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Abstract—This paper proposes a novel optimization princi-
ple and its implementation for unsupervised anomaly detection
in sound (ADS) using an autoencoder (AE). The goal of the
unsupervised-ADS is to detect unknown anomalous sounds without
training data of anomalous sounds. The use of an AE as a normal
model is a state-of-the-art technique for the unsupervised-ADS. To
decrease the false positive rate (FPR), the AE is trained to minimize
the reconstruction error of normal sounds, and the anomaly score
is calculated as the reconstruction error of the observed sound.
Unfortunately, since this training procedure does not take into ac-
count the anomaly score for anomalous sounds, the true positive
rate (TPR) does not necessarily increase. In this study, we define
an objective function based on the Neyman–Pearson lemma by
considering the ADS as a statistical hypothesis test. The proposed
objective function trains the AE to maximize the TPR under an
arbitrary low FPR condition. To calculate the TPR in the objective
function, we consider that the set of anomalous sounds is the com-
plementary set of normal sounds and simulate anomalous sounds
by using a rejection sampling algorithm. Through experiments us-
ing synthetic data, we found that the proposed method improved
the performance measures of the ADS under low FPR conditions.
In addition, we confirmed that the proposed method could detect
anomalous sounds in real environments.

Index Terms—Anomaly detection in sound, Neyman-Pearson
lemma, deep learning, and autoencoder.

I. INTRODUCTION

ANOMALY detection in sound (ADS) has received much
attention. Since anomalous sounds might indicate symp-

toms of mistakes or malicious activities, their prompt detection
can possibly prevent such problems. In particular, ADS has been
used for various purposes including audio surveillance [1]–[4],
animal husbandry [5], [6], product inspection, and predictive
maintenance [7], [8]. For the last application, since anomalous
sounds might indicate a fault in a piece of machinery, prompt
detection of anomalies would decrease the number of defective
product and/or prevent propagation of damage. In this study,
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we investigated ADS for industrial equipment by focusing on
machine-operating sounds.

ADS tasks can be broadly divided into supervised-ADS and
unsupervised-ADS. The difference between the two categories
is in the definition of anomalies. Supervised-ADS is the task
of detecting “defined” anomalous sounds such as gunshots or
screams [2], and it is a kind of rare sound event detection (SED)
[9]–[11]. Since the anomalies are defined, we can collect a
dataset of the target anomalous sounds even though the anoma-
lies are rarer than normal sounds. Thus, the ADS system can be
trained using a supervised method that is used in various SED
tasks of the “Detection and Classification of Acoustic Scenes
and Events challenge” (DCASE) such as audio scene classifi-
cation [12], [13], sound event detection [14], [15], and audio
tagging [16]. On the other hand, unsupervised-ADS [17]–[19]
is the task of detecting “unknown” anomalous sounds that have
not been observed. In the case of real-world factories, from the
view of the development cost, it is impracticable to deliberately
be damaged the expensive target machine. In addition, actual
anomalous sounds occur rarely and have high variability. There-
fore, it is impossible to collect an exhaustive set of anomalous
sounds and need to detect anomalous sounds for which training
data does not exist. From this reason, the task is often tackled
as the one-class unsupervised classification problem [17]–[19].
This point is one of the major differences in premise between
the DCASE tasks and ADS for industrial equipment. Thus, in
this study, we aim to detect unknown anomalous sounds based
on an unsupervised approach.

In unsupervised anomaly detection, “anomaly” is defined as
the patterns in data that do not conform to expected “normal”
behavior [19]. Namely, the universal set consists of only the nor-
mal and the anomaly, and the anomaly is the complement to the
normal set. More intuitively, the universal set is various machine
sounds including many types of machines, the normal set is one
specific type of various machine sound, and the anomaly set is
all other types of machine sounds. Therefore, a typical way of
unsupervised-ADS is the use of the outlier-detection technique.
Here, the deviation between a normal model and an observed
sound is calculated; the deviation is often called the “anomaly
score”. The normal model indicates the notion of normal be-
havior which is trained from training data of normal sounds.
The observed sound is identified as an anomalous one when
the anomaly score is higher than a pre-defined threshold value.
Namely, the anomalous sounds are defined as the sounds that
do not exist in training data of normal sounds.
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Fig. 1. Trade-off relationship between anomaly score, true positive rate (TPR)
and false positive rate (FPR). The top figure shows PDFs of anomaly scores for
normal sounds (blue line) and anomalous sounds (red line). The bottom figures
show the FPR and TPR with respect to the threshold. When these PDFs overlap,
a small threshold leads to a large TPR and FPR, and a large threshold leads to a
small TPR and FPR.

To train the normal model, it is necessary to define the opti-
mality of the anomaly score. One of the popular performance
measurements of ADS is to measure both the true positive rate
(TPR) and false positive rate (FPR). The TPR is the proportion
of anomalies that are correctly identified, and the FPR is the
proportion of normal sounds that are incorrectly identified as
anomalies. To improve the performance of ADS, we need to in-
crease TPR and decrease FPR simultaneously. However, these
metrics are related to the threshold value and have a trade-off
relationship, as shown in Fig. 1. When the PDFs of the anomaly
scores of normal and anomalous sounds overlap, false detections
cannot be avoided regardless of any threshold. Thus, to increase
TPR and decreases FPR simultaneously, we need to train the
normal model to reduce the overlap area. More intuitively, it
is essential to provide small anomaly scores for normal sounds
and large anomaly scores for anomalous sounds. In addition, if
an ADS system gives a false alert frequently, we cannot trust
it, just as “the boy who cried wolf ” cannot be trusted. There-
fore, it is especially important to increase TPR under a low FPR
condition in a practical situation.

