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Abstract—In this paper, we propose a new framework called in-
dependent deeply learned matrix analysis (IDLMA), which unifies
a deep neural network (DNN) and independence-based multichan-
nel audio source separation. IDLMA utilizes both pretrained DNN
source models and statistical independence between sources for
the separation, where the time-frequency structures of each source
are iteratively optimized by a DNN while enhancing the estima-
tion accuracy of the spatial demixing filters. As the source gen-
erative model, we introduce a complex heavy-tailed distribution
to improve the separation performance. In addition, we address a
semi-supervised situation; namely, a solo-recorded audio dataset
can be prepared for only one source in the mixture signal. To solve
the limited-data problem, we propose an appropriate data augmen-
tation method to adapt the DNN source models to the observed
signal, which enables IDLMA to work even in the semi-supervised
situation. Experiments are conducted using music signals with a
training dataset in both supervised and semi-supervised situations.
The results show the validity of the proposed method in terms of
the separation accuracy.

Index Terms—Audio source separation, independent component
analysis, deep neural networks, semi-supervised learning.

I. INTRODUCTION

B LIND source separation (BSS) aims at extracting spe-
cific sources from an observed multichannel mixture

signal without knowing a priori information about the mixing
system. The most commonly used algorithms for BSS in
the (over)determined case (the number of microphones is
more than that of sources) are independent component analy-
sis (ICA) [1] and its extended algorithms such as independent

Manuscript received March 26, 2019; revised June 14, 2019; accepted June
18, 2019. Date of publication June 27, 2019; date of current version July 15,
2019. This work was supported by the SECOM Science and Technology Foun-
dation and JSPS KAKENHI Grant Numbers JP17H06101, JP19H01116, and
JP19K20306. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Sven Erik Nordholm. (Corresponding
author: Naoki Makishima.)

N. Makishima, S. Mogami, N. Takamune, H. Sumino, S. Takamichi,
and H. Saruwatari are with the Graduate School of Information Science
and Technology, The University of Tokyo, Tokyo 113-8656, Japan (e-mail:
naoki_makishima@ipc.i.u-tokyo.ac.jp; shinichi_mogami@ipc.i.u-tokyo.ac.jp;
norihiro_takamune@ipc.i.u-tokyo.ac.jp; hayato-sumino787@g.ecc.u-tokyo.
ac.jp; shinnosuke_takamichi@ipc.i.u-tokyo.ac.jp; hiroshi_saruwatari@ipc.i.
u-tokyo.ac.jp).

D. Kitamura is with the National Institute of Technology, Kagawa College,
Kagawa 761-8058 Japan (e-mail: kitamura-d@t.kagawa-nct.ac.jp).

N. Ono is with the Graduate School of System Design, Tokyo Metropolitan
University, Tokyo 191-0065, Japan (e-mail: onono@tmu.ac.jp).

Digital Object Identifier 10.1109/TASLP.2019.2925450

vector analysis (IVA) [2], which assume statistical indepen-
dence between the sources and estimate the demixing system.
Recently, auxiliary-function-based algorithms (equivalent to
majorization-minimization (MM) algorithms [3]) for ICA (Aux-
ICA) [4] and IVA (AuxIVA) [5] have been derived, in which
convergence-guaranteed fast optimization was realized by alter-
native updates of auxiliary parameters and demixing matrices,
where the latter was called iterative projection (IP). On the
basis of IP, independent low-rank matrix analysis (ILRMA) [6],
[7], which is a unification of AuxIVA and nonnegative matrix
factorization (NMF) [8], has been proposed as a state-of-the-art
BSS method. ILRMA assumes both statistical independence be-
tween sources and a low-rank time-frequency structure for each
source, and the frequency-wise demixing matrices are estimated
without encountering the so-called permutation problem [9],
[10]. ILRMA assumes the local Gaussian model (LGM) [11],
[12], which was originally proposed as a probabilistic interpre-
tation of NMF based on Itakura–Saito divergence (ISNMF) [11]
and its multichannel extensions [13]–[15]. The LGM consists
of a zero-mean and isotropic complex Gaussian distribution
independently defined at each time-frequency slot and has been
used in many techniques such as the full-rank spatial covariance
model (FSCM) [13] and multichannel NMF (MNMF) [14],
[15]. In recent studies, the LGM in ILRMA has been general-
ized to the complex Student’s t distribution (t-ILRMA) [16],
[17] for more high-performance BSS. As a more general
framework of LGM-based BSS, in [18], demixing matrix
optimization based on a given power spectrogram estimate
(time-frequency-wise variance) was proposed, showing that
the precise source spectrogram model enables accurate spatial
model estimation.

In the underdetermined case (the number of microphones is
less than that of sources), the FSCM [13] is a commonly used
framework. In this model, frequency-wise spatial covariances,
which encode source locations and their spatial spreads, are esti-
mated by the expectation-maximization (EM) algorithm, where
the permutation problem must be solved after the optimization.
MNMF [15] is a technique combining the FSCM and an NMF-
based permutation solver, which was extended to ILRMA in
the determined case. In [14], [15], NMF was used in a blind
setting and its role was to ensure that the separated signals
have low-rank time-frequency structures. On the other hand,
in [14], [19], NMF was used in a supervised (informed) set-
ting, e.g., the basis matrix was trained in advance. Note that the
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FSCM and MNMF formulate a mixing model, whereas ICA-
based methods including ILRMA estimate a demixing model
for the separation by focusing only on the determined case. It
has been experimentally confirmed that the optimization of a
demixing model is more efficient and numerically stable than
that of a mixing model [6].

In supervised source separation, deep neural networks
(DNNs) have shown promising performance in both single-
channel [20]–[23] and multichannel source separation
[24]–[27]. In fact, when a sufficient number of solo-recorded
audio signals (signals recorded when isolated instruments are
played) are available as a dataset, a DNN can effectively model
their time-frequency structures. However, it is almost impossible
to compose an appropriate and generalized spatial model using
a DNN from training data observed in a multichannel format.
This is because the spatial model depends on many factors,
including the source and microphone locations, the recording
environment, and reverberation. Therefore, it is reasonable to
combine a pretrained DNN source model and a blind estimation
of the spatial model. In [25], [26], a DNN-based beamformer
was proposed and applied to a speech enhancement task.
Although this framework iteratively updates spatial filters and
DNN-based source models, the algorithm is not based on a con-
sistent deterministic or probabilistic model; namely, the spatial
beamformer and DNN are heuristically combined without any
theoretical validity or justification. In [27], Nugraha et al. pro-
posed a DNN-based multichannel source separation framework
using the FSCM (hereafter referred to as FSCM+DNN). Al-
though this is a convincing approach, a large computational cost
is required to estimate the spatial covariance (the EM algorithm
in the FSCM) and the performance is not satisfactory owing
to the difficulty of spatial parameter optimization, as discussed
in [6].

