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Abstract—A sound field reproduction method based on the
spherical wavefunction expansion of sound fields is proposed, which
can be flexibly applied to various array geometries and directivities.
First, we formulate sound field synthesis as a minimization problem
of some norm on the difference between the desired and synthesized
sound fields, and then the optimal driving signals are derived by
using the spherical wavefunction expansion of the sound fields.
This formulation is closely related to the mode-matching method;
a major advantage of the proposed method is the optimal weight
on the mode determined according to the norm to be minimized
instead of the empirical truncation in the mode-matching method.
We also provide some examples of norms and their corresponding
weights in analytical forms. Both interior and exterior sound field
reproduction are considered in the proposed method, and some
applications, such as multizone reproduction and interior repro-
duction with exterior cancellation, are also discussed. Numerical
simulation results indicated that higher reproduction accuracy
can be achieved by the proposed method than by the current
pressure-matching and mode-matching methods.

Index Terms—Mode-matching method, sound field reproduc-
tion, spherical wavefunction expansion.

I. INTRODUCTION

THE aim of sound field reproduction is to physically synthe-
size a desired sound field over a target region using multiple

loudspeakers. Owing to its potential application to high-fidelity
audio systems, it has attracted much attention in the field of
spatial-audio research in recent years.

One major approach is an analytic method based on the
assumption of a continuous loudspeaker distribution. Further-
more, this approach is classified into two types according to its
underlying theory: Kirchhoff–Helmholtz or Rayleigh integrals
[1]–[5] (e.g., Wave Field Synthesis) and the spatial Fourier
representation of sound fields [6]–[9] (e.g., Spectral Division
Method). In these methods, the desired sound field is reproduced
over the entire space enclosed by the loudspeaker array or over
the half space bounded by a planar array in the case of Wave Field
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Synthesis. However, these methods basically require a simple
array geometry such as a line, plane, circle, or sphere, which
obviously limits their scope of practical application.

Several methods such as the pressure-matching method [10]–
[12] and mode-matching method [3], [13]–[15] can be more
flexibly applied to various array configurations and directivities.
The pressure-matching method is formulated so that the syn-
thesized sound pressures correspond to the desired ones at the
given discrete control points, and the driving signals are usually
obtained by the least-squares method with regularization. Owing
to its simple formulation, this method can be applied in almost
any situation; however, inevitable errors occur away from the
control points, especially in cases when the control points are
coarsely arranged. Although this problem can be prevented to
some extent by finely arranging the control points over the target
region, the computational cost also increases with the number of
control points. On the other hand, the mode-matching method
aims to match the modes of the synthesized and desired sound
fields at a certain control point, which is often used in Higher-
Order Ambisonics approach. A “mode” in the three-dimensional
(3D) context usually means a spherical wavefunction, by which
a sound field can be expanded, and the expansion coefficient
is also called an ambisonic component or coefficient in the
literature of Higher-Order Ambisonics [16]. Since the spherical
wavefunctions, which are the products of spherical Bessel func-
tions and spherical harmonics, are the solutions of the Helmholtz
equation, the mode-matching method exploits its constraint.
This is a major difference between the mode-matching method
and the pressure-matching method. However, it is necessary in
the mode-matching method to truncate the modes in an empirical
manner, which strongly affects its reproduction accuracy. Note
that an excessively large or small truncation order leads to
performance degradation in the mode-matching method.

For the two-dimensional (2D) case, Betlehem and Abhaya-
pala [15] proposed the weighting of expansion coefficients in
the mode-matching method to minimize the spatial reproduction
error in the context of reverberant sound field control. Our
previous works [17]–[19] addressed the weights of expansion
coefficients, and their advantage over the empirical truncation in
the mode-matching method was shown for the 2D case. Since the
optimal weightings on the expansion coefficients are analytically
derived according to the objective function to be minimized (e.g.,
the spatial squared error of the sound pressure inside the given
target region), these methods can be referred to as weighted
mode-matching methods. Only specific cases in the 2D space
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were considered in these works; therefore, more general cases
in the 3D space have to be investigated.

In this study, our goal is twofold: to establish the general
concept of the weighted mode-matching method in the 3D space
and to propose several examples of weights that are derived in
analytical forms. We consider both interior and exterior sound
field reproduction, where sound fields are expanded by the
interior and exterior spherical wavefunctions, respectively.

The rest of this paper is organized as follows. In Section II, we
introduce several notations and basic theories on the spherical
wavefunction expansion of sound fields, which are used through-
out this paper. In Section III, two current methods, the pressure-
matching method and the mode-matching method, are briefly
introduced. In Section IV, we describe the proposed method,
where both the general concept of the weighted mode-matching
method and several examples of the norms and corresponding
weights are given. We also discuss some possible applications
such as multizone reproduction [20]–[22] and interior repro-
duction with exterior cancellation [5], [13], [19]. In Section V,
several numerical experiments performed to evaluate the pro-
posed method are described and their results are given. Finally,
we present our conclusions in Section VI.

II. NOTATIONS AND PRELIMINARIES

First, we introduce several notations and basic theories used
throughout this paper.

A. Notations

Suppose that L secondary sources, i.e., loudspeakers, are
located at r1, . . . , rL with an arbitrary geometry in the 3D space
R3. The lth loudspeaker’s driving signal at (angular) frequency
ω is denoted by dl(ω), and the vector of the driving signals is
denoted by d(ω) = [d1(ω), . . . , dL(ω)]

T, where the superscript
T denotes the transpose. Similarly, the lth loudspeaker’s transfer
function at position r and frequency ω is denoted by gl(r, ω).
Then, the synthesized sound pressure usyn(r, ω) is represented
as

usyn(r, ω) =

L∑

l=1

dl(ω)gl(r, ω). (1)

Hereafter, we omit ω for notational simplicity. In addition, we
refer to the function usyn as the synthesized sound field, and we
also use the same notation for all other sound fields.

We address two sound field reproduction problems: interior
sound field reproduction and exterior sound field reproduction.
Let Sint be a spherical surface centered at rc not including any
secondary sources and Sext be a spherical surface centered at rc
including all the secondary sources as shown in Fig. 1. We define
Ωint as a region inside Sint and Ωext as a region outside Sext.
An interior sound field is defined as a sound field such that the
sound sources exist only outsideSint, and an exterior sound field
is defined as a sound field such that the sound sources exist only
inside Sext. The objective of interior sound field reproduction
is to reproduce a given desired interior sound field inside Sint,
and that of exterior sound field reproduction is to reproduce a

Fig. 1. Settings of secondary sources and target region. (a) Interior sound field
reproduction; (b) exterior sound field reproduction.

given desired exterior sound field outside Sext. In either case,
the desired sound field is denoted by udes.

B. Spherical Wavefunction Expansion of Interior Sound Fields

In the case of interior sound field reproduction, gl and udes
can be expanded at the expansion center rc as [23]

udes(r) =
∑

ν,μ

ůintdes,ν,μ(rc)ϕν,μ(r − rc), (2)

gl(r) =
∑

ν,μ

g̊intl,ν,μ(rc)ϕν,μ(r − rc), (3)

where
∑

ν,μ is the abbreviated form of
∑∞

ν=0

∑ν
μ=−ν . In (2)

and (3), ůintdes,ν,μ(rc) and g̊intl,ν,μ(rc) are the interior expansion
coefficients at the expansion center rc, andϕν,μ(·) is the interior
spherical wavefunction defined as

ϕν,μ(r) =
√
4πjν(kr)Yν,μ(r̂), (4)

where k = ω/c is the wavenumber at the sound speed c, jν(·)
is the νth-order spherical Bessel function of the first kind [24],
Yν,μ(·) is the spherical harmonic function of order ν and degree
μ [24], and r and r̂ are defined respectively as r = ‖r‖ and
r̂ = r/r with the Euclidean norm ‖ · ‖.

