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Abstract—This paper presents new statistical methods of multi-
channel audio source separation based on unified source and spatial
models that, respectively, represent the generative process of latent
source spectrograms and that of observed mixture spectrograms.
One possibility of the source model is a factor model based on non-
negative matrix factorization that represents each time-frequency
(TF) bin as the weighted sum of basis spectra. Another possibility
is a mixture model inspired by latent Dirichlet allocation that ex-
clusively classifies each TF bin into one of basis spectra. Similarly,
the spatial model can either be a factor model that represents each
TF bin as the weighted sum of source spectra or a mixture model
that classifies each bin into one of those spectra. To unify these
models in a principled manner and incorporate prior knowledge
of a microphone array, we propose hierarchical Bayesian models of
all the source–spatial combinations (factor–factor, mixture–factor,
factor–mixture, and mixture–mixture models) and derive efficient
Gibbs sampling algorithms for posterior inference. Experimen-
tal results showed that the proposed unified models outperformed
the state-of-the-art method using only the spatial mixture model.
Among the four unified models, the spatial factor model tended to
work better than the spatial mixture model in exchange for larger
computational cost, and the choice of source models had a little
impact on the performance and computational cost.

Index Terms—Multichannel source separation, latent Dirichlet
allocation, nonnegative matrix factorization, Bayesian models.

I. INTRODUCTION

M ICROPHONE array processing forms the basis of com-
putational auditory scene analysis that aims to un-

derstand individual auditory events in a sound mixture. A
promising approach to multichannel source separation is to
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represent a hierarchical generative process of the time-frequency
spectrogram of an observed mixture signal by considering both
a source model representing a generative process of source spec-
trograms and a spatial model representing a mixing process of
those sources. There are two major kinds of probabilistic mod-
els that can be used for representing those generative processes.
One is a mixture model based on the sum of probability dis-
tributions used for describing random variables. The other is a
factor model based on the sum of random variables described
by probability distributions.

A typical approach to multichannel source separation is
to formulate a mixture model as a spatial model for time-
frequency (TF) clustering [1]–[8]. If the frequency components
of each source are sparsely distributed, as is often the case with
pitched sounds, the source spectrograms can be considered to
be disjoint with each other in most TF bins, i.e., one of the
sources is dominant at each bin. This assumption, called W-
disjoint orthogonality [1], is reasonable because the additivity
of source spectrograms does not hold exactly and at each TF
bin a loud sound masks smaller sounds. Under this assumption,
Otsuka et al. [8] proposed a Bayesian mixture model inspired
by latent Dirichlet allocation (LDA) [9] for classifying each TF
bin into one of sources at the same time as classifying each
source into one of directions. Such unified source separation
and localization can circumvent the permutation problem of
conventional frequency-domain separation methods such as in-
dependent component analysis (ICA) [10].

In single-channel source separation, a factor model called
nonnegative matrix factorization (NMF) has gained popularity
[11]. It approximates the power spectrogram of an observed
mixture signal as a low-rank matrix given by the product of a
basis matrix (a set of basis spectra) and an activation matrix (a
set of temporal activations). Multichannel extensions of NMF
using factor models as source and spatial models have recently
been proposed using both the low-rankness and spatial char-
acteristics of sources [12]–[17]. The complex spectrograms of
observed multichannel signals are modeled by basis spectra,
temporal activations, and full-rank or rank-1 spatial covariance
matrices. A Bayesian model was proposed to use prior knowl-
edge on a microphone array (e.g., impulse responses recorded
in an anechoic room) [17]. A further extension based on non-
parametric Bayesian modeling would be feasible to estimate the
number of sources as in [18].

In this paper we propose and evaluate unified Bayesian mod-
els corresponding to all the four combinations of source and
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TABLE I
COMBINATIONS OF SPATIAL MODELS AND SOURCE MODELS

Fig. 1. The hierarchical generative process underlying the proposed models.
The power spectrogram of each source signal is generated by a source model
represented as a mixture or factor model, and the complex spectrograms of
observed multichannel signals are generated by a spatial model represented as
a mixture or factor model.

Fig. 2. The generative process of the power spectrogram of each source k in
the source factor model. Each TF bin of the source spectrogram is given by the
sum of the L products of basis spectra and their activations.

spatial models (factor-factor [17], mixture-factor, factor-mixture
[19], and mixture-mixture models). Since multichannel source
separation is feasible by using only a spatial model (mixture [8]
or factor model), there are six variants shown in Table I. As il-
lustrated in Fig. 1, source power spectrograms are stochastically
generated based on a source model and observed mixture spec-
trograms are stochastically generated based on a spatial model.
Either a mixture or factor model can be used for formulating
a source or spatial model. Given the complex spectrograms of
observed multichannel signals, we try to solve the inverse prob-
lem to jointly estimate all the parameters of those models using
Gibbs sampling.

