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End-to-End Waveform Utterance Enhancement for
Direct Evaluation Metrics Optimization by Fully

Convolutional Neural Networks
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Abstract—Speech enhancement model is used to map a noisy
speech to a clean speech. In the training stage, an objective function
is often adopted to optimize the model parameters. However, in the
existing literature, there is an inconsistency between the model op-
timization criterion and the evaluation criterion for the enhanced
speech. For example, in measuring speech intelligibility, most of the
evaluation metric is based on a short-time objective intelligibility
(STOI) measure, while the frame based mean square error (MSE)
between estimated and clean speech is widely used in optimizing
the model. Due to the inconsistency, there is no guarantee that the
trained model can provide optimal performance in applications. In
this study, we propose an end-to-end utterance-based speech en-
hancement framework using fully convolutional neural networks
(FCN) to reduce the gap between the model optimization and the
evaluation criterion. Because of the utterance-based optimization,
temporal correlation information of long speech segments, or even
at the entire utterance level, can be considered to directly optimize
perception-based objective functions. As an example, we imple-
mented the proposed FCN enhancement framework to optimize
the STOI measure. Experimental results show that the STOI of a
test speech processed by the proposed approach is better than con-
ventional MSE-optimized speech due to the consistency between
the training and the evaluation targets. Moreover, by integrating
the STOI into model optimization, the intelligibility of human sub-
jects and automatic speech recognition system on the enhanced
speech is also substantially improved compared to those generated
based on the minimum MSE criterion.

Index Terms—Automatic speech recognition, fully convolutional
neural network, raw waveform, end-to-end speech enhancement,
speech intelligibility.
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I. INTRODUCTION

R ECENTLY, deep learning based spectral mapping or mask
prediction frameworks for speech enhancement have been

proposed and extensively investigated [1]–[30]. Although they
have been demonstrated to outperform conventional enhance-
ment approaches, there is still a room for further improvement.
For example, the objective function used for optimization in
the training stage, typically the mean squared error (MSE) [31]
criterion, is different from the human perception-based eval-
uation metrics. Formulating consistent training objectives that
meet specific evaluation criteria has always been a challenging
task for signal processing (generation). Since evaluation met-
rics are usually highly correlated to human auditory perception,
optimizing their scores directly may further improve the per-
formance of enhancement model, especially for the listening
test. Therefore, our goal of this study is to solve the mismatch
between the objective function and the evaluation metrics as
shown in Fig. 1.

For human perception, the primary goal of speech enhance-
ment is to improve the intelligibility and quality of noisy speech
[32]. To evaluate these two metrics, perceptual evaluation of
speech quality (PESQ) [33] and short-time objective intelligi-
bility (STOI) [34] have been proposed and used as objective
measures by many related studies [1]–[5], [10]–[17]. However,
most of the studies did not use these two metrics as the objective
function for optimizing their models. Instead, they simply mini-
mized the MSE between clean and enhanced features. Although
some research [10], [11] have introduced human auditory per-
ception into the objective function, these targets are still different
from the final evaluation metrics. Optimizing a substitute ob-
jective function (e.g., MSE) does not guarantee good results for
the true targets. This problem is discussed and some detailed
examples are provided in Section III.

The reasons for not applying the evaluation metrics as objec-
tive functions directly may be the complicated computation and
the need for whole (clean and processed) utterance in order to
accomplish the evaluation. Usually, conventional feed-forward
deep neural networks (DNNs) [1] enhance noisy speech in a
frame-wise manner due to restrictions of the model structures.
In other words, during the training process, each noisy frame
is individually optimized (or some may include context infor-
mation). On the other hand, recurrent neural networks (RNNs)
and long short-term memory (LSTM) networks can treat an
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Fig. 1. Mismatch between training objective function and evaluation metrics
which are usually highly correlated to human perception.

utterance as a whole and have been shown to outperform DNN-
based speech enhancement models [9], [24]–[28]. For example,
Hershey et al. [35] combined LSTM and global K-means on
the embeddings of the whole utterance. Although LSTM may
also be suitable for solving the mismatch issue between the
evaluation metrics and the employed objective function, in this
study, we apply the fully convolutional neural network (FCN)
to perform speech enhancement in an utterance-wise manner.

An FCN model is very similar to a conventional convolutional
neural network (CNN), except that the top fully connected layers
are removed [36]. Therefore, it only consists of convolutional
layers, and hence the local feature structures can be effectively
preserved with a relatively small number of parameters. Through
this property, waveform-based speech enhancement by FCN
was proposed, and it achieved considerable improvement when
compared to DNN-based models [37]. Here, we apply another
property of FCN to achieve utterance-based enhancement, even
though each utterance has a different length. The reason that
DNN and CNN can only process fixed-length inputs [38] is
that the fully connected layer is indeed a matrix multiplication
between the weight matrix and outputs of the previous layer.
Because the shape of the weight matrix is fixed when the model
structure (number of nodes) is decided, it is infeasible to perform
multiplication on non-fixed input length. However, the filters in
convolution operations can accept inputs with variable lengths.

We mainly follow the framework established in [37] to con-
struct an utterance-based enhancement model. Based on this
processing structure, we further utilize STOI as our objective
function. There are three reasons why we only focus on optimiz-
ing STOI in this study. First, the computation of PESQ is much
more complicated than STOI. In fact, some functions (e.g., the
asymmetry factor for modeling the asymmetrical disturbance) in
PESQ computation are non-continuous, so the gradient descent-
based optimization cannot be directly applied [39] (this prob-
lem can be solved by substituting a continuous approximation
function for the non-continuous function or by reinforcement
learning, as presented in [40]). Second, improving speech in-
telligibility is often more challenging than enhancing quality
[41], [42]. Because the minimum MSE criterion used in most
conventional learning algorithms is not designed to directly im-
prove intelligibility, the STOI based optimization criterion is
expected to perform better. Third, some researches [43], [44]

have shown that the correlation coefficient (CC) between the
improvement in word error rate (WER) of ASR and the im-
provement in STOI is higher than other objective evaluation
scores (e.g., PESQ). Their findings may suggest that a speech
enhancement front-end designed with the consideration of both
MSE and STOI may achieve better ASR performance than those
with the consideration of MSE only. Please also note that the
proposed utterance-based FCN enhancement model can handle
any kind of objective function from a local time scale (frame)
to a global time scale (utterance). More specifically, our model
can directly optimize the final evaluation criterion, and the STOI
optimization demonstrated in this paper is just one example.

