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Acoustic Topic Model for Scene Analysis With
Intermittently Missing Observations

Keisuke Imoto , Member, IEEE, and Nobutaka Ono, Senior Member, IEEE

Abstract—We propose a sophisticated method of acoustic scene
analysis with intermittently missing observations, which analyzes
acoustic scenes and restores missing observations simultaneously
on the basis of the temporal correlation between acoustic words.
One effective strategy for analyzing acoustic scenes is to charac-
terize them as a combination of acoustic words. An acoustic topic
model (ATM) is one of the techniques, which models the process
generating multiple acoustic words. Here, an acoustic word cor-
responds to a sound category, while it has a homogenous time
duration and is defined time frame by time frame. In the ATM, it
is assumed that all acoustic words are observed, and therefore, it
cannot be applied if any acoustic observations are missing. How-
ever, acoustic observations may sometimes be missing because of
poor recording conditions, transmission loss, or privacy reasons. In
the proposed method, focusing on the fact that acoustic words are
temporally correlated, we consider the transition of acoustic words
in two ways: First, by modeling the temporal transition of acoustic
words directly using a Markov process and finally, by modeling the
temporal transition of hidden states that generate acoustic words
using a hidden Markov model. We then incorporate each transition
model in a process generating acoustic words based on the ATM.
The proposed method allows us to analyze acoustic scenes from
acoustic words by restoring missing acoustic words. In our exper-
iments, the proposed method exhibited a classification accuracy of
acoustic scenes close to that for the case of no missing observations
even when 50% of the observations were missing. Moreover, the
model considering the hidden-state transition can classify acoustic
scenes more accurately than the model considering the acoustic
word transition directly.

Index Terms—Acoustic scene analysis, missing data analysis,
Markov model, acoustic topic model.

I. INTRODUCTION

IN RECENT years, the use of acoustic sensors, such as
in smartphones, wearable devices, and surveillance cam-

eras, has rapidly increased. Utilizing these acoustic sensors,
more sounds are being recorded and analyzed to realize useful
applications such as advanced media retrieval [1]–[4], automatic
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surveillance [5]–[8], monitoring of elderly people [9], [10], au-
tomatic life logging [11], [12], and medical systems based on
sound [13].

One important technique used in these applications is acous-
tic event detection (AED), which classifies or identifies types of
sounds, such as footsteps, running water, music, or voices from
short-term observations [14]–[16]. Another important technique
is acoustic scene analysis (ASA), which classifies or identifies
acoustic scenes from relatively long-term observations, where
the acoustic scene is an environment or situation in which sounds
are produced such as cooking, watching TV, an emergency,
on the bus, or a meeting. In ASA, many approaches based on
machine learning techniques are proposed [17]. For instance,
Eronen et al. [18] have proposed a method using the mel-
frequency cepstral coefficients (MFCCs) as an input feature
and Gaussian mixture model (GMM) as a classifier. Han et al.
[19] and Jallet et al. [20] have proposed methods using mel-
spectrogram as input features, and the convolutional neural net-
work (CNN) or recurrent convolutional neural network (RCNN)
as classifiers. Another reliable approach to ASA is to charac-
terize an acoustic scene as a combination of acoustic events
in a long-term sound; for instance, an acoustic scene involv-
ing cooking can be characterized by a combination of acoustic
events including cutting with a knife, heating a skillet, running
water. To utilize this idea, a long-term sound is preliminarily
represented as a temporal sequence of acoustic events using
a Gaussian mixture model (GMM) or hidden Markov model
(HMM), and then machine learning techniques are applied to
analyze the acoustic scenes. Heittola et al. [21] and Guo and
Li [22] proposed acoustic scene classification methods based
on a histogram of acoustic events and a support vector machine
(SVM) [23]. In these methods, the feature of each acoustic
scene is represented by a histogram of acoustic events, and then
a multiclass classifier of acoustic scenes is learned by using a
multiclass SVM. Considering that the generative probabilities
of the type of sounds vary according to the acoustic scene, Lee
and Ellis [24] proposed ASA based on a generative model of
acoustic words. Here, an acoustic word is related to an acoustic
event, while the acoustic word is defined time frame by time
frame without time overlapping. On the basis of this generative
model, they analyzed acoustic scenes through the maximum
a posteriori (MAP) estimation of model parameters. However,
since it is not easy to collect sufficient sounds that contain all
possible acoustic scenes, in these methods overfitting is one of
the most serious concerns. To solve this problem, Kim et al.
[25] and Imoto and coworkers [26], [27] proposed Bayesian
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Fig. 1. Examples of observations with some parts missing.

generative probabilistic models of acoustic word sequences as-
sociated with acoustic scenes; these models are called acoustic
topic models (ATMs). In ATMs, by introducing prior distribu-
tions of parameters of acoustic word sequences, the overfitting
of input data can be avoided.

On the other hand, as shown in Fig. 1(a), sounds recorded
with smart devices or surveillance cameras often have inter-
mittent unreliable observations caused by wind noise, rustling
sounds, clipping, or completely missing parts caused by packet
loss in data transmission over the network. In addition, to protect
privacy, continuous recording is sometimes not preferable, and
therefore, we may need to analyze acoustic scenes from partially
recorded sounds as shown in Fig. 1(b). The conventional ATMs
cannot cope well with missing acoustic words, and simply ap-
plying the ATM technique while ignoring missing observations
degrades the performance of acoustic scene analysis.

To address this problem, we propose novel methods for si-
multaneously analyzing acoustic scenes and estimating miss-
ing observations. In the proposed methods, we focus on the
temporal correlation between acoustic words, and model it
as processes generating acoustic word sequences with 1) an

Fig. 2. Relationship between acoustic scene, topic, word, and event.

acoustic word transition or 2) a transition of hidden-state gener-
ating acoustic words. Moreover, we model processes generating
acoustic word sequences with supervised manners in acoustic
scenes, which estimate model parameters using training data
and acoustic scene labels unlike our previous work [28]. With
these models, we can analyze acoustic scenes while restoring
missing words, as a result of which, improved performances of
acoustic scene analysis can be expected.

The rest of this paper is structured as follows. In the next
section, we introduce some conventional methods for analyz-
ing acoustic scenes on the basis of the ATM. In Section III,
we introduce the concept of the proposed models and formulate
them, then in Section IV, we describe the parameter estimation
method employed in the proposed models. In Section V, we
present and discuss experimental results and Section VI con-
cludes this paper.