The interior expansion coefficients of the transfer functions
and the desired sound field can be obtained in several ways. If
they are modeled or represented analytically (e.g., by multipoles
or plane waves), their interior expansion coefficients can be cal-
culated using several mathematical formulae [3], [24]. Another
approach is to directly measure the interior expansion coeffi-
cients by using a microphone array [3], [25]–[31]. Hereafter,
ůintdes,ν,μ(rc) and g̊intl,ν,μ(rc) are assumed to be given.

C. Spherical Wavefunction Expansion of
Exterior Sound Fields

In the case of exterior sound field reproduction, gl and udes
can be expanded at the expansion center rc as [23], [32]

udes(r) =
∑

ν,μ

ůextdes,ν,μ(rc)ψν,μ(r − rc), (5)

gl(r) =
∑

ν,μ

g̊extl,ν,μ(rc)ψν,μ(r − rc). (6)
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In (5) and (6), ůextdes,ν,μ(rc) and g̊extl,ν,μ(rc) are the exterior expan-
sion coefficients at the expansion center rc, and ψν,μ(·) is the
exterior spherical wavefunction defined as

ψν,μ(r) =
√
4πhν(kr)Yν,μ(r̂), (7)

where hν(·) is the νth-order spherical Hankel function of the
first kind [24].

Similarly to the interior expansion coefficients, these exterior
expansion coefficients can be derived analytically using mathe-
matical formulae [24] or measured by using a microphone array
[29], [30]. Hereafter, ůextdes,ν,μ(rc) and g̊extl,ν,μ(rc) are assumed to
be given.

D. Translation of Expansion Coefficients

When the exterior sound field u is expanded at the expansion
center rc as

u(r) =
∑

ν,μ

ůextν,μ(rc)ψν,μ(r − rc), (8)

the expansion coefficients at a different expansion center r′c are
given by the following equations [24]:

ůextν,μ(r
′
c) =

∑

ν ′,μ′
T ν ′,μ′
ν,μ (r′c − rc)̊u

ext
ν ′,μ′(rc), (9)

ůintν,μ(r
′
c) =

∑

ν ′,μ′
Sν ′,μ′
ν,μ (r′c − rc)̊u

ext
ν ′,μ′(rc), (10)

whereT ν ′,μ′
ν,μ (·) andSν ′,μ′

ν,μ (·) are the translation operators defined
as

T ν ′,μ′
ν,μ (r) = 4π(−1)μ

′
jν−ν ′

·
ν+ν ′∑

s=0

jsjs(kr)Ys,μ−μ′(r̂)∗G(ν ′, μ′; ν,−μ; s),

(11)

Sν ′,μ′
ν,μ (r) = 4π(−1)μ

′
jν−ν ′

·
ν+ν ′∑

s=0

jshs(kr)Ys,μ−μ′(r̂)∗G(ν ′, μ′; ν,−μ; s).

(12)

Here, j is the imaginary unit, the superscript ∗ denotes the
complex conjugate, and G(·) is the Gaunt coefficient [24].

III. CURRENT METHODS

We briefly introduce two current methods that are closely
related to the proposed method.

A. Pressure-Matching Method

The pressure-matching method aims to control the sound
pressures at given discrete control points so that they correspond
to the desired ones. Regardless of the reproduction of interior
or exterior sound fields, a typical formulation is as follows
[11]. Let r(1)cp , . . . , r

(M)
cp be the positions of the control points.

Then, the driving signals are derived by solving the following

minimization problem:

minimize
d∈CL

M∑

m=1

∣∣∣usyn(r(m)
cp )− udes(r

(m)
cp )

∣∣∣
2

+ λdHd, (13)

where λ is the regularization parameter and the superscript H
denotes the Hermitian transpose. As derived in [11], the solution
of (13) is given by

d̂pm = (Apm + λIL)
−1 bpm, (14)

where IL is the L× L identity matrix, and Apm ∈ CL×L and
bpm ∈ CL are defined as

(Apm)l1,l2 =

M∑

m=1

gl1(r
(m)
cp )∗gl2(r

(m)
cp ), (15)

(bpm)l =
M∑

m=1

gl(r
(m)
cp )∗udes(r(m)

cp ). (16)

Here, (·)l1,l2 denotes the (l1, l2)th element of the matrix and (·)l
denotes the lth element of the vector.

In many practical systems, fixed secondary sources are used
to reproduce various desired sound fields. Therefore, the com-
putational cost after setting the desired sound field is important
in these systems, whereas other values such as Apm can be cal-
culated beforehand. From this viewpoint, (14) can be rewritten
as

d̂pm = Cpmudes. (17)

where udes ∈ CM is the vector of the sound pressures at the
control points and Cpm ∈ CL×M is a matrix independent of the
desired sound field. Since Cpm can be calculated beforehand
for a fixed array, the computational complexity after setting the
desired sound field is O(LM).

B. Mode-Matching Method

The mode-matching method aims to control the expansion
coefficients of the synthesized sound field so that they cor-
respond to the desired ones. In the reproduction of interior
sound fields, the driving signals are obtained from the following
mode-matching equation:

ůintsyn,ν,μ(rc) = ůintdes,ν,μ(rc),
∀ν ∈ {0, . . . , Nint}, (18)

where Nint is the truncation order and ůintsyn,ν,μ(rc) is the
interior expansion coefficient of usyn given as ůintsyn,ν,μ(rc) =∑L

l=1 dlg̊
int
l,ν,μ(rc). As shown in [3], [14], the regularized solu-

tion of (18) can be obtained by solving

minimize
d∈CL

Nint∑

ν,μ

∣∣̊uintsyn,ν,μ(rc)− ůintdes,ν,μ(rc)
∣∣2 + λdHd (19)

as

d̂mm = (Amm + λIL)
−1 bmm. (20)
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Here,
∑Nint

ν,μ is the abbreviated form of
∑Nint

ν=0

∑ν
μ=−ν , and

Amm ∈ CL×L and bmm ∈ CL are given by

(Amm)l1,l2 =

Nint∑

ν,μ

g̊intl1,ν,μ
(rc)

∗g̊intl2,ν,μ
(rc), (21)

(bmm)l =

Nint∑

ν,μ

g̊intl,ν,μ(rc)
∗ůintdes,ν,μ(rc). (22)

Similarly, in the reproduction of exterior sound fields, the
mode-matching equation is formulated as

ůextsyn,ν,μ(rc) = ůextdes,ν,μ(rc),
∀ν ∈ {0, . . . , Next}, (23)

where Next is the truncation order and ůextsyn,ν,μ(rc) =∑L
l=1 dlg̊

ext
l,ν,μ(rc) is the exterior expansion coefficient of usyn.

Therefore, the driving signals are given by

d̂mm = (Amm + λIL)
−1 bmm, (24)

where Amm ∈ CL×L and bmm ∈ CL are defined as

(Amm)l1,l2 =

Next∑

ν,μ

g̊extl1,ν,μ
(rc)

∗g̊extl2,ν,μ
(rc), (25)

(bmm)l =

Next∑

ν,μ

g̊extl,ν,μ(rc)
∗ůextdes,ν,μ(rc). (26)

The truncation orders Nint and Next are usually determined
empirically according to the size of the array of the secondary
sources or the reproduction region. However, it is difficult to
find the optimal truncation orders, especially in interior sound
field reproduction; an excessively largeNint degrades the repro-
duction accuracy, which can also be seen in the experiments in
Section V.

Either (20) or (24) can be rewritten as

d̂mm = Cmmůdes, (27)

where ůdes ∈ CN̆ is the vector of the interior or exterior expan-
sion coefficients of the desired sound field and Cmm ∈ CL×N̆

is a matrix independent of the desired sound field. Here, N̆ is
defined as N̆ = (Nint + 1)2 in the case of interior sound field
reproduction and as N̆ = (Next + 1)2 in the case of exterior
sound field reproduction. Therefore, the computational com-
plexity after setting the desired sound field is O(LN̆).