Experimental results on speech enhancement show that in-
corporating STOI into the objective function can improve not
only the corresponding objective metric but also the intelligibil-
ity of the human subjects. In addition, it can also improve the
robustness of ASR under noisy conditions, which is particularly
important for real-world hands-free ASR applications, such as
human-robot interactions [45].

The rest of the paper is organized as follows. Section II intro-
duces the proposed FCN for utterance-based waveform speech
enhancement. Section III details the optimization for STOI.
The experimental results are evaluated in Section IV. Finally,
Section V presents our discussion, and this paper is concluded
in Section VI.

II. END-TO-END WAVEFORM BASED SPEECH ENHANCEMENT

In addition to frame-wise processing, the conventional DNN-
based enhancement models have two potential limitations. First,
they focus only on processing the magnitude spectrogram, such
as log-power spectra (LPS) [1], and leave the phase in its origi-
nal noisy form [1]–[6]. However, several recent studies have re-
vealed the importance of phase to speech quality when speech is
resynthesized back into time-domain waveforms [26], [46], [47].
Second, a great deal of pre-processing (e.g., framing, discrete
Fourier transform (DFT)) and post-processing (e.g., overlap-
add method, inverse discrete Fourier transform) are necessary
for mapping between the time and frequency domains, thus
increasing the computational load.

Although some recent studies have taken the phase com-
ponents into consideration using complex spectrograms [12]–
[14], these methods still need to transform the waveform into
the frequency domain. To solve the two issues listed above,
waveform-based speech enhancement by FCN was proposed
and achieved considerable improvements, compared to the LPS-
based DNN models [37]. In fact, other waveform enhancement
frameworks based on generative adversarial networks (GANs)
[48] and WaveNet [49], [50] were also shown to outperform
conventional models. Although most of these methods have al-
ready achieved remarkable performance, they still process the
noisy waveforms in a frame-based (or chunk-based) manner. In
the meanwhile, the final evaluation metrics are still not applied
as the objective functions to train their models.

A. FCN for Waveform Enhancement

As introduced in Introduction section, the FCN only consists
of convolutional layers; hence, the local structures of features
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Fig. 2. Utterance-based raw waveform enhancement by FCN.

can be effectively preserved with a relatively small number of
weights. In addition, the effect of convolving a time-domain
signal, x(t), with a filter, h(t), is equivalent to multiplying its fre-
quency representation, X(f), with the frequency response H(f)
of the filter [51]. This provides some theoretical bases for
FCN-based speech waveform generation.

The characteristics of a signal represented in the time do-
main are very different from those in the frequency domain.
In the frequency domain, the value of a feature (frequency
bin) represents the energy of the corresponding frequency
component. However, in the time domain, a feature (sample
point) alone does not carry much information; it is the rela-
tion with its neighbors that represents the concept of frequency.
Fu et al. pointed out that this interdependency may make DNN
laborious for modeling waveforms, because the relation between
features is removed after fully connected layers [37]. On the
other hand, because each output sample in FCN depends locally
on the neighboring input regions [52], the relation between fea-
tures can be well preserved. Therefore, FCN is more suitable
than DNN for waveform-based speech enhancement, which has
been confirmed by the experimental results in [36].

B. Utterance-Based Enhancement

In spite of the fact that the noisy waveform can be successfully
denoised by FCN [37], it is still processed in a frame-wise
manner (each frame contains 512 sample points). In addition
to the problem of a greedy strategy [53], this also makes the
convolution results inaccurate because of the zero-padding in
the frame boundary. In this study, we apply another property
of FCN to achieve utterance-based enhancement, even though
different utterances may have different lengths. Since all the
fully connected layers are removed in FCN, the length of input
features does not have to be fixed for matrix multiplication.
On the other hand, the filters in the convolution operations can
process inputs with different length. Specifically, if the filter
length is l and the length of input signal is L (without padding),
then the length of the filtered output is L − l + 1. Because FCN

only consists of convolutional layers, it can process the whole
utterance without pre-processing into fixed-length frames.

Fig. 2 shows the structure of overall proposed FCN for
utterance-based waveform enhancement, where Filter_m_n rep-
resents the nth filter in layer m. Each filter convolves with all the
generated waveforms from the previous layer and produces one
further filtered waveform utterance. (Therefore, filters have an-
other dimension in the channel axis.) Since the target of (single
channel) speech enhancement is to generate one clean utterance,
there is only one filter, Filter_M_1, in the last layer. Note that
this is a complete end-to-end (noisy waveform utterance in and
clean waveform utterance out) framework, and there is no pre-
or post-processing needed.

III. OPTIMIZATION FOR SPEECH INTELLIGIBILITY

Several algorithms have been proposed to improve speech
intelligibility based on signal processing techniques [54]–[56].
However, most of these algorithms focus on the applications in
communication systems or multi-microphone scenarios, rather
than in single channel speech enhancement, which is the main
target of this paper. In addition to solving the frame boundary
problem caused by zero-padding, another benefit of utterance-
based optimization is the ability to design an objective function
that is used for the whole utterance. In other words, each utter-
ance is treated as a whole so that the global optimal solution (for
the utterance) can be more easily obtained. Before introducing
the objective function used for speech intelligibility optimiza-
tion, we first show that only minimizing the MSE between clean
and enhanced features may not be the most suitable target due
to the characteristics of human auditory perception.