II. CONVENTIONAL METHODS FOR ACOUSTIC

SCENE ANALYSIS

A. Unsupervised Acoustic Topic Model

On the basis of the idea that the sound categories that occur
depend on the acoustic scene, an ATM [25] models the relation-
ship between an acoustic scene and acoustic words as a process
that generates acoustic word sequences from acoustic scenes in
an unsupervised manner. Here, the name ATM is derived from
the term “topic model” in natural language processing [29], [30],
which is an equivalent model to the ATM.

Let us consider a continuous acoustic signal of, for example,
1h length that is divided into sound clips of 10s length, which
are the units of acoustic word sequences and are equivalent to
the “documents” in the original topic model. As preprocessing
of the ATM, each sound clip is represented by a temporal se-
quence of acoustic words defined time frame by time frame;
the number of acoustic words in a sound clip Nws

is equal to
the number of time frames in the sound clip. Here, the relation-
ship between the terms acoustic scene, topic, event, and word
is shown in Fig. 2. Note that an acoustic event can be related to
several different acoustic words, while the ATM handles these
acoustic words as different ones. Then, the ATM assumes that
the process generating acoustic word sequences can be repre-
sented by a hierarchical process that generates acoustic topics
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Fig. 3. Graphical model representation of ATM.

and words. Here, the acoustic topic is defined as the latent state
time frame by time frame and is implicitly associated with the
acoustic scene; thus, in the ATM, the acoustic scenes are indi-
rectly characterized by the distribution of acoustic topics instead
of the combination of acoustic words.

In particular, the process generating acoustic word sequences
can be modeled as shown in Fig. 3 and Table II. Here, θs

represents the acoustic topic distribution that depends on an
acoustic word sequence s, and the other symbols are defined
in Table I. According to the generative process of the ATM,
each acoustic topic distribution θs varies from sound clip to
sound clip, and in each sound clip, an acoustic topic zs,i is
generated from the topic distribution θs frame by frame. Then,
each acoustic word ws,i is generated frame by frame from an
acoustic word distribution φt that depends on the acoustic topic
t. These distributions θs and φt have Dirichlet priors; that is,
hyperparameters η and β control the sparseness of the acoustic
topic and word distribution, which prevents overfitting of the
model to the given data. This simple ATM does not include any
temporal constraints on the acoustic word sequence, and thus,
it is assumed that the acoustic word sequence can be described
as a “bag of acoustic words,” which corresponds to the “bag of
words” assumption in natural language processing [31].

To classify acoustic scenes using the ATM, Kim et al. [25] first
estimated the distributions of acoustic topics for each acoustic
scene, and then classified acoustic scenes on the basis of a
the multiclass SVM that utilized acoustic scene labels and the
parameters of acoustic topic distributions.

B. Supervised Acoustic Topic Model

To explicitly model the relationship between acoustic scenes
and a word sequence and to classify acoustic scenes using the
model itself, a supervised model for generating acoustic word
sequences has been proposed [26]. We call this supervised model
the supervised acoustic topic model (sATM). In the sATM, pos-
sible acoustic scene labels are preliminarily given to each acous-
tic word sequence explicitly, and an acoustic scene is sampled
randomly from them in its generative process. Furthermore, this
model assumes that each acoustic scene has a different acoustic
topic distribution, and an acoustic topic is then sampled from its
distribution. The other part of the generative process is the same
as that in the unsupervised ATM. Thus, the generative process
of the sATM is represented as shown in Table III.

When classifying acoustic scenes using the sATM, we first
estimate the distributions of acoustic topics θa and acoustic
words φt using a training dataset, and then we estimate the
acoustic scene indicated by the test data by determining the

TABLE I
DEFINITIONS OF SYMBOLS

acoustic scene with the highest posterior probability as follows.

arg max
a

p(a|θa ,φt ,ws , α, β) (1)
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TABLE II
GENERATIVE PROCESS OF ACOUSTIC WORD SEQUENCE IN ATM

TABLE III
GENERATIVE PROCESS OF ACOUSTIC WORD SEQUENCE IN SATM

III. ACOUSTIC SCENE MODELING CONSIDERING TEMPORAL

CONTINUITY OF ACOUSTIC WORDS

A. Motivation and Strategy

One limitation of the conventional methods for ASA is that
they require the complete observations. However, because of
wind noise, clipping, packet loss in data transmission, or privacy
reasons, we often need to analyze acoustic scenes from sounds
including missing parts. In this paper, we consider a situation in
which some parts of observations are missing, i.e., we cannot
observe some acoustic words completely, while we know which
acoustic words are missing.

To overcome this limitation, we consider new ATMs with
temporal dynamics, which focus on the fact that acoustic words
in the short term are not independent of each other. Our moti-
vation is to restore the missing words in a probabilistic manner
by utilizing the temporal correlation of acoustic words, which is
expected to contribute to improving the performance of acous-
tic scene analysis. That is, we model missing acoustic words as
the latent states and estimate them in the parameter estimation.
Specifically, we investigate the following two types of model.

� An acoustic scene model considering the temporal transi-
tion of acoustic words.

� An acoustic scene model considering the temporal transi-
tion of acoustic topics.

The former directly models the temporal dynamics of acoustic
words, while the latter models it as a hidden structure such as
an HMM.

Fig. 4. Graphical representation of model generating acoustic topics and
words considering acoustic word transition.

B. Acoustic Scene Modeling Considering Temporal Transition
of Acoustic Words

We first discuss a model for generating acoustic word se-
quences that directly considers an acoustic word transition as
shown in Fig. 4. This model is also based on a hierarchical
process generating acoustic topics and words similarly to the
sATM, while it differs from the conventional sATM in that
the generation of each acoustic word is conditioned by not only
the acoustic topic but also the previous acoustic word. In partic-
ular, we assume that an acoustic word transition can be modeled
by using a simple Markov process, which is known as a promis-
ing method for modeling a dynamic correlation stochastically.
Note that we assume that whether or not an acoustic word is
observed is unrelated to the generative process of acoustic word
sequences, and thus, it is considered when the model parameters
are estimated.