IV. PROPOSED METHOD

In Sections IV-A and Section IV-B, the general concept of
the proposed weighted mode-matching method is described.
Also, we provide several examples of weights on expansion
coefficients in Sections IV-C and Section IV-D. Finally, we
discuss the application of the proposed method to multizone
reproduction and interior sound field reproduction with exterior
cancellation in Section IV-E.

A. Formulation

The sound field reproduction problem can be formulated as
minimization of the difference between the desired and synthe-
sized sound fields. Therefore, we consider the following general
formulation:

minimize
d∈CL

J(d) = ‖usyn − udes‖2(∗) + λdHd, (28)

where ‖ · ‖(∗) is some norm on interior or exterior sound fields
induced by some inner product 〈·, ·〉(∗) as

‖u‖2(∗) = 〈u, u〉(∗) . (29)

A typical example of this type of norm is the L2 norm with any
positive spatial weight. Therefore, one can set various formu-
lations according to the detailed objective. Several examples of
norms are described in Section IV-C for interior sound fields and
in Section IV-D for exterior sound fields. From (1) and (29), The
objective function of (28) can be rewritten as

J(d) = dH(Awmm + λIL)d− dHbwmm − bH
wmmd+ cwmm,

(30)

where Awmm ∈ CL×L, bwmm ∈ CL, and cwmm ∈ [0,∞) are
given by

(Awmm)l1,l2 = 〈gl1 , gl2〉(∗), (31)

(bwmm)l = 〈gl, udes〉(∗), (32)

cwmm = 〈udes, udes〉(∗). (33)

Since Awmm + λIL is a positive definite Hermitian matrix,
i.e., xH(Awmm + λIL)x > 0 for any x ∈ CL \ {0}, it has an
inverse (and also positive definite Hermitian) matrix (Awmm +
λIL)

−1. Therefore, J can be represented as

J(d) =
(
d− (Awmm + λIL)

−1bwmm

)H

· (Awmm + λIL)
(
d− (Awmm + λIL)

−1bwmm

)

+ cwmm − bH
wmm(Awmm + λIL)

−1bwmm, (34)

and the optimal driving signals d̂wmm ∈ CL, which minimize
J , are obtained as

d̂wmm = (Awmm + λIL)
−1 bwmm. (35)

This can also be derived on the basis of the Wirtinger derivative,
i.e., by solving ∂

∂dH J(d) = 0. Therefore, the remaining problem
is the calculation of Awmm and bwmm.

B. Weighted Mode-Matching

Consider an inner product of two interior sound fields u1 and
u2, i.e., 〈u1, u2〉(∗). Let ů1,ν,μ(rc) and ů2,ν,μ(rc) denote respec-
tively the interior expansion coefficients of u1 and u2. Then,
〈u1, u2〉(∗) can be rewritten by assuming the interchangeability
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of infinite summation and inner product1 as

〈u1, u2〉(∗) =
〈∑

ν,μ

ůint1,ν,μ(rc)ϕν,μ(r − rc),

∑

ν,μ

ůint2,ν,μ(rc)ϕν,μ(r − rc)

〉

(∗)

=
∑

ν1,μ1

∑

ν2,μ2

ůint1,ν1,μ1
(rc)

∗ůint2,ν2,μ2
(rc)

· 〈ϕν1,μ1
, ϕν1,μ1

〉(∗). (36)

Therefore, in interior sound field reproduction, Awmm and
bwmm can be rewritten as

(Awmm)l1,l2 =
∑

ν1,μ1

∑

ν2,μ2

wν2,μ2
ν1,μ1

· g̊intl1,ν1,μ1
(rc)

∗g̊intl2,ν2,μ2
(rc),

(37)

(bwmm)l =
∑

ν1,μ1

∑

ν2,μ2

wν2,μ2
ν1,μ1

· g̊intl,ν1,μ1
(rc)

∗ůintdes,ν2,μ2
(rc),

(38)

where wν2,μ2
ν1,μ1

are the weights on the interior expansion coeffi-
cients (referred to as the interior weights, hereafter) given as

wν2,μ2
ν1,μ1

= 〈ϕν1,μ1
(r − rc), ϕν2,μ2

(r − rc)〉(∗). (39)

In exterior sound field reproduction, on the other hand, Awmm

and bwmm can be rewritten as

(Awmm)l1,l2 =
∑

ν1,μ1

∑

ν2,μ2

vν2,μ2
ν1,μ1

· g̊extl1,ν1,μ1
(rc)

∗g̊extl2,ν2,μ2
(rc),

(40)

(bwmm)l =
∑

ν1,μ1

∑

ν2,μ2

vν2,μ2
ν1,μ1

· g̊extl,ν1,μ1
(rc)

∗ůextdes,ν2,μ2
(rc),

(41)

where vν2,μ2
ν1,μ1

are the weights on the exterior expansion coeffi-
cients (referred to as the exterior weights, hereafter) given as

vν2,μ2
ν1,μ1

= 〈ψν1,μ1
(r − rc), ψν2,μ2

(r − rc)〉(∗). (42)

Therefore, we only have to calculate the inner product on the
spherical wavefunctions, i.e.,wν2,μ2

ν1,μ1
and vν2,μ2

ν1,μ1
, and Awmm and

bwmm can be calculated for arbitrary gl and udes using (37) and
(38) or (40) and (41). Note that wν2,μ2

ν1,μ1
and vν2,μ2

ν1,μ1
are indepen-

dent of gl and udes; therefore, we can calculate them beforehand
analytically or numerically. Since these infinite summations are
difficult to solve in many cases, the summations are truncated
at a sufficiently large order Nint or Next. Comparing (37), (38),
(40), and (41) with (21), (22), (25), and (26), respectively, one
can see that the difference between the proposed method and the

1The interchangeability of infinite summation and inner product holds if the
spherical wavefunction expansion of sound fields converges with respect to
the norm ‖ · ‖(∗) (see Appendix A for the proof). However, this condition is
satisfied in almost any practical case (at least when the norm ‖u‖(∗) consists
of the integral of u and its partial derivatives on a compact set) including all
examples shown in Sections IV-C and Section IV-D. This is because the spherical
wavefunction expansion of the interior sound field and its partial derivatives
converge uniformly in Ωint and the spherical wavefunction expansion of the
exterior sound field and its partial derivatives converge uniformly in any compact
subset of Ωext [23].

current mode-matching method appears in the weights on the
expansion coefficients, i.e., wν2,μ2

ν1,μ1
and vν2,μ2

ν1,μ1
. In the proposed

method, the optimal weights on the expansion coefficients are
derived according to the norm to be minimized.

We also evaluate the computational cost after the desired
sound field is given. Equation (35) can be rewritten in a similar
form to (27) as

d̂wmm = Cwmmůdes, (43)

where Cwmm ∈ CL×N̆ is independent of the desired sound
field. Therefore, the computational complexity after setting the
desired sound field is O(LN̆), which is the same as that of the
mode-matching method.

C. Examples of Norms on Interior Sound Fields and
Their Interior Weights

We here give two examples of norms on interior sound fields
and their corresponding interior weights, which are also given
in Table I.

1) Interior Uniformly Weighted L2 Norm: The first example
is the interior uniformly weighted L2 norm ‖ · ‖int,uni, which is
defined as

‖u‖2int,uni =
∫

Ωint

|u(r)|2 dr. (44)

By using this norm, one can reproduce the sound field within
the spherical region Ωint. In this case, the interior weights are
obtained analytically as

wν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

wuni,ν1
, (45)

where δn,m denotes the Kronecker’s delta and

wuni,ν=2πR3
int

(
jν(kRint)

2−jν−1(kRint)jν+1(kRint)
)
, (46)

where Rint is the radius of the sphere Sint. The proof is given
in Appendix B.