A. Problems of Applying MSE as an Objective Function

One of the most intuitive objective functions used in speech
enhancement is the MSE between the clean and enhanced
speech. However, MSE simply compares the similarity between
two signals and does not consider human perception. For exam-
ple, Loizou and G. Kim pointed out that MSE pays no attention
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Fig. 3. An enhanced speech with lower MSE does not guarantee a better performance in evaluation. The upper row shows the case in the frequency domain,
where the MSE is measured between a clean LPS and an enhanced LPS. The lower row shows the case in the time domain, where the MSE is measured between a
clean waveform and an enhanced waveform.

to positive or negative differences between the clean and esti-
mated spectra [41], [42]. A positive difference would signify at-
tenuation distortions, while a negative spectral difference would
signify amplification distortions. The perceptual effect of these
two distortions on speech intelligibility cannot be assumed to
be equivalent. In other words, MSE is not a good performance
indicator of speech, and hence it is not guaranteed that better-
enhanced speech can be obtained by simply minimizing MSE.
The upper row of Fig. 3 shows an example of this case in the
frequency domain. Although the MSE (between clean LPS and
enhanced LPS) of enhanced speech in Fig. 3(b) is lower than
that in Fig. 3(c), its performance (in terms of STOI, PESQ, and
human perception) is worse than the latter. This is because the
larger MSE in Fig. 3(c) results from the noisy region (high-
lighted in the black rectangle), which belongs to silent regions
of the corresponding clean counterpart and has limited effects
on the STOI/PESQ estimation. On the other hand, the spectro-
gram in Fig. 3(b) is over-smoothing, and details of the speech
components are missing. As pointed out in [48], the prediction
results of minimizing MSE usually bias towards an average of all
the possible predictions. The two spectrograms are actually ob-
tained from the same model but with a different training epoch.
Fig. 3(b) is from an optimal training epoch by early stopping
[57] while Fig. 3(c) comes from an “overfitting” model due to
overtraining. Note that here we use double quotes to emphasize
that this overfitting is relative to the MSE criterion but not to

our true targets of speech enhancement. The above discussion
implies that sometimes a larger MSE in the optimization process
can produce speech sounds more similar to the clean version.1

Although the waveform-based FCN enhancement model in
[37] is optimized with an MSE objective function, it is also
not the best target for the time domain waveform because the
relation between the MSE value and human auditory percep-
tion is still not a monotonic function. For example, as shown in
Fig. 4, it is difficult for people to distinguish between the nega-
tive version and an amplitude shifted version of a waveform by
listenting, although the MSE between them is very large. This
also verifies the argument made in Section II-A that sample
point itself does not carry much information; it is the relation
with its neighbors that represent the concept of frequency. The
lower row of Fig. 3 also shows a real example in the time domain
in which an enhanced speech with a lower MSE (between the
clean and enhanced waveforms) does not guarantee a better per-
formance. In summary, we argue that it is not guaranteed a good
performance for human auditory perception can be obtained by
only minimizing MSE.

1We observe that this is not a single special case. A model that yields lower
average MSE scores on the whole data set may not guarantee to give higher
STOI and PESQ scores. Please note that, the experimental results reported in
Section IV followed the common machine learning strategy that the optimized
model is the one which optimizes the employed objective function.
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Fig. 4. The original waveform, its negative version, and its amplitude shifted
version sound completely the same to humans, but the MSE between the sample
points of these sounds is very large.

B. Introduction of STOI

To overcome the aforementioned problem of MSE, here we
introduce an objective function, which considers human audi-
tory perception. The STOI score is a prevalent measure used
to predict the intelligibility of noisy or processed speech. The
STOI score ranges from 0 to 1, and is expected to be mono-
tonically related to the average intelligibility of various listen-
ing tests. Hence, a higher STOI value indicates better speech
intelligibility.

STOI is a function of the clean and degraded speech, and
the overall computational process is illustrated as in Fig. 5. The
calculation of STOI includes 5 major steps, briefly described as
follows:

1) Removing silent frames: Since silent regions do not con-
tribute to speech intelligibility, they are removed before
evaluation.

2) Short-time Fourier transform (STFT): Both signals are
TF-decomposed in order to obtain a representation similar
to the speech representation properties in the auditory
system. This is obtained by segmenting both signals into
50% overlapping Hann-windowed frames, with a length
of 256 samples, where each frame is zero-padded up to
512 samples.

3) One-third octave band analysis: This is performed by
simply grouping DFT-bins. In total, 15 one-third octave
bands are used, where the lowest center frequency is set to
150 Hz and the highest one-third octave band has a center-
frequency of ∼4.3 kHz. The following vector notation is
used to denote the short-time temporal envelope of the
clean speech:

xj,m = [Xj (m − N + 1) , Xj (m − N + 2) ,

. . . Xj (m)]T (1)

where X ∈ R15∗M is the obtained one-third octave band,
M is the total number of frames in the utterance, m is
the index of the frame, j ∈ {1, 2, . . . 15} is the index of
the one-third octave band, and N = 30, which equals

an analysis length of 384 ms. Similarly, x̂j,m denotes the
short-time temporal envelope of the degraded speech.

4) Normalization and clipping: The goal of the normaliza-
tion procedure is to compensate for global level differ-
ences, which should not have a strong effect on speech
intelligibility. The clipping procedure ensures that the
sensitivity of the STOI evaluation towards one severely
degraded TF-unit is upper bounded. The normalized and
clipped temporal envelope of the degraded speech is de-
noted as x̃j,m .

5) Intelligibility measure: The intermediate intelligibility
measure is defined as the correlation coefficient between
the two temporal envelopes:

dj,m =

(
xj,m − μxj , m

)T (
x̃j,m − μx̃j , m

)
∥
∥xj,m − μxj , m

∥
∥

2

∥
∥x̃j,m − μx̃j , m

∥
∥

2

(2)

where ‖ · ‖2 represents the L2-norm, and μ(.) is the sam-
ple mean of the corresponding vector. Finally, STOI is
calculated as the average of the intermediate intelligibil-
ity measure over all bands and frames:

STOI =
1

15M

∑

j,m

dj,m (3)

The calculation of STOI is based on the correlation coef-
ficient between the temporal envelopes of the clean and the
noisy/processed speech for short segments (e.g., 30 frames).
Therefore, this measure cannot be optimized by a traditional
frame-wise enhancement scheme. For a more detailed setting of
each step, please refer to [34].