In this paper, we unify the ICA-based blind estimation of the
demixing matrix and the DNN-based supervised update of the
source spectrogram model. In the proposed method, we intro-
duce a complex Student’s t distribution as a generalized source
generative model including the LGM, and the demixing matrix
(spatial model) is efficiently optimized using an MM algorithm.
Since the proposed method utilizes a time-frequency spectro-
gram matrix estimated by a DNN to optimize the spatial model,
we call this method independent deeply learned matrix analy-
sis (IDLMA). In addition, we address a semi-supervised situa-
tion where a solo-recorded dataset can be prepared for only one
source in the mixture signal and there is no solo-recorded dataset
for the other sources. In this situation, since a DNN source model
for the other sources cannot be prepared in advance, we propose
a new data augmentation scheme, where the augmented data
are used to iteratively retrain the DNN source model for all the
sources while optimizing the spatial model.

Figure 1 shows the relationship between the existing and pro-
posed multichannel source separation methods. The source spec-
trogram model is estimated by supervised NMF in [14], [19]
and is estimated by a DNN in FSCM+DNN and the proposed
IDLMA.

The rest of this paper is organized as follows. In Section II,
we formulate the problem and introduce the source generative

Fig. 1. Relationship between existing and proposed multichannel source sep-
aration methods.

model using the existing conventional methods. In Section III,
the detailed framework of IDLMA in the supervised situation is
described. In Section IV, the application of IDLMA to the semi-
supervised situation is described. An experimental evaluation
using music signals is given in Section V. The conclusions of
this paper are presented in Section VI. Note that this paper is
partially based on an international conference paper [28] written
by the authors. The contribution of this paper is that we provide
a new extended scheme of the proposed method for the semi-
supervised situation and report expanded experiments carried
out under various conditions.

II. CONVENTIONAL METHOD

A. Formulation

Let N and M be the numbers of sources and channels,
respectively. The short-time Fourier transforms (STFTs) of
the multichannel source, observed, and estimated signals are
defined as

sij = (sij1, . . . , sijN )T, (1)

xij = (xij1, . . . , xijM )T, (2)

yij = (yij1, . . . , yijN )T, (3)

where i = 1, . . . , I; j = 1, . . . , J ;n = 1, . . . , N ; and m =
1, . . . ,M are the indexes of the frequency bins, time frames,
sources, and channels, respectively, and T denotes the trans-
pose. We also denote these spectrograms asSn ∈ CI×J ,Xm ∈
CI×J , and Y n ∈ CI×J , whose elements are sijn, xijn, and
yijn, respectively. In ILRMA, the following mixing system is
assumed:

xij = Aisij , (4)

whereAi = (ai1, . . . ,aiN ) ∈ CM×N is a frequency-wise mix-
ing matrix and ain is the steering vector for the nth source. The
assumption of the mixing system (4) corresponds to restricting
the spatial covariance in the FSCM to a rank-1 matrix [13]. When
M = N and Ai is not a singular matrix, the estimated signal
yij can be represented as

yij =W ixij ≈ sij , (5)
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where W i = (wi1, . . . ,wiN )H is the demixing matrix, win is
the demixing filter for the nth source, and H denotes the Hermi-
tian transpose. ILRMA estimates both W i and yij from only
the observation xij assuming statistical independence between
sijn and sijn′ , where n �= n′.

B. FSCM and MNMF

In the FSCM [13], a generative model of a multichannel ob-
served signalxij is defined by a zero-mean multivariate complex
Gaussian distribution as
∏

i,j

p(xij) =
∏

i,j

1

det
(
πR

(x)
ij

) exp
(
−xijR

(x)
ij

−1
xH
ij

)
, (6)

whereR(x)
ij ∈ CM×M is the spatial covariance of the observed

signal. This model is often called the LGM [11], [12]. Under
the assumption that the sources are mutually uncorrelated,R(x)

ij

can be decomposed as

R
(x)
ij =

∑

n

rijnR
(s)
in , (7)

where rijn > 0 is the time-frequency-varying variance (power

spectrogram) of the nth source andR(s)
in ∈ CM×M is the time-

invariant spatial covariance, which encodes the acoustic path
from the nth source to the microphones and its spatial spread.
The parameters rijn and R(s)

in can be optimized by the EM al-
gorithm, and the estimated multichannel source signals (source
images) can be recovered by multichannel Wiener filtering.

The FSCM incurs the permutation problem if no additional
model is assumed for rijn. MNMF [14], [15] introduces an
NMF-based low-rank assumption into rijn, and permutation-
free BSS is achieved. However, its performance is not stable
against, e.g., parameter initialization because a huge number
of parameters must be optimized. Instead of employing NMF,
FSCM+DNN [27] utilizes a DNN-based source model to esti-
mate rijn; namely, a DNN that enhances each source is trained
using sourcewise (solo-recorded) datasets in advance, and the
variance rijn is updated by the DNN while optimizing the spa-

tial covariance R(s)
in . However, the training cost of the DNN

used in [27] is large because multiple DNNs should be prepared
for each spatial update with the EM algorithm. Also, the perfor-
mance is still limited because of the difficulty of optimizing the
spatial covariance R(s)

in .

C. ILRMA and Its Generalization

ILRMA [6], [7] is a fast and stable BSS algorithm that es-
timates the demixing matrix W i instead of the mixing system
(spatial covariance R(s)

in ). The difference between MNMF and
ILRMA is the rank of the spatial covariance; namely, ILRMA
restrictsR(s)

in to be a rank-1 matrix. This rank-1 spatial model is
equivalent to assuming the mixing system (4), and the parameter
R

(s)
in can be converted to the demixing matrix W i, resulting in

a substantial reduction of the number of spatial parameters from
INM2 to INM .

Fig. 2. Tails of Student’s t distribution at various ν values.

Fig. 3. Generative model based on complex Student’s t distribution.