2) Interior Gaussian-WeightedL2 Norm: The second exam-
ple is the interior Gaussian-weighted L2 norm ‖ · ‖int,Gs, which
is defined as

‖u‖2int,Gs =

∫

Ωint

exp

(
−‖r − rc‖2

2σ2

)
|u(r)|2 dr, (47)

where σ is the scale parameter. Note that the Gaussian w(r)
is defined only on Ωint and truncated outside it. By using this
norm, one can prioritize the reproduction around the central re-
gion while preventing significant deterioration in the peripheral
region. In this case, the interior weights are obtained as

wν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

wGs,ν1
, (48)

where

wGs,ν = 4π

∫ Rint

0

exp

(
− r2

2σ2

)
jν(kr)

2 dr,

=
∞∑

n=0

(−1)n2πR3
intexp

(
−R

2
int

4σ2

)
in

(
R2

int

4σ2

)

· (jν−n(kRint)jν+n(kRint)

− jν−n−1(kRint)jν+n+1(kRint)), (49)
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TABLE I
EXAMPLES OF NORMS ON INTERIOR SOUND FIELDS AND THEIR INTERIOR WEIGHTS

TABLE II
EXAMPLES OF NORMS ON EXTERIOR SOUND FIELDS AND THEIR EXTERIOR WEIGHTS

Fig. 2. Example of interior weights for interior uniformly weighted L2 norm
(Uni) and interior Gaussian-weighted L2 norm (Gs).

where in(·) is the nth-order modified spherical Bessel function
of the first kind [24]. The derivation is given in Appendix C.
Although there is no useful formula to evaluate the integral in
the first line of (49), it can be calculated efficiently by truncating
the second line at sufficiently large n.

In both examples, the orthogonality of the interior spherical
wavefunctions holds as in (45) and (48). Therefore, (37) and
(38) can be rewritten as

(Awmm)l1,l2 =
∑

ν,μ

w(∗),ν g̊intl1,ν,μ
(rc)

∗g̊intl2,ν,μ
(rc), (50)

(bwmm)l =
∑

ν,μ

w(∗),ν g̊intl,ν,μ(rc)
∗ůintdes,ν,μ(rc), (51)

where w(∗),ν represents either wuni,ν or wGs,ν . As an example,
the values of wuni,ν or wGs,ν are plotted in Fig. 2 in the case of
k = 10 rad/m, Rint = 1.2 m, and σ = 0.6 m. Here, the weights
are normalized so that their zeroth-order values correspond to
one.

D. Examples of Norms on Exterior Sound Fields and
Their Exterior Weights

We also give two examples of norms on exterior sound fields
and their exterior weights, which are also given in Table II.

1) Exterior Uniformly WeightedL2 Norm: The first example
is the exterior uniformly weighted L2 norm ‖ · ‖ext,uni, which
is defined as

‖u‖2ext,uni =
∫

Ω′
ext

|u(r)|2 dr. (52)

Here, Ω′
ext ⊂ Ωext is defined as the region between the inner

sphere Sext and the outer sphere S ′
ext, which is also centered at

rc. By using this norm, one can reproduce the sound field within
the region Ω′

ext. In this case, the exterior weights are obtained
analytically as

vν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

vuni,ν1
, (53)

where

vuni,ν=2πR′3
ext

(|hν(kR′
ext)|2−hν−1(kR′

ext)
∗hν+1(kR′

ext)
)

−2πR3
ext

(|hν(kRext)|2−hν−1(kRext)
∗hν+1(kRext)

)
.

(54)

Here, Rext and R′
ext are the radii of Sext and S ′

ext, respectively.
The derivation is given in Appendix D.

2) Exterior Radiation-Power Norm: The second example is
the exterior radiation-power norm ‖ · ‖ext,rad, which is defined
as

‖u‖2ext,rad =

∫

Sext

1

2
Re

[
u(r)

j

ρck

∂

∂n̂(r)
u(r)∗

]
dr, (55)

where Re[·] denotes the real part of a complex value, ρ is
the density of air, and ∂/∂n̂(r) denotes the outward normal
derivative. Since the integrand of (55) represents the outward
acoustic intensity [33], this norm corresponds to the total power
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Fig. 3. Example of exterior weights for exterior uniformly weighted L2 norm
(Uni) and exterior radiation-power norm (Rad).

radiated outside Sext. In this case, the exterior weights are
obtained analytically as

vν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

vrad,ν1
, (56)

where

vrad,ν =
2π

ρck2
. (57)

The derivation is given in Appendix E.
In both examples, the orthogonality of the exterior spherical

wavefunctions holds as in (53) and (56). Therefore, (40) and
(41) can be rewritten as

(Awmm)l1,l2 =
∑

ν,μ

v(∗),ν g̊extl1,ν,μ
(rc)

∗g̊extl2,ν,μ
(rc), (58)

(bwmm)l =
∑

ν,μ

v(∗),ν g̊extl,ν,μ(rc)
∗ůextdes,ν,μ(rc), (59)

where v(∗),ν represents either vuni,ν or vrad,ν . As an example, the
values of vuni,ν or vrad,ν are plotted in Fig. 3 in the case of k =
10 rad/m, Rext = 2.0 m, and R′

ext = 2.5 m. Here, the weights
are normalized so that their zeroth-order values correspond to
one.

Furthermore, in the case of the exterior radiation-power norm,
(58) and (59) can be calculated analytically without infinite
summations as follows. Suppose each gl and udes are modeled
by the finite-order exterior spherical wavefunctions around their
source positions rl and rdes (e.g., monopole, dipole, and car-
dioid sources) as

gl(r) =

Nl∑

ν,μ

βl,ν,μψν,μ(r − rl), (60)

udes(r) =

Ndes∑

ν,μ

βdes,ν,μψν,μ(r − rdes). (61)

In this case, Awmm and bwmm are derived analytically as

(Awmm)l1,l2 =
2π

ρck2

Nl1∑

ν1,μ1

Nl2∑

ν2,μ2

T ν2,μ2
ν1,μ1

(rl1 − rl2)

β∗
l1,ν1,μ1

βl2,ν2,μ2
, (62)

(bwmm)l =
2π

ρck2

Nl∑

ν1,μ1

Ndes∑

ν2,μ2

T ν2,μ2
ν1,μ1

(rl − rdes)

· β∗
l,ν1,μ1

βdes,ν2,μ2
. (63)

The derivation is given in Appendix E. Note that Awmm and
bwmm do not depend on rc or Rext in this case; they are
determined only by the relative positions and directivities of
the secondary and desired sources.

E. Several Applications

In the above sections, only a single norm is used to formulate
the minimization problem; however, we can formulate various
minimization problems by combining multiple norms. Although
there are various possible applications, we here discuss two ex-
amples: multizone reproduction and interior reproduction with
exterior cancellation.

1) Multizone Reproduction: Multizone reproduction aims to
reproduce different sound fields in different listening areas. Let
q = 1, . . . , Q be the index of the listening area, Ω(q)

int be the qth

listening area, which is a spherical region centered at r(q)c , and
u
(q)
des denote the desired interior sound field in the qth listening

area. Then, the multizone reproduction is formulated as

minimize
d∈CL

J(d) =

Q∑

q=1

γq‖usyn − u
(q)
des‖2(q) + λdHd, (64)

where ‖ · ‖(q) is the norm on the interior sound fields defined

on Ω
(q)
int and γq is a constant parameter used to balance the Q

norms. In this case, the optimal driving signals are obtained as

d̂ =

(
Q∑

q=1

γqA
(q) + λIL

)−1 Q∑

q=1

γqb
(q), (65)

where A(q) and b(q) are derived for each q with a different
expansion center r(q)c .