The generative process of this model can be described as
shown in Table IV, and we call this model the word-transition-
based supervised acoustic topic model (word-transition sATM).
Here, missing acoustic words are represented as latent variables,
whereas observed acoustic words are represented as observed
variables. This representation of missing acoustic words enables
them to be estimated and restored using the proposed model. In
the word-transition sATM, we assume that the generation of
each acoustic word is represented by the product of an acous-
tic word occurrence probability p(ws,i |φzs , i =t) and transition
probability p(ws,i |πws , i−1 =m ), both of which are represented
by the categorical distribution and have Dirichlet priors. Thus,
the generative probability of all acoustic word sequences w can
be represented as follows.

p(w|α, β, γ,as)

=
S∏

s=1

Nws∏

i=1

∑

a

∑

z

∑

m

p(ws,i |ws,i−1 , zs,i , α, β, γ, as)

· p(zs,i |as, α)p(as |as)
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TABLE IV
GENERATIVE PROCESS OF ACOUSTIC WORD SEQUENCE IN

WORD-TRANSITION SATM

=
S∏

s=1

⎡

⎢⎣p(as |as)
∑

a

∫
p(θa |as, α)

Nws∏

i=1

⎧
⎪⎨

⎪⎩

∑

z

p(zs,i |θa)
∫

D(φt |β)

·
∫ ∑

m

D(πm|γ)p(ws,i |φt ,πm ,ws,i−1 , zs,i)dπm dφt

⎫
⎪⎬

⎪⎭
dθa

⎤

⎥⎦

=
1
A

S∏

s=1

⎡

⎣
∫

Γ(Tα)
Γ(α)T

Nws∏

i=1

{
T∏

t=1

θ
α−1+n

(a )
t

a,t

∫
Γ(Mβ)
Γ(β)M

M∏

m=1

φβ−1+n
( t )
m

t,m

·
∫

Γ(Mγ)
Γ(γ)M

M∏

m+ =1

π
γ−1+n

(m −)
m +

m−,m+ dπm dφt

}
dθa

⎤

⎥⎦ (2)

When classifying acoustic scenes, it is necessary to infer model
parameters that maximize their posterior probabilities in ad-
vance for the training dataset. Then, acoustic scenes and miss-
ing acoustic words are estimated in a similar manner to in the
sATM,

arg max
a,ws , i

p(a,ws,i |θa ,φt ,πm ,ws , α, β, γ). (3)

In this paper, we derive a parameter estimation method based
on collapsed Gibbs sampling, as described in the next section.

C. Acoustic Scene Modeling Considering Temporal
Transition of Acoustic Topics

In the second model, the temporal transition of acoustic topics
is assumed as shown in Fig. 5. In this model, the temporal

Fig. 5. Graphical representation of model generating acoustic topics and
words considering acoustic topic transition.

TABLE V
GENERATIVE PROCESS OF ACOUSTIC WORD SEQUENCE IN

TOPIC-TRANSITION SATM

correlation between acoustic words is derived from the temporal
transition of a hidden structure such as an HMM.

The generative process of this model is represented in
Table V, and we call this model the topic-transition-based su-
pervised acoustic topic model (topic-transition sATM). In the
topic-transition sATM, we assume that the generationt of each
acoustic topic is represented by the product of an acoustic topic
occurrence probability p(zs,i |θas =a) and transition probability
p(zs,i |πzs , i−1 =t). Thus, the probability of generating all acoustic
word sequences w can be represented as follows.

p(w|α, β, γ,as)

=
S∏

s=1

Nws∏

i=1

∑

a

∑

z

p(ws,i |zs,i , β)p(zs,i |as, zs,i−1 , α, γ)p(as|as)

=
S∏

s=1

⎡

⎣p(as |as)
∑

a

∫
p(θa |as, α)

Nws∏

i=1

{
∑

z

∫
D(πz |γ)

· p(zs,i |θa ,πt , zs,i−1)
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×
∫

D(φt |β)p(ws,i |φt , zs,i)dφtdπt

}
dθa

⎤

⎥⎦

=
1
A

S∏

s=1

⎡

⎣
∫

Γ(Tα)
Γ(α)T

Nws∏

i=1

{
T∏

t=1

θ
α−1+n

(a )
t

a,t

×
∫

Γ(Tγ)
Γ(γ)T

T∏

t+ =1

π
γ−1+n

( t−)
t +

t−,t+

·
∫

Γ(Mβ)
Γ(β)M

M∏

m=1

φβ−1+n
( t )
m

t,m dφtdπt

}
dθa

⎤

⎥⎦ (4)

In topic-transition sATM, the classification of acoustic scenes
and the estimation of missing acoustic words are also achieved
in a similar manner to in word-transition sATM.

IV. ESTIMATION OF PARAMETERS IN PROPOSED MODELS

To classify acoustic scenes and estimate missing acoustic
words, we must infer the model parameters θa , φt , πt/πm , a,
z, and wmis that maximize the posterior probabilities of the
models. However, it is difficult to infer them analytically in
word-transition sATM and topic-transition sATM, and there-
fore, we introduce Bayesian inference based on collapsed Gibbs
sampling (CGS) [30], [32], using which we can expect a more
unbiased result for the predictive probability than by using other
variational Bayes (VB) [33] or expectation propagation (EP)
methods [34]. In CGS, latent variables corresponding to acoustic
scenes, topics, and missing acoustic words are first initialized by
giving them arbitrary values. Then, CGS iteratively samples la-
tent variables in accordance with the conditional posterior prob-
ability of given acoustic word sequences, which do not involve
updated acoustic scenes, topics, and missing words. This sam-
pling is repeated until the iterative update converges. Then, the
posterior distributions of the acoustic topic, word, and topic/
word transitions are estimated from the inferred latent variables.

A. Parameter Estimation for Word-Transition sATM

When estimating the model parameters of the word-transition
sATM using CGS, 1) zs,i , wmis

s,i and 2) as are sampled separately
since we assume that each acoustic topic zs,i and word ws,i is
generated once every time frame s, i and that each acoustic
scene as is generated once every sound clip s. We discuss the
update for each case in detail below.