The early studies used various statistical models to calculate
the anomaly score, such as the Gaussian mixture model (GMM)
[3], [8] and support vector machine (SVM) [4]. The recent
literature calculates the anomaly score through the use of deep
neural networks (DNN) such as the autoencoder (AE) [20]–
[23] and variational AE (VAE) [24], [25]. In the case of the
AE, one is trained to minimize the reconstruction error of the
normal training data, and the anomaly score is calculated as
the reconstruction error of the observed sound. Thus, the AE
provides small anomaly scores for normal sounds. However, it
gives no guarantee to increase anomaly scores for anomalous
sounds. Indeed, if the AE is generalized, the anomalous sounds
will also be reconstructed and the anomaly score of anomalous
sound will be small. Therefore, to increase TPR and decrease
FPR simultaneously, the objective function should be modified.

Another strategy for unsupervised-ADS is the use of a gen-
erative adversarial network (GAN) [26], [27]. GANs have been
used to detect anomalies in medical images [28]. In this strategy,
a generator simulates “fake” normal data, and a discriminator
identifies whether the input data is a real normal data or not.
Therefore, the discriminator can be trained to increase TPR for
fake normal data and decrease FPR for true normal data simul-
taneously. However, since the generator is trained to make nor-
mal data, if it perfectly generates normal sounds, the anomaly
score of normal sounds and FPR will increase. Therefore, it
is necessary to build an algorithm to simulate “non-normal”
sounds.

In this study, we propose a novel optimization principle and its
implementation for ADS using AE. By considering an outlier-
detection-based ADS as a statistical hypothesis test, we de-
fine optimality as an objective function based on the Neyman-
Pearson lemma [29]. The objective function works to increase
TPR under an arbitrary low FPR condition. A problem in cal-
culating TPR is the simulation of anomalous sound data. Here,
we explicitly define the set of anomalous sounds to be the com-
plement to the set of normal sounds and simulate anomalous
sounds by using a rejection sampling algorithm.

A preliminary version of this work is presented in [8]. The
previous study utilized a DNN as a feature extractor, and the
anomaly score was calculated using the negative-log-likelihood
of a GMM trained from normal data. Thus, although the DNN
was trained to maximize the objective function based on the
Neyman-Pearson lemma, the normal model did not guarantee
to increase TPR and decrease FPR. In this study, end-to-end
training is achieved by using an AE as the normal model and
both the feature extractor and the normal model are trained to
increase TPR and decrease FPR.

The rest of this paper is organized as follows. Section II briefly
introduces outlier-detection-based ADS and its implementation
using an AE. Section III describes the proposed training method
and the details of the implementation. After reporting the results
of objective experiments using synthetic data and verification
experiments in real environments in Section IV, we conclude
this paper in Section V. The mathematical symbols are listed in
Appendix A.

II. CONVENTIONAL METHOD

A. Identification of Anomalous Sound Based on
Outlier Detection

ADS is an identification problem of determining whether the
sound emitted from a target is a normal sound or an anoma-
lous one. In this section, we briefly introduce the procedure of
unsupervised-ADS.

First, an anomaly scoreA(xτ ,Θ) is calculated using a normal
model. Here, xτ ∈ RQ is an input vector calculated from the
observed sound indexed on τ ∈ {1, 2, ..., T } for time, and Θ
is the set of parameters of the normal model. In many of the
previous studies, xτ was composed of hand-crafted acoustic
features such as mel-frequency cepstrum coefficients (MFCCs)
[1]–[3], and the normal model was often constructed with a
PDF of normal sounds. Accordingly, the anomaly score can be



214 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2019

Fig. 2. Anomaly detection procedure using autoencoder. The input vector is
compressed and reconstructed by two networks E and D, respectively. Since
E and D are trained to minimize reconstruction error of normal sounds, the
reconstruction error would be small if xτ is normal. Thus, the anomaly score is
calculated as a reconstruction error, and when the error exceeds a pre-defined
threshold φ, the observation is identified as anomalous.

calculated as

A(xτ ,Θ) = − ln p(xτ | Θ, y = 0), (1)

where y denotes the state, y = 0 is normal, and y �= 0 is not
normal, i.e. anomalous. p(x|Θ, y = 0) is a normal model such
as a GMM [8]. xτ is determined to be anomalous when the
anomaly score exceeds a pre-defined threshold value φ:

H(xτ ,Θ, φ) =

{
0 (Normal) A(xτ ,Θ) ≤ φ

1 (Anomaly) A(xτ ,Θ) > φ
. (2)

One of the performance measures of ADS consists of the pair
of TPR and FPR. The TPR and FPR can be calculated as ex-
pectations ofH(x,Θ, φ) with respect to anomalous and normal
sounds, respectively:

TPR(Θ, φ) = E [H(x,Θ, φ)]x |y �=0 , (3)

FPR(Θ, φ) = E [H(x,Θ, φ)]x |y=0 , (4)

where E[·]x denotes the expectation with respect to x. These
metrics are related to φ and have a trade-off relationship as
shown in Fig. 1. The top figure shows the PDFs of anomaly
scores for normal sounds p(A(xτ ,Θ)|y = 0) and anomalous
sounds p(A(xτ ,Θ)|y �= 0). The bottom figures show the FPR
and TPR with respect to φ. When these PDFs overlap, false
detections, i.e. false-positive and/or false-negative, cannot be
avoided regardless of any φ. In addition, the false detections
increase as the overlap area gets wider. Therefore, to increase
TPR and decrease FPR simultaneously, it is necessary to train Θ
so that the anomaly score is small for normal sounds and large
for anomalous sounds. More precisely, we need to train Θ to
reduce the overlap area.