Figs. 2–5 illustrate the source and spatial models. In a source
factor model, the power spectrogram of each source is repre-
sented as the sum of rank-1 basis spectrograms (Fig. 2). In
a source mixture model, it is represented as a patchwork of
rank-1 basis spectrograms (Fig. 3). In a spatial factor model,
the spatial covariance matrix corresponding to each source is
given by the weighted sum of those corresponding to directions,
and the observed multichannel complex spectrogram is the sum

Fig. 3. The generative process of the power spectrogram of each source k in
the source mixture model. Each TF bin of the source spectrogram is given by
one of the L products of basis spectra and their activations.

Fig. 4. The generative process of the complex spectrograms of multichannel
signals in the spatial factor model. The spatial covariance matrix of each source
k is given by the weighted sum of D spatial covariance matrices corresponding
to different directions and the sum of the complex spectra of K sources is
observed at each TF bin.

Fig. 5. The generative process of the complex spectrograms of multichannel
signals in the spatial mixture model. The spatial covariance matrix of each
source k is given by one of D spatial covariance matrices corresponding to
different directions and one of the complex spectra of K sources is observed at
each TF bin.
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of source images1 (Fig. 4). In a spatial mixture model, the
spatial covariance matrix corresponding to each source is one
of those corresponding to directions, and the observed multi-
channel complex spectrogram is a patchwork of source images
(Fig. 5). We experimentally found that the spatial factor model
tended to work better than the spatial mixture model in exchange
for larger computational cost, and the choice of source models
had little impact on the performance and computational cost.

The rest of the paper is organized as follows: Section II re-
views related work on multichannel source separation in terms
of source and spatial modeling. Section III explains the four
proposed models based on source-spatial combinations and Sec-
tion IV derives Bayesian inference algorithms. Section V reports
the results of comparative experiments and Section VI summa-
rizes the key findings.

II. RELATED WORK

This section introduces conventional methods of audio source
separation using source models and/or spatial models.

A. Source Models

In single channel source separation without spatial informa-
tion, it is necessary to focus on some structural characteristics of
sources. One of the most popular methods is non-negative ma-
trix factorization (NMF) and various extensions of NMF have
recently been proposed [18], [20]. Assuming the low-rankness
of source power spectrograms, NMF approximates an observed
power spectrogram as the sum of products of basis spectra (spec-
tral templates of individual sources) and activations (temporal
volumes of those templates).

In the context of speech enhancement, robust principal com-
ponent analysis (RPCA) [21] and robust NMF (RNMF) [22]
have often been used. While NMF assumes the low-rankness of
all sources, RPCA and RNMF assume the sparseness of speech
sounds and the low-rankness of noise sounds. The observed
noisy spectrogram is decomposed into the sum of a sparse ma-
trix and a low-rank matrix corresponding to speech sounds and
noise sounds.

B. Spatial Models

In multichannel source separation, sounds are commonly sep-
arated by using spatial information such as the phase differences
between microphones. A conventional approach to multichan-
nel source separation is to estimate a linear unmixing filter that
decomposes the complex spectra of mixture signals into those
of source signals in the frequency domain [10], [23]–[27]. Mix-
ture signals are usually represented as the sum of source sig-
nals convolved with the impulse responses of the corresponding
source directions. This is equivalent to an instantaneous mixing
process in the frequency domain, i.e., the complex spectra of
mixture signals are the sum of source spectra multiplied by the
impulse-response spectra. Using such linearity between mix-
ture and source spectra, frequency-domain ICA [10] estimates

1The multichannel complex spectrogram of source signals captured by a
microphone array is called an image.

a linear unmixing filter for each frequency bin. The permutation
of separated source spectra, however, is not aligned between
different frequency bins. One way to resolve this permutation
ambiguity is to use the directions and inter-frequency correla-
tions of the sources [23]. IVA [24], [25] is an extension of ICA
that can jointly deal with all frequency components in a vectorial
manner. Several variants of beamformers based on a minimum
variance distortionless response (MVDR) [26] and generalized
eigenvalue decomposition (GEV) [27] have widely been used
for multichannel speech enhancement. MVDR puts a constraint
that the source signals are not distorted by linear filtering and
GEV maximizes the signal-to-noise ratio (SNR) at each TF bin.

