∑

j |wH
inxij |β/rijnβ

)1/β

. (77)

Note that (76) can be obtained by multiplying ηin to the both
sides of (63). First, we calculate a temporal vector wMM

in , which
is the direction of the optimal point in I+, with (70)–(75).
Second, we obtain the ME-algorithm-updated vector with (76).
Finally, the scale of win is normalized with (77).

Compared with the MM-algorithm-based update rule, only
(76) has to be calculated additionally. We can expect some
acceleration of the update of W i with low additional compu-
tational costs because some other calculations (e.g., (73)–(75))
are dominant.

C. Comparison Between MM and ME Algorithms

As mentioned above, Figs. 6(b) and (c) are the intuitive
explanation of the update based on the MM algorithm. Fig. 7
shows the difference between the directions of the vector after
the update of the MM and ME algorithms. As shown in this
figure, in the case of N = 2, the angle between ũi1 and uME

i1

tends to be greater than that between ũi1 anduMM
i1 . This implies

that the proposed ME algorithm can be expected to converge
with a smaller number of iterations than the MM algorithm.
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Fig. 7. Intuitive explanation of difference between ME and MM algorithms.

Note that there are innumerable points that satisfy the equal-
ization condition when N is greater than or equal to three.
Since the set of these points corresponds to the intersection of
the hyperellipsoid (66) and the hyperplane (65), some points
satisfying the condition are in the neighborhood of the initial
point and thus useless. To realize a more effective update than
the MM algorithm, we need to avoid a point closer to the initial
point than that chosen in the MM algorithm.

Indeed, the proposed ME-algorithm-based update (63) corre-
sponds to one of the above-mentioned innumerable points, but
the following interpretation indicates that (63) tends to choose
a direction whose variation of angle is greater than that in the
MM-algorithm-based update.

Letφ ∈ [0, π]be the angle between two direction vectorsu1 ∈
CM and u2 ∈ CM , and the following equation holds:

cosφ =
Re[uH

1u2]

‖u1‖‖u2‖ , (78)

where Re[·] denotes the real part of an input complex value.
Since the demixing filter has ambiguity w.r.t. phase rotation, we
redefine the angle between u1 and u2 as the minimum value of
possible angles as

cosφ =
|uH

1u2|
‖u1‖‖u2‖ , (79)

where the range of φ becomes φ ∈ [0, π/2].
We here analyze the condition that satisfies φME

in ≥ φMM
in ,

where φME
in and φMM

in are the angles between ũin and uME
in

and between ũin and uMM
in , respectively. From (63) and (79),

we obtain

cos2 φMM
in − cos2 φME

in

=
|ũH

inu
MM
in |2

‖ũin‖2‖uMM
in ‖2

− |ũH
inu

ME
in |2

‖ũin‖2‖uME
in ‖2

=
|ũH

inu
MM
in |2

‖ũin‖2‖uMM
in ‖2

−
|ũH

in

(
2κ2

κ1
uMM
in − ũin

)
|2

‖ũin‖2‖2κ2

κ1
uMM
in − ũin‖2

=

(
4Re[κ2ũ

H
inu

MM
in ]

κ1
−‖ũin‖2

)
(‖ũin‖2‖uMM

in ‖2−|ũH
inu

MM
in |2)

‖ũin‖2‖uMM
in ‖2‖2κ2

κ1
uMM
in − ũin‖2 .

(80)

TABLE I
PAIRS OF DRY SOURCES USED IN TWO-SOURCE

SEPARATION OF MUSIC SIGNALS

Since

‖ũin‖2‖uMM
in ‖2 − |ũH

inu
MM
in |2

= ‖ũin‖2‖uMM
in ‖2(1− cos2 φMM

in )

≥ 0,

we obtain the condition that satisfies φME
in ≥ φMM

in as follows:

4Re[κ2ũ
H
inu

MM
in ]

κ1
− ‖ũin‖2 ≥ 0

⇔ Re[κ2ũ
H
inu

MM
in ]

κ1‖ũin‖2 ≥ 1

4

⇔ Re[uMM
in

H
Ginũinũ

H
inu

MM
in ]

uMM
in

H
GinuMM

in ‖ũin‖2
≥ 1

4
. (81)

When uMM
in is equal to an eigenvector of Gin, the condition

(81) can be rewritten as

ζ|ũH
inu

MM
in |2

ζ‖uMM
in ‖2‖ũin‖2 ≥

1

4

⇔ cos2 φMM
in ≥ 1

4
, (82)

where ζ > 0 is the eigenvalue of Gin that corresponds to uMM
in .