B. Unsupervised-ADS Using an Autoencoder

Recently, deep learning has been used to construct a normal
model. Several studies on deep-learning-based unsupervised-
ADS have used an autoencoder (AE) [20]–[23]. This section
briefly describes unsupervised-ADS using an AE (see Fig. 2).

The goal of using an AE is to learn an efficient representation
of the input vector by using two neural networksE andD, which
are called the encoder and decoder, respectively. First, the input
vector x is converted into a latent vector z ∈ RR by E. Then, an
input vector is reconstructed from z by D. These processes are

expressed as

z = E(x | ΘE ), (5)

x̂ = D(z | ΘD ). (6)

The parameters of both neural networks Θ = {ΘE ,ΘD } are
trained to minimize the reconstruction error:

JAE(ΘE ,ΘD ) = E
[‖x −D(E(x | ΘE ) | ΘD )‖22

]
x . (7)

In ADS using an AE, the anomaly score is the reconstruction
error of the observed sound, which is calculated as

A(xτ ,Θ) := ‖xτ −D(E(xτ | ΘE ) | ΘD )‖22 . (8)

To train the normal model to provide small anomaly scores
for normal sounds, the AE is trained to minimize the average
reconstruction error of normal sound,

JAE(ΘE ,ΘD ) =
1

N (u)

N (u )∑
n=1

A(x(u)
n ,Θ), (9)

where x(u)
n is the n-th training data of normal sound and N (u) is

the number of training samples of normal sound. This objective
function works to decrease the anomaly score of normal sounds.
However, there is no guarantee of increasing anomaly scores for
anomalous sounds. Indeed, if the AE is generalized, the anoma-
lous sounds will also be reconstructed and the anomaly score of
anomalous sounds will be also small. Therefore, (9) does not en-
sure that false detections are reduced and the accuracy of ADS
is improved; thus, it would be better to modify the objective
function.

III. PROPOSED METHOD

We will begin by defining an objective function that builds
upon the Neyman-Pearson lemma in Section III-A. Then, we
will describe the rejection sampling algorithm for simulating
anomalous sound used for calculating TPR in Section III-B.
After that, the overall training and detection procedure of
the proposed method will be summarized in Section III-C
and Section III-D. As a modified implementation of proposed
method, we extend the proposed method to an area under the
receiver operating characteristic curve (AUC) maximization in
Section III-E.

A. Objective Function for Anomaly Detection Based on the
Neyman-Pearson Lemma

From (1) and (2), an anomalous sound satisfies the following
inequality:

p(x | Θ, y = 0) < exp(−φ). (10)

Since φ is assumed to be sufficiently large to avoid false pos-
itives, an anomalous sound can be defined as “a sound which
cannot be regarded as a sample of the normal model.” Thus,
we can regard outlier-detection-based ADS as a statistical hy-
pothesis test. In other words, the observed sound is identified as
anomalous when the following null hypothesis is rejected.

Null hypotheses: x is a sample of the normal model p(x |
Θ, y = 0).
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The Neyman-Pearson lemma [29] states the condition for
A(x,Θ) that achieves the most powerful test between two sim-
ple hypotheses. According to it, the most powerful test has the
greatest detection power among all possible tests of a given FPR
[30]. More simply, the most powerful test maximizes the TPR
under the constraint that the FPR equals ρ, i.e.,

maximize TPR(Θ, φ), subject to FPR(Θ, φ) = ρ.

Since the FPR can be controlled by manipulating φ, we define
φρ as satisfying FPR(Θ, φρ) = ρ. Accordingly, the objective
function to obtain the most powerful test function can be de-
fined as the one that maximizes TPR(Θ, φρ) with respect to Θ.
However, since the FPR is also a function of Θ, it may become
large when focusing only on TPR. To maximize the TPR and
minimize the FPR simultaneously, we train Θ to maximize the
following objective function,

JNP(Θ) = TPR(Θ, φρ) − FPR(Θ, φρ), (11)

where the superscript “NP” is an abbreviation of “Neyman-
Pearson”. Since the proposed objective function directly in-
creases TPR and decreases FPR, Θ can be trained to provide
a small anomaly score for normal sounds and a large anomaly
score for anomalous sounds.

There are two problems when it comes to training ΘE and
ΘD to maximize (11). The first problem is the calculation of
TPR. The TPR and FPR are the expectations ofH(x,Θ, φ), and
in most practical cases, the expectation is approximated as an
average over the training data. Thus, to calculate TPR and FPR,
we need to collect enough normal and anomalous sound data for
the average to be an accurate approximation of the expectation.
However, since anomalous sounds occur rarely and have high
variability, this condition is difficult to satisfy. In Section III-B,
to calculate TPR, we consider “anomaly” to mean “not normal”
and simulate anomalous sounds by using a sampling algorithm.
The second problem is the determination of the threshold φρ . In a
parametric hypothesis test such as a t-test, the threshold at which
FPR equals ρ can be analytically calculated. However, DNN is
a non-parametric statistical model; thus, the threshold φρ can
not be analytically calculated. In Section III-C, we numerically
calculate φρ as the �ρM�-th value of the sorted anomaly scores
of M normal sounds, where �·� is the flooring function.