Another popular approach to multichannel source separation
is nonlinear TF hard masking based on the sparseness (disjoint-
ness) of source spectrograms [1]–[8]. TF bins can be classified
by using the complex Gaussian mixture model [6]–[8]. The com-
plex Gaussian distribution uses the absolute phases and signal
energies of sources. The complex Watson mixture distribution is
used to describe the phase and level differences between micro-
phones [2]–[5]. If each TF bin is assigned to one of the sources
independently, the permutation ambiguity arises as in ICA. To
avoid this problem, Otsuka et al. [8] proposed a Bayesian mix-
ture method inspired by latent Dirichlet allocation (LDA) in
which each TF bin is exclusively assigned to one of the sources,
each of which is further exclusively assigned to one of the di-
rections. The impulse responses measured in an anechoic room
can be used as prior knowledge for joint source separation and
localization.

C. Integrated Source and Spatial Models

In multichannel extensions of NMF, the source model and
spatial models are both described as factor models [12]–[17],
i.e., the power spectrogram of each source signal is given by
the sum of products of basis spectra and their activations and
the complex spectrograms of observed multichannel signals
are given by the sum of those of propagated source signals.
Ozerov et al. [12] pioneered the use of NMF for multichan-
nel source separation, where the spatial covariance matrices
are restricted to rank-1 matrices and the EM or multiplicative
update (MU) algorithm is used for minimizing the cost func-
tion based on the Itakura-Saito (IS) divergence. This model
was extended to have full-rank spatial covariance matrices [13].
Sawada et al. [14] introduced partitioning parameters to have
a set of basis spectra shared by all sources and derived a
majorization-minimization (MM) algorithm. Nikunen and Vir-
tanen [15] proposed a similar model that represents the spatial
covariance matrix of each source as the weighted sum of all
possible direction-dependent covariance matrices and used the
MM algorithm for minimizing the cost function based on the Eu-
clidean distance. Kitamura et al. [16] modified Sawada’s model
by restricting spatial covariance matrices to rank-1 matrices,
resulting in a unified model of NMF and IVA.

Some studies have investigated a hybrid of factor and
mixture models corresponding to source and spatial models
(factor-mixture) [19], [28]. More specifically, the power spec-
trogram of each source signals is given by the sum of products
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of basis spectra and activations, and each TF bin of the complex
spectrograms of observed multichannel signals are given by one
of sources. Our main contribution is to investigate and exper-
imentally compare Bayesian versions of all the four combina-
tions of source and spatial models in terms of source separation
performance and computation time.

III. PROPOSED METHODS

In this section we formulate the four possible unified mod-
els (factor-factor, mixture-factor, factor-mixture, and mixture-
mixture models) because the source and spatial models can each
be represented as either a factor or mixture model.

A. Problem Specification

All signals are represented in the TF domain using short-time
Fourier transform (STFT). Suppose thatK sources are observed
withM microphones. Each TF bin of the complex spectrograms
of observed signals and that of the complex spectrograms of
source signals are defined as

xtf = [xtf 1 , . . . , xtfM ]T ∈ CM , (1)

ytf = [ytf 1 , . . . , ytfK ]T ∈ CK . (2)

Similarly, each TF bin of the complex spectrograms of the latent
signals corresponding to source k is defined as

xtf k = [xtf k1 , . . . , xtf kM ]T ∈ CM , (3)

Note that xtf km can be directly observed by microphone m at
time t and frequency f if only source k exists in a recording
environment. Given observed data {xtf }T ,Ft=1,f=1 , our goal is to

estimate {xtf k}T ,F,Kt=1,f=1,k=1 .

B. Source Models

We formulate two source models representing the generative
process of source power spectrograms λ = {λtf k}T ,F,Kt,f ,k=1 . λ is

generated using basis spectra W = {wklf }K,L,Fk,l,f=1 and activa-

tionsH = {hklt}K,L,Tk,l,t=1 .
1) Source Factor Model: The power spectrogram of each

source signal is decomposed into basis spectra and temporal
activations via low-rank factorization as follows:

λtf k =
L∑

l=1

wklf hklt , (4)

where wkl = [wkl1 , . . . , wklF ]T is the l-th basis spectrum of
source k and hkl = [hkl1 , . . . , hklT ]T is the activation of basis
l of source k at each time.