2) Interior Reproduction With Exterior Cancellation: In the
reproduction of interior sound fields in reverberant environ-
ments, it is useful to suppress the exterior radiation outside
the secondary sources to prevent the performance degradation
caused by reverberation. This can be formulated as follows:

minimize
d∈CL

J(d) = ‖usyn − udes‖2int,(∗)

+ η‖usyn‖2ext,(∗) + λdHd, (66)

where ‖ · ‖int,(∗) is some norm on interior sound fields, ‖ ·
‖ext,(∗) is some norm on exterior sound fields, and η is a constant
parameter used to balance the two norms. In this case, the optimal
driving signals are obtained as

d̂ = (Aint + ηAext + λIL)
−1 bint, (67)

where Aint and bint are respectively given by (37) and (38) on
the basis of the norm ‖ · ‖int,(∗) and Aext is given by (40) on the
basis of the norm ‖ · ‖ext,(∗).



UENO et al.: THREE-DIMENSIONAL SOUND FIELD REPRODUCTION BASED ON WEIGHTED MODE-MATCHING METHOD 1859

V. NUMERICAL EXPERIMENTS

Numerical simulations were conducted to evaluate the pro-
posed method in comparison with the pressure-matching method
[11] and the mode-matching method [13]. Hereafter, the pro-
posed method, the pressure-matching method, and the mode-
matching method are denoted by Proposed, PM, and MM,
respectively.

A. Interior Sound Field Reproduction Using Cardioid
Loudspeaker Array

In Cartesian coordinates r = (x, y, z), 144 secondary sources
were located on a sphere with a radius of 1.5 m centered at
(0, 0, 0) m.

The positions of the secondary sources were determined on the
basis of the spherical t-design [34]. Each secondary source was
modeled as a fixed-directivity first-order source, whose transfer
function is given by [14]

gl(r) =
exp(jk‖r − rl‖)

4π‖r − rl‖

·
[
α− (1− α)

(
1 +

j

k‖r − rl‖
)
cos γl

]
, (68)

where α is a directivity parameter and γl represents the angle
between r − rl and the highest-gain direction of the secondary
source, denoted by p̂l. The directivity parameters were set as
α = 0.5 (i.e., cardioid source) and the highest-gain directions
are oriented to the center of the sphere, i.e., p̂l = −r̂l, where
r̂l = rl/‖rl‖. Then, gl can be represented as [14]

gl(r) =
∑

ν,μ

βl,ν,μψν,μ(r − rl) (69)

with

βl,ν,μ =

⎧
⎪⎪⎨

⎪⎪⎩

α jk√
4π
, ν = 0

(1− α)kY1,μ(−p̂l)
∗, ν = 1

0, ν ≥ 2

. (70)

The desired sound field was a plane wave propagating in the
positive x-direction, i.e., udes(r) = a exp(jkx), where the am-
plitude was set as a = 1. The sound speed was set as 340.29m/s.

In Proposed and MM, the center of the spherical wave-
function expansion was set at rc = (0, 0, 0) m. The interior
expansion coefficients of the secondary sources were calculated
using (70) and (12), and the interior expansion coefficients of
the desired sound field were calculated as [3]

ůintdes,ν,μ(rc) = a
√
4πjνYν,μ(r̂x)

∗, (71)

where r̂x is the unit direction vector along the positive x-
direction. Several truncation orders Nint were used in Pro-
posed and MM. In Proposed, the two norms described in
Section IV-C, i.e., ‖ · ‖int,uni and ‖ · ‖int,Gs, were evaluated,
which are hereafter denoted by Proposed (Uni) and Proposed
(Gs), respectively. The radius of Sint was set as Rint = 1.2 m,
and the scale parameter σ in Proposed (Gs) was set as 0.3 m.
In PM, the control points were aligned in a grid at regular

Fig. 4. Normalized reproduction error (NRE) plotted against number of basis
functions at 550 Hz when plane wave propagating in positive x-direction is
reproduced by using spherical array of 144 cardioid sources oriented inward.

intervals in all three directions within Ωint, where various in-
tervals were evaluated. The regularization parameter λ was set
as λ = 10−3 × ‖A‖2 in all the methods, where ‖A‖2 denotes
the maximum singular value of A and A represents Awmm,
Amm, and Apm for Proposed, MM, and PM, respectively.

To evaluate the reproduction accuracy, we define the normal-
ized reproduction error (NRE) as

NRE(ω)=10 log10

∫
Ωint

|usyn(r, ω)− udes(r, ω)|2 dr∫
Ωint

|udes(r, ω)|2 dr (dB),

(72)

where the spatial integrals were discretized with an interval
of 0.05 m. Note that small NRE indicates high reproduction
performance.

First, we plotted the relationship of the reproduction accuracy
to the number of basis functions, i.e., N̆ for Proposed and
MM and M for PM, at 550 Hz in Fig. 4. Proposed and MM
achieved almost the same NREs for a small number of basis
functions. However, the NRE for MM rapidly increased when
the number of basis functions exceeded 169, i.e.,Nint > 12. This
is considered to be because the same weightings are imposed
on all the modes. From the properties of the spherical Bessel
functions of the first kind [3], spherical wavefunctions of high
orders tend to have small values within Ωint. When large Nint

is used, a relatively large effort is devoted to matching these
insignificant modes, and the significant low-order modes are
undervalued in the MM, which causes the increase of the NREs.
Note that the optimal Nint = 12 for MM does not correspond
to either kRint� = 10 or (e/2)kRint� = 14, which are two
commonly used rules of thumb on the truncation [3], [21].
Therefore, it can be seen that one has to evaluate many different
Nint in MM to achieve the best performance. On the other hand,
Proposed is not affected byNint as long as it is sufficiently large.
This is an important point because it implies that the tuning ofN
required in MM is unnecessary in Proposed, which can result
in less total complexity of computation. Although the NREs for
Proposed (Uni) and PM were close for a large number of basis
functions, that for Proposed(Uni) reached its peak at a relatively
smaller number of basis functions than that for PM. This means
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Fig. 5. Reproduced sound pressure distributions at 550 Hz when plane wave propagating in positive x-direction is reproduced using spherical array of 144
cardioid sources oriented inward. (a) Proposed (Uni); (b) Proposed (Gs); (c) MM; (d) PM.

Fig. 6. Normalized error distributions at 550 Hz when plane wave propagating in positive x-direction is reproduced using spherical array of 144 cardioid sources
oriented inward. (a) Proposed (Uni); (b) Proposed (Gs); (c) MM; (d) PM.

that a lower computational cost can be achieved for Proposed
than that for PM.

Figs. 5 and 6 respectively show the reproduced sound pressure
distributions and the normalized error distributions at 550 Hz.
The solid lines and dashed lines represent the sphere where
secondary sources exist and the reproduction region Ωint, re-
spectively. In addition, we plotted NREs against distance from
the center of the array defined as

NRE(r, ω)

= 10 log10

∫
S2 |udes(rr̂, ω)− usyn(rr̂, ω)|2 dr̂∫

S2 |udes(rr̂, ω)|2 dr̂ (dB) (73)

in Fig. 7. Here, S2 denotes the unit sphere and the integral was
calculated by Monte Carlo integration using 500 points sampled
from the spherical uniform distribution. On the basis of the result
in Fig. 4, truncation orders were determined here as Nint = 12
in Proposed and MM. In PM, the interval of the control points
was set as 0.35 m so that the number of control points slightly
exceeded the number of basis functions of the other methods,
i.e., M = 175 and N̆ = 169. The NREs of Proposed (Uni),
Proposed (Gs), MM, and PM were −13.16, −12.08, −11.56,
and−0.26 dB, respectively. Proposed (Uni) achieved the lowest
NRE, and its reproduction accuracy was relatively uniformly
high within Ωint. On the other hand, Proposed(Gs) achieved
much higher reproduction accuracy around the central region of
Ωint than the other methods. This is due to the interior weights
based on the norm ‖ · ‖Gs.