B. Anomalous Sound Simulation Using an Autoencoder

In accordance with (10), anomalous sounds emitted from the
target machine are different from normal ones. Thus, we con-
sider the set of normal sounds to be a subset of various machine
sounds, and the set of anomalous sounds to be its complement.
Then, we use rejection sampling to simulate anomalous sounds;
namely, a sound is sampled from various machine-sound PDFs,
and it is accepted as an anomalous sound when its anomaly score
is high. However, since the PDF of various machine sounds in
the input vector domain p(x) may have a complex form, the
PDF cannot be written in an analytical form and the sampling
algorithm would become complex. Inspired by the strategy of
VAE, we can avoid this problem by training E so that the PDF of
various latent vectors p(z) is mapped to a PDF whose samples

Fig. 3. Concept of PDFs of normal, various, and anomalous sounds using two
neural networks. The PDF of normal sounds (i.e. meshed area) is a subset of
the PDF of various sounds (i.e. gray area), and the PDF of anomalous sounds is
expressed as complement of the PDF of normal sounds (i.e. inside the gray area
and outside the meshed area). x is mapped to z by E, and z is reconstructed to
x̃ by G. Here, E and G are trained to satisfy p(z) = N(z|0R, IR) and x = x̃,
respectively. The PDF of the latent vector of normal sounds is modeled using a
GMM p(z | Υ, y = 0) given by (13).

can be generated by a pseudorandom number generator from a
uniform distribution and its variable conversion. Then, the latent
vectors of anomalous sounds z(a) are sampled using the rejec-
tion sampling algorithm, and the input vectors of anomalous
sounds x(a) are reconstructed using a third neural network G,

x(a) = G(z(a) | ΘG ), (12)

where ΘG is the parameter of G. Hereafter, we call G the gen-
erator. Although there is no constraint on the architecture of G,
we will use the same architecture for D and G. In addition, to
simply generate and reject a candidate latent vector, we use two
constraints to train ΘE and ΘG , and model the PDF of normal
latent vectors using the GMM as

p(z | Υ, y = 0) =
K∑

k=1

wkN(z | µk ,Σk ), (13)

where Υ = {wk ,µk ,Σk | k = 1, ...,K}, K is the number of
mixtures, and wk ,µk , and Σk are respectively the weight, mean
vector, and covariance matrix of the k-th Gaussian. The con-
cepts of these PDFs are shown in Fig. 3, and the procedure of
anomalous sound simulation is summarized in Algorithm 1 and
Fig. 4.

First, we describe the two constraints for training ΘE and
ΘG . For algorithmic efficiency, p(z) should be generated with
a low computational cost. As an implementation of p(z), we
use the normalized Gaussian distribution, because its samples
can be generated by a pseudorandom number generator such
as the Mersenne-Twister. Thus, for training ΘE and ΘG , we
use the first constraint so that z of the various machine sounds
follows a normalized Gaussian distribution. To satisfy the first
constraint, we train ΘE to minimize the following Kullback-
Leibler divergence (KLD):

JKL(ΘE ) = D (N(z | 0R, IR)||N(z | µV,ΣV)) ,

=
1
2

[
ln |ΣV|+ tr

{
Σ−1V

}
+ µ�VΣ−1V µV − R

]
,

(14)
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Fig. 4. Procedure of anomalous sound simulation using autoencoder.

Algorithm 1: Simulation Algorithm of Anomalous Sound
in Latent Vector Space.

1: Input: Generator G, GMM p(z | Υ, y = 0) and φz

2: �← −∞
3: while � ≤ φz do
4: Draw z̃ from N(z|0R, IR)
5: Evaluate �← − ln p(z̃ | Υ, y = 0)
6: end while
7: z(a) ← z̃
8: Generate anomalous sound by x(a) = G(z(a) | ΘG )
9: Output: x(a)

where the superscript “KL” is an abbreviation of “Kullback-
Leibler”, tr {·} denotes the trace of a matrix, � denotes trans-
position, 0R and IR are respectively the zero vector and unit
matrix with dimension R, and µV and ΣV are respectively
the mean vector and covariance matrix calculated from z of
the various machine sounds. To generate anomalous sounds
from (12), G needs to reconstruct various machine sounds, as
x(v ) = G(E(x(v ) | ΘE ) | ΘG ). Thus, as a second constraint, we
train ΘE and ΘG to minimize the reconstruction error (7) cal-
culated on the various machine sounds.

Next, we describe the GMM that models the PDF of the
normal latent vectors. To reject a candidate z̃ which seems to be
z of a normal sound, we need to calculate the probability that the
candidate is a normal one. To calculate the probability, we need
to model p(z | y = 0). Since there is no constraint on the form
of p(z | y = 0) in the training procedure of ΘE , p(z | y = 0)
might have a complex form. For simplicity, we use a GMM
expressed as (13).

C. Detailed Description of Training Procedure

Here, we describe the details of the training procedure shown
in Fig 5. The training procedure consists in three steps. Here-
after, we call the proposed method using this training procedure
NP-PROP. The algorithm inputs are training data constructed

from normal sounds and various machine sounds, and the out-
puts are ΘE and ΘD . Moreover, x(v )

n and x(u)
n respectively

denote the n-th training samples of minibatches of various and
normal machine sounds, and M is the number of samples in-
cluded in a minibatch.