2) Source Mixture Model: The power spectrogram of each
source signal is decomposed into basis spectra, temporal activa-
tions, and binary masks. Assuming the sparseness of the power
spectrogram of each basis, one of the bases is considered to be
dominant at each TF bin as follows:

λtf k =
L∏

l=1

(wklf hklt)ut f k l , (5)

Fig. 6. The distribution of multichannel complex spectra {xtf k ∈ CM }Tt=1
of each source k in frequency f (M = 2 and K = 2). Each axis indicates one
of M channels, an ellipse indicates a spatial covariance matrix Af k , and an
arrow indicates the direction of a steering vector af k .

whereutf k = [utf k1 , . . . , utf kL ]T is a one-hot vector for binary
masking, i.e., utf kl takes 1 when basis l is selected (dominant)
as the frequency component of source k at time t and frequency
f and otherwise takes 0. We assumeutf k to follow a categorical
distribution as follows:

utf k |ψtk ∼ Categorical(ψtk ), (6)

where ψtk ∈ RL
+ is a parameter such that

∑L
l=1 ψtkl = 1.

C. Spatial Models

We formulate two spatial models representing the generative
process of observed spectrogramsX = {xtf }T ,Ft,f=1 . Assuming
an instantaneous mixing process in the frequency domain, the
observation xtf k is represented using a source spectrum ytf k ∈
C of source k at time t and frequency f and a steering vector
af k ∈ CM of source k at frequency f as follows:

xtf k = af kytf k . (7)

As in [8], [29], [30], we assume that ytf k to follow a zero-mean
complex Gaussian distribution as follows:

ytf k | λtf k ∼ NC(0, λtf k ), (8)

where λtf k is a power spectrum density of source k at time t and
frequency f . Using (7) and (8), the observation xtf k is found to
follow a multivariate complex Gaussian distribution as follows
(Fig. 6):

xtf k | λtf k ,Af k ∼ NC(0, λtf kAf k ), (9)

where Af k = af ka
H
f k + εI is a spatial covariance matrix of

source k at frequency f , ∗H denotes Hermitian conjugate, I is
the identity matrix, and ε > 0 is a small number to makeAf k a
positive definite matrix to avoid the degenerate distribution.
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Fig. 7. Factor modeling of multichannel complex spectra {xtf ∈ CM }Tt=1
in frequency f . Each spectrum xtf is stochastically generated from a Gaussian
distribution whose covariance matrix is the sum of spatial covariance matrices

given by
∑K

k=1 λtf kAf k .

1) Spatial Factor Model: Assuming that an observed spec-
trum at each TF bin is given by the sum (instantaneous mixture)
of latent source spectra, the observation xtf is given by

xtf =
K∑

k=1

xtf k =
K∑

k=1

af k ytf k . (10)

Using (9) and (10) and the reproductive property of the Gaussian
distribution, the observation xtf follows a complex Gaussian
distribution as follows (Fig. 7):

xtf | λ,A ∼ NC

(
0,

K∑

k=1

λtf kAf k

)
. (11)

To estimate the direction of each source k, the spatial covariance
matrixAf k is further factorized as follows [15]:

Af k =
D∑

d=1

rkdGf d , (12)

where Gf d is a spatial covariance matrix for direction d at
frequency f and rkd is the weight ofGf d inAf k . Although each
source k has a particular direction and rk = [rk1 , . . . , rkD ]T

should be a one-hot vector in theory, in factor modeling, rkd is
allowed to take continuous values. As in [15], source localization
can be performed by representing each source as the weighted
sum of different directions. We let R = {rkd}K,Dk,d=1 . Plugging
(12) into (11), xtf is represented as a unified factor model
given by

xtf | λ,R,G ∼ NC

(
0,

K∑

k=1

D∑

d=1

λtf k rkdGf d

)
. (13)

2) Spatial Mixture Model: If source spectra are sparse, only
one of the sources tends to be observed at each TF bin. To specify
the observed source at time t and frequency f , we define a one-
hot vector ztf = [ztf 1 , . . . , ztfK ]T such that ztf k takes 1 when
source k is observed at time t and frequency f and otherwise
takes 0. We let Z = {ztf }T ,Ft,f=1 . Using this assumption, the
observation xtf is given by

xtf =
K∏

k=1

x
zt f k
tf k =

K∏

k=1

(af k ytf k )zt f k . (14)

Fig. 8. Mixture modeling of multichannel complex spectra {xtf ∈ CM }Tt=1
in frequency f . Each spectrum xtf is stochastically generated from a mix-
ture of K Gaussian distributions whose covariance matrices are given by
{λtf kAf k }Kk=1 , respectively.

