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Abstract—This paper describes a semi-supervised multichan-
nel speech enhancement method that uses clean speech data for
prior training. Although multichannel nonnegative matrix factor-
ization (MNMF) and its constrained variant called independent
low-rank matrix analysis (ILRMA) have successfully been used
for unsupervised speech enhancement, the low-rank assumption
on the power spectral densities (PSDs) of all sources (speech and
noise) does not hold in reality. To solve this problem, we replace
a low-rank speech model with a deep generative speech model,
i.e., formulate a probabilistic model of noisy speech by integrating
a deep speech model, a low-rank noise model, and a full-rank
or rank-1 model of spatial characteristics of speech and noise.
The deep speech model is trained from clean speech data in an
unsupervised auto-encoding variational Bayesian manner. Given
multichannel noisy speech spectra, the full-rank or rank-1 spatial
covariance matrices and PSDs of speech and noise are estimated
in an unsupervised maximum-likelihood manner. Experimental re-
sults showed that the full-rank version of the proposed method was
significantly better than MNMF, ILRMA, and the rank-1 version.
We confirmed that the initialization-sensitivity and local-optimum
problems of MNMF with many spatial parameters can be solved
by incorporating the precise speech model.

Index Terms—Multichannel speech enhancement, deep learning,
variational autoencoder, nonnegative matrix factorization.

I. INTRODUCTION

S PEECH enhancement plays a vital role for automatic speech
recognition (ASR) in noisy environments. Although the

performance and robustness of ASR have been drastically im-
proved thanks to the development of deep learning techniques,
ASR in unseen noisy environments that are not covered by
training data is still an open problem. Many methods have thus
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Fig. 1. A probabilistic generative model of multichannel noisy speech spectra
with a deep speech prior.

been proposed for single-channel or multichannel speech en-
hancement. These methods can be categorized into supervised,
semi-supervised, and unsupervised methods.

A popular approach to supervised speech enhancement is to
train deep neural networks (DNNs) by using pairs of noisy and
clean speech signals. In single-channel speech enhancement,
one can use denoising autoencoders (DAEs) that take noisy
speech spectra as input, and output clean speech spectra [1].
Alternatively, DNNs can be trained to estimate time-frequency
masks, i.e., classify each time-frequency bin into speech or
noise [2], [3]. In multichannel speech enhancement using phase
information, the estimated masks are used for calculating the
spatial covariance matrices (SCMs) of speech and noise. This
allows one to use beamforming methods [4], [5]. Although this
approach has successfully been used as a front end of ASR,
the performance of speech enhancement is often considerably
degraded in unseen noisy environments due to the nature of
supervised mask estimation [6].

To mitigate the sensitivity to acoustic characteristics of noisy
environments, one may use unsupervised methods such as mul-
tichannel extensions of nonnegative matrix factorization (NMF)
[7]–[12]. Each variant of multichannel NMF (MNMF) can be
interpreted as maximum-likelihood or Bayesian estimation of a
probabilistic model representing the generative process of the
complex spectrograms of mixture signals (e.g., speech + noise)
and is used for general blind sound separation (BSS). The key
assumption underlying the family of MNMF is that the power
spectral densities (PSDs) of all sound sources have low-rank
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structure. In speech enhancement, however, the performance of
MNMF is limited because the low-rank assumption does not
hold for the PSDs of speech. Several studies thus integrated
a DAE into an optimization step of MNMF which estimates
the PSDs of speech [13], [14]. Although such integration of
a powerful DNN and a physically founded statistical model is
promising, supervised learning of DAEs causes sensitivity to
noisy environments again.

To solve the problems of the DNN- and MNMF-based con-
ventional methods, we propose a semi-supervised method that
uses only clean speech data for prior training. More specifically,
we formulate a DNN-based speech model that represents the
generative process of the complicated PSDs of clean speech
and an NMF-based noise model that represents the generative
process of the low-rank PSDs of noise. A unified generative
model of observed noisy speech is then obtained by integrating
those source models with a full-rank or rank-1 spatial model as
in MNMF [9] or its constrained version called independent low-
rank matrix analysis (ILRMA) [11], respectively. A key feature
of our method is that the deep speech model is a latent variable
model that implicitly, but precisely represents the acoustic char-
acteristics of speech spectra such as fundamental frequencies
(F0s), harmonic structures, and spectral envelopes. To achieve
this, the speech model is trained from clean speech data in an un-
supervised variational auto-encoding manner. The noise model,
on the other hand, is learned on-the-fly without pre-training.
Given noisy speech as observed data, the latent variables of
the speech model, the full-rank or rank-1 SCMs and PSDs of
speech and noise can be estimated in an unsupervised maximum-
likelihood manner by combining a majorization-minimization
algorithm with Metropolis sampling or backpropagation.

A main contribution of this paper is to propose a new statistical
framework that integrates a physically-founded linear model
(multichannel spatial model) with a powerful deep generative
model (single-channel source model) in a principled manner.
Another important contribution is to experimentally show that
the full-rank spatial model can outperform the rank-1 spatial
model thanks to the deep speech prior. In our previous work [15],
we developed the MNMF-based full-rank model with the deep
speech prior, called MNMF-DP. In this paper, we propose the
ILRMA-based rank-1 model with the deep speech prior, called
ILRMA-DP, and investigate the configurations of these models.
Note that MNMF [9] with richer expressive power often under-
performs ILRMA [11] because MNMF is sensitive to the initial-
ization of SCMs and tends to get stuck at local optima. Interest-
ingly, our full-rank model outperforms the rank-1 version even
when the SCMs are initialized randomly. This indicates that the
precise source modeling helps the estimation of SCMs and alle-
viates the initialization sensitivity. We confirm the superiority of
the proposed semi-supervised method over the semi-supervised
versions of MNMF and ILRMA in which the basis spectra of the
NMF-based speech model are trained from clean speech data as
in [16], [17].

The rest of the paper is organized as follows. Section II
reviews related work on NMF-based and DNN-based speech
enhancement. Section III explains the proposed methods based
on full-rank and rank-1 spatial models and Section IV describes

parameter estimation. Section V reports comparative experi-
ments. Finally, Section VI concludes this paper.

II. RELATED WORK

This section reviews existing NMF- and DNN-based speech
enhancement methods in comparison with the proposed method
consisting of a DNN-based speech model and an NMF-based
noise model.

A. NMF-Based Speech Enhancement

Multichannel extensions of NMF have been developed for
using the spatial information of sound propagation processes
[7]–[12]. The PSDs of each source signal is given by the sum of
the products of basis spectra and their activations. The complex
spectrograms of observed multichannel signals are then given
by the sum of the complex spectrograms (called images) of the
propagated source signals. The first formulation of MNMF was
proposed by Ozerov et al. [7], where the SCMs are restricted to
rank-1 matrices and the cost function based on the Itakura-Saito
(IS) divergence is minimized by using a multiplicative update
or expectation-maximization (EM) algorithm. This method was
extended to deal with full-rank SCMs [8]. Sawada et al. [9]
introduced a partitioning function to share a set of basis spectra
by all sources and derived a majorization-minimization (MM)
algorithm. The full-rank version of our model can be regarded
as an extension of [8] and uses the MM algorithm of [9].
Nikunen and Virtanen [10] proposed a model similar to [9]
which represents the SCM of each source as the weighted sum
of all possible direction-dependent SCMs. Kitamura et al. [11]
proposed a method called independent low-rank matrix analysis
(ILRMA) by restricting the SCMs of [9] to rank-1 matrices,
resulting in a unified model of NMF and independent vector
analysis (IVA). The rank-1 version of our model can be regarded
as an extension of ILRMA without a partitioning function.