First, ΘE and ΘG are trained to simulate anomalous sounds.
A minibatch of various machine sounds is randomly selected
from the training dataset of various machine sounds. Next, its
latent vectors are calculated as z(v )

n ← E(x(v )
n |ΘE ). Then, the

parameters of the Gaussian distribution of the minibatch are
calculated as

µV =
1
M

M∑
n=1

z(v )
n , (15)

ΣV =
1
M

M∑
n=1

(
z(v )

n − µV
)(

z(v )
n − µV

)�
. (16)

Finally, to minimize the KLD and the reconstruction error of
various sounds, the objective function is calculated as

JKR(Θ) = JKL(ΘE )

+
M∑

n=1

∥∥∥x(v )
n − G

(
E

(
x(v )

n | ΘE

)
| ΘG

)∥∥∥2

2
, (17)

where the superscript “KR” is an abbreviation of “KLD and re-
construction”, and ΘE and ΘG are updated by gradient descent
to minimize JKR(Θ):

ΘE ← ΘE − λ∇ΘE
JKR(Θ), (18)

ΘG ← ΘG − λ∇ΘG
JKR(Θ), (19)

where λ is the step size.
Second, ΘE and ΘD are trained to maximize the objective

function. A minibatch of normal sounds x(u) is randomly se-
lected from the training dataset of normal sounds, and a mini-
batch of anomalous sounds x(a) is simulated using Algorithm 1.
Here, since DNN is not a parametric PDF, the threshold φρ

that satisfies FPR(Θ, φρ) = ρ cannot be analytically calculated.
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Fig. 5. Training procedure of the proposed method.

Thus, in this study, we approximately calculate φρ by sorting the
anomaly scores of normal sounds in the minibatch x(u) . First,
A(x(u) ,Θ) and− ln(z(u) | Υ, y = 0) are calculated, and φρ and
φz are set as the �ρM�-th value of the sorted A(x(u) ,Θ) and
− ln(z(u) | Υ, y = 0) in descending order, respectively. Then,
the TPR and FPR are approximately evaluated as

TPR(Θ, φρ) ≈ 1
M

M∑
n=1

sigmoid
(
A

(
x(a)

n ,Θ
)
− φρ

)
, (20)

FPR(Θ, φρ) ≈ 1
M

M∑
n=1

sigmoid
(
A

(
x(u)

n ,Θ
)
− φρ

)
, (21)

where the binary decision function H is approximated by a
sigmoid function, allowing the gradient to be analytically cal-
culated. Finally, ΘE and ΘD are updated to increase JNP(Θ)
by gradient ascent:

ΘE ← ΘE + λ∇ΘE
JNP(Θ), (22)

ΘD ← ΘD + λ∇ΘD
JNP(Θ). (23)

Third, to update the PDF of the latent vectors of nor-
mal sounds p(z | Υ, y = 0), when (18)–(23) is repeated a cer-
tain number of times, Υ is updated using the expectation-
maximization (EM) algorithm for GMM using all training data
of normal sounds. The above algorithm is run a pre-defined
number of epochs.

D. Detailed Description of Detection Procedure

After training ΘE and ΘD , we can identify whether the ob-
served sound is a normal one or not. First, the input vector
xτ , τ ∈ {1, ..., T } is calculated from the observed sound. Then,
the anomaly score is calculated as (8). Finally, a decision score,
V = 1

T

∑T
τ =1 H(xτ ,Θ, φ), is calculated, and when V exceeds

a pre-defined value φV , the observed sound is determined to be
anomalous. In this study, we used φV = 0, meaning that, if the
anomaly score exceeds the threshold even for one frame, the
observed sound is determined to be anomalous.

E. Modified Implementation as an AUC Maximization

The receiver operating characteristic (ROC) curve and the
AUC are widely used performance measures for imbalanced
data classification and/or anomaly detection. The AUC is

calculated as

AUC(Θ) = E

⎡
⎢⎢⎣E [H(x′,Θ,A(x,Θ))]x ′ |y �=0︸ ︷︷ ︸

TPR(Θ ,A(x,Θ))

⎤
⎥⎥⎦

x |y=0

, (24)

≈ 1
M

M∑
n=1

TPR
(
Θ,A

(
x(u)

n ,Θ
))

. (25)

As we can see in (25), anomalous sound data are needed to
calculate the AUC. Although the AUC has been used as an
objective function in imbalanced data classification [31]–[33],
it has not been applied to unsupervised-ADS so far. Fortunately,
since the proposed rejection sampling can simulate anomalous
sound data, AUC maximization can be used as an objective
function of ADS. Instead of JNP(Θ), the following objective
function can be used in the training procedure:

JAUC(Θ) =
1
M

M∑
n=1

TPR
(
Θ,A

(
x(u)

n ,Θ
))

− FPR
(
Θ,A

(
x(u)

n ,Θ
))

. (26)

Hereafter, we call the proposed method usingJAUC(Θ) instead
of JNP(Θ) AUC-PROP.

IV. EXPERIMENTS

We conducted experiments to evaluate the performance of the
proposed method. First, we conducted an objective experiment
using synthetic anomalous sounds (Section IV-B). To generate
a large enough anomalous dataset for the ADS accuracy evalu-
ation, we used collision and sustained sounds from datasets for
detection and classification of acoustic scenes and events 2016
(DCASE-2016 [36]). To show the effectiveness of the method
in real environments, we conducted verification experiments in
three real environments (Section IV-C).

A. Experimental Conditions

1) Compared Methods: The proposed methods described in
Section III-C (NP-PROP) and Section III-E (AUC-PROP) were
compared with three state-of-the-art ADS methods:
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Fig. 6. Network architectures of encoder, decoder and generator used for
NP-PROP, and AUC-PROP. The encoder and decoder of AE have the same
architecture. In VAE, VAEGAN and CONV-PROP, the encoder has two output
layers for the mean and variance vector. In VAEGAN, the architecture of the
discriminator is the same as that of the encoder, but the output dimension of the
fully connected layer is 1.