Equations (9) and (14) indicate thatxtf is generated by one ofK
Gaussian distributions, i.e.,xtf follows a mixture of multivariate
complex Gaussian distributions as follows (Fig. 8):

xtf | λ,A,Z ∼
K∏

k=1

NC(0, λtf kAf k )zt f k . (15)

To associateAf k with one ofD directions, (15) can be extended
to a unified mixture model given by

xtf | λ,G,Z,S ∼
K∏

k=1

D∏

d=1

NC(0, λtf kGf d)zt f k sk d , (16)

where sk = [sk1 , . . . , skD ]T is a one-hot vector such that skd
takes 1 when source k exists in direction d. We assume ztf and
sk to follow categorical distributions as follows:

ztf |πt ∼ Categorical(πt), (17)

sk |φ ∼ Categorical(φ), (18)

where πt ∈ RK
+ and φ ∈ RD

+ are parameters to be estimated
such that

∑K
k=1 πtk = 1 and

∑D
d=1 φd = 1.

D. Combinations of Source and Spatial Models

We formulate four unified models and explain its Bayesian
treatment based on prior distributions.

1) Factor–Factor Model: Both the source and spatial models
are formulated as factor models [17]. This model is an extension
of [13] that further decomposes the spatial covariance matrix of
each source into the weighted sum of direction-dependent ma-
trices for joint source separation and localization as in [15].
Note that [15] is based on the minimization of the Euclidean
distance while the other variants [12]–[14], [16], [17] including
our method are based on the minimization of the IS divergence
(the maximization of the complex Gaussian likelihood). In ad-
dition, our model is different from MNMF [14] and its rank-1
version [16] in that each source k is forced to have a unique set
of L basis spectra. Substituting (4) into (13), the likelihood of
the model parametersW ,H ,R, andG for the observation xtf
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is given by

xtf |W ,H ,R,G

∼ NC

(
0,

K∑

k=1

D∑

d=1

L∑

l=1

wklf hkltrkdGf d

)
. (19)

2) Mixture–Factor Model: The source model is represented
as a mixture model and the spatial model as a factor model.
Substituting (5) into (13), the complete likelihood of the model
parametersW ,H ,R, U ,G for xtf is given by

xtf |W ,H,R,U ,G

∼ NC

(
0,

K∑

k=1

D∑

d=1

(
L∏

l=1

(wklf hklt)ut f k l
)
rkdGf d

)
. (20)

In addition, the likelihood of ψ = {ψtk}T ,Kt=1,k=1 for the latent
variables U given by (6) should also be considered.

3) Factor–Mixture Model: As in [19], substituting (4) into
(16), the likelihood of the model parametersW ,H , Z, S, and
G for the observation xtf is given by

xtf |W ,H,Z,S,G

∼
K∏

k=1

D∏

d=1

NC

(
0,

L∑

l=1

wklf hkltGf d

)zt f k sk d

. (21)

In addition, the likelihoods of π = {πt}Tt=1 and φ for the la-
tent variables Z and S given by (17) and (18) should also be
considered.

4) Mixture–Mixture Model: Substituting (5) into (16), the
likelihood of the model parametersW ,H ,Z, S,U , andG for
the observation xtf is given by

xtf |W ,H ,Z,S,U ,G

∼
K∏

k=1

D∏

d=1

NC

(
0,

L∏

l=1

(wklf hklt)ut f k lGf d

)zt f k sk d

=
K∏

k=1

D∏

d=1

L∏

l=1

NC (0, wklf hkltGf d)
zt f k sk d ut f k l . (22)

In addition, the likelihoods of π, φ, and ψ for the latent vari-
ables Z,S, and U given by (17), (18), and (6) should also be
considered.