The common feature of those MNMF variants is that the
PSDs of each source are assumed to have a low-rank struc-
ture given by nonnegative matrix factorization (NMF) [18].
While it is difficult to use NMF in an unsupervised manner for
single-channel speech enhancement, MNMF can work well in
an unsupervised manner because the spatial information plays
a central role in multi-channel speech enhancement. NMF has
been used in a semi-supervised manner by training the basis
spectra of speech from clean speech data in advance [16], [17]. In
this paper, we evaluate a semi-supervised version of MNMF with
pretrained basis spectra for fair comparison with the proposed
semi-supervised method.

B. DNN-Based Speech Enhancement

Deep neural networks (DNNs) have been widely used for
supervised speech enhancement. A typical approach to single-
channel speech enhancement is to train a denoising autoencoder
(DAE) that takes noisy speech spectra as input and outputs clean
speech spectra by using paired data [1]. Alternatively, one can
train a DNN that outputs time-frequency masks [2], [3]. The
use of spatial information has recently been investigated for
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multi-channel speech enhancement. In [4], [5], time-frequency
masks are estimated using a DNN and then used for calculating
the steering vectors and/or SCMs of speech and noise used
for beamforming. In [13], [14], a DAE is integrated into a
process of SCM-based multichannel source separation; (1) the
observed mixture spectra are separated into speech and noise
by using the current estimate of the speech and noise SCMs,
(2) the PSDs of the enhanced speech are further refined by
using the DAE, and (3) the speech and noise SCMs are updated
by using the current estimate of the PSDs of the speech and
noise. Generative adversarial networks (GANs) are effective for
supervised single-channel speech enhancement [19]–[21], but
adaptation to unseen noisy environments is an open problem.

Recently, deep generative models of speech spectra based
on variational autoencoders (VAEs) have been used for semi-
supervised speech enhancement. Bando et al. [22] first proposed
a unified model that consists of an NMF-based noise model
and a DNN-based speech model with latent variables for single-
channel speech enhancement. The speech model is given as the
decoder of a VAE trained beforehand from clean speech data
in an unsupervised manner. On the other hand, the noise model
is optimized on-the-fly for observed noisy speech data. This
approach mitigates the sensitivity to the acoustic characteristics
of noisy environments. Leglaive et al. [23] proposed a similar
model for maximum likelihood estimation. In our work [15], we
developed a multichannel extension of [22] to treat the SCMs of
speech and noise. This method can also be considered as an ex-
tension of Bayesian MNMF [12] because an NMF-based model
corresponding to speech was replaced with a DNN-based model.
Leglaive et al. [24] also proposed a similar model for maximum
likelihood estimation. In this paper, we propose a rank-1 variant
of [15], investigate parameter configuration, initialization, and
latent variable estimation for both full-rank and rank-1 models,
and compare them with the state-of-the-art methods.

III. PROBABILISTIC MODELING

We explain the proposed multichannel speech enhancement
methods that integrate two kinds of source models—a DNN-
based generative model of speech spectra and an NMF-based
generative model of noise spectra—with a full-rank or rank-1
spatial model in a unified probabilistic model.

A. Problem Specification

Let T , F , M , and N be the number of time frames, fre-
quency bins, microphones, and noise sources, respectively. Let
X = {xft}F,T

f=1,t=1 ∈ CF×T×M be the observed multichannel
complex spectra of noisy speech including a single speech
source and N noise sources. There are N + 1 sources in total.
Let sft = [sft0, . . . , sftN ]T ∈ CN+1 be the source spectrum
at frequency f and time t, where sft0 and the others corre-
spond to the speech and the noise, respectively. Let xftn =
[xftn1, . . . , xftnM ]T ∈ CM be the image of source n. Assum-
ing the additivity of complex spectra, the observed spectrum

Fig. 2. The proposed DNN-based speech model. The PSDs {λft0}Ff=1 of a

speech spectrum {sft0}Ff=1 at time t are obtained by feeding the latent variable

zt following the standard Gaussian distribution into a DNN σ2
θ with parameters

θ and then scaling the output σ2
θ(zt) according to uf and vt.

xft = [xft1, . . . , xftM ]T ∈ CM is given by

xft =

N∑

n=0

xftn. (1)

Given X as observed data, the goal of speech enhancement is to
estimate the speech image xft0.

B. Source Modeling

We formulate a source model that represents the generative
process of the complex spectrum sftn of each source n. In
this paper sftn is assumed to be circularly-symmetric complex
Gaussian distributed as follows:

sftn ∼ NC(0, λftn), (2)

where NC(μ, σ
2) indicates a univariate circularly-symmetric

complex Gaussian distribution with mean μ and variance σ2,
and λftn indicates the PSD of source n at frequency f and
time t. As in MNMF [7]–[12], a noise model is based on NMF
assuming that the PSDs of noise have a low-rank structure. Since
the low-rank assumption is not suitable for speech, a speech
model is based on a DNN [22].

1) DNN-Based Speech Model: As in Fig. 2, the PSD of the
speech at frequency f and time t is determined by a DNN as
follows:

λft0 = ufvt[σ
2
θ(zt)]f , (3)

where σ2
θ(·) is a nonlinear function (DNN) with parameters

θ that maps a D-dimensional real vector zt ∈ RD to an F -
dimensional nonnegative vectorσ2

θ(zt) ∈ RF
+, [·]f indicates the

f -th element of a vector, uf ≥ 0 is a scaling factor at frequency
f , and vt ≥ 0 is an activation at time t. zt implicitly repre-
sents the characteristics (e.g., fundamental frequencies (F0s),
harmonic structures, and formants) of the PSDs {λft0}Ff=1 of
the speech at time t. Note that {λft0}Ff=1 are jointly determined
by zt in an interdependent manner. We put a standard Gaussian
prior on zt as follows:

zt ∼ N (0D, ID), (4)

where 0D and ID are the all-zero vector and the identity ma-
trix of size D, respectively. While the DNN specified by θ
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Fig. 3. Two variants of spatial models. Blue and red dots indicate source
images {xft1}Tt=1 and {xft2}Tt=1 in frequency f , respectively. In the rank-1
model, dots are distributed on steering vectors a1f and a2f . In the full-rank
model, dots are widely and elliptically distributed.

is trained from clean speech data (Section IV-A), the latent
variables Z = {zt}Tt=1 are estimated on-the-fly. The scaling
factors U = {uf}Ff=1 and the activations V = {vt}Tt=1 are in-
troduced for dissolving the scale ambiguity of model parameters
(Section III-D).

2) NMF-Based Noise Model: The PSD of each source of the
noise (n ≥ 1) at frequency f and time t is represented in the
framework of NMF as follows:

λftn =

K∑

k=1

wnkfhnkt, (5)

where K denotes the number of bases, wnkf ≥ 0 indicates the
magnitude of basis k of source n at frequency f , and hnkt ≥ 0
indicates the activation of basis k of source n at time t. W =
{wnkf}N,K,F

n=1,k=1,f=1 andH = {hnkt}N,K,T
n=1,k=1,t=1 are estimated

on-the-fly in speech enhancement for X.

C. Spatial Modeling

We formulate a spatial model that represents the sound prop-
agation process between each source n and the M microphones.
In this paper, we use two variants of spatial models, a full-rank
model with full-rank SCMs and a rank-1 model with rank-1
SCMs, as shown in Fig. 3. In the rank-1 model, we assume
a time-invariant linear mixing system and its corresponding
demixing system as follows:

xftn = anfsftn, (6)

sftn = dH
nfxft, (7)

where anf ∈ CM and dnf ∈ CM are the steering vector and
demixing filter of source n at frequency f , respectively. Using
Eq. (2) and Eq. (6), we say

xftn ∼ NC (0M , λftnGnf ) , (8)

where Gnf = anfa
H
nf ∈ SM

+ is the rank-1 SCM of source n at
frequencyf and SM

+ indicates the set of positive definite matrices
of size M . Using Eq. (1), Eq. (8), and the reproductive property

of the Gaussian distribution, we say

xft ∼ NC

(
0M ,

N∑

n=0

λftnGnf

)
. (9)

As shown in Eq. (8), Gnf is a rank-1 matrix in an idealized
situation. However, in a real noisy environment, Gnf can be a
full-rank matrix due to reverberation and reflection. Therefore,
in the full-rank model, we assume Gnf is a full-rank matrix.
The number of parameters of a full-rank SCM is M(M + 1)/2
and that of a rank-1 SCM is only M . While the rank-1 model
is a restricted version of the full-rank model, ILRMA based on
the rank-1 model [11] is empirically known to work better than
MNMF based on the full-rank model [9] because the rank-1
model is less sensitive to parameter initialization. Note that this
has not been confirmed in the proposed model with the deep
speech prior (interestingly, the opposite results were obtained as
shown in Section V).