� AE [20]: ADS using the autoencoder described in Sec-
tion II-B. The encoder and decoder were trained to mini-
mize (9).

� VAE [24]: E and D were implemented using VAE. The
encoder estimated the mean and variance parameters of
the Gaussian distribution in the latent space. Then, the la-
tent vectors were sampled from the Gaussian distribution
whose parameters were estimated by the encoder. Then,
the decoder reconstructed the input vector from the sam-
pled latent vectors. Finally, the reconstruction error was
calculated and used as the anomaly score.

� VAEGAN [27]: To investigate the effectiveness of the
anomalous sound simulation, VAEGAN [27] was used to
simulate fake normal data. The generators (i.e. VAE) were
used to simulate fake normal sounds. The output of the
discriminator without the sigmoid activation was used as
the anomaly score.

We also used our previous work [8] (CONV-PROP) for com-
parison. This method uses a VAE to extract latent vectors as
acoustic features. A GMM is used for the normal model, and
the encoder and decoder are trained to maximize (11).

2) DNN Architecture and Setup: We tested two types of net-
work architecture as shown in Fig. 6. The first architecture,
“FNN”, consisted of fully connected DNNs with three hidden
layers and 512 hidden units. The rectified linear unit (ReLU)
was used as the activation functions of the hidden layers. The
input vector x was defined as

xτ := (ln [Mel [Abs [Xτ −C ]]] , ..., ln [Mel [Abs [Xτ +C ]]])� ,

Xτ := (X1,τ , ..., XΩ ,τ ) ,

where Xω,τ is the discrete Fourier transform (DFT) spectrum of
the observed sound, ω ∈ {1, ...,Ω} denotes the frequency index,
C(= 5) is the context window size, and Mel[·] and Abs[·] denote
40-dimensional Mel matrix multiplication and the element-wise
absolute value. Thus, the dimension of x was Q = 40 × (2C +
1) = 440. The second architecture,“1D-CRNN”, consisted in a
one-dimensional convolution neural network (1D-CNN) layer

TABLE I
EXPERIMENTAL CONDITIONS

and a long short-term memory (LSTM) layer; it worked well in
supervised anomaly detection (race SED) in DCASE 2017 [10].
In order to detect anomalous sounds in real time, we changed
the backward LSTM to a forward one. In addition, to avoid
overfitting, we used only one forward LSTM layer instead of
two backward LSTM layers. The input vector x was a 40-
dimensional log mel-band energy:

xτ := ln (Mel [Abs [Xτ ]])� .

The dimension of x was Q = 40. For each architecture, the
dimension of the latent vector z was R = 40. All input vec-
tors were mean-and-variance normalized using the training data
statistics.

As an implementation for the gradient method, the Adam
method [34] was used instead of the gradient descent/ascent
shown in (18)–(23). To avoid overfitting, L2 normalization [35]
with a regularization penalty of 10−4 was used. The minibatch
size for all methods was M = 512. All models were trained for
500 epochs. In all methods, the average value of the loss was
calculated on the training set at every epoch, and when the loss
did not decrease for five consecutive epochs, the stepsize was
decreased by half.

3) Other Conditions: All sounds were recorded at a sam-
pling rate of 16 kHz. The frame size of the DFT was 512, and
the frame was shifted every 256 samples. For p(z | Υ, y = 0),
the number of Gaussian mixtures was K = 16 and a diagonal
covariance matrix was used to prevent the problem from being
ill-conditioned. The EM algorithm for the GMM involved iter-
ating (18)–(23) 30 times. All the above-mentioned conditions
are summarized in Table I.

B. Objective Experiments on Synthetic Data

1) Dataset: Sounds emitted from a condensing unit of an air
conditioner operating in a real environment were used as the nor-
mal sounds. In addition, various machine sounds were recorded
from other machines, including a compressor, engine, compres-
sion pump, and an electric drill, as well as environmental noise
of factories. The normal and various machine sound data totaled
4 and 20 hours (=4 hours normal +16 hours other machines),
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Fig. 7. Evaluation results of FNN.

respectively. These sounds were recorded at a 16-kHz sampling
rate. In order to improve the robustness for different loudness
levels and ratios of the normal and anomalous sound, the var-
ious machine sounds in the training dataset were augmented
with a multiplication of five amplitude gains. These gains are
calculated so that the maximum amplitudes of various sounds
becomes to 1.0, 0.5, 0.25, 0.125, and 0.063.

Since it is difficult to collect a massive amount of test data in-
cluding anomalous sounds, synthetic anomalous data were used
in this evaluation. In particular, we used the training datasets for
task of DCASE-2016 [36] as anomalous sounds. Although these
sounds are “normal” sounds in an office, in unsupervised-ADS,
the unknown sounds are categorized as “anomalous”. Thus, we
consider that this evaluation can at least evaluate the detection
performance for unknown sounds. Since the anomalous sounds
of machines are roughly categorized into collision sounds (e.g.,
the sound of a metal part falling on the floor) and sustained
sounds (e.g., frictional sound caused by scratched bearings),
we selected 80 collision sounds, including (slamming doors ,
knocking at doors, keys put on a table, keystrokes on a key-
board), and 60 sustained sounds (drawers being opened, pages
being turned, and phones ringing), from this dataset [37]. To
synthesize the test data, the anomalous sounds were mixed with
normal sounds at anomaly-to-normal power ratios (ANRs1) of
−15, −20 and −25 dB using the following procedure:

1) select an anomalous sound and randomly cut a normal so
that has the same signal length of the selected anomalous
sound.