In ILRMA, the following univariate complex Gaussian dis-
tribution is assumed as a source generative model (hereafter
referred to as Gauss-ILRMA):

∏

i,j

p(yijn) =
∏

i,j

1

πσijn
2
exp

(
−|yijn|

2

σijn
2

)
, (8)

σijn
2 =

∑

k

tiknvkjn, (9)

where σijn is the scale parameter, k = 1, . . . ,K is the index of
the NMF bases, and tikn > 0 and vkjn > 0 are the elements of
the basis matrix T n ∈ RI×K

≥0 and the activation matrix V n ∈
RK×J
≥0 , respectively. We also denote the scale parameter matrix

as Σn ∈ RI×J
≥0 , whose elements are σijn. Thus, (9) can also be

represented as |Σn|.2 = T nV n. The marginal distribution of
the time-varying complex Gaussian model w.r.t. the time frame
is super-Gaussian when the scale parameter fluctuates and is not
constant w.r.t. the time frame. In t-ILRMA [16], the generative
model (8) is extended to the complex Student’s t distribution as
follows:

∏

i,j

p(yijn) =
∏

i,j

1

πσijn
2

(
1 +

2

ν

|yijn|2
σijn

2

)− 2+ν
2

, (10)

σijn
p =

∑

k

tiknvkjn, (11)

where ν is the degree-of-freedom parameter defined in the Stu-
dent’s t distribution andp is a domain parameter used in the NMF
decomposition. When ν →∞ and p = 2, (10) and (11) become
identical to (8) and (9), respectively. Also, (10) with ν = 1 rep-
resents the Cauchy distribution likelihood. Fig. 2 shows the tails
of the complex Student’s t distribution at various ν values, and
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Fig. 4. Separation principle of (a) ILRMA and (b) IDLMA, where xn(τ) and yn(τ) are observed and estimated time-domain signals, respectively, and τ denotes
index of time samples.

Fig. 3 shows the generative model based on (10). A small ν leads
to a heavy-tailed distribution, which provides outlier-robust pa-
rameter estimation. Also, the distribution is independently de-
fined in each time-frequency slot, and the spectral power corre-
sponds to the variance σ2

ijn.
Figure 4(a) shows the principle of source separation based on

ILRMA. The demixing matrixW i and the NMF source model
T nV n can be optimized in the maximum-likelihood (ML) sense
based on (8) or (10). Since the low-rank structure of the power
spectrogram |Y |.2 is ensured by the NMF decomposition, the
permutation problem can be avoided, where |·|.p for matrices
denotes the element-wise absolute and pth-power operations.

III. PROPOSED METHOD

A. Motivation

The NMF source model in ILRMA is effective for some
sources that have a low-rank time-frequency structure. How-
ever, this source model is not always valid. For example, speech
signals have continuously varying spectra, which cannot be ef-
ficiently modeled by NMF, and the separation performance of
ILRMA is degraded for such sources.

If sufficient training data for each source can be prepared in
advance, it is possible to construct a suitable source model by
employing a DNN [20]. On the other hand, since the spatial
parameters depend on many factors, it is impractical to train a
general spatial model with a DNN even if huge amounts of mul-
tichannel observation data are available; therefore, the spatial
parameters should be estimated blindly.

In this paper, we propose a new framework, IDLMA, which
combines the ICA-based blind estimation of the demixing ma-
trixW i and the supervised learning of the scale parameter ma-
trix Σn based on a DNN. The separation principle of IDLMA
is shown in Fig. 4(b). In IDLMA, the NMF source model is
replaced by DNN-based scale parameter estimation for each
source, where DNNn is the DNN source model for thenth source
trained in advance. The loss function in DNNn is designed to

maximize the likelihood of the source generative model and to
output the scale parameter matrix Σn.

In addition, similarly to t-ILRMA, we use a generalized model
based on the zero-mean and isotropic complex Student’s t dis-
tribution including both the Gaussian and Cauchy distributions.
FSCM+DNN also employs a DNN that maximizes the likeli-
hood of the Gaussian or Cauchy distribution. However, since
the mixing model R(s)

in in FSCM+DNN is defined by only the
Gaussian model, the estimations of the spectral and spatial pa-
rameters are inconsistent. In the proposed method, this statisti-
cal conflict is resolved by modeling both the spatial and source
parameters with the consistent generative model based on the
Student’s t distribution, and their optimization algorithms are
derived.

B. Cost Function in IDLMA

In IDLMA, we assume the same source generative model as
in ILRMA, modifying the low-rank modeling of the scale pa-
rameter to DNN modeling. On the basis of (8), the cost function
(negative log-likelihood of the observed signal xij) in IDLMA
with the LGM (Gauss-IDLMA) is obtained as

LGauss(W ) = − log p(X)

= − log p(Y )− 2J
∑

i

log |detW i|

=
∑

i,j,n

[∣∣wH
inxij

∣∣2

σijn
2

+ 2 log σijn

]

− 2J
∑

i

log |detW i|+ IJN log π, (12)

s.t. σijn = max([DNNn(|Y n|.1)]i,j , ε), (13)

where W = {W 1, . . . ,W I} is the set of demixing matri-
ces,X = {X1, . . . ,Xm} andY = {Y 1, . . . ,Y n} are the sets
of the observed and estimated signals, respectively, DNNn(·)
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is the output of DNNn trained to estimate the scale parameter
of the nth source (the detail of DNN training is described in
Section III-C), [·]i,j is the (i, j)th value of the matrix, and ε is a
small value to increase the numerical stability. In the derivation
of (12), the independence between sources, p(Y ) =

∏
n p(Y n),

is assumed, and we used the transformation of random variables
from xij to yij as denoted in (5). Since the joint optimization
of (12) and (13) is difficult, we iteratively update W i and Σn.
In the iterations,W i is estimated in the ML sense based on the
currently estimated scale parameter Σn. Although Σn given by
(13) is not the ML estimate in the strict sense, it is expected
to increase the likelihood when DNNn is trained to output the
scale parameter of Sn from the noisy (interference-remaining)
spectrogram, as described in Section III-C. Gauss-IDLMA can
be generalized using (10) as IDLMA based on the Student’s
t distribution (t-IDLMA). The cost function in t-IDLMA is
defined as

Lt(W) =
∑

i,j,n

[(
1+

ν

2

)
log

(
1+

2

ν

∣∣wH
inxij

∣∣2

σijn
2

)
+2 log σijn

]

− 2J
∑

i

log |detW i|+ IJN log π, (14)

s.t. σijn = max([DNNn(|Y n|.1)]i,j , ε). (15)

Note that Lt converges to LGauss when ν →∞.