Fig. 7. Normalized reproduction error (NRE) plotted against distance from
center at 550 Hz when plane wave propagating in positive x-direction is
reproduced by using spherical array of 144 cardioid sources oriented inward.

The NRE is also plotted against frequency from 50 Hz to
800 Hz at intervals of 50 Hz in Fig. 8. Since it will take a high
computational cost to seek the optimal Nint at each frequency,
especially in MM, two rules of thumb, Nint = kRint� and
Nint = (e/2)kRint�, were investigated in MM. In Proposed,
Nint was set as (e/2)kRint�, and the number of control points
in PM was determined so that it was equal to or slightly larger
than N̆ for Proposed. Proposed (Gs) was omitted here since it
does not aim the uniformly high reproduction accuracy within
Ωint. Again, it can be seen the performance of MM depends
heavily on the truncation order. Note that superiority and infe-
riority between two rules differ by frequencies, which implies
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Fig. 8. Normalized reproduction error (NRE) plotted against frequency when
plane wave propagating in positive x-direction is reproduced by using spherical
array of 144 cardioid sources oriented inward.

the complexity of tuning of Nint in MM. Without such tuning
of Nint, Proposed (Uni) achieved the lowest NRE at all the
frequencies. This is due to the optimal weighting on the interior
expansion coefficients determined analytically on the basis of
the norm on the sound fields.

B. Exterior Sound Field Reproduction Using Cardioid
Loudspeaker Array

We also conducted a simulation of exterior sound field repro-
duction. In this experiment, 144 cardioid sources were located
at the same position as in Section V-A, and each cardioid source
was oriented outward from the center of the array, i.e, p̂l = r̂l.
The desired sound field was a spherical wave from a point
source at rdes = (1.0, 0, 0) m, i.e., udes(r) = a exp(jk‖r −
rdes‖)/4π‖r − rdes‖, where the amplitude was set as
a = 10.

In Proposed and MM, the center of the spherical wave-
function expansion was set at rc = (0, 0, 0) m. The exterior
expansion coefficients of the secondary sources were calculated
using (70) and (11), and the exterior expansion coefficients of
the desired sound field were calculated as [3]

ůextdes,ν,μ(rc) = a
jk√
4π
jν(krdes)Yν,μ(r̂des)

∗, (74)

where rdes = ‖rdes‖ and r̂des = rdes/rdes. Several truncation
orders Next were used in Proposed and MM. In Proposed,
the two norms described in Section IV-D, i.e., ‖ · ‖ext,uni and
‖ · ‖ext,rad, were evaluated, which are hereafter denoted by
Proposed (Uni) and Proposed (Rad), respectively. In Proposed
(Uni), the radii of Sext and S ′

ext were respectively set asRext =
2.0 m andRext = 2.5 m. In Proposed (Rad),Awmm andbwmm

were calculated analytically using (62) and (63). In PM, the con-
trol points were aligned in a grid at regular intervals in all three
directions within Ω′

ext, where various intervals were evaluated.
The regularization parameter λ was set as λ = 10−3 × ‖A‖2
in all the methods. To evaluate the reproduction accuracy, we

Fig. 9. Nomalized reproduction error (NRE) plotted against number of basis
functions at 400 Hz when spherical wave from point source at (1.0, 0, 0) m is
reproduced by using spherical array of 144 cardioid sources oriented outward.

define the NRE as

NRE(ω)=10 log10

∫
Ω′

ext
|usyn(r, ω)− udes(r, ω)|2 dr∫

Ω′
ext

|udes(r, ω)|2 dr (dB),

(75)

where the spatial integrals were discretized with an interval of
0.05 m.

First, we plotted the relationship of the reproduction accuracy
to the number of basis functions at 400 Hz in Fig. 9. Proposed
(Rad) was omitted because no truncation was used in it. In this
case, the NREs for Proposed (Uni) and MM were almost the
same, and the NRE for MM did not increase as Next increased.
Note that MM corresponds to Proposed (Rad) as Next → ∞.
As in the interior sound field reproduction, Proposed and MM
achieved their maximum performance at a smaller number of
basis functions than PM.

Figs. 10 and 11 respectively show the reproduced sound
pressure distributions and the normalized error distributions at
400 Hz. The dashed lines represent the reproduction regionΩ′

ext.
On the basis of the result in Fig. 9, the truncation order was
determined as Next = 13 in Proposed (Uni) and MM. In PM,
the interval of control points was set as 0.55 m so that the number
of control points slightly exceeded the number of basis functions
of the other methods, i.e.,M = 204 and N̆ = 196. The NREs for
Proposed (Uni), Proposed (Rad), MM, and PM were −17.43,
−17.45, −17.40, and −15.12 dB. The NREs for all the methods
were close; however, Proposed (Rad) achieved the lowest value.

The NRE is also plotted against frequency from 50 Hz to
800 Hz at intervals of 50 Hz in Fig. 12. Here, the truncation
order was set as Next = (e/2)kRext� in Proposed (Uni) and
MM. The number of control points in PM was determined so that
it was equal to or slightly larger than N̆ for the other methods. It
can be seen that Proposed (Uni) achieved higher performance
than the other methods, especially at low frequencies.

C. Multizone Reproduction With Exterior Cancellation Using
Omnidirectional Loudspeaker Array

Finally, we evaluate Proposed for multizone reproduc-
tion with exterior cancellation using a monopole array. The
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Fig. 10. Reproduced sound pressure distributions at 400 Hz when spherical wave from point source at (1.0, 0, 0) m is reproduced by using spherical array of
144 cardioid sources oriented outward. (a) Proposed (Uni); (b) Proposed (Rad); (c) MM; (d) PM.

Fig. 11. Normalized error distributions at 400 Hz when spherical wave from point source at (1.0, 0, 0) m is reproduced by using spherical array of 144 cardioid
sources oriented outward. (a) Proposed (Uni); (b) Proposed (Rad); (c) MM; (d) PM.

Fig. 12. Normalized reproduction error (NRE) plotted against frequency
when spherical wave from point source at (1.0, 0, 0) m is reproduced by using
spherical array of 144 cardioid sources oriented outward.

monopole array was configured as follows. First, in the xy-
plane, 64 monopole sources were aligned equidistantly on
double squares centered at (0, 0, 0) m with an inner side
length of 3.0 m and an outer side length of 3.4 m. Then, five
sets of these 64 monopole sources were aligned equidistantly
along the z-direction at intervals of 0.5 m. Therefore, the to-
tal number of secondary sources was L = 320. The number
of multizones was set as Q = 2, and the center and radius
of Ω(1)

int and Ω
(2)
int were r

(1)
c = (0, 0.8, 0) m, R(1)

int = 0.4 m and

r
(2)
c = (0,−0.8, 0) m, R(2)

int = 0.4 m, respectively. The desired

multizone sound fields were defined as u(1)des(r) = aexp(jkx) on

Ω
(1)
int with a = 1 and u(2)des(r) = 0 on Ω

(2)
int . In addition, exterior

cancellation was attempted; therefore, the driving signals were
obtained as

d̂ =
(
A

(1)
int +A

(2)
int + ηAext + λIL

)−1

b
(1)
int , (76)

where A
(1)
int , A(2)

int , and b
(1)
int were calculated on the basis of the

interior uniformly weighted L2 norm and Aext was calculated
on the basis of the exterior radiation-power norm. The truncation
orders were set as N (1)

int = (e/2)kR(1)
int� for A

(1)
int and b

(1)
int

and N
(2)
int = (e/2)kR(2)

int� for A
(2)
int . The parameters η and λ

were determined experimentally as η = 10−2 × ρck2/2π and
λ = 10−3 × ‖A(1)

int +A
(2)
int + ηAext‖2.