1) Posterior Probability of Acoustic Topic and Word: We
first consider the joint posterior probability of an acoustic topic
and word p(wmis

s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ) for their sam-
pling, which can be written as

p(wmis
s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ)

=
p(w|z,a, α, β, γ)

p(w\s,i |z\s,i ,a, α, β, γ)
· p(z|a, α, β, γ)
p(z\s,i |a, α, β, γ)

=
p(w|z, β, γ)

p(w\s,i |z\s,i , β, γ)
· p(z|a, α)
p(z\s,i |a, α)

. (5)

Then, considering that p(zs,i |θa , as), p(ws,i |φzs , i
, zs,i), and

p(ws,i |πws , i−1 , ws,i−1) have the categorical distribution and
that p(θ|α), p(φ|β), and p(π|γ) have the Dirichlet distribution,
p(z|a, α) and p(w|z, β, γ) can be represented as

p(z|a, α) =
∫

p(z,θ|a, α)dθ

=
(

Γ(Tα)
Γ(α)T

)A A∏

a=1

∏T
t=1 Γ(n(a)

t + α)

Γ(n(a)
· + Tα)

(6)

p(w|z, β, γ) =
∫ ∫

p(w,φ,π|z, β, γ)dφdπ

=
S∏

s=1

Nws∏

i=1

∫ ∫
p(ws,i ,φ|z, β)

× p(ws,i ,π|ws,i−1 , γ)dφdπ,

(7)
where

S∏

s=1

Nws∏

i=1

∫
p(ws,i ,φ|z, β)dφ

=
(

Γ(Mβ)
Γ(β)M

)T T∏

t=1

∏M
m=1 Γ(n(t)

m + β)

Γ(n(t)
· + Mβ)

(8)

S∏

s=1

Nws∏

i=1

∫
p(ws,i ,π|ws,i−1 , γ)dπ

=
(

Γ(Mγ)
Γ(γ)M

)M M∏

m−=1

∏M
m+ =1 Γ(n(m−)

m+ + γ)

Γ(n(m−)
· + Mγ)

. (9)

n
(a)
t and n

(a)
· are the number of acoustic words assigned to

acoustic topic t in acoustic scene a and the number of acoustic
words in acoustic scene a. n

(t)
m , n

(t)
· , n

(m−)
m+ , and n

(m−)
· are also

defined in the same way as n
(a)
t and n

(a)
· . The detailed derivation

of Eqs. (6)–(9) is given in Appendix A-1). Substituting these
equations into each term of Eq. (5) and using Γ(x + 1)/Γ(x) =
x for the gamma function, the update for an acoustic topic and
acoustic word can be obtained as

p(wmis
s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ) ∝

(
n

(a)
(\s,i),t + α

)

·
n

(t)
(\s,i),m + β

n
(t)
(\s,i),· + Mβ

·
(
n

(ws , i−1)
(\s,i),ws, i

+ γ
){

n
(ws , i )
(\s,i),ws, i+1

+ δws, i−1,ws, i
· δws, i,ws, i+1 + γ

}

n
(ws , i )
(\s,i),· + δws , i−1 ,ws , i

+ Mγ
,

(10)

where n
(ws , i−1 )
(\s,i),ws , i

represents the number of acoustic words that
transit from ws,i−1 to ws,i in all acoustic words excluding
ws,i . δws , i−1 ,ws , i

is the Kronecker delta function, which is 1
if ws,i−1 = ws,i and 0 otherwise. The detailed derivation of Eq.
(10) is given in Appendix A-2).

If the acoustic words ws,i are not missing, we only have to
sample the acoustic topic zs,i in each update. In this case, the
update for the acoustic topic zs,i is given as Eq. (11) because
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the last term in Eq. (10) becomes a constant when the acoustic
word is observed.

p(zs,i |w\s,i ,z\s,i ,a, α, β, γ) ∝
(
n

(a)
(\s,i),t + α

)
·

n
(t)
(\s,i),m + β

n
(t)
(\s,i),· + Mβ

(11)

2) Posterior Probability of Acoustic Scene: We next derive
the posterior probability for the sampling of an acoustic scene
p(as |w,z,a\s , α, β, γ). Given that p(a|α) has a uniform dis-
tribution and p(w) does not directly depend on a, the posterior
probability is described by

p(as |w,z,a\s , α, β, γ)

=
p(w|z,a, β, γ)

p(w|z,a\s , β, γ)
· p(z|a, α)
p(z|a\s , α)

· p(a|α)
p(a\s |α)

∝ p(z|a, α)
p(z|a\s , α)

. (12)

Similarly to in the above discussion, we obtain the posterior
probability of an acoustic scene as as

p(as |w,z,a\s , α, β, γ) ∝
n

(a)
(\s),t + α

n
(a)
(\s),· + Tα

. (13)

Since the proposed method assumes that each acoustic word
sequence contains a single acoustic scene, the acoustic scene is
sampled with respect to each acoustic word sequence.

3) Updates for Distributions: Given the posterior probabili-
ties for sampling, the posterior distributions of an acoustic topic,
word, and word transition can be estimated through the assign-
ments of sufficiently updated latent variables using Eqs. (10),
(11), and (13). In practice, the parameters of the generative
distributions can be approximated as the following means of
distributions of multiple samples:

θa,t =
1

NG

NG∑

j=1

{ ∑
S

∑
Nws

δâj , s ,a · δẑj , s , i ,t + α
∑

S

∑
Nws

∑
t δâj , s ,a · δẑj , s , i ,t + Tα

}
(14)

φt,m =
1

NG

NG∑

j=1

{ ∑
s

∑
Nws

δẑj , s , i ,t · δŵj , s , i ,m + β
∑

s

∑
Nws

∑
m δẑj , s , i ,t · δŵj , s , i ,m + Mβ

}

(15)

πm−,m+ =
1

NG

NG∑

j=1
{ ∑

s

∑
Nws

δŵ j , s , i ,m− · δŵj , s , i + 1 ,m+ + γ
∑

s

∑
Nws

∑
m+ δŵj , s , i ,m− · δŵj , s , i + 1 ,m+ + Mγ

}
, (16)

where NG and δ are the number of samplings and the Kronecker
delta function, respectively. âj,s is the acoustic scene of the sth
sound clip in the jth sampling. ẑj,s,i and ŵj,s,i are the ith
acoustic topic and acoustic word in the sth sound clip and the
jth sampling, respectively.