C. Architecture and Training of DNN Source Model

DNNn is trained so that the scale parameter of source S̃n,
Σn, based on (8) or (10) is predicted from an input mix-
ture spectrogramB, where S̃n ∈ CI×J andB ∈ CI×J are the
source and mixture spectrograms in the training data, respec-
tively. When we define the output scale parameter matrix as
Dn = DNNn(|B|.1) ≈ Σn, the loss function of DNNn in (13)
can be defined as

LGauss(Dn) =
∑

i,j

(
|s̃ijn|2 + δ1

dijn
2 + δ1

− log
|s̃ijn|2 + δ1

dijn
2 + δ1

− 1

)
,

(16)

where s̃ijn anddijn are the elements of S̃n andDn, respectively,
and δ1 is a small value to avoid division by zero [27]. Also, the
loss function of DNNn in (15) can be defined as

Lt(Dn) =
∑

i,j

[(
1 +

ν

2

)
log

(
1 +

2

ν

|s̃ijn|2 + δ1

dijn
2 + δ1

)

+ log(dijn
2 + δ1)

]
. (17)

Since minimizing (16) or (17) corresponds to a simulation for the
ML estimation ofσijn in (12) or (14) (only limited to the training
data), DNNn can be approximately interpreted as an appropriate
source model based on (8) or (10), respectively. Similarly to
(14), Lt(Dn) converges to LGauss(Dn) up to a constant when
ν →∞.

Fig. 5. Outline of DNN training when I = 4, J = 8, N = 2, and c = 1.

Although many sophisticated DNN-related methods have
been proposed such as convolutional neural networks, gener-
ative adversarial networks [29], variational autoencoders [30],
U-Nets [22], and deep clustering [23], in this paper, we only
focus on the simplest networks, i.e., fully connected DNNs.
This is because our aim in this paper is to build a framework of
DNN-based BSS under a consistent ML criterion and appropri-
ate utilization of DNNs in terms of the parameter optimization.
All types of state-of-the-art DNN architectures and methods are
available to further enhance the separation performance, which
is a future work and beyond the scope of this paper.

The outline of DNN training is depicted in Fig. 5. To pre-
pare the training data of mixed signals, we define the following
vectors:

�sjn = (s̃T(j−2c)n, s̃
T
(j−2c+2)n, · · · , s̃T(j+2c)n)

T (18)

�bj =

∑
n αjn�sjn

‖∑n αjn�sjn‖2 + δ2
, (19)

s̄jn =
αjns̃jn

‖∑n αjn�sjn‖2 + δ2
, (20)

where ‖ · ‖2 denotes the Euclidean norm, s̃jn ∈ CI is the
STFT vector of the nth source at j (the column vector of S̃n),
�sjn ∈ CI(2C+1) is a vector that vertically concatenates s̃jn for
2c frames around j as shown in Fig. 5, �bj ∈ CI(2C+1) is the
normalized mixture vector whose amplitude |�bj |.1 is an input
vector for all DNNn, s̄jn ∈ CI is the reference vector for each
source, αjn is a random variable in the range [0.05, 1], which
controls the signal-to-noise ratio (SNR) in �bj , and δ2 is a small
value to avoid division by zero. DNNn is optimized so that the
loss function (16) or (17) between the output (estimated) vector
djn ∈ RI

≥0 and the reference vector |s̄jn|.1 is minimized, where
djn is the column vector of Dn. The input and output vectors
of DNNn are |�bj |.1 and djn, respectively.

D. Update Rule of Demixing Matrix

The cost function (12) consists of a negative log-determinant
term of W i and a quadratic form of win, and the minimiza-
tion of (12) w.r.t. W i leads to the solution that maximizes the
independence between sources, given the scale parameter σijn

estimated by the DNN as a fixed value. In AuxICA [4] and Aux-
IVA [5], an efficient and convergence-guaranteed optimization
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algorithm called IP was proposed, which can be applied to the
sum of a negative log-determinant and a quadratic form. Since
IP can find the stationary point of LGauss, we can update the
demixing matrix W i in a vectorwise iterative calculation as
follows:

U in =
1

J

∑

j

1

σijn
2
xijx

H
ij . (21)

win ← (W iU in)
−1en, (22)

win ← win√
wH

inU inwin

, (23)

where en denotes the unit vector with the nth element equal to
unity. After calculating win for all n, the estimated signal yijn
is updated by (5).

In t-IDLMA, IP cannot be applied to (14) because
∣∣wH

inxij

∣∣2

is intrinsic in the logarithm function. Therefore, we use an
MM algorithm to transform the cost function (14) into an
IP-applicable form, namely, the sum of the negative log-
determinant and the quadratic form. The following derivation
is based on [16], [17], but in this paper, we newly show a dif-
ferent form of the update rules to interpret the relation between
the DNN output σijn and its smoothing effect. To design a ma-
jorization function for (14), we apply the tangent line inequality

log ξ ≤ 1

γ
(ξ − γ) + log γ (24)

to the logarithm term in (14), where ξ > 0 is the original variable
and γ > 0 is an auxiliary variable. The majorization function can
be designed as

Lt ≤
∑

i,j,n

[(
1 +

ν

2

)
1

γijn

(
1 +

2

ν

∣∣wH
inxij

∣∣2

σijn
2
− γijn

)

+

(
1 +

ν

2

)
log γijn + 2 log σijn

]

− 2J
∑

i

log |detW i|+ IJN log π

= −2J
∑

i

log |detW i|+ J
∑

i,n

wH
inU inwin + C

=: L+
t , (25)

U in =
1

J

(
2

ν
+ 1

)∑

j

1

γijnσ2
ijn

xijx
H
ij , (26)

where C includes the constant terms that do not depend onwin,
γijn is the auxiliary variable, and Lt and L+

t become equal if
and only if

γijn = 1 +
2

ν

|yijn|2
σijn

2
. (27)

By substituting (27) into (26), we obtain

U in =
1

J

∑

j

1

ζijn
xijx

H
ij , (28)

Algorithm 1: Iterative Algorithm of IDLMA.
1: function IDLMA (X1, . . . ,XM ,DNN0, . . . ,DNNN )
2: for l of number of iterations L do
3: for l′ of number of spatial updates L′ do
4: for all frequency bin i and source index n do
5: Update win by (22) and (23) with (21)

(Gauss-IDLMA) or (28) (t-IDLMA)
6: end for
7: end for
8: for all source index n do
9: Update Y n by (5)

10: end for
11: for all source index n do
12: Apply back-projection to obtain Ŷ n by (30)
13: end for
14: for all source index n do
15: Update source model Σn by (13)
16: end for
17: end for
18: return separated signals Ŷ 1, . . . , Ŷ N

19: end function

where

ζijn =
ν

ν + 2
σijn

2 +
2

ν + 2
|yijn|2. (29)

Since (25) is the IP-applicable form, the update rule forwin can
be obtained as (22) and (23) with (28). Note that yijn in ζijn
comes from the equality condition (27), which means that it is
determined by W i one step before in the MM algorithm and
is a constant when W i is updated. In particular, when ν →∞,
the majorization function (25) converges to the cost function in
Gauss-IDLMA, (12), and (28) also converges to (21). Interest-
ingly, (28) and (29) works as the spectral smoothing of the DNN
output, which will be explained in Section III-E in detail.