The rank-1 model is valid only in a determined condition in
which the number of sources is equal to that of microphones,
i.e., N + 1 = M . Substituting Eq. (6) into Eq. (1), we get

xft = Afsft, (10)

where Af = [a0f , . . . ,aNf ] ∈ CM×(N+1) is a non-singular
square matrix called a mixing matrix. If Af is given, the source
spectrum sft can be estimated as follows:

sft = Dfxft, (11)

where Df = A−1f = [d0f , . . . ,dNf ]
H ∈ C(N+1)×M is a

demixing matrix.

D. Unified Source and Spatial Modeling

We formulate a unified probabilistic model that represents
the generative process of the observed data X by integrating the
source models described in Section III-B with the spatial models
described in Section III-C

1) MNMF with a Deep Speech Prior (MNMF-DP): Substi-
tuting Eq. (3) and Eq. (5) into Eq. (9), we obtain the likelihood
function of unknown variables Z, U, V, W, H, and G for X
as follows:

log p(X|Z,U,V,W,H,G)

=

F∑

f=1

T∑

t=1

logNC (xft|0M ,Yft)

=
F∑

f=1

T∑

t=1

(
−tr
(
Y−1ft Xft

)
− log |Yft|

)
+ const, (12)

where Xft ∈ SM
+ and Yft ∈ SM

+ are observed and recon-
structed matrices given by

Xft = xftx
H
ft, (13)

Yft =

N∑

n=0

λftnGnf . (14)
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λft0 and λftn(n ≥ 1) are the PSD of the speech and that of the
noise, respectively, which are given by

λftn =

{
ufvt[σ

2
θ(zt)]f (n = 0),

∑K

k=1
wnkfhnkt (n ≥ 1).

(15)

We define Yftn = λftnGnf and Yftnk = wnkfhnktGnf .
Our goal is to estimate Z, U, V, W, H, and G such that the

log-likelihood log p(X|Z,U,V,W,H,G) given by Eq. (12)
is maximized. To avoid the scale ambiguity of the parameters,
we put normalization constraints on U, W, and G as follows:

F∑

f=1

uf = 1, (16)

F∑

f=1

wnkf = 1, (17)

tr(Gnf ) = 1. (18)

2) ILRMA with a Deep Speech Prior (ILRMA-DP): When
Gnf is a rank-1 matrix given by Gnf = anfa

H
nf , Yft is given

as follows:

Yft =

N∑

n=0

λftnanfa
H
nf

= AfΛftA
H
f

= D−1f ΛftD
−H
f , (19)

where Λft = Diag(λft0, . . . , λftN ) is a diagonal matrix. Sub-
stituting Eq. (11) and Eq. (19) into Eq. (12), we get

log p(X|Z,U,V,W,H,D)

= −
F∑

f=1

T∑

t=1

tr
(
sHftD

−H
f

(
DH

f Λ
−1
ft Df

)
D−1f sft

)

−
F∑

f=1

T∑

t=1

log
∣∣∣D−1f ΛftD

−H
f

∣∣∣+ const

= −
F∑

f=1

T∑

t=1

tr
(
sHftΛ

−1
ft sft

)
−

F∑

f=1

T∑

t=1

log |Λft|

+ T

F∑

f=1

log |DfD
H
f |+ const

= −
F∑

f=1

T∑

t=1

N∑

n=0

( |sftn|2
λftn

+ log λftn

)

+ T

F∑

f=1

log |DfD
H
f |+ const. (20)

Our goal is to estimate the demixing matrices D instead of
the mixing matrices A and to estimate Z, U, V, W, and H
such that the log-likelihood log p(X|Z,U,V,W,H,D) given

by Eq. (20) is maximized. To avoid the scale ambiguity of the
parameters, we put the normalization constraints on U and W
given by Eq. (16) and Eq. (17) and that on D given by

tr
(
dnfd

H
nf

)
= dH

nfdnf = 1. (21)

E. Speech Enhancement

Using the estimated parameters, we can perform statistical
speech enhancement.

1) Full-Rank Model: To estimate the enhanced speech spec-
trum xFR

ft0 ∈ CM , we use a multichannel Wiener filter (MWF).
Using Eq. (8) and Eq. (9), the posterior expectation of the speech
image xFR

ft0 ∈ CM is given as follows:

xFR
ft0 = E[xft0|xft] = Yft0Y

−1
ft xft. (22)

2) Rank-1 Model: To estimate the enhanced speech spectrum
sR1
ft0 ∈ C, we use a linear demixing filter as follows:

sR1
ft0 = dH

0fxft. (23)

To solve the scale ambiguity of {sft0}Ff=1 over frequency bins,
we use a projection back technique [25] for estimating the
enhanced speech image xR1

ft0 ∈ CM as follows:

xR1
ft0 = a0fsft0 = a0fd

H
0fxft. (24)

Substituting Eq. (19) into Eq. (22), we can easily prove that
Eq. (24) can also be obtained by the MWF as follows:

xR1
ft0 =

(
λft0a0fa

H
0f

) (
DH

f Λ
−1
ft Df

)
xft

= λft0a0fe
T
1 Λ

−1
ft Dfxft

= a0fd
H
0fxft. (25)

where e1 = [1, 0, . . . , 0]T is a one-hot vector.

IV. PARAMETER ESTIMATION

We explain how to train the DNN-based speech model
(Section III-B1) from clean speech data in an unsupervised
manner. We then explain how to optimize the parameters
of MNMF-DP (Section III-D1) and those of ILRMA-DP
(Section III-D2) for semi-supervised speech enhancement using
the trained deep speech prior.

A. Pretraining of Deep Speech Prior

The nonlinear mapping function σ2
θ(·) given by Eq. (3) is

optimized in the framework of a VAE. Suppose that we have
training data X̃ = {x̃i}Ii=1, where I is the number of frames
and x̃i ∈ CF is a complex spectrum of clean speech. Let Z̃ =
{z̃i}Ii=1 be the corresponding latent variables. We formulate the
hierarchical generative process of X̃ as follows:

z̃i ∼ N (0D, ID),

x̃i ∼ NC(0F ,Diag(σ2
θ(z̃i))), (26)

where Diag(·) indicates a diagonal matrix.
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Our goal is to estimate θ such that the likelihood p(X̃|θ) is
maximized. Since log p(X̃|θ) is analytically intractable and is
hard to directly maximize, we derive a lower boundLVAE(θ,φ)
of log p(X̃|θ) by introducing a variational posterior distribution
qφ(z̃i|x̃i) with parameters φ as follows:

log p(X̃|θ) =
I∑

i=1

log

∫
pθ(x̃i|z̃i)p(z̃i)dz̃i

=

I∑

i=1

log

∫
qφ(z̃i|x̃i)

qφ(z̃i|x̃i)
pθ(x̃i|z̃i)p(z̃i)dz̃i

≥
I∑

i=1

∫
qφ(z̃i|x̃i) log

pθ(x̃i|z̃i)p(z̃i)
qφ(z̃i|x̃i)

dz̃i

=

I∑

i=1

(
Eqφ [log pθ(x̃i|z̃i)]−KL(qφ(z̃i|x̃i)‖p(z̃i))

)

def
= LVAE(θ,φ), (27)

whereKL(q‖p) indicates the Kullback-Leibler (KL) divergence
between two probability distributions q and p. Our goal is to
maximize LVAE(θ,φ) with respect to θ and φ.