1ANR is a measure comparing the level of an anomalous sound to the level
of a normal sound. This definition is the same as the signal-to-noise ratio (SNR)
when the signal is an anomalous sound and the noise is a normal sound.

2) for the cut normal and anomalous sounds, calcu-
late the frame-wise log power of each of 512 points
with a 256 point shift on a dB scale, namely Pτ =
20 log10

∑Ω
ω=1

∣∣Xω,τ

∣∣ .
3) select the median of Pτ as the representative power of

each sound as.
4) manipulate the power of the anomalous sound so that the

ANR has the desired value.
5) used the cut normal sound as the test data of normal sound,

and generate the test data of the anomalous sound by
mixing the anomalous sound with the quarried normal
sound.

In total, we used 140 normal and anomalous sound samples
for each ANR condition. The training dataset of normal sounds
and the MATLAB code to generate the test dataset are freely
available on the website2.

2) Results: To evaluate the performance of ADS, we used the
AUC, ρ TPR, and partial AUC (p AUC) [38]. The AUC is a tradi-
tional performance measure of anomaly detection. The other two
measurements evaluated the performance under low FPR condi-
tions. ρ TPR is the TPR under the condition that FPR equals ρ.
The p AUC is an AUC calculated with FPRs ranging from 0 to
p with respect to the maximum value of 1. The parameters were
ρ = 0.05 and p = 0.1. We evaluated these metrics for three dif-
ferent evaluation sets: 80 collision sounds (Collision), 60 sus-
tained sounds (Sustain), and the sum of these 80 + 60 = 140
sounds (Mix).

The results for each score, sound category, and ANR on FNN
and 1D-CRNN are shown in Fig. 7 and Fig. 8. Overall, the

2https://archive.org/details/ADSdataset
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Fig. 8. Evaluation results of 1D-CRNN.

Fig. 9. ROC curves of AE, NP-PROP and AUC-PROP for each ANR condition evaluated on Mix dataset.

performances of AE, NP-PROP and AUC-PROP were better
than those of VAE and VAEGAN. In detail, AE achieved high
scores for all measurements, AUC-PROP achieved high scores
for AUC and p AUC, and NP-PROP achieved high scores for
ρ TPR and p AUC. In addition, for all conditions, the ρ TPR
and p AUC scores of NP-PROP were higher than those of AE.
To discuss the difference between the objective functions of
AE, NP-PROP and AUC-PROP, we show the ROC curves in
Fig. 9. Since the differences between the results of Collision,
Sustained, and Mix were small, we plotted only those of the

Mix dataset. From these ROC curves, we can see that the TPRs
of NP-PROP under the low FPR conditions were significantly
higher than those of other methods. This might be because the
objective function of NP-PROP works to increase TPR under the
low FPR condition. In addition, although AUC-PROP’s TPRs
under the low FPR condition were lower than those of NP-
PROP, the TPRs under the moderate and high FPR conditions
were higher than those of the other methods. This might be
because the objective function of AUC-PROP works to increase
TPR for all FPR conditions. Since the individual results and
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Fig. 10. Anomaly detection results for sound emitted from 3D-printer (left), air blower pump (center), and water pump (right). The top figure shows the
spectrogram, and the bottom figures show the anomaly score (black solid line) and threshold φ0 .001 (red dashed line) of each method. Anomalous sounds are
enclosed in white dotted boxes, and false-positive detections are circled in purple. Since the spectrum changes due to the anomalous sounds of 3D-printer and
water pump are difficult to see, their anomalous sounds are enlarged. In addition, since anomalous sound of the water pump is a sustained, 60 seconds of normal
sounds and 60 seconds of anomalous sound are concatenated for comparison.

objective function tend to coincide, we consider that the training
of each neural network succeeded. In addition, TPR under the
low FPR conditions is especially important when the ADS is
used in real environments, because if an ADS system frequently
gives false alert, we cannot trust it. Therefore, unsupervised-
ADS using an AE trained using (11) would be effective in real
situations.

In addition, regarding the FNN results, VAE scored lower
than AE, and VAEGAN scored lower than all the other meth-
ods. These results suggest that when calculating the anomaly
score using a simple network architecture like FNN, a simple
reconstruction error would be better than complex calculation
procedures such as VAE and VAEGAN. Moreover, the scores of
NP-CONV were lower than those of the DNN-based methods.
In our previous study [8], we used a DNN a feature extractor and
constructed the normal model by using a GMM. These results

suggest that using a DNN for the normal model would be better
than using a GMM.

C. Verification Experiment in a Real Environment

We conducted three verification experiments to test whether
anomalous sounds in real environments can be detected. The
target equipment and experimental conditions were as follows:

� Stereolithography 3D-printer: We collected an actual
collision-type anomalous sound. Two hours worth of nor-
mal sounds were collected as training data. The anoma-
lous sound was caused by collision of the sweeper and the
formed object. The 3D-printer stopped 5 minutes after this
anomalous sound occurred.

� Air blower pump: We collected an actual collision-type
anomalous sound. Twenty minutes worth of normal sounds
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were collected as training data. The anomalous sound was
caused by blockage by a foreign object stuck in the air
blower duct. This anomaly does not lead to immediate
machine failure; however, it should be addressed.