Thus, φME
in ≥ φMM

in is satisfied when φMM
in ≤ π/3. Although

uMM
in does not always become equal to the eigenvector of

Gin, uMM
in is generally close to the eigenvector of Gin that

has the minimum eigenvalue when the sources are sufficiently
separated. In addition, the angle between ũin anduMM

in becomes
small around the converged point, i.e., φMM

in ≤ π/3 probably
holds. For these reasons, we can expect that the proposed ME
algorithm is faster than the MM algorithm. This issue will
experimentally be confirmed in the next section.

VI. EXPERIMENTAL EVALUATION

A. Datasets

We prepared two types of signal for evaluation: music and
speech signals. For the music signals, we artificially produced
monaural dry music sources of four melody parts (melody 1,
main melody; melody 2, counter melody; midrange; and bass)
using Microsoft GS Wavetable Synth, where several musical
instruments were chosen to play these melody parts [25], [26].
Scores we used for generating the sources are shown in Fig. 8.
For the speech signals, we used the SiSEC2011 dataset [27].
Tables I and II show the pairs of music and speech sources used
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Fig. 8. Scores of each part used in music-signal separation. Length of dry
source is 4 s.

TABLE II
PAIRS OF DRY SOURCES USED IN TWO-SOURCE

SEPARATION OF SPEECH SIGNALS

TABLE III
TRIPLETS OF DRY SOURCES USED IN THREE-SOURCE

SEPARATION OF MUSIC SIGNALS

in a two-source separation experiment, respectively. Tables III
and IV show the triplets of music and speech sources used in a
three-source separation experiment, respectively.

B. Comparison Between MM and ME Algorithms

We compared the convergence speed between the MM-
algorithm-based and ME-algorithm-based update rules in the
proposed sub-Gaussian GGD-ILRMA (β = 4) by conducting
a two-source separation experiment. In this experiment, 12
pairs of signals were used: six types of music signal (shown
in Table I) and six types of speech signal (shown in Table II).
To simulate reverberant mixtures, the observed signals were
produced by convolving two types of impulse response, IR1
and IR2, which were obtained from the RWCP database [28], as
shown in Figs. 9(a) and (b). As the evaluation score, we used the
improvement of the source-to-distortion ratio (SDR) [29], which
indicates the overall separation quality. An STFT was performed
using a 128-ms-long Hamming window with a 64-ms-long shift
in music signals and a 256-ms-long Hamming window with a
128-ms-long shift in speech signals. The other conditions are
shown in Table V.

Fig. 10 shows the average SDR improvements for all sources
and recording conditions, where error bars depict standard er-
rors for each averaged value. There is a negligible difference

in the final score between the MM-algorithm-based and ME-
algorithm-based updates. However, the ME algorithm converges
with a smaller number of iterations than the MM algorithm. For
example, the MM-algorithm-based update takes 690 iterations
to achieve the separation performance of 6dB, whereas the ME-
algorithm-based update takes only 420 iterations to achieve the
same performance. Therefore, the ME-algorithm-based update
rule reduces the number of iterations by about 39% compared
with the MM-algorithm-based update rule. Considering this
finding, hereafter, we only show the performance of the proposed
method with the ME algorithm.

C. BSS Experiment on Two-Source Signals

We compared the separation performance of the proposed
sub-Gaussian GGD-ILRMA (β = 3 and 4) with those of conven-
tional methods: frequency-domain ICA [4] with a sub-Gaussian
model (sub-Gauss ICA), IVA [9], MNMF [18], IS-ILRMA [10],
and super-Gaussian GGD-ILRMA [12]. We used the same
signals as Section VI-B for evaluation. The shape parameter
β in GGD-ILRMA was set to 1, 1.99, and 2 for conventional
super-Gaussian GGD-ILRMA, and to 3 and 4 for the proposed
sub-Gaussian GGD-ILRMA. The case of β = 2 is identical
to that in IS-ILRMA [10], and the case of β = 1.99 is the
best parameter in a previous study [12]. In sub-Gauss ICA, we
optimized the demixing matrix by using a natural-gradient-based
update algorithm [4]. Its contrast function was set to the most
typical one for a global (time-invariant) sub-Gaussian source
model [30], which was extended to a complex-valued case, i.e.,
(Re[z]− tanh(Re[z])) + j(Im[z]− tanh(Im[z])), where z is a
complex variable, Im[z] denotes the imaginary part of z, and j is
the imaginary unit. To solve the source-permutation problem, we
employed an interfrequency-correlation-based method [31] that
does not utilize information on the position of microphones as
in the other methods. In MNMF, we used the same initial values
as the original study in [18]. We used the same experimental
conditions as those in Section VI-B (shown in Table V).

Figs. 11–14 show the experimental results in two-source sepa-
ration, where error bars depict standard errors for each averaged
value. Figs. 11 and 12 show the average of six music signals
in the recording conditions IR1 and IR2, respectively. Figs. 13
and 14 show the average of six speech signals in the recording
conditions IR1 and IR2, respectively.