For mathematical convenience, in this paper qφ(z̃i|x̃i) is set
to a Gaussian distribution as follows:

qφ(z̃i|x̃i) = N (z̃i|μφ(x̃i),Diag(σ2
φ(x̃i))), (28)

where μφ(·) and σ2
φ(·) are the D-dimensional output vectors

of a DNN with parameters φ. The first term of Eq. (27) is
approximated via Monte Carlo integration as follows:

Eqφ [log pθ(x̃i|z̃i)] ≈ 1

L

L∑

l=1

log pθ

(
x̃i|z̃(l)i

)
, (29)

where L is the number of samples and z̃
(l)
i is obtained by using

the reparametrization trick [26] as follows:

ε̃
(l)
i ∼ N (0D, ID), (30)

z̃
(l)
i = μφ(x̃i) + ε̃

(l)
i �

√
σ2

φ(x̃i), (31)

where � indicates the element-wise product. The second term
of Eq. (27) can be analytically calculated as follows:

KL(qφ(z̃i|x̃i)‖p(z̃i))

=
1

2

D∑

d=1

(
[μφ(x̃i)]

2
d + [σ2

φ(x̃i)]d − log[σ2
φ(x̃i)]d − 1

)
.

(32)

The lower bound LVAE(θ,φ) given by Eq. (27) can be ap-
proximately calculated by using Eq. (29), Eq. (30), Eq. (31),
and Eq. (32). The parameters θ and φ of the two DNNs are
jointly optimized by using a stochastic gradient method such
that LVAE(θ,φ) is maximized.

The generation parameters θ are used for formulating the
generative model of X described in Section III. The inference

parameters φ are used for initializing Z, i.e., zt ← μφ(xt) as
described in Section IV-D, where xt is any complex spectrum
whose PSDs are the same as the average PSDs of noisy speech
over all channels at frame t.

B. Optimization of MNMF-DP

We aim to estimate the parameters Z, U, V, W, H, and G
that maximize log p(X|Z,U,V,W,H,G) given by Eq. (12).
Since it is hard to directly maximize the log-likelihood with
respect to each of these parameters, we use an MM algorithm
that iteratively maximizes lower bounds of the log-likelihood as
in MNMF [9].

1) Matrix Inequalities: To derive the lower bounds, we use
two matrix inequalities on positive semidefinite matrices [12].
For a convex function f1(S) = − log |S| with respect to S ∈
SM
+ , we calculate a tangent plane at an arbitrary point Ω ∈ SM

+

by using a first-order Taylor expansion as follows:

− log |S| ≥ − log |Ω| − tr
(
Ω−1S

)
+M, (33)

where the equality holds if and only if Ω = S. For a concave
function f2(S) = −tr(S−1R) with any matrix R ∈ SM

+ with
respect to S ∈ SM

+ , we have

−tr
⎛

⎝
(

K∑

k=1

Sk

)−1
R

⎞

⎠ ≥ −
K∑

k=1

tr
(
S−1k ΦkRΦH

k

)
, (34)

where {Sk}Kk=1 (Sk ∈ SM
+ ) is a set of positive semidefinite

matrices, {Φk}Kk=1 is a set of auxiliary matrices that sum to
the identity matrix, i.e.,

∑K
k=1 Φk = IM , and the equality holds

if and only if Φk = Sk(
∑K

k′=1 Sk′)
−1.

2) Deriving Lower Bounds: Using Eq. (33) and Eq. (34)
and introducing auxiliary matrices Ω = {Ωft}F,T

f,t=1 and Φ =

{Φft0}F,T
f,t=1 ∪ {Φftn}F,T,N

f,t,n=1, we can derive a lower bound
L1
FR(Z,U,V,W,H,G,Ω,Φ) of Eq. (12) as follows:

log p(X|Z,U,V,W,H,G)

≥ −
F∑

f=1

T∑

t=1

N∑

n=0

λ−1ftntr
(
G−1nfΦftnXftΦ

H
ftn

)

−
F∑

f=1

T∑

t=1

N∑

n=0

λftntr
(
GnfΩ

−1
ft

)

−
F∑

f=1

T∑

t=1

log |Ωft|+ const (35)

def
= L1

FR(Z,U,V,W,H,G,Ω,Φ), (36)

where the equality holds, i.e., the lower bound is maximized, if
and only if

Ωft = Yft, (37)

Φftn = YftnY
−1
ft . (38)

Note that Yft =
∑N

n=0 Yftn and Yftn = λftnGnf .
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Using Ω and Φ and introducing additional auxiliary matrices
Ψ = {Ψftnk}F,T,N,K

f,t,n,k=1, we can derive another lower bound,
L2
FR(Z,U,V,W,H,G,Ω,Φ,Ψ) of Eq. (12) as follows:

log p(X|Z,U,V,W,H,G)

≥ −
F∑

f=1

T∑

t=1

u−1f v−1t [σ2
θ(zt)]

−1
f tr

(
G−10fΦft0XftΦ

H
ft0

)

−
F∑

f=1

T∑

t=1

N∑

n=1

K∑

k=1

w−1nkfh
−1
nkttr

(
G−1nfΨftnkXftΨ

H
ftnk

)

−
F∑

f=1

T∑

t=1

N∑

n=0

λftntr
(
GnfΩ

−1
ft

)

−
F∑

f=1

T∑

t=1

log |Ωft|+ const

def
= L2

FR(Z,U,V,W,H,G,Ω,Φ,Ψ), (39)

where the equality conditions are Eq. (37), Eq. (38), and

Ψftnk = YftnkY
−1
ft . (40)

Note that Yft =
∑N

n=0 Yftn and Yftnk = wnkfhnktGnf .
Since L1

FR is tighter than L2
FR, it is better to use L1

FR for
parameter estimation if possible. However, maximization of
L1
FR with respect to W and H has no closed-form solution

due to the existence of λ−1ftn = (
∑

k wnkfhnkt)
−1 (n ≥ 2) in

the first term of Eq. (35). We thus use L1
FR for estimating Z, U,

V, and G, and use L2
FR for W and H.

3) Updating Speech Model: To update the latent variables
Z, we use the Metropolis sampling [27] or the backpropaga-
tion [28]. In the sampling, a proposal znewt ∼ N (zoldt , ξID)
with a small number ξ is accepted as a next sample of zt with
probability βt = min(1, γt), where γt is given by

log γt = L1
FR(z

new
t ,U,V,W,H,G,Ω,Φ) + log p(znewt )

− L1
FR(z

old
t ,U,V,W,H,G,Ω,Φ)− log p(zoldt )

= −
F∑

f=1

(
1

λnew
ft0

− 1

λold
ft0

)
tr
(
G−10fΦft0XftΦ

H
ft0

)

−
F∑

f=1

(
λnew
ft0 − λold

ft0

)
tr
(
G0fΩ

−1
ft

)

− 1

2

D∑

d=1

(
(znewtd )2 − (zoldtd )2

)
, (41)

where λnew
ft0 = ufvt[σ

2
θ(z

new
t )]f and λold

ft0 = ufvt[σ
2
θ(z

old
t )]f .

In the backpropagation, the lower bound L1
FR given by Eq. (36)

is regarded as an objective function of Z. It is maximized with
respect to zt by using a stochastic gradient descent method.
Both sampling and backpropagation algorithms update Z sev-
eral times in one iteration. In practice, we update Z several

times without updating Yft to reduce the computational cost
of calculating Y−1ft in Φft0 and Ω−1ft .