C. Maximizing STOI for Speech Intelligibility

Although the calculation of STOI is somewhat complicated,
most of the computation is differentiable, and thus it can be em-
ployed as the objective function for our utterance optimization
as shown in Fig. 6. Therefore, the objective function that should
be minimized during the training of FCN can be represented by
the following equation.

O = − 1
U

∑

u

stoi (wu (t) , ŵu (t)) (4)

where wu (t) and ŵu (t) are the clean and estimated utterance
with index u, respectively, and U is the total number of training
utterances. stoi(.) is the function that includes the five steps
stated in previous section, which calculates the STOI value of
the noisy/processed utterance given the clean one. Hence, the
weights in FCN can be updated by gradient descent as follows:

f
(n+1)
i,j,k = f

(n)
i,j,k +

λ

B

B∑

u=1

∂stoi (wu (t), ŵu (t))
∂ŵu (t)

∂ŵu (t)

∂f
(n)
i,j,k

(5)

Where f
(n+1)
i,j,k is the i-th layer, j-th filter, k-th filter coefficient in

FCN. n is the index of the iteration number, B is the batch size
and λ is the learning rate. Note that the first term in summation
depends on STOI function only. We use Keras [58] and Theano
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Fig. 5. Calculation of STOI is based on the correlation coefficient between the temporal envelopes of the clean and noisy/processed speech for short segments
(e.g., 30 frames).

Fig. 6. The STOI computation function (Fig. 5) is cascaded after the proposed
FCN model (Fig. 2) as the objective function.

[59] to perform automatic differentiation, without the need of
explicitly computing the gradients of the cost function.

IV. EXPERIMENTS

In the experiments, we prepared three data sets to evaluate
the performance of different enhancement models and objective
functions. The first was the TIMIT corpus [60] so that the results
presented here could also be compared to the frame-based FCN
as reported in [37]. The second data set was the Mandarin ver-
sion of the Hearing in Noise Test (MHINT) corpus [61], which
is suitable for conducting listening test. The last corpus was
the 2nd CHiME speech separation and recognition challenge
(CHiME2) medium vocabulary track database [62], which is a
more difficult challenge because it contains both additive and
convolutive noise. We presented the FCN model structure used
in these sets of experiments in Fig. 7. Note that the frame-based
FCN has the same model structure as the utterance-based FCN,
except that the input is a fixed-length waveform segment (512

Fig. 7. The FCN structure used in this paper. In the TIMIT data set, we use
K = 5 and F = 15 as used in [37]. In the MHINT and CHiME2 data sets,
we use K = 7 and F = 30.

sample points). The comparison of frame-based FCN and LPS-
based DNN were reported in [37].

A. Experiment on the TIMIT Data Set

In this set of experiments, the utterances from the TIMIT
corpus were used to prepare the training and test sets. For the
training set, 600 utterances were randomly selected and cor-
rupted with five noise types (Babble, Car, Jackhammer, Pink,
and Street) at five SNR levels (−10 dB, −5 dB, 0 dB, 5 dB, and
10 dB). For the test set, we randomly selected another 100 ut-
terances (different from those used in the training set). To make
the experimental conditions more realistic, both the noise types
and SNR levels of the training and test sets were mismatched.
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TABLE I
PERFORMANCE COMPARISON OF THE TIMIT DATA SET WITH RESPECT TO

STOI AND PESQ

Thus, we adopted three other noise signals: white Gaussian
noise (WGN), which is a stationary noise, and an engine noise
and a baby cry, which are non-stationary noises, using another
five SNR levels (−12 dB, −6 dB, 0 dB, 6 dB, and 12 dB) to
form the test set. All the results reported were averaged across
the three noise types. For more detailed experiment settings and
model structure, please refer to [37].

To evaluate the performance of speech intelligibility, the STOI
scores were used as a measure. We also presented PESQ for
speech quality evaluation to make a complete comparison with
the results shown in [37]. (Although this metric was not op-
timized in this study, we also reported the results for com-
pleteness). Table I presented the results of the average STOI
and PESQ scores on the test set for the frame-based FCN [37]
and the proposed utterance-based FCN with different objective
functions, where obj represented the objective function used
for training. Please note that all three models have the same
structure, and the only difference between them is the objective
function or input unit (frame or utterance). From this table, we
overserved that the utterance-based FCN (with MSE objective
function) could outperform frame-based FCN in terms of both
PESQ and STOI. This improvement mainly comes from solving
the frame boundary problem in the frame-based optimization.
When employing the STOI as the objective function, it could
considerably increase the STOI value (with an improvement of
0.04 on average), especially in low-SNR conditions. Although
the average PESQ decreased, the STOI was increased, which is
the main goal of this study.

B. Experiment on the MHINT Data Set

1) Experiment Setup: In this set of experiments, the MHINT
corpus was used to prepare the training and test sets. This corpus
includes 240 utterances, and we collected another 240 utterances
from the same speaker to form the complete task in this study.
Each sentence in the MHINT corpus consists of 10 Chinese
characters and is designed to have similar phonemic character-
istics among lists [61]. Therefore, this corpus is very suitable
for conducting listening test. Among these 480 utterances, 280
utterances were excerpted and corrupted with 100 noise types
[63], at five SNR levels (−10 dB, −5 dB, 0 dB, 5 dB, and

10 dB) as training set. Another 140 utterances and the remain-
ing utterances were mixed to form the test set and validation set
respectively. In this experiment, we still considered a realistic
condition, where both noise types and SNR levels of the training
and test sets were mismatched. Thus, we intentionally adopted
three other noise signals: engine noise, white noise, and street
noise, with another six SNR levels: −6 dB, −3 dB, 0 dB, 3 d B,
6 dB, and 9 dB to form the test set. All the results reported were
averaged across the three noise types.