E. Bayesian Extensions

For mathematical convenience, we put conjugate prior dis-
tributions on model parameters as follows (some of the prior
distributions might not be used):

wklf ∼ Gamma(aw0 , b
w
0 ), (23)

hklt ∼ Gamma(ah0 , b
h
0 ), (24)

rkd ∼ Gamma(ar0 , b
r
0), (25)

Gf d ∼ IWC(ν0 ,G
0
f d), (26)

πt ∼ Dirichlet(aπ0 1K ), (27)

φ ∼ Dirichlet(aφ0 1D ), (28)

ψtk ∼ Dirichlet(aψ0 1L ), (29)

where a∗0 > 0, b∗0 > 0, ν0 > 0, G0
f d � 0 are hyperparameters

that should be set in advance. a∗0 and b∗0 denote the shape and
rate parameters of the gamma distribution, 1N denotes an N -
dimensional vector with all elements one, IWC indicates the
complex inverse Wishart distribution [31] given by

IWC(G|ν,G0) =
|G0 |ν exp(−tr(G0G−1))

πM (M−1)/2 |G|ν−M ∏M−1
m=0 Γ(ν −m)

,

(30)

where ν ≥M is a degree of freedom and G0 is a positive
definite matrix. To use prior knowledge about a microphone
array, steering vectors {g0

f d}Ff=1 are measured for each direction
d in an anechoic room andG0

f d is set asG0
f d = ν(g0

f d(g
0
f d)

H +
εI) such that Eprior[Gf d ] = g0

f d(g
0
f d)

H + εI , where ε > 0 is
a small number to makeG0

f d a positive definite matrix.
Note that source separation can be performed by using only

a spatial model given by (13) or (16) (called a NA-factor or
NA-mixture model). In this case, the power spectrum density
λtf k is not decomposed and the conjugate prior distribution is
put as follows:

λtf k ∼ Gamma(aλ
0 , b

λ
0), (31)

where aλ
0 > 0 and bλ0 > 0 are hyperparameters.

F. Source Separation

We estimate all parameters in a Bayesian manner and then re-
cover source signals using the estimated parameters. When the
spatial model is represented as a mixture model, sound sources
are restored by applying a soft TF mask corresponding to a
certain direction. Each mask is estimated using samples of la-
tent variables Z and S given by Gibbs sampling. Multichannel
source spectrum x̃tf d is restored as follows:

x̃tf d =
1
I

I∑

i=1

K∑

k=1

z
(i)
tf k s

(i)
kdxtf , (32)

where z(i)
tf k and s(i)

kd are the i-th samples of ztf k and skd and I is
the number of samples obtained by Gibbs sampling. The factor
1
I

∑I
i=1
∑K

k=1 z
(i)
tf k s

(i)
kd is a contribution of direction d at time t

and frequency f .
When the spatial model is represented as a factor model,

sound sources are restored by using a multichannel Wiener fil-
ter [14]. The multichannel mixture spectrum xtf at time frame t
and frequency bin f is decomposed into the sum of multichannel



ITAKURA et al.: BAYESIAN MULTICHANNEL AUDIO SOURCE SEPARATION 837

source spectra {x̃tf k}Kk=1 as follows:

x̃tf k = Y tf k

(
∑

k ′
Y tf k ′

)−1

xtf , (33)

where we let Y tf k =
∑

ld wklf hkltrkdGf d in the factor-
factor model or Y tf k =

∑
d

∏
l(wklf hklt)

ut f k l rkdGf d in the
mixture-factor model.

IV. BAYESIAN INFERENCE

Our goal is to calculate the posterior distribution and find opti-
mal parameters that maximize the posterior distribution in prac-
tice. Since the posterior distribution is analytically intractable,
but the posterior distribution of each parameter conditioned on
the remaining parameters e.g., p(W |H,G,R,X), is tractable,
we can use a Gibbs sampling algorithm [32] that alternately
and iteratively updates one of the parameters according to the
conditional posterior distribution by fixing the other parameters.

A. Factor–Factor Model

The factor-factor model estimates four model parametersW ,
H , R and G. Since it is hard to directly draw samples from
the conditional posterior distributions, all parameters are up-
dated using a variational approach [33]. More specifically, the
log-likelihood function defined by (19) is lower-bounded by
a tractable auxiliary function having auxiliary variables. The
auxiliary function should become equal to the log-likelihood
function when it is maximized with respect to the auxiliary
variables. The log-likelihood is given by

log p(X|W ,H ,R,G) =
∑

tf

(
− log |Y tf | − tr(X tfY

−1
tf )
)

+ C1 , (34)

where Y tf kld = wklf hkltrkdGf d , Y tf =
∑

kld Y tf kld , and
C1 is a constant. To derive a lower bound from (34), we use
two inequalities proposed in [33]. First, for a convex function
f(Z) = − log |Z| (Z � 0 ∈ CM×M ), we calculate a tangent
plane at arbitrary Ω � 0 by using a first-order Taylor expansion
as follows:

− log |Z| ≥ − log |Ω| − tr(Ω−1Z) +M, (35)

where the equality holds when Ω = Z. Second, for a concave
function g(Z) = −tr(Z−1A) with any matrix A � 0, we use
an inequality given by

− tr

((∑K
k=1 Zk

)−1
A

)
≥ −

K∑

k=1

tr
(
Z−1
k ΦkAΦH

k

)
, (36)

where {Zk}Kk=1 is a set of arbitrary matrices, {Φk}Kk=1 is a set of
auxiliary matrices that sum to the identity matrix (

∑
k Φk = I),

and the equality holds when Φk = Zk (
∑

k ′ Zk ′)−1 .