To derive the multiplicative updating (MU) rule of the scaling
factors U, we let the partial derivative of L1

FR given by Eq. (36)
with respect to uf equal to zero as follows:

T∑

t=1

u−2f v−1t [σ2
θ(zt)]

−1
f tr

(
G−10fΦft0XftΦ

H
ft0

)

−
T∑

t=1

vt[σ
2
θ(zt)]f tr

(
G0fΩ

−1
ft

)
= 0. (42)

Substituting Eq. (37) and Eq. (38) including the current estimate
of uf denoted by uold

f into Eq. (42), we have

uold
f aufu

old
f = ufb

u
fuf , (43)

where auf and buf are given by

auf =
T∑

t=1

vt[σ
2
θ(zt)]f tr

(
G0fY

−1
ft XftY

−1
ft

)
, (44)

buf =

T∑

t=1

vt[σ
2
θ(zt)]f tr

(
G0fY

−1
ft

)
. (45)

Solving Eq. (43), we have the MU rule of uf given by

uf ← uf

√
auf
buf

. (46)

Similarly, the MU rule of the activations V can be obtained
as follows:

avt =
F∑

f=1

uf [σ
2
θ(zt)]f tr

(
G0fY

−1
ft XftY

−1
ft

)
, (47)

bvt =

F∑

f=1

uf [σ
2
θ(zt)]f tr

(
G0fY

−1
ft

)
, (48)

vt ← vt

√
avt
bvt

. (49)

4) Updating Noise Models: Letting the partial derivatives
of L2

FR given by Eq. (39) with respect to W and H equal to
zero, the closed-form MU rules of W and H are obtained as
follows:

awnkf =
T∑

t=1

hnkt tr
(
GnfY

−1
ft XftY

−1
ft

)
, (50)

bwnkf =

T∑

t=1

hnkt tr
(
GnfY

−1
ft

)
, (51)

wnkf ← wnkf

√
awnkf
bwnkf

, (52)

ahnkt =

F∑

f=1

wnkf tr
(
GnfY

−1
ft XftY

−1
ft

)
, (53)
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bhnkt =

F∑

f=1

wnkf tr
(
GnfY

−1
ft

)
, (54)

hnkt ← hnkt

√
ahnkt
bhnkt

. (55)

5) Updating Spatial Models: To derive the update rule of
the spatial covariance matrices G, we let the partial derivative
of L1

FR with respect to Gnf equal to zero as follows:

T∑

t=1

λ−1ftnG
−1
nfΦftnXftΦ

H
ftnG

−1
nf

−
T∑

t=1

λftnΩ
−1
ft = 0M×M , (56)

where0M×M is the all-zero matrix of sizeM ×M . Substituting
Eq. (37) and Eq. (38) including the current estimate of Gnf

denoted by Gold
nf into Eq. (56), we have

Gold
nf A

G
nfG

old
nf = GnfB

G
nfGnf , (57)

where AG
nf ∈ SM

+ and BG
nf ∈ SM

+ are given by

AG
nf =

T∑

t=1

λftnY
−1
ft XftY

−1
ft , (58)

BG
nf =

T∑

t=1

λftnY
−1
ft . (59)

Solving Eq. (57) as in [29], [30], we have the closed-form update
rule of Gnf as follows:

Gnf ←
(
GnfA

G
nfGnf

)
#(BG

nf )
−1, (60)

where A#B indicates the geometric mean of two positive
semidefinite matrices A and B [31], [32] as follows:

A#B = A
1
2

(
A−

1
2BA−

1
2

) 1
2

A
1
2 = A(A−1B)

1
2 . (61)

6) Normalizing Parameters: To meet the normalization con-
straints given by Eq. (16), Eq. (17), and Eq. (18), we adjust the
scales of U, V, W, H, and G in each iteration as follows:

μnf = tr(Gnf ),

⎧
⎪⎪⎨

⎪⎪⎩

Gnf ← μ−1nfGnf ,

uf ← μ0fuf ,

wnkf ← μnfwnkf (n ≥ 1),

(62)

ν0 =

F∑

f=1

uf ,

{
uf ← ν−10 uf ,

vt ← ν0vt,
(63)

νnk =
F∑

f=1

wnkf ,

{
wnkf ← ν−1nkwnkf ,

hnkt ← νnkhnkt.
(64)

C. Optimization of ILRMA-DP

We aim to estimate the parameters Z, U, V, W, H, and D
that maximize log p(X|Z,U,V,W,H,D) given by Eq. (20)
by using an MM algorithm as in ILRMA [11].

1) Updating Speech Model: The latent variables Z are up-
dated with Metropolis sampling or backpropagation as in the
full-rank model (Section IV-B3). In the sampling, instead of
Eq. (41), γt is given by

log γt =

F∑

f=1

(
|sft0|2
λold
ft0

− |sft0|
2

λnew
ft0

+ log
λold
ft0

λnew
ft0

)

− 1

2

D∑

d=1

(
(znewtd )2 − (zoldtd )2

)
. (65)

In the backpropagation, the likelihood given by Eq. (20) is
regarded as a negative cost function.

The update rules of U and V can be obtained directly by
letting the partial derivatives of log p(X|Z,U,V,W,H,D)
equal to zero as follows:

uf ← 1

T

T∑

t=1

|sft0|2
vt[σ2

θ(zt)]f
, (66)

vt ← 1

F

F∑

f=1

|sft0|2
uf [σ2

θ(zt)]f
. (67)

2) Updating Noise Models: The closed-form MU rules ofW
and H are obtained as follows:

awnkf =

T∑

t=1

hnkt|sftn|2λ−2ftn, (68)

bwnkf =

T∑

t=1

hnktλ
−1
ftn, (69)

wnkf ← wnkf

√
awnkf
bwnkf

, (70)

ahnkt =

F∑

f=1

wnkf |sftn|2λ−2ftn, (71)

bhnkt =
F∑

f=1

wnkfλ−1ftn, (72)

hnkt ← hnkt

√
ahnkt
bhnkt

. (73)

3) Updating Spatial Models: The update rule of D is ob-
tained in the same way to [11], [33] as follows:

Υnf =
1

T

T∑

t=1

Xft

λftn
, (74)

dnf ← (DfΥnf )
−1en, (75)

dnf ←
(
dH
nfΥnfdnf

)− 1
2 dnf , (76)

where en = [0, . . . , 1, . . . , 0]T indicates a unit vector with the
n-th element equal to 1.
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Algorithm 1: Speech Enhancement Based on MNMF-DP.
for iteration = 1 to MaxIteration do

Update U, V, W, H, and G by Eqs. (46), (49), (52),
(55), and (60)

Compute Ω and {Φft0}F,T
f,t=1 by Eqs. (37) and (38)

if Sampling then
for Z_iteration = 1 to Z_MaxIteration do

for t = 1 to T do
Sample znewt from NC(zt, ξID)
Compute γt by Eq. (41)
Sample q from Uniform(0, 1)
if γt > q then zt ← znewt

end for
end for

end if
if Backpropagation then

for Z_iteration = 1 to Z_MaxIteration do
Compute L1

FR by Eq. (35)
Update Z by Adam with L1

FR

end for
end if
Normalize parameters by Eqs. (62), (63), and (64)

end for
Compute xFR

ft0 by Eq. (22)

4) Normalizing Parameters: To meet the normalization con-
straints given by Eq. (16), Eq. (17), and Eq. (21), we normalize
D as follows:

μnf = dH
nfdnf ,

⎧
⎪⎪⎨

⎪⎪⎩

dnf ← μ
− 1

2

nf dnf ,

uf ← μ−10f uf ,

wnkf ← μ−1nfwnkf (n ≥ 1),

(77)

We then normalize U and W by using Eq. (63) and Eq. (64).