To fix the scales of yijn among the frequency bins, the follow-
ing back-projection technique [31] is applied before updating
Σn using (13):

ŷijn ← [W−1
i (en ◦ yij)]mref

, (30)

where ŷijn is the scale-fitted estimated signal whose spectro-
gram form is denoted as Ŷ n ∈ CI×J , ◦ is the Hadamard prod-
uct (element-wise product), [·]n is the nth value of the vector,
and mref is the index of the reference channel. Note that back-
projection technique is essential because DNN training data are
scale-fitted w.r.t. the frequency bin. The algorithm of IDLMA is
summarized in Algorithm 1.

E. Relation Between Parameter ν and Numerical Stability

In Gauss-IDLMA, U in defined by (21) can be interpreted as
the instantaneous covariance matrixxijx

H
ij weighted by σijn

−2.
In general, σijn is estimated by DNNn, whose output likely fluc-
tuates, resulting in many spectral chasms in the time-frequency
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plane. Therefore, the weight coefficient σijn
−2 may be exces-

sively large, reducing the numerical stability of IP in Gauss-
IDLMA. In t-IDLMA, on the other hand, ζijn in (28) is the
point internally dividing σijn

2 and |yijn|2 with a ratio of ν : 2.
Since yijn is the output of a spatial linear filterwin, |yijn|2 con-
tains fewer chasms than σijn

2; this yields a beneficial spectral
smoothing and numerical stability in optimization.

A prospective drawback of t-IDLMA is slower convergence,
especially in the case of small ν close to unity, because the
inference of the DNN is discounted. Thus, there is a tradeoff
when setting ν. The appropriate selection of ν will be discussed
in Section V.

IV. SOURCE MODEL ADAPTATION BASED ON DATA

AUGMENTATION IN SEMI-SUPERVISED CASE

A. Strategy

In this section, we focus on the semi-supervised case, where
two training datasets are available: (a) a dataset of solo-recorded
source signals (hereafter referred to as a supervised source) and
(b) a dataset of mixed signals that include diverse sources ex-
cept for the supervised source. To apply the IDLMA framework
even in such a semi-supervised case, we introduce a new data
augmentation scheme to the framework and propose a semi-
supervised version of IDLMA, which is a more practical appli-
cation with limited data resources. To distinguish the proposed
methods for full- and semi-supervised cases, hereafter, Algo-
rithm 1 is referred to as full-supervised IDLMA (full-IDLMA),
and the method we discuss in this section is referred to as semi-
supervised IDLMA (semi-IDLMA).

For simplicity, let S1 (n = 1) be the supervised source, and
there are no solo-recorded datasets for the other sources (n �= 1).
In such a semi-supervised case, only two DNNs (source models)
can be trained from the datasets of the supervised source and the
mixture of diverse sources; namely, only DNN1 and DNN1 are
obtained in the training stage, where DNN1 is a source model
that estimates the scale parameter of only the supervised source
S̃1 from the diverse mixture, and DNN1 is a source model that
estimates the scale parameter of the other residual sources in the
mixture. That is, DNN1 enhances only S̃1 and DNN1 suppresses
only S̃1. Even if we apply full-IDLMA in the semi-supervised
situation, the separation accuracy is highly limited. This is be-
cause the parameter estimation of DNN1 does not work well
compared with DNNn(n �= 1) in the full-supervised case.

To cope with this problem, we propose to adapt the pretrained
DNN source models DNN1 and DNN1 to the supervised source
S1 and the other sources S2, . . . ,SN in the observed mix-
ture Xm, respectively. Fig. 6 shows the process flow in semi-
IDLMA. This method consists of two processes: a source sep-
aration process and a data adaptation process, where the source
separation process is the same as full-IDLMA. The adaptation
process is carried out by the following steps: (a) the DNN source
model for the other sources, DNN1, is copied and set to the
source models of each unsupervised source (n �= 1) in the ob-
served mixture as DNN2, · · · ,DNNN , (b) BSS based on IL-
RMA is performed on the observed mixture to initialize the esti-
mated signals Ŷ 1, · · · , Ŷ N , (c) the new datasets for each source

Fig. 6. Process flow of semi-IDLMA when N = M = 2, supervised source
is Ŷ 1, and unsupervised source is Ŷ 2.

Fig. 7. Data augmentation based on NMF and GMMN when I = 6, J = 6,
K = 3, and ϕ = 3.

S1, · · · ,SN are produced via a data augmentation technique us-
ing the current estimated signals Ŷ 1, · · · , Ŷ N , (d) all the DNN
source models DNN1, · · · ,DNNN are retrained (updated) using
the newly produced datasets for S1, · · · ,SN , and (e) IDLMA
is performed using the up-to-date DNN1, · · · ,DNNN . Intrigu-
ingly, steps (c)–(e) (data augmentation, DNN retraining, and
separation) can be iterated until a satisfactory performance is
obtained by IDLMA, which can be interpreted as an adaptation
to the test data.

B. Data Augmentation Utilizing Moment Matching Network

In this subsection, we explain the proposed data augmenta-
tion technique, which is summarized in Fig. 7. To improve the
DNN performance with the augmented data, it is important to
preserve both the statistical and structural properties in the data
augmentation. The proposed method combines a generative mo-
ment matching network (GMMN) [32] and NMF to represent
the spectral and time-series structures in Ŷ n, respectively.

First, the low-rank source model T nV n is obtained by apply-
ing NMF to the current estimated signal Ŷ n, where the basis and
activation matrices T n and V n represent the spectral and time-
series structures in Ŷ n, respectively. Second, a new activation
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matrix Ṽ n is generated from random values while minimizing
the discrepancy between the statistical properties (moments) of
V n and Ṽ n using a GMMN. Third, the augmented power spec-
trogram for the nth source is produced by multiplying T n and
Ṽ n, resulting in moment- and structure-preserved appropriate
data augmentation for audio signals. Note that the GMMN often
fails to train networks for large-dimensional input data; however,
in the proposed method, the input data of the GMMN are several
time frames of K coefficients for the bases in T n, as shown in
Fig. 7. Thus, the dimension of the input vector is greatly reduced
owing to the NMF decomposition. The drawback of a small K
is that NMF cannot represent the signal minutely, which de-
grades the quality of the augmented data. An appropriate K is
determined experimentally.