B. Parameter Estimation for Topic-Transition sATM

In the CGS for topic-transition sATM, posterior probabilities
for sampling wmis

s,i , zs,i , and as can be derived in similar manner

to in word-transition sATM. We discuss them separately by
considering the posterior probabilities of 1) wmis

s,i , zs,i and 2) as .
1) Posterior Probability of Acoustic Topic and Word: In

topic-transition sATM, the joint posterior probability of the
acoustic topic and word p(wmis

s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ)
can be written as

p(wmis
s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ)

=
p(w|z,a, α, β, γ)

p(w\s,i |z\s,i ,a, α, β, γ)
· p(z|a, α, β, γ)
p(z\s,i |a, α, β, γ)

=
p(w|z, β)

p(w\s,i |z\s,i , β)
· p(z|a, α, γ)
p(z\s,i |a, α, γ)

. (17)

Considering that p(zs,i |θa , as), p(ws,i |φzs , i
, zs,i), and p(zs,i |

πzs , i−1 , zs,i−1) have the categorical distribution and that p(θ|α),
p(φ|β), and p(π|γ) have the Dirichlet distribution, p(z|a, α, γ)
and p(w|z, β) can be represented as

p(z|a, α, γ) =
∫ ∫

p(z,θ,π|a, α, γ)dθdπ

=
S∏

s=1

Nws∏

i=1

∫ ∫
p(zs,i ,θ|a, α)

× p(zs,i ,π|zs,i−1 , γ)dθdπ (18)

p(w|z, β) =
∫

p(w,φ|z, β)dφ

=
(

Γ(Mβ)
Γ(β)M

)T T∏

t=1

∏M
m=1 Γ(n(t)

m + β)

Γ(n(t)
· + Mβ)

, (19)

where

S∏

s=1

Nws∏

i=1

∫
p(zs,i ,θ|a, α)dθ

=
(

Γ(Tα)
Γ(α)T

)A A∏

a=1

∏T
t=1 Γ(n(a)

(t) + α)

Γ(n(a)
· + Tα)

(20)

S∏

s=1

Nws∏

i=1

∫
p(zs,i ,π|zs,i−1 , γ)dπ

=
(

Γ(Tγ)
Γ(γ)T

)T T∏

t−=1

∏T
t+ =1 Γ(n(t−)

t+ + γ)

Γ(n(t−)
· + Tγ)

. (21)

Substituting these equations into each term of Eq. (17) and using
Γ(x + 1)/Γ(x) = x for the gamma function, the update for an
acoustic topic and acoustic word can be obtained as

p(wmis
s,i , zs,i |w\s,i ,z\s,i ,a, α, β, γ) ∝

(
n

(a)
(\s,i),t + α

)

·
n

(t)
(\s,i),m + β

n
(t)
(\s,i),· + Mβ

·
(
n

(zs , i−1 )
(\s,i),zs , i

+ γ
){

n
(zs , i )
(\s,i),zs, i + 1

+ δzs , i−1 ,zs , i
· δzs , i ,zs , i + 1 + γ

}

n
(zs, i )
(\s,i),· + δzs, i−1 ,zs, i

+ Tγ
.

(22)
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TABLE VI
POSTERIOR PROBABILITIES FOR GIBBS SAMPLING. TO INCREASE READABILITY, SUBSCRIPT

where n
(zs , i−1 )
(\s,i),zs , i

represents the number of acoustic topics that
transit from zs,i−1 to zs,i in all acoustic topics excluding zs,i .
The detailed derivation of Eq. (22) is given in Appendix B.

If the acoustic word wobs
s,i is not missing, only the acous-

tic topic zs,i is sampled in each update. Since the update for
sampling the acoustic topic depends on zs,i = t, it can also be
described by Eq. (22).

2) Posterior Probability of Acoustic Scene: Considering that
p(a|α) has a uniform distribution and that p(w) does not di-
rectly depend on a, the posterior probability for an acoustic
scene p(as |w,z,a\s , α, β, γ) can be also represented by Eq.
(13). Finally, the procedures of Gibbs sampling for updating the
parameters are summarized in Tables VI, VII, and VIII.

V. EXPERIMENTAL EVALUATION

A. Data Preparation

We conducted experiments to evaluate how effectively the
proposed method can classify acoustic scenes and can estimate
missing words. As an illustration of acoustic scene analysis
indoors, nine acoustic scenes; chatting, cooking, eating din-
ner, operating a PC, reading a newspaper, vacuuming, walking,
washing dishes, and watching TV, that occur frequently in a liv-
ing room, were selected. Here, each acoustic scene also typically
included the sounds listed in Table IX, and there are around 100
types of acoustic events in the recorded sounds. The record-
ing conditions of the microphone arrangement and the sound
source positions are shown in Fig. 6. To record these sounds,
we used Sony ECM-55B microphones, a Grace Design m802
microphone preamplifier, and an MOTU 24I/O A/D converter.
Each sound was recorded with a start cue of one of these nine
acoustic scenes, and then the sound was labeled with its acous-
tic scene label. The recording has 49.36 h of sounds, which
were segmented into 11,105 sound clips with an equal duration.
Among the 11,105 recorded sound clips, 9,802 sound clips were
used for learning the model parameters and 1,303 sound clips
were used for evaluation.

TABLE VII
GIBBS SAMPLING PROCEDURE FOR WORD-TRANSITION SATM
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TABLE VIII
GIBBS SAMPLING PROCEDURE FOR TOPIC-TRANSITION SATM

TABLE IX
NUMBER OF SOUND CLIPS AND TYPICAL SOUNDS IN EACH ACOUSTIC SCENE

Fig. 6. Microphone arrangement and sound source positions in acoustic scene
classification experiment using real-life environmental sounds.

Fig. 7. Process used for acoustic scene classification and acoustic word esti-
mation.

B. Evaluation Procedure and Experimental Conditions

The performance of the proposed methods of acoustic scene
classification and missing word estimation was evaluated by the
process shown in Fig. 7. As preprocessing, acoustic feature vec-
tors were extracted from input sound clips frame by frame. In
this experiment, the 12-dimensional Mel-frequency cepstral co-
efficients (MFCCs) were calculated as acoustic feature vectors,
which are widely employed in ASA and AED. Acoustic words
were then modeled and recognized using a GMM in an unsu-
pervised manner. Thus, all the acoustic features in the training
dataset were clustered by the GMM and each Gaussian compo-
nent was defined to represent a different acoustic word. In Fig. 8,
an example of an acoustic word histogram, in which each acous-
tic word was learned by the GMM is shown. The figure shows
that the acoustic word histogram has a sparse structure and some
acoustic words well characterize particular acoustic scenes; for
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Fig. 8. Example of acoustic word histogram in each acoustic scene.