D. Initialization of MNMF-DP and ILRMA-DP

It is crucial to appropriately initialize the scaling factors U,
the speech activations V, the speech latent variables Z, the basis
spectra W, the noise activations H, and the SCMs G or the
demixing matrices D. We use the inference model of the VAE
specified by φ for initializing Z as zt ← μφ(xt). U and V are
initialized as u = 1

F 1F and v = 1T .
Considering Eq. (17), the initial values of W are sampled

from a Dirichlet distribution as follows:

wnk ∼ Dirichlet(α01F ) , (78)

where Einit[wnkf ] =
1
F and α0 is a concentration parameter

(α0 = 2 in our experiments). Considering Eq. (17), Eq. (18),
and the scale of the observed PSDs, the initial values of H are
sampled from gamma distributions as follows:

hnkt ∼ Gamma

(
α0,

α0

Eemp[|x|2]
NK

FM

)
, (79)

Algorithm 2: Speech Enhancement Based on ILRMA-DP.
for iteration = 1 to MaxIteration do

Update U, V, W, and H by Eqs. (66), (67), (70), and
(73)

if Sampling then
for Z_iteration = 1 to Z_MaxIteration do

for t = 1 to T do
Sample znewt from NC(zt, ξID)
Compute γt by Eq. (65)
Sample q from Uniform(0, 1)
if γt > q then zt ← znewt

end for
end for

end if
if Backpropagation then

for Z_iteration = 1 to Z_MaxIteration do
Compute the log likelihood by Eq. (20)
Update Z by Adam with the log likelihood

end for
end if
Update D by Eq. (75)
Normalize parameters by Eqs. (63), (64), and (77)

end for
Compute xR1

ft0 by Eq. (24)

where Einit[hnkt] =
FM
NK Eemp[|x|2] and Eemp[|x|2] indicates the

empirical mean of the observed PSDs given by

Eemp

[|x|2] = 1

FTM

F∑

f=1

T∑

t=1

M∑

m=1

|xftm|2. (80)

Since the initialization of G or D is considered to have a
strong impact on the performance of speech enhancement, we
propose and compare several initialization methods.

1) MNMF-DP: G can be initialized without using the ob-
served data X. The most naive way of initialization is to set
Gnf to the identity matrix as follows:

Gnf ← 1

M
IM . (81)

Note that under a determined condition with M = N + 1 only,
one can directly associate N + 1 sources with M channels one
by one as follows:

Gnf ← Diag(en), i.e., anf ← en+1, (82)

Alternatively, G can be initialized in an adaptive manner by
using the observed data X. Assuming that the target speech
is predominant in X, one may set the speech SCM G0f to the
average of the observed SCMs and the noise SCMs to the identity
matrix as follows:

⎧
⎪⎪⎨

⎪⎪⎩

G0f ←
∑T

t=1 Xft∑T
t=1 tr(Xft)

,

Gnf ← 1

M
IM (n ≥ 1).

(83)
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A more sophisticated way of initialization is to use a fast
speech enhancement method based on a complex Gaussian
mixture model (cGMM) [34] that classifies each time-frequency
bin into speech or noise. In this paper we initialize the cGMM
with Eq. (83). Using the estimated posterior probability ωft that
the bin at frequency f and time twas generated from the speech,
we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G0f ←
∑T

t=1 ωftXft∑T
t=1 ωfttr(Xft)

,

Gnf ←
∑T

t=1(1− ωft)Xft∑T
t=1(1− ωft)tr(Xft)

(n ≥ 1).

(84)

2) ILRMA-DP: In the determined condition of the rank-1
model,D cannot be initialized in a way corresponding to Eq. (81)
because the identity matrix is a full-rank matrix. A naive way
of initialization that corresponds to Eq. (82) is to set Df to the
identity matrix as follows:

Df ← IN+1, i.e., dnf ← en+1. (85)

The demixing matrices D can be initialized in an adaptive
manner by using the observed data X. If the mixing matrix
Af = [a0f ,a1f , . . . ,aNf ] is given, Df is given by

Df ← A−1f , (86)

where Af can be estimated from the full-rank SCMs G. Using
G0f in Eq. (83) and {Gnf}Nn=1 in Eq. (81), we have

{
a0f = PE

(∑T
t=1 Xft

)
,

anf = en+1 (n ≥ 1),
(87)

where PE(·) indicates a normalized eigenvector that corre-
sponds to the first principal component of a matrix. Alternatively,
using Eq. (84), we have

⎧
⎨

⎩
a0f = PE

(∑T
t=1 ωftXft

)
,

anf = PE
(∑T

t=1(1− ωft)Xft

)
(n ≥ 1).

(88)

V. EVALUATION

This section reports experiments conducted for investigating
the performance of our semi-supervised speech enhancement
methods based on the MNMF-DP or ILRMA-DP with different
configurations. First, we investigate the impacts of the model
complexities (i.e., the number of noise sources N and the
number of noise bases K) and verify the effectiveness of the
low-rank noise model. We then evaluate the two methods used
for optimizing the latent variables Z (i.e., Metropolis sampling
and backpropagation methods described in Section IV-B3 and
Section IV-C1) and the three methods used for initializing the
spatial parameters G or D (i.e., identity-, observation-, and
cGMM-based methods described in Section IV-D). Finally, we
compare our method with the state-of-the-art unsupervised,
semi-supervised, and supervised methods.1,2

1Demo: http://sap.ist.i.kyoto-u.ac.jp/members/sekiguch/demo/TASLP2019
2Code: https://github.com/sekiguchi92/TASLP2019

Fig. 4. The VAE for clean speech spectra.

A. Configurations

1) Test Data: The simulated data sampled at 16 kHz in the
evaluation dataset of CHiME3 [35] were used for evaluation.
This dataset contains 1320 noisy speech signals emulated to
be uttered in four types of noisy environments: bus (BUS),
cafe (CAF), pedestrian area (PED), and street junction (STR).
We randomly chose 25 utterances for each environment (100
utterances in total). These simulated utterances were emulated
to be recorded by using a tablet with 6 microphones. We selected
five channels (M = 5) excluding the second channel because
of its orientation on the back side of the tablet, in contrast to
the other five microphones placed on the front side. We used
short-time Fourier transform (STFT) with a shifting interval of
256 points and a window length of 1024 points (F = 513). The
average number of time frames was T = 379.

2) Performance Measures: The performance of speech en-
hancement was measured in terms of the signal-to-distortion
ratio (SDR) [36], [37]. For comparison with conventional meth-
ods, the perceptual evaluation of speech quality (PESQ) [38]
and the short-time objective intelligibility (STOI) [39] were also
calculated. The fifth channel of the enhanced speech spectra
{xFR/R1

ft0 }F,T
f=1,t=1 was compared with the ground-truth clean

speech spectra because the fifth microphone was considered to
be the closest to the mouth of a speaker.

3) Pretraining Configurations: The deep speech prior de-
scribed in Section III-B1 was trained in advance from clean
speech data in a variational autoencoding manner as described
in Section IV-A. The VAE had an inference network (encoder)
parameterized byφ and a generation network (decoder) parame-
terized by θ, as shown in Fig. 4. The architecture of the VAE was
similar to that proposed in [23]. The dimensions of the observed
and latent spaces were F = 513 and D = 16, respectively. We
used the WSJ-0 corpus [40] containing clean speech signals of
about 15 hours. The speakers of the WSJ-0 corpus were disjoint
with those of the test data. The power spectrogram of each
utterance was scaled such that the average power was equal to a
random number ρ ∼ Gamma(2, 2).

4) Optimization Configurations: The number of iterations
was set to 100. For MNMF-DP, U, V, W, H, and G were up-
dated simultaneously and Z was then updated in each iteration.
For the ILRMA-DP,W,H,U,V,Z, andDwere updated in this
order. When the sampling method was used for optimizingZ, the
variance of the proposal distribution was set to ξ = 10−4 and Z
was sampled 50 times per iteration. When the backpropagation
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TABLE I
THE AVERAGE SDRS [dB] FOR 100 NOISY SPEECH SIGNALS IN FOUR

DIFFERENT ENVIRONMENTS

method was used, Z was updated 50 times per iteration by using
the Adam optimizer [41] with a learning rate of 0.001.