Fig. 13 shows the reproduction results at 400 Hz.
The black dots represent the positions of the monopole
sources. Here, the normalized error distribution is cal-
culated as 10 log10 |usyn(r)− u

(1)
des(r)|2/|u(1)des(r)|2 (dB)

and the normalized power distribution is calculated as
10 log10 |usyn(r)|2/|u(1)des(r)|2 (dB). It can be seen that
the normalized error is below −30 dB at almost all the points
within Ω

(1)
int and that the normalized power is below −30 dB

at almost all the points within Ω
(2)
int and outside the secondary

sources.
In addition, to compare the performance of Proposed with

MM, we also evaluate MM by using (21), (22), and (25) for
A

(1)
int , A(2)

int , b(1)
int , and Aext. In MM, the truncation order was

set as Nint = ξkRint� and Next = ξkRext�, where Rext =
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Fig. 13. Results of multizone reproduction with exterior cancellation at 400 Hz for Proposed. (a) Reproduced sound pressure distribution; (b) normalized error
distribution; (c) normalized power distribution.

Fig. 14. Relationship between normalized reproduction error (NRE) and
normalized radiation power (NRP) in multizone reproduction with exterior
cancellation at 400 Hz.

max {‖rl‖}Ll=1 = 2.53 m, and we investigated ξ = 1 and ξ =
e/2 on the basis of the two rules of thumb. The regularization
parameter in MM is determined in the same way as in Proposed,
i.e., λ = 10−3 × ‖A(1)

int +A
(2)
int + ηAext‖2.

The NRE and normalized radiation power (NRP) were used
as evaluation criteria:

NRE=10 log10

∑2
q=1

∫
Ω

(q)
int

|usyn(r)− u
(q)
des(r)|2 dr

∑2
q=1

∫
Ω

(q)
int

|u(q)des(r)|2 dr
(dB),

(77)

NRP=10 log10

∫
Ω′

ext
|usyn(r)|2 dr∫

Ω′
ext

|a|2 dr (dB), (78)

where Ω′
ext was set as the region between the inner sphere with

a radius of 3.0 m and the outer sphere with a radius of 3.5 m that
are both centered at (0, 0, 0) m, and the spatial integrals were
discretized with an interval of 0.05 m. Here, NRP is normalized
by a instead of udes because udes(r) = 0 in Ωext.

Since NRE and NRP have a trade-off relationship balanced
by η, we investigated many different η and plotted the relation-
ship of NRE and NRP at 400 Hz in Fig. 14. Lower-left points
indicate high reproduction accuracy with little radiation outside

the secondary sources. It can be seen Proposed achieved lower
NRE and NRP than MM.

VI. CONCLUSION

We proposed a sound field reproduction method based on the
spherical wavefunction expansion of sound fields. Instead of the
empirical truncation in the current mode-matching method, the
optimal weights on the expansion coefficients are derived analyt-
ically on the basis of the norm to be minimized in the proposed
method. We also showed that the proposed method is easily
applicable to multizone sound field reproduction and interior
sound field reproduction with exterior cancellation. Numerical
experiments confirmed that higher performance with lower com-
putational cost can be achieved by the proposed method than by
the mode-matching and pressure-matching methods.

APPENDIX A
SUFFICIENT CONDITION OF INTERCHANGEABILITY OF INFINITE

SUMMATION AND INNER PRODUCT

In (36), the interchangeability of infinite summation and an
inner product holds if the spherical wavefunction expansion
of sound fields converges with respect to the norm ‖ · ‖(∗).
More particularly, the norm ‖ · ‖(∗) has to satisfy the following
condition:

lim
N→∞

‖ρN‖(∗) = 0, (79)

where ρN is the function defined as

ρN (r) = u(r)−
N∑

ν,μ

ůintν,μ(rc)ϕν,μ(r − rc) (80)

for any interior sound field u in interior sound field reproduction
and

ρN (r) = u(r)−
N∑

ν,μ

ůextν,μ(rc)ψν,μ(r − rc) (81)

for any exterior sound field u in exterior sound field reproduc-
tion. Here, we provide the proof. First, let ũ1,N and ũ2,N be
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defined as

ũ1,N (r) =
N∑

ν,μ

ůint1,ν,μ(rc)ϕν,μ(r − rc), (82)

ũ2,N (r) =
N∑

ν,μ

ůint2,ν,μ(rc)ϕν,μ(r − rc). (83)

We also define ρ1,N and ρ1,2 as ρ1,N = u1 − ũ1,N and ρ2,N =
u2 − ũ2,N , respectively. Then, since a finite summation and
an inner product can be interchanged, 〈u1, u2〉(∗) can be rep-
resented as the following form for any natural numbers N1 and
N2:

〈u1, u2〉(∗) = 〈ũ1,N1
+ ρ1,N1

, ũ2,N2
+ ρ1,N2

〉(∗)
= 〈ũ1,N1

, ũ2,N1
〉(∗)

+ 〈ũ1,N1
, ρ2,N2

〉(∗) + 〈ρ1,N2
, ũ2,N2

〉(∗)
+ 〈ρ1,N2

, ρ2,N2
〉(∗)

=

N1∑

ν1,μ1

N2∑

ν2,μ2

wν2,μ2
ν1,μ1

· ůint1,ν1,μ1
(rc)

∗ůint2,ν2,μ2
(rc)

+ 〈u1, ρ2,N2
〉(∗) + 〈ρ1,N1

, u2〉(∗)
− 〈ρ1,N1

, ρ2,N2
〉(∗). (84)

Here, the following inequality holds from the Cauchy-Schwarz
inequality:

∣∣〈u1, ρ2,N2
〉(∗) + 〈ρ1,N1

, u2〉(∗) − 〈ρ1,N1
, ρ2,N2

〉(∗)
∣∣

≤ ‖u1‖(∗)‖ρ2,N2
‖(∗) + ‖u2‖(∗)‖ρ1,N1

‖(∗)
+ ‖ρ1,N1

‖(∗)‖ρ2,N2
‖(∗). (85)

From the conditions limN→∞ ‖ρ1,N‖(∗) = 0 and limN→∞
‖ρ2,N‖(∗) = 0, the right-hand side of (85) converges to zeros
as N1 → ∞ and N1 → ∞. Therefore, we obtain

lim
N1→∞

lim
N2→∞

(〈u1, ρ2,N2
〉(∗) + 〈ρ1,N1

, u2〉(∗)

− 〈ρ1,N1
, ρ2,N2

〉(∗)
)
= 0. (86)

Then, (36) is proved by the following equality.

〈u1, u2〉(∗) −
∑

ν1,μ1

∑

ν2,μ2

wν2,μ2
ν1,μ1

ůint1,ν1,μ1
(rc)

∗ůint2,ν2,μ2
(rc)

= lim
N1→∞

lim
N2→∞

(〈u1, ρ2,N2
〉(∗) + 〈ρ1,N1

, u2〉(∗)

− 〈ρ1,N1
, ρ2,N2

〉(∗)
)

= 0. (87)

APPENDIX B
INTERIOR WEIGHTS IN CASE OF INTERIOR UNIFORMLY

WEIGHTED L2 NORM

First, the inner product corresponding to the norm ‖ · ‖int,uni
is given as

〈u1, u2〉int,uni =
∫

Ωint

u1(r)
∗u2(r) dr. (88)

Therefore, the interior weights wν2,μ2
ν1,μ1

are rewritten as

wν2,μ2
ν1,μ1

=

∫

Ωint

ϕν1,μ1
(r − rc)

∗ϕν2,μ2
(r − rc) dr

= 4π

∫ Rint

0

jν1
(kr)2r2 dr

·
∫

S2

Yν1,μ1
(r̂)∗Yν2,μ2

(r̂) dr̂. (89)

From the orthonormality of the spherical harmonics, one obtains
∫

S2

Yν1,μ1
(r̂)∗Yν2,μ2

(r̂) dr̂ = δν1,ν2
δμ1,μ2

. (90)

In addition, from the identity [35]:

d

dr

[
r3

2

(
jν(kr)

2 − jν−1(kr)jν+1(kr)
)]

= jν(kr)
2r2, (91)

one obtains
∫ Rint

0

jν(kr)
2r2 dr

=
R3

int

2

(
jν(kRint)

2 − jν−1(kRint)jν+1(kRint)
)
. (92)

Equations (90) and (92) yield (46).