� Water pump: We collected an actual sustained type anoma-
lous sound. Three hours worth of normal sounds were col-
lected as training data. Above 4 kHz, the anomalous sound
has a larger amplitude than that of the normal sounds, and
it was due to wearing of the bearings. An expert conducting
a periodic inspection diagnosed that the bearings needed
to be replaced.

All anomalous and normal sounds were recorded at a 16-kHz
sampling rate. The other conditions were the same as in the
objective experiment. The FNN architecture was used for the
anomaly score calculation.

Figure 10 shows the spectrogram (top) and anomaly scores
of each method (bottom). The red dashed line in each of the
bottom figures is the threshold φ0.001 , which is defined such
that the FPR of the training data was 0.1%. Anomalous sounds
are enclosed in white dotted boxes in the spectrograms, and the
false-positive detections are circled in purple in the anomaly
score graphs. Since the anomalous sound of the water pump is a
sustained sound, for ease of comparison, 60 seconds of normal
sounds and 60 seconds of anomalous sound are concatenated
in each figure. In addition, the anomalous sounds are enlarged,
since the spectrum changes due to the anomalous sounds of the
3D-printer and water pump are difficult to see.

All of the results for NP-PROP and AUC-PROP indicate that
anomalous sounds were clearly detected; the anomaly scores of
the anomalous sounds evidently exceeded the threshold, while
those of the normal sounds were below the threshold. Mean-
while, in the results of AE and VAE, although the anomaly scores
of all anomalous sounds exceeded the threshold, false-positives
were also observed in the results for the water pump. In addi-
tion, although AE’s anomaly score of the 3D-printer and VAE’s
anomaly score of the air blower pump exceeded the threshold,
the excess margin of the anomaly score is small and it is difficult
to use a higher threshold for reducing FPR. This problem might
be because that the objective functions do not work to increase
anomaly scores for anomalous sounds, and thus, the encoder and
decoder reconstructed not only normal sounds but also anoma-
lous sounds. In VAEGAN, the anomaly scores of the 3D-printer
and the water pump exceeded the threshold, whereas those of the
air blower pump did not exceed the threshold. The reason might
be that when the generator precisely generates “fake” normal
sounds, the normal model is trained to increase the anomaly
scores of normal sounds. Therefore, the threshold of the air
blower pump, which is defined as the FPR of normal training
data becoming 0.001, takes a very high value. These verifica-
tion experiments suggest that the proposed method is effective
at identifying anomalous sounds under practical conditions.

V. CONCLUSIONS

This paper proposed a novel training method for
unsupervised-ADS using an AE for detecting unknown anoma-
lous sound. The contributions of this research are as follows:
1) by considering outlier-detection-based ADS as a statistical

hypothesis test, we defined an objective function that builds
upon the Neyman-Pearson lemma [29]. The objective function
increases the TPR under a low FPR condition, which is often
used in practice. 2) By considering the set of anomalous sounds
to be complement to the set of normal sounds, we formulated
a rejection sampling algorithm to simulate anomalous sounds.
Experimental results showed that these contributions enabled
us to construct an ADS system that accurately detects unknown
anomalous sounds in three real environments.

In future, we will tackle the following remaining issues of
ADS systems in real environments:

1) Extension to a supervised approach to detect both known
and unknown anomalous sounds: while operating an ADS sys-
tem in a real environment, we may occasionally obtain partial
samples of anomalous sounds. While it might be better to use the
collected anomalous sounds in training, the cross-entropy loss
would not be the best way to detect both known and unknown
anomalous sounds [39]. In addition, if we calculate the TPR
in JNP(Θ) and/or JAUC(Θ) only using a part of the anoma-
lous sounds, this training does not guarantee the performance
for unknown anomalous sounds. Thus, we should develop a
supervised-ADS method that can also detect unknown anoma-
lous sounds; a preliminary study on this has been published
in [25].

2) Incorporating machine or context-specific knowledge: to
simplify the experiments, we used the simple detection rule
described in Section III-D. However, for the anomaly alert,
it would be better to use machine/context-specific rules, such
as modifying or smoothing the detection result from the raw
anomaly score. Thus, it will be necessary to develop rules or a
trainable post-processing block to modify the anomaly score.

APPENDIX

A. List of Symbols

1. Functions

J Objective function.
A Anomaly score.
H Binary decision.
E Encoder of autoencoder.
D Decoder of autoencoder.
G Generator.
N Gaussian distribution.
E[·]x Expectation with respect to x.
∇x(·) Gradient with respect to x.
tr(·) Trace of matrix.
D(A||B) Kullback-Leibler divergence between A and B.
‖ · ‖2 L2 norm.
�·� Flooring function.

2. Parameters

Θ Parameters of normal model.
ΘE Parameters of encoder.
ΘD Parameters of decoder.
ΘG Parameters of generator.
Υ Parameters of Gaussian mixture model.
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3. Variables

x Input vector.
y State variable.
z Latent vector.
φ Threshold for anomaly score.
ρ Desired false positive rate.
µ Mean vector.
Σ Covariance matrix.
w Mixing weight of Gaussian mixure model.
K Number of gaussian mixtures.
T Number of time frames of observation.
N Number of training samples.
M Minibatch size.
Q Dimension of input vector.
R Dimension of latent vector.
λ Step size for gradient method.
C Context window size.
� Temporary variable of anomaly score.
V Anomaly decision score for one audio clip.

4. Notations

τ Time-frame index of observation.
n Index of training sample.
k Index of Gaussian distribution.
(·)� Transpose of matrix or vector.
(·)(u) Variable of normal sound.
(·)(a) Variable of anomalous sound.
(·)(v ) Variable of various sound.
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