B. Evaluation of Model Complexities

We investigated the best model complexities of MNMF-DP
and ILRMA-DP by changing the number of noise sources N
and the number of noise basis spectra K.

1) Experimental Conditions: For MNMF-DP, we tested all
possible combinations of K = 2l (l = 0, . . . , 10) and N =
1, 2, 3, 4. For ILRMA-DP, we changed only K because N = 4
must hold under a determined condition withM = 5 (one speech
source and four noise sources). We used the sampling method
for optimizing the latent variables Z and the observation-based
method given by Eq. (83) or Eq. (87) for initializing the spatial
parameters G or D, respectively.

2) Experimental Results: Table I-(a) shows the average
SDRs over the 100 utterances obtained by MNMF-DP. The
average SDR of the input noisy signals (the fifth channel)
was 7.5 dB. Regardless of the choice of N , the performance
converged to around 18.7 dB as K increased. This might be
because most noise sources in the test dataset were diffusive.
If there are multiple directional noise sources, it would be
necessary to carefully choose N . Note that when K ≥ T , the
low-rank assumption on the PSDs of noise is considered to
have no effect in theory because the noise model is capable of
perfectly fitting any PSDs. In reality, the performance was not
degraded even when K = 1024. This result raised a question
whether the low-rank assumption, which is useful in MNMF, is
still necessary in the proposed model. To answer this question,
the effectiveness of the low-rank assumption was verified in
Section V-C. Table II-(a) shows the elapsed times per iteration
for processing noisy speech signals of 2 [s] on a workstation
with Intel Xeon W-2145 (3.70 GHz). Considering both the
performance and the computational cost, the combination of
N = 1 and K = 64 can be regarded as best.

Table I-(b) shows the average SDRs obtained by ILRMA-DP.
The performance was maximized when K = 2 and it mono-
tonically decreased as K increased. Because the rank-1 spatial
model is incapable of precisely representing realistic sound
propagation processes, the source models (speech and noise

TABLE II
THE ELAPSED TIMES [S] PER ITERATION FOR PROCESSING MULTICHANNEL

NOISY SPEECH SIGNALS OF 2 [S]

models) play an influential role for speech enhancement. In each
iteration, the noise model fits the current estimate of the noise
spectra {|sft1|2}F,T

f=1,t=1 given by Eq. (11) using the demixing
matricesD. The noise model based on NMF with largeK overfit
the imperfect estimate of the noise spectra in a few iterations
before D was fully optimized. When the noise model with
K = 256 was updated once per four iterations, the average SDR
was improved to 16.1 dB.

C. Evaluation of Low-Rank Modeling

We investigated the effectiveness of the low-rank assumption
on the noise PSDs. The sampling method was used for optimiz-
ing the latent variables Z.

1) Experimental Conditions: We tested three variants of the
noise model in MNMF-DP with N = 1.

1) High-rank model: K = T . W and H were initialized by
using Eq. (78) and Eq. (79) and then iteratively updated
by using Eq. (52) and Eq. (55).

2) 1-on-1 model: This model was the same as the high-rank
model except that H was initialized as follows:

{
h1kt ∼ Gamma

(
α0,

α0

Eemp[|x|2]
1

FM

)
(k = t),

h1kt = 0 (k �= t).
(89)

Since h1kt = 0 (k �= t) was kept in Eq. (55), the K bases
correspond to the T frames one by one.

3) Non-factorized model: The NMF-based noise model was
removed from the proposed model, i.e., the noise PSDs
{λft1}F,T

f=1,t=1 in Eq. (15) were directly estimated. An
updating rule can be obtained as follows:

λft1 ← λft1

√√√√√
tr
(
G1fY

−1
ft XftY

−1
ft

)

tr
(
G1fY

−1
ft

) . (90)

λft1 was initialized as λft1 = w1tfh1tt, where W and H
were initialized as in the 1-on-1 model.

2) Experimental Results: Table III shows the average SDRs
and log-likelihoods obtained by the three models. While the
1-on-1 model and the non-factorized model were better than
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Fig. 5. The evolutions of average SDRs [dB] over iterations. The dotted lines indicate the SDRs obtained by the backpropagation method and the solid lines
indicate the SDRs obtained by the sampling method.

TABLE III
THE AVERAGE SDRS [dB] AND LOG-LIKELIHOODS OBTAINED BY THE THREE

VARIANTS OF MNMF-DP

the high-rank model in terms of the log-likelihood, the high-
rank model attained the best SDR. Since the architecture of the
high-rank model was the same as that of the 1-on-1 model, the
high-rank model was considered to get stuck in local optima in
which the noise PSDs were approximated as low-rank matrices
consisting of a fewer number of bases. This indicates that when
K ≥ T in Table I-(a), the low-rank constraint on the noise PSDs
was still effective. Comparing the SDR (16.2 dB) obtained by the
non-factorized model with that (18.6 dB) obtained by the best
MNMF-DP with N = 1 and K = 64, the low-rank modeling
can be said to be effective.

D. Evaluation of Optimization and Initialization Methods

We investigated the initialization sensitivity and optimization
difficulty of MNMF-DP and ILRMA-DP.

1) Experimental Conditions: Considering Tables I and II, we
used MNMF-DP withN = 1 andK = 64 and ILRMA-DP with
K = 2 as the best performing models with the reasonable com-
putational costs. To optimize Z in MNMF-DP, the sampling or
backpropagation method was used (Section IV-B3). To initialize
G, the identity-, observation-, or cGMM-based method given by
Eqs. (81), (83), or (84), respectively, was used (Section IV-D1).
To optimizeZ in ILRMA-DP, on the other hand, the sampling or
backpropagation method was used (Section IV-C1). To initialize
D, the identity-, observation-, or cGMM-based method given by
Eqs. (86), (87), or (88) was used (Section IV-D2). In total, we
tested six configurations for each model.

2) Experimental Results: Fig. 5-(a) shows the SDR evo-
lutions over iterations obtained by the six configurations of
MNMF-DP. The combination of the sampling-based optimiza-
tion and the cGMM-based initialization attained the best SDR
of 18.9 dB. Regardless of an initialization method, the sampling
method was slightly better than the backpropagation method
in terms of the performance obtained after sufficiently many
iterations. The backpropagation method converged faster to the

affordable performance than the sampling method. When the
same optimization method was used, the performance difference
between the initialization methods was smaller than 0.5 dB. This
indicates that our MNMF-DP is insensitive to the initialization of
G because the deep speech prior plays an influential role even
before G is not fully optimized. In fact, our model can work
even in a single-channel scenario without spatial information
[22]. This is a noticeable advantage of the proposed method
over MNMF that heavily relies on G for speech enhancement.

Fig. 5-(b) shows the SDR evolutions over iterations ob-
tained by the six configurations of ILRMA-DP. The use of the
observation- or cGMM- based initialization method reached the
SDR of 16.3 dB or 16.2 dB, respectively, regardless of the opti-
mization strategy. The backpropagation method tended to con-
verge faster than the sampling method. When the identity-based
initialization method was used, the backpropagation method
underperformed the sampling method. The initial values of Z
given by the encoder φ of the VAE were considered to be close
to optimal values. In the backpropagation method, however, Z
was quickly adapted to the inaccurate estimate of the speech
spectra sft given by Eq. (11) before the demixing matrices D
were fully optimized.

E. Key Findings

Considering the experimental results shown in Section V-B
and Section V-D, we summarize recommended configurations.
In general, it is recommended to use the full-rank model with
N = 1, K = 64, the observation-based initialization method
given by Eq. (83), and the sampling-based optimization method.
To squeeze the performance and accelerate the convergence in
exchange of the additional implementation cost, one can use the
cGMM-based initialization method given by Eq. (84) instead
of the observation-based initialization method. If the computa-
tional cost is a main concern, one may use ILRMA-DP with
K = 2, the observation-based initialization method given by
Eq. (87), and the backpropagation-based optimization method.