TABLE X
EXPERIMENTAL CONDITIONS

instance, the acoustic word of class index = 20 is active almost
only in cooking. After recognizing acoustic words, to simu-
late observations with missing parts of various proportions, we
discarded various proportions of acoustic words randomly and
formed acoustic word sequences ws and w∗

s . Note that these
acoustic word sequences include information on which acoustic
words are missing.

For acoustic scene classification and word estimation, the
parameters of the word-transition sATM and topic-transition
sATM were estimated using acoustic word sequences ws and
acoustic scene label as . Thus, acoustic scenes were finally clas-
sified and missing acoustic words were estimated through the
MAP estimation of their corresponding parameters. The param-
eter estimation and classification test were conducted ten times
with random initial parameters and randomly missing data.

The other experimental conditions are listed in Table X,
among which the numbers of classes of acoustic words and
topics, the hyperparameters α, β, and γ, and the parameters of
the comparison methods were chosen on the basis of a prelimi-
nary experiment, which was conducted using a cross-validation
setup with the training dataset.

C. Comparison Methods

For comparison with the proposed methods, we conducted ex-
periments using conventional sATMs with the following types of
preprocessing. (i) Acoustic words were discarded randomly and
a word histogram was created using only non-missing acoustic
words. Then, the word histogram was fed to the sATM (referred
to as sATM in Tables XI, XII, and Figs. 9–12). (ii) Missing

TABLE XI
AVERAGE CLASSIFICATION ACCURACY OF ACOUSTIC SCENES IN TERMS OF

F-MEASURE IN THE CASE WHERE THE TRAINING DATASET HAS NO

MISSING PARTS

TABLE XII
NUMBER OF TRAINABLE PARAMETERS IN EACH MODEL

Fig. 9. Detailed classification accuracy of selected methods in the case where
the training dataset has no missing parts.
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Fig. 10. Average classification accuracy of acoustic scenes in terms of F-
measure in the case where the training dataset has missing parts.

Fig. 11. Average classification accuracy of acoustic scenes where Gaussian
noise is superimposed on 40% of time frames in the test dataset.

acoustic words were restored by random complementing and
a word histogram was created by using the non-missing and
restored acoustic words. Then, this word histogram was fed to
the sATM (referred to as sATM (random)). (iii) Missing acoustic
words were reconstructed using an HMM, which was modeled
using all the training dataset. After that, a word histogram cre-
ated using the non-missing and restored acoustic words was fed
to the sATM (referred to as sATM (HMM)).

As other comparison methods, we also conducted experi-
ments using an SVM, a GMM, a multilayer perceptron (MLP),

Fig. 12. Average classification accuracy of acoustic scenes where Gaussian
noise is superimposed on 80% of time frames in the test dataset.

and a convolutional neural network (CNN). For these methods,
(i) a word histogram created using only non-missing acoustic
words and (ii) an acoustic word histogram reconstructed us-
ing HMM were utilized as input features. These methods are
referred to as SVM, GMM, histogram MLP, histogram CNN,
SVM (HMM), GMM (HMM), histogram MLP (HMM), and
histogram CNN (HMM) in Tables XI, XII, and Figs. 9–12,
respectively. For the SVM and SVM (HMM), we used the ra-
dial basis function (RBF) kernel. The histogram features were
scaled to the range [−1.0, 1.0]. Then, a grid search of penalty
and kernel parameters with the cross-validation setup using the
training dataset was applied. For the GMM and GMM (HMM),
each acoustic scene was modeled using four Gaussian mixture
components with a diagonal covariance matrix. The histogram
MLP and MLP (HMM) had one input layer, five hidden layers,
and one output layer, where each hidden layer had 50 units and
ReLUs as the activation functions. Softmax was applied for the
activation function of the output layer. For parameter estimation
of the MLP (HMM), we applied Adam as an optimizer and a
dropout technique (dropout ratio = 0.5). The histogram CNN
and CNN (HMM) had three convolution layers followed by five
fully connected layers. In each convolution layer, batch nor-
malization and maxpooling were applied. In each convolutional
layer, the number of channels, kernel size, stride, and pooling
size were 32, 1 × 4, 1, and 1 × 2, respectively. Each dense layer
had 50 units. ReLUs were used as activation functions of the
convolution and fully connected layers and softmax was used
as the activation function of the output layer. Adam was applied
as an optimizer.

Moreover, we also evaluated the MLP and CNN using a 128-
dimensional mel-filter bank energy as the input feature. The
mel-filter bank energy was extracted using a Hamming window
of length 32 ms and 128 mel-bands in the frequency range of
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Fig. 13. Restoration rate of missing acoustic words in data restored by topic-
transition sATM, and data restored by word-transition sATM, data restored by
HMM, data restored randomly in the case where training dataset has no missing
parts.

0–8,000 Hz. For the CNN, a 1,000 frame × 128-dimensional
feature map was used as the input feature, and for the MLP, a
concatenated vector of the feature map (1, 000 · 128 × 1) was
used as the input feature. In these experiments, values of zero
were assigned to acoustic features of unobserved time frames.
These methods are referred to as mel-bank MLP and mel-bank
CNN in Tables XI, XII, and Figs. 9–12, respectively. The mel-
bank MLP had one input layer, five hidden layers, and one
output layer, where the five hidden layers had 4,096, 2,048,
1,024, 256, and 64 units. The other settings of the mel-bank
MLP are the same as those of MLP (HMM). The mel-bank CNN
had three convolution layers followed by three fully connected
layers. In each convolutional layer, the number of channels,
kernel size, stride, and pooling size were 64, 3 × 3, 1, and 2 × 4,
respectively. Each dense layer had 32 units. The other settings of
the mel-bank CNN are the same as those of CNN (HMM). For all
comparative methods, the model parameters were tuned using
the same cross-validation setup as for the proposed methods.