In the data adaptation process shown in Fig. 6, the index of
the supervised source ns is estimated using DNN1 as follows:

ns = arg max
n

DNN1(|Ŷ n|.1). (31)

This is necessary because the order of the estimated signals in
ILRMA applied in advance depends on the initial values ofW i,
T n, and V n. Then, a low-rank source model T nV n of the cur-
rent estimated signal Ŷ n for the unsupervised sources (n �= 1) is
obtained by applying NMF based on the Student’s t distribution
(t-NMF) [33] as

|Ŷ n|.2 ≈ T nV n. (32)

The update rules of T n and V n are given by the following
equations as [33]

tikn = tikn

⎛

⎝
∑

j
|ŷijn|2

ηijn

∑
k′ tik′nvk′jn

vkjn
∑

j
1∑

k′ tik′nvk′jn
vkjn

⎞

⎠

1
2

, (33)

vkjn = vkjn

⎛

⎝
∑

i
|ŷijn|2

ηijn

∑
k′ tik′nvk′jn

tikn
∑

i
1∑

k′ tik′nvk′jn
tikn

⎞

⎠

1
2

, (34)

where

ηijn =
ν

ν + 2

∑

k′
tik′nvk′jn +

2

ν + 2
|ŷijn|2. (35)

Note that the degree-of-freedom parameter ν should be set to be
the same as that used in (17) for t-IDLMA or set to∞ for Gauss-
IDLMA to maintain the consistency with the source generative
model p(yijn), where (33) and (34) reduce to the update rules
of ISNMF [11] when ν →∞. The estimated source models
T n and V n of the unsupervised sources are used for the data
augmentation process explained below.

As shown in Fig. 7, a supervectorψjn ∈ RKϕ
≥0 is composed by

concatenating multiple column vectors of the activation matrix
V n as

ψjn = [vT(jϕ)n,v
T
(jϕ+1)n · · · ,vT(jϕ+ϕ−1)n]

T, (36)

where ϕ is the length of the concatenation and vjn ∈ RK
≥0 is the

jth column vector ofV n. The concatenation allows the GMMN
to capture the locally temporal dependences. The GMMN gen-
erates another sample of ψjn, which is denoted as ψ̂fn, from

uniformly distributed random values z as

ψ̂fn = GMMN(z), (37)

where f = 1, · · · , F and F is the arbitrary data length of gen-
erated outputs. Since the statistical discrepancy between ψjn

and ψ̂fn is minimized by the GMMN, a new activation matrix

Ṽ n constructed from ψ̂jn maintains the statistical properties
in V n. Thus, we can reproduce the augmented spectrogram of
the unsupervised sources as T nṼ n. This can be interpreted as
an appropriate data augmentation for acoustic signals because
both the time-frequency structure and the statistical properties
are maintained by NMF and the GMMN, respectively. The train-
ing criterion for GMMN(·) is the maximum mean discrepancy
(MMD) [32], which is defined as

LMMD =
1

P 2

P∑

j=1

P∑

j′=1

κ(ψj ,ψj′)

+
1

F 2

F∑

f=1

F∑

f ′=1

κ(ψ̂f , ψ̂f ′)

− 2

PF

P∑

j=1

F∑

f=1

κ(ψj , ψ̂f ), (38)

where P = 
J/ϕ� is the length of the training data, 
·� is the
floor function,κ(b1, b2) = exp(−‖b1 − b2‖22/(2ρ2)) is a Gaus-
sian kernel, and ρ2 is the variance. The criterion (38) is based on
a kernel trick and becomes zero when all the moments of ψ̂fn

are identical to those of ψjn.
The augmented activation matrix Ṽ n can be obtained from

ψ̂fn as

Ṽ n = [[ψ̂1n]
T
1:K , [ψ̂1n]

T
K+1:2K ,

[ψ̂1n]
T
2K+1:3K , . . . , [ψ̂Fn]

T
2K+1:3K ]T, (39)

where [·]q1:q2 returns a vector whose elements are the q1th to
q2th elements in the input vector.

C. DNN Model Adaptation

After the data augmentation for the unsupervised sources,
we prepare a new mixture dataset using the database of the
supervised source and the augmented data. Then, the source-
wise DNNs are updated (retrained) by a transfer learning
technique [34], where the parameters in only a few layers are
updated. Detailed information is described in Section V-B. The
input and output vectors used for retraining DNNs are the same
as those in the full-supervised case described in Section III-C.
The algorithm of semi-IDLMA is summarized in Algorithm 2.

V. EXPERIMENTAL EVALUATION

A. Full-Supervised Case

1) Task, Dataset, and Conditions: We confirmed the validity
of the proposed method by conducting a music source separation
task. We compared eight methods: MNMF (blind, K = 20), IL-
RMA (blind, K = 20), basis-supervised NMF+WF (K = 50),
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Fig. 8. Recording conditions of impulse responses obtained from RWCP database.

Algorithm 2: Iterative Algorithm of Semi-IDLMA.

1: function SEMI-IDLMA(X1, . . . ,XM ,DNN1,DNN1)
2: for n = 2, . . . , N do
3: DNNn ← DNN1

4: end for
5: Initialize Ŷ 1, . . . , Ŷ N by ILRMA
6: for l of number of iterations L do
7: DNN1, . . . ,DNNN ←ADAPTATION

(Ŷ 1, . . . , Ŷ N ,
DNN1, . . . ,DNNN )

8: for l′ of number of iterations L′ do
9: Ŷ 1, . . . , Ŷ N ← IDLMA(X1, . . . ,XM ,

DNN1, . . . ,DNNN )
10: end for
11: end for
12: return Ŷ 1, . . . , Ŷ N

13: end function

15: function ADAPTATION (Ŷ 1, . . . , Ŷ N ,DNN1,
. . . ,DNNN )

16: Estimate supervised source index ns:
17: ns = arg max

n
DNN1(|Ŷ n|.1)

18: for all n except ns do
19: Decompose Ŷ n into T n and V n by (33) and (34)
20: Train GMMN with V n:
21: Compose ψjn by (36)
22: Train GMMN with loss function (38)
23: Generate augmented activation Ṽ n by (39)
24: Add T nṼ n to training dataset for DNNn