As shown in Fig. 7, the FCN model had 8 convolutional layers
with zero padding to preserve the same size as the input. Except
for only 1 filter used in the last layer, each of the previous
layers consisted of 30 filters with a filter size of 55. There
were no pooling layers in the network as used in WaveNet [52].
We also trained a (257 dimension) LPS-based DNN model and
bidirectional long short-term memory (BLSTM) as baselines.
The DNN had 5 hidden layers with 500 nodes for each layer.
The BLSTM had 2 bidirectional LSTM layers, each with 384
nodes as in [26] followed by a fully connected output layer. Both
the model structure and number of training epoch were decided
based on monitoring the error of the validation set. Specifically,
we gradually increased the number of filters, filter size, and the
number of layers until the decrease of validation loss started to
saturate.

All the models employed leaky rectified linear units
(LeakyReLU) [64] as the activation functions for the hidden
layers. There was no activation function (linear) in the output
layer of DNN and BLSTM. The FCN applied hyperbolic tangent
(tanh) for output layer to restrict the range of output waveform
sample points between −1 to +1. Both DNN and FCN were
trained using Adam [65] optimizer with batch normalization
[66]. BLSTM was trained with RMSprop [67], which is usually
a suitable optimizer for RNNs.

During the STOI calculation, the first step is to exclude the
silent frames (with respect to the clean reference speech). In
other words, it does not take the non-speech regions into the
consideration of the STOI score calculation. In addition, unlike
minimizing MSE that has a unique optimal solution (i.e., for a
fixed target vector c, the unique solution that can minimize MSE
(equals to zero) is c itself) whilst maximizing the correlation co-
efficient used in (2) for intermediate intelligibility has multiple
optimal solutions (i.e., for a fixed target vector c, the solutions
that can maximize CC (equals to one) are S1 ∗ c + S2 . Where
S1 > 0 and S2 is an arbitrary constant). Therefore, if we do not
limit the solution space, the obtained solution may not be the one
we want. Specifically, S1 and S2 may make the STOI-optimized
speech sounds noisy as shown in the next section about Spec-
trogram Comparison. To process the regions not considered in
STOI and constrain the solution space (for noise suppression),
we also tried to incorporate both the MSE and STOI into the
objective function, which can be represented by the following
equation.

O =
1
U

∑

u

(
α

Lu
‖wu (t) − ŵu (t)‖2

2 − stoi (wu (t) , ŵu (t))
)

,

(6)
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TABLE II
PERFORMANCE COMPARISON OF THE MHINT DATA SET WITH RESPECT TO STOI AND PESQ

Fig. 8. Average objective evaluation scores for different models (including
the oracle IBM) on the MHINT data set.

where Lu is the length of wu (t) (note that each utterance has a
different length), and α is the weighting factor of the two targets.
Here, α was simply set to 100 to balance the scale of the two
targets. Since the first term can be seen as related to maximizing
the SNR of enhanced speech, and the second term is to maximize
the STOI, the two targets in (6) can also be considered as a multi-
metrics learning [14] for speech enhancement.

2) Experiment Results of Objective Evaluation Scores: The
STOI and PESQ scores of the enhanced speech under differ-
ent SNR conditions were presented in Table II. Furthermore,
we also reported the average segmental SNR improvement (SS-
NRI) [68], STOI and PESQ by different enhancement models
and oracle “ideal binary mask”(IBM) [69] (simply as a refer-
ence) in Fig. 8. Please note that the SSNRI in this figure is di-
vided by 10 to make different metrics have similar ranges. From
these results, we observed that BLSTM could considerably out-
perform the DNN baseline. For utterance-based enhancement
models, the proposed FCN (with MSE objective function) had
higher SSNRI and STOI scores with lower PESQ when com-
pared to BLSTM. Moreover, the number of parameters in FCN
was roughly only 7% and 23% to that in BLSTM and DNN re-

spectively. When changing the objective function of FCN from
MSE to STOI, the STOI value of the enhanced speech could
be considerably improved with a decreased PESQ score. This
might be because the FCN processed the STOI-undefined re-
gion (silent and high frequency regions) in an unsuitable way
(we can more easily observe this phenomenon by spectrograms
of the processed speech in the next section). Optimizing both
MSE and STOI simultaneously seemed to strike a good bal-
ance between speech intelligibility and quality, with PESQ and
SSNRI considerably improved and STOI marginally degraded
compared to STOI-optimized speech.

3) Spectrogram Comparison: Next, we presented the spec-
trograms of a clean MHINT utterance, the same utterance cor-
rupted by engine noise at −3 dB, and enhanced speeches by
BLSTM and FCN with different objective functions in Fig. 9.
Because the energy of speech components was less than that
of noise, the speech pattern was hardly identified, as shown in
Fig. 9(b). Therefore, how to effectively recover the speech con-
tent for improving intelligibility is the critical concern in this
case.

From Fig. 9(c), we observed that although BLSTM could
most effectively remove the background noise, it misjudged the
regions in the dashed black boxes as speech region. We found
that this phenomenon usually happened when input noisy SNR
was below 0 dB and became much more severe at −6 dB. This
misjudgment might be due to the recurrent property in LSTM
when noise energy was larger than speech. Next, when compar-
ing Figs. 9(c) and (d), the speech components in FCN enhanced
spectrogram seemed to be clearer although there were some
noise remains. This agreed with the results shown in Table II
that FCN had higher STOI and lower PESQ scores compared to
BLSTM. For STOI-optimized speech in Fig. 9(e), it could pre-
serve much more (low- to mid-frequency) speech components
compared to the noisy or MSE-optimized speech. However,
because of the lack of definition about how to process high fre-
quency parts (due to step 3 in the STOI evaluation and shown
in the dashed brown box) and silent regions (due to step 1 in the
STOI evaluation and shown in the dashed blue boxes), the opti-
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Fig. 9. Spectrograms of an MHINT utterance: (a) clean speech, (b) noisy
speech (engine noise at−3 dB) (STOI = 0.6470, PESQ = 1.5558), (c) enhanced
speech by BLSTM (STOI = 0.7677, PESQ = 1.7398), (d) enhanced speech
by FCN with MSE objective function (STOI = 0.7764, PESQ = 1.8532),
(e) enhanced speech by FCN with STOI objective function (STOI = 0.7958,
PESQ = 1.7191), and (f) enhanced speech by FCN with MSE+STOI objective
function (STOI = 0.7860, PESQ = 1.8843).