Using Inequalities (35) and (36), the log-likelihood function
given by (34) is lower-bounded by L1 as follows:

log p(X|W ,H ,R,G)

≥
∑

tf

(
−tr

(
Y tfΩ−1

tf

)
− log |Ωtf | +M

)

−
∑

tf kld

tr
(
Y −1

tf kldΦtf kldX tfΦH
tf kld

)
+ C1

def= L1 , (37)

where Ωtf and Φtf kld are newly introduced auxiliary variables.
The auxiliary function L1 is maximized (i.e., the equality holds)
when Ωtf and Φtf kld are given by

Ωtf = Y tf and Φtf kld = Y tf kldY
−1
tf . (38)

The parameters wklf , hklt , rkd , and Gf d can be sampled
from conditional distributions proportional to the product of
(23)–(26) and (37) as follows:

wklf |X,Θ¬wk l f
∼ GIG(γwklf , ρ

w
klf , τ

w
klf ), (39)

hklt |X,Θ¬hk l t ∼ GIG(γhklt , ρ
h
klt , τ

h
klt), (40)

rkd |X,Θ¬rk d ∼ GIG(γrkd , ρ
r
kd , τ

r
kd), (41)

Gf d |X,Θ¬Gf d
∼ MGIGC(νf d ,Qf d ,V f d), (42)

where Θ is the set of all parameters, Θ¬∗ indicates the set
of all parameters except ∗, and GIG and MGIGC indicate the
generalized inverse Gaussian distribution [34] and the complex
matrix GIG distribution [35], defined by

GIG(x|γ, ρ, τ) =
exp{(γ − 1) log x− ρx− τ/x}ργ/2

2τγ/2Kγ (2
√
ρτ)

, (43)

MGIGC(X|γ,Q,V )

∝ |X|γ−M exp{−tr(QX + V X−1)}, (44)

where Kγ is the modified Bessel function of the second kind,
γ is a real number, ρ > 0, τ > 0, Q � 0 and V � 0. To draw
samples from the GIG, we use a rejection sampling method [36].
To draw samples from the complex MGIG distributions, we use
a Metropolis-Hastings (MH) sampler [35] that uses as a pro-
posal distribution a complex Wishart distribution having the
same mode as a target MGIG distribution (the mode of the
MGIG distribution can be calculated by using an algebraic Ric-
cati equation). The conditional posterior parameters γ∗∗ , ρ∗∗, τ ∗∗ ,
Qf d , and V f d are given by

γwklf = aw0 , (45)

ρwklf = bw0 +
∑

td

hkltrkdtr(Gf dΩ−1
tf ), (46)
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τwklf =
∑

td

h−1
kltr

−1
kd tr

(
G−1
f dΦtf kldX tfΦH

tf kld

)
, (47)

γhklt = ah0 , (48)

ρhklt = bh0 +
∑

f d

wklf rkdtr(Gf dΩ−1
tf ), (49)

τhklt =
∑

f d

w−1
klf r

−1
kd tr

(
G−1
f dΦtf kldX tfΦH

tf kld

)
, (50)

γrkd = ar0 , (51)

ρrkd = br0 +
∑

tf l

wklf hklttr(Gf dΩ−1
tf ), (52)

τ rkd =
∑

tf l

w−1
klf h

−1
klttr

(
G−1
f dΦtf kldX tfΦH

tf kld

)
, (53)

νf d = ν0 , (54)

Qf d =
∑

tk l

wklf hkltrkdΩ−1
tf , (55)

V f d = G0
f d +

∑

tk l

w−1
klf h

−1
kltr

−1
kd Φtf kldX tfΦH

tf kld . (56)