D. Experimental Results

1) Scene Classification Performance for Training Data With-
out Missing Parts: The average classification accuracies (F-
measure) of the nine acoustic scenes with various proportions
of missing words are shown in Table XI and Fig. 9. In this ex-
periment, we assume that the training dataset has no missing
parts.

The results show that while the classification performances of
the conventional methods decrease with increasing proportion
of missing acoustic words, the two proposed methods achieve
accurate classification even when the proportion of missing
words is more than 50%. In particular, the topic-transition sATM
achieves an average classification accuracy of 74.11% even
when 80% of acoustic words are missing. This indicates that
while in the conventional sATMs, the structure of acoustic words
that characterizes an acoustic scene may collapse when more

than 50% of the acoustic words are missing, the proposed meth-
ods can reconstruct them, enabling acoustic scene classifica-
tion with reasonable accuracy. Additionally, the topic-transition
sATM outperforms the word-transition sATM by about 7–8%
on average. This result suggests that the topic-transition sATM
can model the generation of acoustic words more realistically
because it can model the variance of observed acoustic words
similarly to an HMM. This is also indicated by comparing the re-
sults for no missing data (0% missing). Thus, the results indicate
that modeling the transition of the latent structure of acoustic
words is more reasonable than directly modeling the transition
of observed acoustic words.

Table XII shows the number of trainable parameters in
each model, where the trainable parameters are the parame-
ters learned in the training stage and used in the evaluation stage
such as θa ,φt ,πt , and πm . The results in this table indicate
that the proposed methods achieve reasonable performance in
acoustic scene classification with equivalent or fewer parameters
than most of the conventional classification methods.

2) Scene Classification Performance for Training Data With
Missing Parts: There are some situations in which it is diffi-
cult to prepare a training dataset without missing parts because
of the recording environment or for reasons of privacy. Thus,
we conducted a scene classification experiment using a training
dataset with missing parts. The average classification accuracies
(F-measures) are shown in Fig. 10. In this experiment, we com-
pare the proposed methods with conventional sATM, a CNN,
MLP, SVM, and GMM using a word histogram reconstructed
using an HMM.

The results show that the two proposed methods achieve bet-
ter performance than the conventional methods when acoustic
words are missing. This indicates that even when the training
dataset has missing parts, the proposed methods reconstruct the
sound structure more accurately than the conventional methods.
In particular, the topic-transition sATM achieves an average
classification accuracy of 68.1% even when 80% of the acoustic
words are missing.

Figs. 9 and 10 indicate that the classification performance
of the proposed methods using training data with missing parts
decreases by about 3–6% compared with that when using train-
ing data without missing parts. This indicates that the structure
of acoustic words and topics collapses with increasing ratio of
missing acoustic words in the training dataset.

3) Scene Classification Performance for Noisy Sound: In the
proposed methods, it is assumed that we cannot observe some
parts of observations completely, while even noisy observations
may have information which is helpful for acoustic scene clas-
sification. Thus, we compared the acoustic scene classification
performance of the proposed methods with the performance of
conventional methods using a noisy dataset. In this experiment,
we simulated a noisy environment by superimposing stationary
white Gaussian noise on 40% or 80% of time frames in the test
dataset with various SNRs. Here, the noise level in each frame
was selected randomly in the range of ±5 dB from the center
SNR. For the proposed methods, we assume that we know which
time frame is a noisy frame and we treat this time frame as the
missing observation. As comparison methods, we evaluated a
histogram CNN, histogram MLP, mel-bank CNN, and mel-bank
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Fig. 14. Acoustic word histograms for the case of 40% missing data.

MLP. The other experimental conditions were the same as in the
experiment of Sec. V-D-1).

Figs. 11 and 12 indicate that even when the SNR is high,
the topic-transition sATM achieves a classification accuracy of
acoustic scenes comparable to that of the conventional methods.

4) Estimation of Acoustic Words: The average restoration
rate of missing acoustic words under similar conditions to those
for Sec. V-D-1) are depicted in Fig. 13. Here, the restoration
rate of missing acoustic words is defined as

(Restoration rate) =
(# correctly restored acoustic words)

(# missing acoustic words)
.

(23)

Both proposed methods achieve a higher restoration rate for
acoustic words than random restoration. Moreover, Figs. 9 and
13 show that even when the proportion of missing acoustic words

becomes high, the estimation accuracy of acoustic scenes using
the topic-transition sATM achieves reasonable performance.
This suggests that even when missing acoustic words are not
estimated correctly, the proposed model can estimate acoustic
words that are strongly correlated with an acoustic scene of the
acoustic word sequence.

Further evaluations were conducted to investigate how the
estimated acoustic words were distributed and the similarity
between the original and estimated acoustic word histograms.
Figs. 14 and 15 show acoustic word histograms of the original
data, intermittently missing data, data restored by an HMM,
data restored by the word-transition sATM, and data restored
by the topic-transition sATM. When the proportion of missing
words is 40%, the pattern of the acoustic words still remains.
In this case, the three estimation methods can reconstruct the
pattern of acoustic words accurately. On the other hand, when
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Fig. 15. Acoustic word histograms for the case of 80% missing data.

the proportion of missing words is 80%, many of the acoustic
words cannot be identified. Even in this case, proposed methods
can successfully reconstruct the histogram patterns of acoustic
words, and the topic-transition sATM achieves a reasonably
accurate reconstruction.

Table XIII shows the similarity between the original and esti-
mated acoustic word histograms in terms of the cosine similarity
and root mean squared error (RMSE). When the proportion of
missing words is 40%, the acoustic word histograms are well
reconstructed and have high similarity scores. Even when the
proportion of missing words is 80%, the topic-transition sATM
achieves high scores for both the cosine similarity and RMSE.
Meanwhile, in the word-transition sATM, the RMSE between
the original and reconstructed histograms is slightly higher than
that for the HMM because the word-transition sATM mainly
misreconstructed a single acoustic word (class index = 27 in
Fig. 15). Nonetheless, the cosine distance score of the word-

TABLE XIII
SIMILARITY BETWEEN ORIGINAL AND RESTORED ACOUSTIC

WORD HISTOGRAMS

transition sATM is lower than that for the conventional methods
and the missing acoustic words are well reconstructed.
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These results indicate that the proposed models can restore
acoustic words that are strongly correlated with an acoustic
scene in an acoustic word sequence.