mized spectrogram looks noisy with high frequency components
missing. Specifically, the missing high frequency components
are attributed to the definition of STOI. As the highest one-third
octave band (in step 3) has a center-frequency equal to∼4.3 kHz
[34], the frequency components above this value do not affect
the estimation of STOI (i.e., whether this region is very noisy or
empty, the STOI value is not decreased). Therefore, FCN learned
not to make any effort on this high-frequency region and just
removed most of the components. As pointed out previously,
in addition to the silent regions being ignored, another reason
caused noisy results comes from the calculation of intermediate
intelligibility in (2), which is based on the correlation coefficient.
Since the correlation coefficient is a scale- and shift-invariant
measure, STOI concerns only the shape of (30-frames) temporal
envelopes instead of their absolute positions. (i.e., when the vec-
tor is shifted or scaled by a constant, the correlation coefficient
with another vector keeps unchanged). These two characteris-
tics were the main reasons for the decreased PESQ compared to
the MSE-optimized counterpart. The two aforementioned phe-
nomena of the STOI-optimized spectrogram could be mitigated

by also incorporating MSE into the objective function, as shown
in Fig. 9(f).

4) Analysis of Learned Filters: In this section, we analyzed
the 30 learned filters in the first layer of FCN, and their mag-
nitude frequency responses were illustrated in Fig. 10. Please
note that the horizontal axis in the figure is the index of the
filter, and we reordered the index according to the location of
the peak response for clear presentation. From this figure, it
could be observed that the pass-band of learned filters with
MSE objective function (Fig. 10(a)) almost covered the entire
frequency region (0–8 kHz). However, most of the pass-band
of the STOI-optimized filters (Fig. 10(b)) concentrated on the
frequency range below 4 kHz. This may be because the high
frequency components are not important for the estimation of
STOI. In fact, the energy of the frequency region above 4 kHz
occupied 31% of the entire range for the MSE-optimized filters.
However, in the case of STOI-optimized filters, the ratio was
only 21%, which implied that the high-frequency region was a
stop-band for those filters. Therefore, this explained the missing
high-frequency components in Fig. 9(e).

5) Listening Test: Although the intelligibility of noisy
speech can be improved by denoising autoencoder for cochlear
implant users [70], [71], this is usually not the case for speech
evaluated on people with normal hearing [41], [42]. Therefore,
the intelligibility improvement is still an open challenge even
for deep learning-based enhancement methods [22]. This sec-
tion shed some light on the possible solutions and reported the
listening test results of noisy, and FCN enhanced speech with
different objective functions with real subjects. Twenty normal
hearing native Mandarin Chinese subjects (sixteen males and
four females) aged 23–45 participated in the listening tests. The
same MHINT sentences used in the objective evaluations were
adopted in the listening test. Because real subjects were involved
in this set of experiments, the number of test sets is confined to
avoid biased results caused by listening fatigue [72] and ceiling
effects of speech recognition [73]. Thus, we decided to prepare
only two SNR levels (i.e., −3 and −6 dB), where intelligibility
improvements were most needed in our test set. Each subject
only participated in one SNR condition. In addition, we selected
the two relatively challenging noise types, namely engine and
street noises, to form the test set.

The experiments were conducted in a quiet environment in
which the background noise level was below 45 dB SPL. The
stimuli were played to the subjects through a set of Sennheiser
HD headphones at a comfortable listening level with our Speech-
Evaluation-Toolkit (SET).2 Each subject participated in a total of
8 test conditions: 1 SNR levels × 2 noise types × 4 processing
approaches—i.e., noisy, FCN (MSE), FCN (STOI), and FCN
(MSE+STOI). Each condition contained ten sentences, and the
order of the 8 conditions was randomized individually for each
listener. None of the ten sentences was repeated across the test
conditions. The subjects were instructed to verbally repeat what
they heard and were allowed to repeat the stimuli twice. The
character correct rate (CCR) was used as the evaluation metric
for speech intelligibility, which was calculated by dividing the

2Available at https://github.com/Dati1020/Speech-Evaluation-Toolkit
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Fig. 10. Magnitude frequency response of the learned filters in the first layer of utterance-based FCN. The filter index is reordered by the location of the peak
response for clear presentation. (a) Learned with the MSE objective function, and (b) learned with the STOI objective function.

number of correctly identified characters by the total number of
characters under each test condition. In addition to intelligibility,
we also evaluated the speech quality by mean opinion score
(MOS) tests. Specifically, after listening to each stimulus, the
subjects were also asked to rate the quality of the stimulus in a
five-point Likert scale score (1: Bad, 2: Poor, 3: Fair, 4: Good,
5: Excellent).

Fig. 11 illustrated the results of listening test for −3 dB and
−6 dB. We observed that although the quality of all the enhanced
speech could be improved compared to the noisy one, intelligi-
bility was not easy to be improved. This verifies two things. 1)
As stated in the Introduction section, improving speech intelli-
gibility is more challenging than enhancing quality [41], [42].
For example, the intelligibility of MSE-optimized speech is gen-
erally worse than noisy speech as reported in [22]. 2) Speech
intelligibility and quality are different aspects of speech. They
are related to each other, yet not necessarily equivalent [74].
Speech with poor quality can be highly intelligible [75] (e.g.,
only optimizing STOI), while, on the other hand, speech with
high quality may be totally unintelligible [76] (e.g., only opti-
mizing MSE). Although the quality of STOI-optimized speech
was worse than MSE-based one, its intelligibility was better.
This implies that the intelligibility model defined in STOI is
indeed helpful for persevering speech contents.