25: end for
26: Adapt DNNn for all n with new training dataset
27: return DNN1, . . . ,DNNN

28: end function

DNN+WF, basis-supervised MNMF (K = 50 for each source),
basis-supervised ILRMA (K = 50), FSCM+DNN, and pro-
posed IDLMA. In basis-supervised NMF+WF, basis-supervised
MNMF, and basis-supervised ILRMA, the basis matrices T n of
NMF for all n were trained using solo-recorded datasets before
source separation. Basis-supervised NMF+WF and DNN+WF
apply a Wiener filter constructed using all the outputs of the
NMF source models and the DNN source models, respectively,

Fig. 9. Example of SDR improvements for each method for Ba./Vo.

to the reference channel signal [21]. Note that MNMF and IL-
RMA are “blind” (unsupervised) techniques, but we show their
performances just for reference to understand to what ex-
tent the supervised methods (basis-supervised NMF+WF,
DNN+WF, basis-supervised MNMF, basis-supervised ILRMA,
FSCM+DNN, and IDLMA) can improve the performance by
using pretraining data. For FSCM+DNN and IDLMA, the
scale parameter matrix Σn was updated by DNNn after every
10 iterations of the spatial parameter optimization. Note that
the DNNs employed in this paper were different from those
of original FSCM+DNN [27] as follows: (a) each DNN was
prepared for each single source, and (b) each DNN was trained
under multiple-SNR conditions. We used the same DNNs for all
the methods, where the selection of the best DNN architecture
is beyond the scope of this paper. In the experiments described
in Section V-A, all the methods except MNMF and ILRMA
were conducted in a full-supervised manner, i.e., we trained all
basis matrices and DNNs for each of the sources in advance
using datasets of a sufficient size.

We used the DSD100 dataset of SiSEC2016 [35] as the dry
sources and the training datasets of each basis matrix and DNN.
The 50 songs in the dev data were used to train T n and DNNn,
and the top 25 songs in alphabetical order in the test data
were used for performance evaluation. For the pretraining of
NMF, we excerpted a 10-s-long part from each solo-recorded
song and concatenated them to prepare the input data of NMF
for a specific instrument [36]. The basis matrices T n were
trained with 200 iterations in t-NMF applied to each isolated
spectrogram. The test songs were trimmed only in the interval
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Fig. 10. Average SDR improvements of 25 Ba./Vo. songs.

Fig. 11. Average SDR improvements of 25 Dr./Vo. songs.

of 30 to 60 s. To simulate reverberant mixtures, we produced
two-channel and three-channel observed signals by convoluting
the impulse response E2A (T60 = 300 ms) obtained from the
RWCP database [37] with each source, and mixtures of bass
(Ba.) and vocals (Vo.) (Ba./Vo.); drums (Dr.) and Vo. (Dr./Vo.);
Ba. and Dr. (Ba./Dr.); Vo. and other (Vo./other); and Ba., Vo.,
and Dr. (Ba./Vo./Dr.) were created. We compared MNMF and
basis-supervised MNMF only for two-source separation because
it has been revealed that they always achieve lower separation
performance than ILRMA [6], [7]. The recording conditions of
E2A are shown in Fig. 8. All the signals were downsampled
to 8 kHz. An STFT was performed using a 512-ms-long Ham-
ming window with a 256-ms-long shift in Ba./Vo. separation and
a 256-ms-long Hamming window with a 128-ms-long shift in
the other cases. We used the signal-to-distortion ratio (SDR) as
the total separation performance [38]. Note that, in this paper,
we omitted the signal-to-interference ratio (SIR) and the signal-
to-artifact ratio (SAR) because their tendencies are the same as
that of SDR.

In this paper, the number of hidden layers in the constructed
fully connected DNN was set to four. Each layer had 1024 units,
and a rectified linear unit was used for the output of each layer.
To optimize the DNN, we added the term (λ/2)

∑
q gq

2 to (16)
or (17) for regularization, where gq is the weight coefficient in
DNN, and ADADELTA [39] with a 128-size minibatch was per-
formed for 2000 epochs. The parameter ε was experimentally

optimized and set to 0.1× (IJ)−1
∑

i,j σijn. The other param-
eters were set to δ1 = δ2 = 10−5, c = 3, and λ = 10−5.

2) Comparison of Separation Performance: Fig. 9 depicts an
example of the convergence behaviors of ILRMA and IDLMA.
These results show that (a) the DNN source model leads the
demixing matrix to more accurate estimation, resulting in a sig-
nificant leap of SDR improvement, and (b) a larger ν provides
a faster spatial model update, but t-IDLMA with an appropri-
ate ν (=100) converges to a higher SDR than Gauss-IDLMA
(ν =∞), as mentioned in Section III-E.

Figures 10 to 13 show the average SDR improvements of the
25 test songs for Ba./Vo., Dr./Vo., Ba./Dr., and Vo./other (two-
source mixing cases). These results are the average of the cases
for the recording conditions (a) and (b) in Fig. 8. We can con-
firm that the proposed IDLMA outperforms the other methods
for Ba./Vo., Dr./Vo., and Vo./other. In particular, t-IDLMA with
a weakly super-Gaussian distribution, i.e., ν = 100 or 1000,
achieves better separation performance than Gauss-ILDMA,
showing the efficacy of introducing the source generative model
using the Student’s t distribution.

In Ba./Dr. separation, ILRMA achieves the best separation
performance among the methods. This is because both Ba. and
Dr. have a very simple time-frequency structure, which fits the
low-rank model of ILRMA very well. However, when we sep-
arate a source whose time-frequency structure is complex, such
as vocals, the low-rank model of ILRMA does not fit well and
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Fig. 12. Average SDR improvements of 25 Ba./Dr. songs.

Fig. 13. Average SDR improvements of 25 Vo./other songs.

Fig. 14. Average SDR improvements of 25 Ba./Vo./Dr. songs for recording environment (c).

the proposed IDLMA achieves much higher separation perfor-
mance.

In Vo./other separation, it is difficult for the DNN to learn
the structure of the source “other” because it contains pianos,
guitars, a mixture of them, and so forth. Indeed, the results for
DNN+WF in Fig. 13 indicate that the net separation performance
of the DNN is rather low. Nevertheless, IDLMA achieves the best
separation performance because it combines DNN inference of
the source model and blind estimation of the spatial model. Blind
estimation of the spatial model separates the mixtures well by

utilizing the independence between the sources and makes the
DNN estimation of the source model easier. Therefore, IDLMA,
which iteratively updates the spatial model and the DNN source
model, achieves high separation performance.