VI. CONCLUSION

To estimate acoustic scenes and missing acoustic words,
we have proposed novel models generating acoustic word se-
quences based on an acoustic topic model (ATM) that consid-
ers the temporal continuity of acoustic words or topics. In the
proposed models, the temporal transition of acoustic words or
topics is modeled in two ways: by modeling the temporal tran-
sition of acoustic words directly using a Markov process and
by modeling the temporal transition of a hidden structure gen-
erating acoustic words such as an HMM. We then incorporate
each transition model of acoustic words and topics in a process
generating acoustic words based on the conventional sATM. Si-
multaneous modeling of the process generating acoustic words
and the temporal transition enables acoustic scenes and missing
acoustic words to be estimated by utilizing the mutual estimated
information. We then introduced a parameter estimation method
for the proposed models that is based on collapsed Gibbs sam-
pling. Evaluation results of the proposed method indicate that it
achieves a classification accuracy of acoustic scenes comparable
to that obtained when there is no missing data. Additionally, the
proposed models can estimate acoustic words that are strongly
correlated with acoustic scenes in an acoustic word sequence.

APPENDIX

A. Calculation of Posterior Probability in
Word-Transition sATM

In this section, detailed derivations of the posterior probabili-
ties of the acoustic topic and word in the word-transition sATM
are given.

1) Calculation of Eqs. (6)–(9): We first derive Eq. (6).
p(z,θ|a, α) is calculated as

p(z,θ|a, α)

=
A∏

a=1

⎡

⎣
{

Γ(Tα)
Γ(α)T

T∏

t=1

(θa,t)α−1

}⎧⎨

⎩

S∏

s=1

Nws∏

i=1

T∏

t=1

(θa,t)δs , i , t

⎫
⎬

⎭

⎤

⎦

=
(

Γ(Tα)
Γ(α)T

)A A∏

a=1

⎡

⎣
{

T∏

t=1

(θa,t)α−1

}⎧⎨

⎩

S∏

s=1

Nws∏

i=1

T∏

t=1

(θa,t)δs , i , t

⎫
⎬

⎭

⎤

⎦

=
(

Γ(Tα)
Γ(α)T

)A A∏

a=1

T∏

t=1

{
(θa,t)α−1 · (θa,t)

∑ S
s = 1

∑N ws
i = 1 δs , i , t

}
,

(24)

where δs,i,t is the Kronecker delta, which is 1 if as = a and

zs,i = t. Considering
∑S

s=1
∑Nws

i=1 δs,i,t = n
(a)
t , Eq. (24) can

be written as

p(z,θ|a, α) =
(

Γ(Tα)
Γ(α)T

)A A∏

a=1

T∏

t=1

(θa,t)n
(a )
t +α−1 (25)

Here, we consider the following integral of the Dirichlet distri-
bution:

∫ ∏

j

θ
ζj −1
j dθ =

∏
j ζj

Γ(
∑K

k=1 ζk )
. (26)

Substituting Eqs. (25) and (26) into
∫

p(z,θ|a, α)dθ, Eq. (6)
is obtained. Similarly, Eqs. (8) and (9) are also obtained using
the integral of the Dirichlet distribution as with the case of∫

p(z,θ|a, α)dθ.
2) Calculation of Eq. (10): To derivate Eq. (10) in the word-

transition sATM, substituting Eqs. (6)–(9) into each term of Eq.
(5) gives

p(z|a, α)
p(z\s,i |a, α)

=

⎛

⎝ Γ(n(a)
t + α)

Γ(n(a)
(\s,i),t + α)

⎞

⎠
/⎛

⎝ Γ(n(a)
· + Tα)

Γ(n(a)
(\s,i),· + Tα)

⎞

⎠

(27)

p(w|z, β, γ)
p(w\s,i |z\s,i , β, γ)

=

Γ(n ( t )
m +β )

Γ(n ( t )
( \s , i ) , m

+β )

Γ(n (m −)
m + +γ )

Γ(n (m −)
( \s , i ) , m + +γ )

Γ(n ( t )
· +M β )

Γ(n ( t )
( \s , i ) , ·+M β )

Γ(n (m −)
· +M γ )

Γ(n (m −)
( \s , i ) , ·+M γ )

. (28)

Since Γ(x + 1)/Γ(x) = x for the gamma function, Eqs. (27)
and (28) can be rewritten as

p(z|a, α)
p(z\s,i |a, α)

=
n

(a)
(\s,i),t + α

n
(a)
(\s,i),· + Tα

(29)

p(w|z, β, γ)
p(w\s,i |z\s,i , β, γ)

=
n

(t)
(\s,i),m + β

n
(t)
(\s,i),· + Mβ

·
n

(ws , i−1 )
(\s,i),ws , i

+ γ

n
(ws , i−1 )
(\s,i),· + Mγ

·
n

(ws , i )
(\s,i),ws , i + 1

+ δws , i−1 ,ws , i
· δws , i ,ws , i + 1 + γ

n
(ws , i )
(\s,i),· + δws , i−1 ,ws , i

+ Mγ
. (30)

Substituting these equations into Eq. (5) again, Eq. (10) is ob-
tained.

B. Calculation of Posterior Probability in
Topic-Transition sATM

Similarly to the word-transition sATM, substituting Eqs.
(18)–(21) into each term of Eq. (17) and using Γ(x + 1)/Γ(x) =
x, we obtain

p(z|a, α, γ)
p(z\s,i |a, α, γ)

=
n

(a)
(\s,i),t + α

n
(a)
(\s,i),· + Tα

·
n

(zs , i−1 )
(\s,i),zs , i

+ γ

n
(zs , i−1 )
(\s,i),· + Tγ

·
n

(zs , i )
(\s,i),zs , i + 1

+ δzs , i−1 ,zs , i
· δzs , i ,zs , i + 1 + γ

n
(zs , i )
(\s,i),· + δzs , i−1 ,zs , i

+ Tγ

(31)

p(w|z, β)
p(w\s,i |z\s,i , β)

=
n

(t)
(\s,i),m + β

n
(t)
(\s,i),· + Mβ

. (32)

Substituting these equations into Eq. (17) again, Eq. (22) is
obtained.
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