The results of optimizing MSE and STOI simultaneously
seem to acquire advantages from the two terms, and hence can
obtain the best performance in both intelligibility and quality.
We also found that the intelligibility improvement in −3 dB
SNR condition was very limited. This may be due to the fact
that there is not much room for improvement since the human
auditory system are quite robust to moderate noises (CCR∼80%
under this noisy condition). On the other hand, the intelligibility
improvement was statistical significant (p < 0.05) in the −6 dB
SNR condition.

6) ASR Experiments: We have demonstrated that the pro-
posed utterance-based FCN enhancement model could handle
any kind of objective functions. To further confirm the applica-
bility of the framework, we tested the speech enhancement on

Fig. 11. Average CCR and MOS scores of human subjects for (a) −3 dB and
(b) −6 dB.

the performance of ASR. Although the WER or character error
rate (CER) is widely used as an evaluation criterion, it is dif-
ficult to formulate the criterion in a specific objective function
for enhancement optimization. Several studies have shown that
speech enhancement can increase the noise-robustness of ASR
[9], [43], [77]–[82]. Some research [43], [44] has further shown
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Fig. 12. CER of Google ASR for noisy speech, DNN-based LPS enhancement
method, and (utterance-wise) FCN-based waveform enhancement models with
different objective functions. (The CER for clean speech is 9.84%)

that the CC between the improvement in WER of ASR and the
improvement in STOI is higher than other objective evaluation
scores (e.g., Moore et al. [43] showed that the CC can reach
to 0.79). Since we demand high accuracy noise-robust ASR in
real-world applications, a speech enhancement front-end which
considers both MSE and STOI may achieve better ASR perfor-
mance than simply MSE-optimized alternatives. Note that we
are not pursuing a state-of-the-art noise-robust ASR system; in-
stead we treat the ASR as an additional objective evaluation met-
ric. In this study, we took a well-trained ASR (Google Speech
Recognition) [83] to test speech recognition performance.

The same MHINT test sentences used in the objective eval-
uations were also adopted in the ASR experiment, and the re-
sults reported were averaged across the three noise types. The
CER of ASR for noisy speech, enhanced speech by LPS-based
DNN method, and waveform-based FCN enhancement mod-
els with different objective functions were shown in Fig. 12.
This figure provided the following four observations: 1) the
conventional DNN-based LPS enhancement method could only
provide CER improvement under low-SNR conditions. Its CER
was even worse than the noisy speech in the cases when SNR
was higher than 6 dB. 2) All the FCN enhanced speech sam-
ples could obtain lower CER compared to the noisy ones, and
the improvement at around 0 dB was the most obvious. 3) The
CER of STOI-optimized speech was worse than that of MSE-
optimized speech. This might be because the spectrogram of
STOI-optimized speech remain too noisy for ASR (compare
Fig. 9(d) and (e)). Furthermore, PESQ was decreased by chang-
ing the objective function from MSE to STOI (compare the 8th
to 11th columns in Table II). Although not as highly correlated
as the STOI case, the decrease of PESQ might also degrade
the ASR performance (the correlation coefficient between im-
provement in CER and the improvements in PESQ is 0.55 [43]).
Therefore, most of the CER reduction from increasing STOI
might be canceled out by the decreased PESQ. 4) As the results
of listening test, when incorporating both MSE and STOI into

the objective function of FCN, the CER could be considerably
reduced compared to the MSE-optimized model. This verified
that bringing STOI into objective function of speech enhance-
ment could also help ASR to identify the speech content under
noisy conditions.

Although this ASR experiment was tested on a trained sys-
tem, this is indeed more practical in many real-world applica-
tions where an ASR engine is supplied by a third-party. Our
proposed FCN enhancement model can simply be treated as
pre-processing to obtain a more noise-robust ASR.

In summary, although optimizing STOI alone only provides
marginal CER improvements, incorporating STOI with MSE as
a new objective function can obtain considerable benefits. This
again shows that the intelligibility model defined in STOI is
helpful for persevering speech contents. However, because STOI
does not consider non-speech regions and is based on CC in the
original definition, its noise suppression ability is not enough
for ASR applications. Therefore, optimizing STOI and MSE
simultaneously seems to strike a good balance between noise
reduction (by MSE term) and speech intelligibility improvement
(by STOI term).

C. Experiment on the CHiME-2 Data Set

Finally, we tested the proposed algorithm in a more chal-
lenging task. The noisy and reverberant CHiME2 dataset were
adopted to evaluate the effect of removing both additive and con-
volutive noise simultaneously. The reverberant and noisy signals
were created by first convolving the clean signals in the WSJ0-5k
corpus with binaural room impulse responses (BRIRs) and then
added in binaural recordings of genuine room noise at six differ-
ent SNR levels linearly spaced from −6 dB to 9 dB SNR levels.
The noises included a rich collection of sounds, such as children
talking, electronic devices, distant noises, background music,
and so on. There was a 7138-utterance training set (∼14.5h in
total), which included various noisy mixtures and speakers, a
2460 utterance development set (∼4.5h in total), which was de-
rived from 410 clean speech utterances, each mixed with a noise
signal at six different noise levels, and an evaluation set, which
included 1980 utterances (∼4h in total) derived from 330 clean
speech signals. The original clean utterances from the WSJ0-5k
were used as the output targets.

In this set of experiments, we used the same model structure
as that used in the MHINT experiment. The optimal training
epoch was decided by the development set. Fig. 13 illustrated
the average objective evaluation scores for the different mod-
els. From these results, we could first observe that both the
improvements of SSNR and PESQ were not so obvious com-
pared to the MHINT experiment because of the appearance of
convolutive noise. In addition, STOI optimization could also
achieve the highest STOI score for reverberant speech. Overall,
the performance trends of different models were similar to the
previous MHINT experiment, except that the PESQ score of
FCN (MSE) could also outperform BLSTM. Please note that
the mathematical model (convolution) for producing reverber-
ant speech is the same as single layer FCN without activation
function. Therefore, FCN may be more suitable to model rever-
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Fig. 13. Average objective evaluation scores for different models on the
CHiME2 data set.

beration; nevertheless, a more rigorous experiment is needed to
verify this, which will be our future work.