F. Comparison with the State-of-the-Art Methods

We compared the proposed semi-supervised method with the
state-of-the-art unsupervised, semi-supervised, and supervised
methods in terms of the SDR, PESQ, and STOI.
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1) Experimental Conditions: We used MNMF-DP with
N = 1 and K = 64 initialized by the cGMM-based method
given by Eq. (84) and ILRMA-DP with N = 4 and K = 2
initialized by the observation-based method given by Eq. (87).
The sampling method was used for estimating Z.
� Unsupervised methods: We tested MNMF [9],

ILRMA [11], and cGMM [34]. MNMF and ILRMA
had the same architectures as the proposed MNMF-DP
and ILRMA-DP, respectively, except that an NMF-based
low-rank model was used for speech instead of the
DNN-based model. The number of noise sources N , that
of speech bases Ks, that of noise bases Kn, and the initial-
ization strategy were experimentally optimized. We used
MNMF with N = 1, Ks = 8, and Kn = 256 initialized
by the cGMM-based method and ILRMA with N = 4,
Ks = 8, and Kn = 1 initialized by the observation-based
method. We also tested a weighted delay-and-sum (DS)
beamforming called beamformit [42] and found that the
average SDR of the enhanced speech was 6.3 dB.

� Semi-supervised methods: For fair comparison with the
proposed semi-supervised method, we also tested semi-
supervised versions of MNMF and ILRMA. Ks speech
bases were estimated in advance by using NMF [43] or
vector quantization (VQ) [44] based on the Itakura-Saito
(IS) divergence (called IS-NMF and IS-VQ, respectively)
for the clean speech data of the WSJ-0 corpus [40]. IS-VQ
iterated two steps; 1) given codebooks (bases), each speech
spectrum in the training dataset were clustered into the
nearest codebook based on the IS divergence, and 2) each
codebook was updated to the average of the spectra as-
signed to the codebook. In the speech enhancement phase,
while the speech bases were fixed, the other parameters
were updated as in the proposed method. We conducted a
preliminary experiment using Ks = 2l (l = 0, . . . , 8) and
decided to use MNMF based on IS-NMF (MNMF-NMF)
with N = 1, Ks = 4, and Kn = 256 and MNMF based
on IS-VQ (MNMF-VQ) with N = 1, Ks = 8, and Kn =
256 initialized by the cGMM-based method, and ILRMA
based on IS-NMF (ILRMA-NMF) with N = 4, Ks = 16,
and Kn = 1 and ILRMA based on IS-VQ (ILRMA-VQ)
with N = 4, Ks = 256, and Kn = 2 initialized by the
observation-based method.

� Supervised method: We tested a DNN-based beamforming
method. To estimate speech masks {ωft}F,T

f=1,t=1, a feed-
forward DNN was trained by using the training dataset of
CHiME3 that contains pairs of multichannel noisy speech
signals and ground-truth clean speech signals. We extracted
three kinds of acoustic features as the input to the DNN.
At each time t, the log of the outputs of 100-channel
mel-scale filter banks (LMFBs) was computed from the
magnitude spectrogram of the fifth channel and LMFBs
were stacked over 11 frames from time t− 5 to t+ 5.
The (M − 1)-dimensional inter-channel level and phase
differences (ILDs and IPDs) were also calculated at each
time t as proposed in [45]. The DNN was trained such
that the cross-entropy loss between ideal binary masks
and estimated masks was minimized. To use the minimum

Fig. 6. The average SDRs obtained by the 11 methods.

Fig. 7. The average PESQs obtained by the 11 methods.

Fig. 8. The average STOIs obtained by the 11 methods.

variance distortionless response (MVDR) beamform-
ing [46], the steering vector of speech a0f and the SCM of
noise G1f at frequency f are given by

⎧
⎨

⎩
a0f = PE

(∑T
t=1 ωftXft

)
,

G1f =
∑T

t=1(1− ωft)Xft,
(91)

where PE(·) indicates a normalized eigenvector that cor-
responds to the first principal component of a matrix. The
demixing filter d0f at frequency f is given by

d0f =
G−11f a0f

aH0fG
−1
1f a0f

. (92)

The image of clean speech was estimated as follows:

xMVDR
ft0 = a0fsft0 = a0fd

H
0fxft. (93)

2) Experimental Results: Figs. 6, 7, and 8 show the av-
erage SDRs, PESQs, and STOIs, respectively. MNMF-DP
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Fig. 9. Comparison of speech enhancement methods. The observation, ground
truth, and separated speech show the 5th channel only.

performed best in all measures. Although, MNMF is gen-
erally known to often underperform ILRMA because of the
strong initialization sensitivity [11], in this experiment MNMF
(16.4 dB) outperformed ILRMA (15.6 dB) because the cGMM-
based method given by Eq. (84) provided a good initial
estimate of G. When the observation-based method given
by Eq. (83) was used for MNMF as in ILRMA, the SDR
was drastically degraded (12.6 dB). Fig. 9 shows exam-
ples of the noisy spectra {xft}F,T

f=1,t=1 in the BUS environ-

ment, the ground-truth speech image {xft0}F,T
f=1,t=1, the esti-

mated speech PSDs {λft0}F,T
f=1,t=1 and the separated speech

spectra {xFR/R1
ft0 }F,T

f=1,t=1 obtained by MNMF-DP (19.2 dB),
ILRMA-DP (14.9 dB), MNMF (15.3 dB), ILRMA (13.4 dB),
MNMF-NMF (16.1 dB), ILRMA-NMF (14.7 dB), MNMF-VQ
(15.8 dB), and ILRMA-VQ (14.6 dB). This clearly showed that
the deep speech prior is better at representing the characteristic
structures of speech PSDs than the NMF-based low-rank model.
In semi-supervised MNMF and ILRMA, the numbers of speech
bases were determined to maximize the SDRs, but were too low
to precisely represent speech PSDs.

We also compared the proposed method with its original
single-channel version [22]. The SDR of the optimally-tuned
single-channel method was 11.9 dB. This indicates that the
proposed MNMF-DP and ILRMA-DP successfully utilize the
spatial information. Comparing ILRMA-DP with MNMF-DP,
however, while MNMF-DP successfully suppressed the noise
components, the enhanced speech spectra obtained by ILRMA-
DP as well as those obtained by ILRMA were still noisy. This
indicates that the idealized rank-1 spatial model based on the
time-invariant demixing matrices has a performance limitation
in speech enhancement.

VI. CONCLUSION

This paper presented a semi-supervised multichannel speech
enhancement method that integrates a DNN-based generative
model of speech spectra, an NMF-based generative model of
noise spectra, and a full-rank or rank-1 spatial model in a
unified probabilistic model. The full-rank and rank-1 versions
of the proposed method, called MNMF-DP and ILRMA-DP, are
extensions of MNMF [9] and ILRMA [11], respectively, i.e., an
NMF-based model for one of sources is replaced with the deep
speech prior capable of precisely representing the PSDs of clean
speech. An advantage of our method is that only clean speech
data are used for training the deep speech prior. The speech prior
can generalize well to unseen speech spectra and the low-rank
noise model and the spatial model can adapt to unseen acoustic
environments. We showed that MNMF-DP significantly out-
performed the rank-1 counterpart, the unsupervised and semi-
supervised versions of MNMF and ILRMA, and the supervised
DNN-based beamforming method in terms of the SDR, PESQ,
and STOI. We also showed that MNMF-DP is less sensitive to
initialization and is less likely to get stuck in local optima than
MNMF.
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Future work includes the online extension of the full-rank
model for real-time speech enhancement. We also plan to extend
the proposed method to jointly perform dereverberation and
source localization.
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