First of all, we compare the performances inside the GGD-
ILRMA family. From Figs. 11 and 12, we can confirm that
sub-Gaussian ILRMAs (β = 3 and β = 4) provide more than
1.5 dB SDR improvement compared with Gaussian ILRMA
(β = 2). This is because the proposed source model, namely, the
sub-Gaussian source model, is more appropriate than the other
conventional super-Gaussian source models. On the other hand,
super-Gaussian ILRMAs (β = 1 and β = 1.99) also slightly
outperform Gaussian ILRMA, although the improvements are
less than 0.5 dB. This improvement might be provided by the
low-rank property of music signals; by setting β to a small
value, low-rankness is injected into the source model (NMF) of
GGD-ILRMA [12], which is a desirable property for the music
signals used in this experiment. Furthermore, from Figs. 13
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TABLE IV
TRIPLETS OF DRY SOURCES USED IN THREE-SOURCE SEPARATION OF SPEECH SIGNALS

Fig. 9. Recording conditions of impulse response (reverberation time: T60 = 300 ms) obtained from RWCP database [28]: (a) IR1, (b) IR2, and (c) IR3.

TABLE V
EXPERIMENTAL CONDITIONS FOR MUSIC AND SPEECH SOURCE SEPARATION

Fig. 10. Average SDR improvement in GGD-ILRMA using MM and ME
algorithms. Error bar represents standard error.

and 14, the proposed GGD-ILRMA with β = 4 also outper-
forms or is comparable to the other conventional ILRMAs
even for speech signals, which are expected to be sparse and
follow super-Gaussian distributions. This finding shows that the
proposed time-variant sub-Gaussian model can appropriately
model super-Gaussian signals as well as sub-Gaussian signals
owing to its time-variant property, as described in Section IV-A.
On the other hand, conventional ILRMA with β = 1 does not
provide a better separation result even though the source model
is suitable for speech signals. This phenomenon has already been

Fig. 11. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for two-music-signal separation under
recording condition IR1. Error bar represents standard error.

Fig. 12. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for two-music-signal separation under
recording condition IR2. Error bar represents standard error.

reported in [12], namely, excessive low-rank injection degrades
the separation performance of speech signals because they do
not have a low-rank time-frequency structure in the strict sense.
Compared with sub-Gaussian ILRMA with β = 4 that gives
the best SDRs, the performance of sub-Gaussian ILRMA with
β = 3 is slightly worse regardless of the types of source and
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Fig. 13. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for two-speech-signal separation under
recording condition IR1. Error bar represents standard error.

Fig. 14. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for two-speech-signal separation under
recording condition IR2. Error bar represents standard error.

recording condition. This is expected to be due to the overuse of
the majorization functions, i.e., (36) and (54), which become far
from the original cost function to be minimized and generally
give a slow convergence.

Next, we compare the performance of sub-Gaussian GGD-
ILRMA with those of ICA with a time-invariant sub-Gaussian
model (sub-Gauss ICA), IVA with a time-variant super-Gaussian
(Laplace) model, and MNMF with a time-variant Gaussian
model. For both music and speech signals, the proposed
sub-Gaussian GGD-ILRMA markedly outperforms sub-Gauss
ICA, IVA, and MNMF, showing the efficacy of the proposed
method. Sub-Gauss ICA slightly separates music signals (see
Figs. 11 and 12) owing to the sub-Gaussianity of the signals,
but cannot separate speech signals at all (see Figs. 13 and 14).
Overall, the performance of sub-Gauss ICA is insufficient; one
possible reason is that the gradient-based parameter update
algorithm does not always guarantee a monotonic decrease in the
cost function, whereas the other methods used in this experiment
guarantee it. IVA can work in the speech-signal separation task
to some extent (see Figs. 13 and 14) because the source model is
super-Gaussian, but cannot be applicable to music signals (see
Figs. 11 and 12). As reported in [10], MNMF is worse than the
original IS-ILRMA especially in the determined BSS because
of the difficulties in optimizing a large number of parameters,

Fig. 15. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for three-music-signal separation under
recording condition IR3. Error bar represents standard error.

Fig. 16. Average SDR improvement of sub-Gauss ICA, IVA, MNMF, and
GGD-ILRMA (β = 1, 1.99, 2, 3, 4) for three-speech-signal separation under
recording condition IR3. Error bar represents standard error.

whereas the proposed sub-Gaussian ILRMA maintains a
good feature of the ILRMA family, i.e., efficient parameter
optimization.