Figure 14 shows the average SDR improvements of the 25 test
songs for Ba./Vo./Dr. (three-source mixing case). We can con-
firm that the proposed IDLMA outperforms the other methods
even in three-source separation.

Note that the separation performance of the basis-supervised
methods did not always outperform the blind methods. This is
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Fig. 15. (a) Spectrogram of real bass represented by NMF. (b) Pseudo-
spectrogram of bass augmented by proposed acoustical GMMN.

Fig. 16. (a) Spectrogram of real drums represented by NMF. (b) Pseudo-
spectrogram of drums augmented by proposed acoustical GMMN.

because the generalizing capability of the basis trained in NMF
is poor and the trained basis cannot express the test data well. On
the other hand, the DNN can represent the test data relatively
well, and this is the key factor in the successful separation in
IDLMA.

3) Computational Time: To show the efficiency of the pro-
posed approach, we compared the computational times of IL-
RMA, FSCM+DNN, and IDLMA for 100 iterations of spatial
optimization. We used Python 3.5.2 (64-bit) and Chainer 2.1.0
with an Intel Core i7-6850K (3.60 GHz, 6 Cores) CPU. To cal-
culate the DNN outputs, a GeForce GTX 1080Ti GPU was uti-
lized. Examples of computational times were 23.3 s for ILRMA,
287.1 s for FSCM+DNN, and 26.6 s for IDLMA. These results
reveal that the proposed method is as fast as conventional IL-
RMA and more than 10 times faster than FSCM+DNN.

B. Semi-Supervised Case

1) Task, Dataset, and Conditions: To confirm the validity of
the proposed semi-IDLMA with DNN model adaptation, we
conducted a music source separation with a limited dataset. In
this experiment, we assume vocals as the supervised source. We
used the dataset described in Section V-A except that only vocals
and the mixture of the other sources (Ba., Dr., and “other”) in
the dev data were used to train DNN1 and DNN1 in advance.
We compared three methods: Gauss-ILRMA (blind, K = 5),
semi-IDLMA without DNN model adaptation, and the pro-
posed semi-IDLMA with DNN model adaptation. We added

Fig. 17. Average SDR improvements of 25 Ba./Vo. songs for recording envi-
ronment (a) in semi-supervised case.

Fig. 18. Average SDR improvements of 25 Ba./Vo. songs for recording envi-
ronment (b) in semi-supervised case.

semi-IDLMA without DNN model adaptation to confirm the
validity of data augmentation and DNN model adaptation. In
the proposed semi-IDLMA with DNN model adaptation, since
we require well-separated signals, we conducted source separa-
tion by Gauss-ILRMA for the first 100 spatial model updates.
For IDLMA and semi-IDLMA, the scale parameter matrix Σn

was updated by DNNn after every 10 iterations of the spatial
optimization. To simulate reverberant mixtures, we produced
the two-channel observed signals by convoluting the impulse
response E2A (T60 = 300 ms) as in Section V-A, and the mix-
tures of Ba. and Vo. (Ba./Vo.) and Dr. and Vo. (Dr./Vo.) were
created. All the signals were downsampled to 8 kHz. An STFT
was performed using a 512-ms-long Hamming window with a
256-ms-long shift in Ba./Vo. separation and a 256-ms-long Ham-
ming window with a 128-ms-long shift in Dr./Vo. separation.

We constructed a fully connected DNN with three hidden
layers for the GMMN. Each layer had 512 units, and a gated
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Fig. 19. Average SDR improvements of 25 Dr./Vo. songs for recording envi-
ronment (a) in semi-supervised case.

Fig. 20. Average SDR improvements of 25 Dr./Vo. songs for recording envi-
ronment (b) in semi-supervised case.

activation unit [40] was used for the output of each layer.
To optimize the GMMN, ADAGRAD [41] with a 1024-size
minibatch was performed for 50 epochs. Adaptation of the DNN
was performed by updating the weights and biases between the
second hidden layer and the third hidden layer. We set the train-
ing epoch to 15 and ρ2 to 10.0. The other training settings were
the same as those in Section III-C.

2) Example of Data Augmentation: Figs. 15 and 16 show
examples of spectrograms obtained by NMF and spectrograms
augmented by the proposed GMMN for the bass and drums,
respectively. Note that the frequency scale is logarithmic to
show characteristics in detail in the low-frequency range. We
observe that the GMMN generates a different spectrogram from
the original one while preserving the acoustic structure of each
instrument, e.g., most of the power is concentrated at specific

frequencies in the bass (see Fig. 15), and the temporal dynamics
is emphasized in the drums (see Fig. 16).

3) Comparison of Separation Performance: Figs. 17 to 20
show the average SDR improvements of the 25 test songs for
Ba./Vo. and Dr./Vo. in the semi-supervised case. We confirm
that the proposed semi-IDLMA with DNN model adaptation
achieves the highest separation performance under the limited
dataset. In particular, Fig. 19 indicates that the proposed semi-
IDLMA with DNN adaptation achieves more accurate sepa-
ration than full-IDLMA. This is because the proposed semi-
IDLMA adapts DNN source models to the specific song to be
separated, whereas full-IDLMA uses DNNs trained with various
songs that do not include the test data song to be separated. From
the results, the effectiveness of the proposed semi-IDLMA with
DNN model adaptation is validated.

VI. CONCLUSION

In this paper, we proposed a new determined source separa-
tion method that unifies ICA-based blind spatial optimization
and DNN-based supervised source model estimation. The pro-
posed method employs the complex Student’s t distribution as
the source generative model, which is an extension of the LGM.
Moreover, we addressed the semi-supervised situation and pro-
posed an appropriate data augmentation scheme for DNN adap-
tation. From the experimental results, we confirmed that the pro-
posed algorithms outperform other blind and supervised source
separation methods in both full- and semi-supervised cases in a
music source separation task.

Some improvements remain as a future work. For example, al-
though our spatial model cannot deal with the underdetermined
case, the proposed data augmentation scheme can still be uti-
lized in such a case. Moreover, the future work includes extend-
ing IDLMA to dynamic acoustic conditions where the source
or microphone positions are not fixed. To address this prob-
lem, a blockwise batch technique could be utilized as in [42].
The introduction of other generative models such as a complex
sub-Gaussian distribution [43], a symmetric alpha-stable distri-
bution [44], and an anisotropic complex distribution [36] also
constitutes a future work.
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