V. DISCUSSION

The main purpose of this study is to reduce the gap between
the model optimization and evaluation criterions for deep learn-
ing based speech enhancement systems. Based on our proposed
algorithm which takes the STOI as an optimization criterion,
the system can indeed improve speech intelligibility. However,
directly applying it as the only objective function seems to be
not good enough. This is mainly because of that STOI does not
define how silent and high frequency regions should be pro-
cessed; therefore, the STOI optimized speech may appear in
an unexpected way in these regions. Accordingly, the objective
function formed by combining MSE and STOI is a reasonable
solution. As confirmed from the experimental results of the lis-
tening test and ASR, optimizing MSE and STOI simultaneously
can obtain the best performance. In addition to the combination
of these two terms, we also designed a conditional objective
function, which assigns different loss in different regions. More
specifically, to reduce the influence of the MSE term on the
speech region, we only applied it in the silent regions instead
of the whole utterance. Hence, the objective function can be
represented as the following equation.

O =

{
α
|Si| ‖wu (t) − ŵu (t)‖2

2 , if t ∈ silent of wu (t)
−stoi (wu (t) , ŵu (t)) , (if t ∈ speech of wu (t))

,

(7)
where |Si| is the number of sample points in silent regions. We
put the second condition about STOI in parentheses because this
condition is already considered in the original STOI evaluation.
Unfortunately, preliminary experimental results show that this
conditional objective function does not work very well. Since
the target of the MSE term, wu (t), is usually close to zero (silent
region), the model only learns to scale down the weights (this
would not degrade the STOI term because the STOI computation
is based on CC as shown in (2)). Therefore, the output utterance
is a trivial solution similar to the STOI-optimized speech only
with very small energy.

The calculation of STOI seems only depend on the magni-
tude spectrogram and is not related to phase (hence waveform-
based model is not necessary). However, if we only focus on
optimizing magnitude spectrogram, the magnitude spectrogram
of the synthesized time-domain signal cannot keep optimality
[47], [84]. Hence, the phase should also be considered in the
optimization process or performing speech enhancement in the
waveform-domain directly. In summary, although we adopted
the STOI as the objective function, the model is optimized based
on the difference of enhanced and clean target waveforms. Ac-
cordingly, the optimization process considers magnitude spec-
trum and phase simultaneously.

In [85], Kolbæk et al. applied DNNs to optimize approximate-
STOI with several approximations on the original STOI defini-
tion. Possibly due to those approximations along with the limi-
tation of a short segment-based model, their method could not
outperform MSE-optimized systems. The present study, on the
other hand, intends to directly optimize STOI without any ap-
proximation by using a FCN utterance-based model. The benefit
of this utterance-based enhancement is that it can integrate the
long-term speech continuity property (determined by the con-
tinuous vocal tract movement in producing continuous speech
utterances). This continuity helps to improve the speech intel-
ligibility which could not be explored in frame-based enhance-
ment models even context features are used as inputs [17].

As showed in Fig. 6, our proposed utterance-based waveform
enhancement FCN model is flexible and can be easily extended
to other objective functions, from the local time scale (frame or
short segment) to the global time scale (long segment or utter-
ance), and from measures in the time domain to the frequency
domain. The STOI optimization demonstrated in this paper is
just one example. Specifically, the STOI function in Fig. 6 can
be replaced by another specific evaluation metrics (e.g., SNR,
SSNR or PESQ, etc.). When a new objective evaluation metric
is proposed, our model can be readily applied to optimize the
metrics, as long as every step in the evaluation metric is dif-
ferentiable (otherwise, a continuous approximation function is
needed).

Last but not least, the experimental results of listening test
and ASR confirm the importance of the objective function for
optimizing the model parameters. Although the model struc-
ture is fixed, changing the objective functions may induce very
different results. Currently, some evaluation metrics still not
perfectly reflect the human auditory perception while it is ex-
pectable that more accurate evaluation metrics will be proposed
in the future. By combining the proposed framework with more
accurate evaluation metrics, we hope the mismatch between the
training objective and human auditory perception can be effec-
tively reduced.

VI. CONCLUSION

This paper proposes a speech enhancement framework which
takes testing evaluation metrics in model parameter train-
ing. This is different from conventional methods which takes
un-consistent objectives in training and evaluations. In order
to solve the mismatch problem, we proposed an end-to-end
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utterance-based raw waveform speech enhancement system by
FCN architecture. Through the novel framework, several prob-
lems that exist in conventional DNN-based enhancement model
can be solved simultaneously. 1) The mismatch between the
true targets of speech enhancement and the employed objective
function can be solved by utterance-based waveform optimiza-
tion. 2) There is no need to map the time domain waveform
to the frequency domain for enhancing the magnitude spectro-
gram. Therefore, all the related pre- and post-processing can
be avoided. 3) Because the proposed model directly denoises
the noisy waveform, the phase information is not ignored. 4)
The discontinuity of enhanced speech observed in conventional
frame-based processing is solved by treating each utterance as
a whole. Since deep learning has a strong capacity to learn a
mapping function, we found that it is extremely important to
apply our real target as the objective function for optimization.
The STOI optimization shows its excellent connections to the
purpose of speech intelligibility improvement when it is for-
mulated into objective functions. By efficiently integrating this
type of objective functions in data-driven model learning, it is
possible to reveal real connections of physical acoustic features
with the complex perception quantities.
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[46] K. Paliwal, K. Wójcicki, and B. Shannon, “The importance of phase in
speech enhancement,” Speech Commun., vol. 53, pp. 465–494, 2011.

[47] J. Le Roux, “Phase-controlled sound transfer based on maximally-
inconsistent spectrograms,” Signal, vol. 5, 2011.

[48] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech enhancement
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