APPENDIX C
INTERIOR WEIGHTS IN CASE OF GAUSSIAN-WEIGHTED L2

NORM

The inner product corresponding to the norm ‖ · ‖int,Gs is
given as

〈u1, u2〉int,Gs =

∫

Ωint

exp

(
−‖r − rc‖2

2σ2

)
u1(r)

∗u2(r) dr.

(93)

Therefore, the interior weights wν2,μ2
ν1,μ1

are rewritten in a similar
way to (89) as

wν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

4π

∫ Rint

0

exp

(
− r2

2σ2

)
jν1

(kr)2r2 dr.

(94)

Therefore, (49) is yielded by the following equation:

d

dr

[ ∞∑

n=0

(−1)n
r3

2
exp

(
− r2

4σ2

)
in

(
r2

4σ2

)

· (jν−n(kr)jν+n(kr)− jν−n−1(kr)jν+n+1(kr))

]

= exp

(
− r2

2σ2

)
jν(kr)

2r2. (95)

Next, we prove (95). First, let an,ν(r) be defined as

an,ν(r) = (−1)n
r3

2
exp

(
− r2

4σ2

)
in

(
r2

4σ2

)

· (jν−n(kr)jν+n(kr)− jν−n−1(kr)jν+n+1(kr)) .
(96)
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The derivative of an,ν(r) is written as

d

dr
an,ν(r)

= (−1)nr2exp

(
− r2

4σ2

)
r2

4σ2

·
{[

n+ 1

r2/(4σ2)
in

(
r2

4σ2

)
− in

(
r2

4σ2

)
+ i′n

(
r2

4σ2

)]

· jν−n(kr)jν+n(kr)

+

[
n

r2/(4σ2)
in

(
r2

4σ2

)
+ in

(
r2

4σ2

)
− i′n

(
r2

4σ2

)]

· jν−n−1(kr)jν+n+1(kr)

}

= (−1)nr2exp

(
− r2

4σ2

)
r2

4σ2

·
{[
in−1

(
r2

4σ2

)
− in

(
r2

4σ2

)]
jν−n(kr)jν+n(kr)

+

[
in

(
r2

4σ2

)
− in+1

(
r2

4σ2

)]
jν−n−1(kr)jν+n+1(kr)

}

= bn,ν(r)− bn+1,ν(r), (97)

where

bn,ν(r) = (−1)nr2exp

(
− r2

4σ2

)
r2

4σ2

·
[
in−1

(
r2

4σ2

)
− in

(
r2

4σ2

)]
jν−n(kr)jν+n(kr).

(98)

From the inequality:

|jν(x)| ≤ |iν(x)| ≤
(x
2

)ν √
π

2Γ
(
ν + 3

2

) exp
(
x2

4

)
, (99)

one obtains the following relation in the sense of the compact
convergence for r ≥ 0:

lim
n→∞ bn,ν(r) = 0. (100)

Equation (99) can be shown from the series representation of
the Bessel functions [23], [33]. Therefore, one obtains

d

dr

∞∑

n=0

an,ν(r) =

∞∑

n=0

d

dr
an,ν(r)

= b0,ν(r)

= exp

(
− r2

2σ2

)
jν(kr)

2r2. (101)

This yields (95) and therefore (49).

APPENDIX D
EXTERIOR WEIGHTS IN CASE OF EXTERIOR UNIFORMLY

WEIGHTED L2 NORM

The inner product corresponding to the norm ‖ · ‖ext,uni is
given as

〈u1, u2〉ext,uni =
∫

Ω′
ext

u1(r)
∗u2(r) dr. (102)

Therefore, the exterior weights vν2,μ2
ν1,μ1

are rewritten as

vν2,μ2
ν1,μ1

= δν1,ν2
δμ1,μ2

4π

∫ R′
ext

Rext

|hν1
(kr)|2r2 dr. (103)

From the identity:

d

dr

[
r3

2
(hν(kr)

∗hν(kr)− hν−1(kr)
∗hν+1(kr))

]

= hν(kr)
∗hν(kr)r2, (104)

which can be derived similarly to (91), one obtains
∫ R′

ext

Rext

|hν(kr)|2r2 dr

=
R′3

ext

2

(|hν(kR′
ext)|2 − hν−1(kR

′
ext)

∗hν+1(kR
′
ext)
)

− R3
ext

2

(|hν(kRext)|2 − hν−1(kRext)
∗hν+1(kRext)

)
.

(105)

This yields (54).

APPENDIX E
EXTERIOR WEIGHTS IN CASE OF EXTERIOR

RADIATION-POWER NORM

The inner product corresponding to the norm ‖ · ‖ext,rad is
given as

〈u1, u2〉ext,rad

=
j

4ρck

∫

Sext

[
u2(r)

∂

∂n̂(r)
u1(r)

∗− u2(r)
∗ ∂

∂n̂(r)
u1(r)

]
dr.

(106)

Therefore, the exterior weights vν2,μ2
ν1,μ1

are rewritten as

vν2,μ2
ν1,μ1

=δν1,ν2
δμ1,μ2

πjR2
ext

ρc

· (hν1
(kRext)h

′
ν1
(kRext)

∗−hν1
(kRext)

∗h′ν1
(kRext))

= δν1,ν2
δμ1,μ2

2π

ρck2
, (107)

where the second line is derived using the Wronskian of the
spherical Hankel functions [33]. This yields (57).

Next, we give the proof of (62) and (63). As shown in [24],
the following two identities hold for T ν2,μ2

ν1,μ1
(·):

T ν2,μ2
ν1,μ1

(−r) = T ν1,μ1
ν2,μ2

(r)∗, (108)

T ν2,μ2
ν1,μ1

(r + r′) =
∑

ν,μ

T ν,μ
ν1,μ1

(r)T ν2,μ2
ν,μ (r′). (109)
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Therefore, one obtains

(A)l1,l2 =
2π

ρck2

∑

ν,μ

g̊extl1,ν,μ
(rl1)

∗g̊extl2,ν,μ
(rl2)

=
2π

ρck2

∑

ν,μ

⎛

⎝
Nl1∑

ν1,μ1

T ν1,μ1
ν,μ (rc − rl1)βl1,ν1,μ1

⎞

⎠
∗

·
⎛

⎝
Nl2∑

ν2,μ2

T ν2,μ2
ν,μ (rc − rl2)βl2,ν2,μ2

⎞

⎠

=
2π

ρck2

Nl1∑

ν1,μ1

Nl2∑

ν2,μ2

β∗
l1,ν1,μ1

βl2,ν2,μ2

∑

ν,μ

T ν1,μ1
ν,μ (rc − rl1)

∗T ν2,μ2
ν,μ (rc − rl2)

=
2π

ρck2

Nl1∑

ν1,μ1

Nl2∑

ν2,μ2

β∗
l1,ν1,μ1

βl2,ν2,μ2
T ν2,μ2
ν,μ (rl2−rl2).

(110)

This yields (62). Similarly, (63) can be obtained.
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