D. BSS Experiment on Three-Source Signals

We compared the separation performance of the proposed
sub-Gaussian GGD-ILRMA (β = 3 and 4) with those of conven-
tional methods: sub-Gauss ICA, IVA, MNMF, IS-ILRMA, and
super-Gaussian GGD-ILRMA. In this experiment, eight signals
were used: four types of music signal (shown in Table III) and
four types of speech signal (shown in Table IV). To simulate
reverberant mixtures, the observed signals were produced by
convolving the impulse response IR3, which was obtained from
the RWCP database [28], shown in Fig. 9(c). The other experi-
mental conditions were the same as those in Section VI-C.

Figs. 15 and 16 show the averages of music and speech
signals, respectively. The proposed sub-Gaussian GGD-ILRMA
outperforms the other conventional methods for both music and
speech signals. From these results, we can confirm that the
proposed sub-Gaussian ILRMA can work even in the case of
N = 3, which generally increases the difficulties in parame-
ter optimization, and is versatile for various combinations of
sources.
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Fig. 17. Average SDR improvement of GGD-ILRMA (β = 1, 1.99, 2, 3, 4)
for two-music-signal separation under recording conditions (a) IR1 and (b) IR2
with realistic audio sources. Error bar represents standard error.

VII. EVALUATION USING REALISTIC MUSIC SOURCE

In the experiments in the previous section, we used an artificial
PCM-based MIDI synthesizer (Microsoft GS Wavetable Synth)
to produce the simulated music signals. In this section, we show
some examples of separation performance using more realistic
music-instrument source signals. We used Garritan Personal
Orchestra 4, which imitates more realistic sounds based on
professionally recorded sample sounds. The other experimental
conditions are the same as those in Section VI.

Fig. 17 shows the performance for the realistic signals in two-
music-signal separation under recording conditions IR1 and IR2.
From this result, we can confirm that the proposed GGD-ILRMA
markedly outperforms the conventional methods, similarly to in
the previous section. The proposed method separates the sources
with high accuracy even for the sampling-based realistic music
signals.

VIII. CONCLUSION

In this paper, we proposed a new type of ILRMA, which
assumes that the source signal follows the time-variant isotropic
complex sub-Gaussian GGD. By combining a new update
scheme called GIP-HSM and an MM algorithm, we obtained
a convergence-guaranteed update rule for the demixing matrix.
Furthermore, we accelerated it using a new ME algorithm ex-
tended to a multivariate case, which is expected to be faster
than the MM algorithm. In the experimental evaluations, we
revealed the versatility of the proposed method, i.e., the proposed
time-variant sub-Gaussian source model can deal with various
types of source signal, ranging from sub-Gaussian music signals
to super-Gaussian speech signals.

APPENDIX

PROOF OF THEOREM 1

Proof: Let q = [q1 . . . qJ ]
� = HHw. f(w) and g(w)

can be written as

f(w) =
1

J

∑
j

|qj |4 , (83)

g(w) =
1

J
∑

j |q̃j |4
(qHQ̃q)2. (84)

Then, the objective inequality f(w) ≤ g(w) holds if and only if⎛
⎝∑

j

|qj |4
⎞
⎠

⎛
⎝∑

j

|q̃j |4
⎞
⎠ ≤ (qHQ̃q)2. (85)

The quadratic form of the right side in (85) can be deformed as

qHQ̃q = tr(Q̃qqH)

=
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|qj |2
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∗
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∗
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|q̃j |2
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∗
j q̃
∗
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Hence, we prove the following inequality hereafter:⎛
⎝∑

j

|qj |4
⎞
⎠
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⎞
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. (87)

Let

x1 =
∑
j

|qj |2 , (88)

x2 =

√∑
i �=j
|qi|2 |qj |2, (89)

y1 =
∑
j

|q̃j |2 , (90)

y2 =

√∑
i �=j
|q̃i|2 |q̃j |2. (91)

Since

x1
2 − x2

2 =
∑
j

|qj |4 ≥ 0, (92)

y1
2 − y2

2 =
∑
j

|q̃j |4 ≥ 0, (93)

and x1, x2, y1, y2 ≥ 0, it is obvious that

x1y1 − x2y2 ≥ 0. (94)

Furthermore, we obtain the following inequality by applying
the Cauchy–Schwarz inequality:

x2y2 =

√(∑
i �=j
|qi|2 |qj |2

)(∑
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|q̃i|2 |q̃j |2

)

≥
∣∣∣∣∣∣
∑
i �=j

qiq
∗
j q̃
∗
i q̃j
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where we used the fact that∑
i�=j
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∗
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∗
i q̃j =
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)

= 2
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Re[qiq
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∗
i q̃j ] ∈ R. (96)
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From (94) and (95), we have

(x1y1 − x2y2)
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Therefore, (87) can be proven by using the Brahmagupta
identity, (92), (93), and (97) as follows:⎛
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It is easy to prove that the equality of (87) holds if w = w̃
because then q = q̃ holds. �
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