B. Mixture–Factor Model

The mixture-factor model estimates five model parameters
U , W , H , R, and G. While U can be directly sampled from
the conditional posterior distributions, W , H , R, and G are
updated using a variational approach [33] like that used in the
factor-factor model. The conditional posterior distribution ofU
is calculated by the product of the likelihood function given by
(13) and the prior distributions given by (6) and (29) after the
parameter ψtk is marginalized out as follows:

utf k |X,Θ¬ut f k
∼ Categorical(ψ′

tf k ), (57)

where ψ′
tf kl is given by

ψ′
tf kl ∝ (a0ψ + n¬ftkl)

∣∣∣∣∣Λtf k +
∑

d

wklf hkltrkdGf d

∣∣∣∣∣

exp

⎛

⎝−xHtf
(

Λtf k +
∑

d

wklf hkltrkdGf d

)−1

xtf

⎞

⎠ , (58)

where Λtf k is given by

Λtf k =
∑

d,k ′ �=k

(
∏

l

(wk ′lf hk ′lt)ut f k ′ l
)
rkdGf d . (59)

Although the conditional posterior of each parameter W ,
H , R or G is proportional to the complete joint likelihood
given by the product of (20), (23)–(26), it is difficult to
directly get samples from the conditional posterior because
of the complicated form of (20). The log-likelihood function
defined by (20) is therefore lower-bounded by a tractable
auxiliary function having auxiliary variables. Letting Y tf kd =∏

l(wklf hklt)
ut f k l rkdGf d and Y tf =

∑
kd Y tf kd , the

log-likelihood is given by

log p(X|W ,H,R,G) =
∑

tf

(
− log |Y tf | − tr(X tfY

−1
tf )
)

+ C2 , (60)

where C2 is a constant. Using Inequalities (35) and (36), (60) is
lower-bounded by L2 as follows:

log p(X|W ,H ,R,G,U)

≥
∑

tf

(
−tr

(
Y tfΩ−1

tf

)
− log |Ωtf | +M

)

−
∑

tf kd

tr
(
Y −1

tf kdΦtf kdX tfΦH
tf kd

)
+ C2

def= L2 . (61)

The auxiliary function L2 is maximized, i.e., the equality holds,
when Ωtf and Φtf kld are given by

Ωtf = Y tf and Φtf kd = Y tf kdY
−1
tf . (62)

The parameters wklf , hklt , rkd , and Gf d can be sampled
from conditional distributions proportional to the product of
(23)–(26) and (61) as follows:

wklf |X,Θ¬wk l f
∼ GIG(γwklf , ρ

w
klf , τ

w
klf ), (63)

hklt |X,Θ¬hk l t ∼ GIG(γhklt , ρ
h
klt , τ

h
klt), (64)

rkd |X,Θ¬rk d ∼ GIG(γrkd , ρ
r
kd , τ

r
kd), (65)

Gf d |X,Θ¬Gf d
∼ MGIGC(νf d ,Qf d ,V f d). (66)

The conditional posterior parameters γ∗∗ , ρ∗∗, τ ∗∗ ,Qf d , and V f d

are given by

γwklf = aw0 , (67)

ρwklf = bw0 +
∑

td

utf klhkltrkdtr(Gf dΩ−1
tf ), (68)

τwklf =
∑

td

utf klh
−1
kltr

−1
kd tr

(
G−1
f dΦtf kdX tfΦH

tf kd

)
, (69)

γhklt = ah0 , (70)

ρhklt = bh0 +
∑

f d

utf klwklf rkdtr(Gf dΩ−1
tf ), (71)

τhklt =
∑

f d

utf klw
−1
klf r

−1
kd tr

(
G−1
f dΦtf kldX tfΦH

tf kld

)
, (72)

γrklf = ar0 , (73)

ρrkd = br0 +
∑

tf

(
∏

l

(wklf hklt)
ut f k l

)
tr(Gf dΩ−1

tf ), (74)

τ rkd =
∑

tf

(
∏

l

(wklf hklt)
ut f k l

)−1

tr
(
G−1
f dΦtf kldX tfΦH

tf kd

)
,

(75)
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νf d = ν0 , (76)

Qf d =
∑

tk

(
∏

l

(wklf hklt)
ut f k l

)
rkdΩ−1

tf , (77)

V f d =
∑

tk

(
∏

l

(wklf hklt)
ut f k l

)−1

r−1
kd Φtf kdX tfΦH

tf kd

+G0
f d . (78)

C. Factor–Mixture Model

The factor-mixture model estimates five model parameters
G, Z, S, W and H . While G, Z, and S are updated by
sampling from the conditional posterior distributions,W andH
are updated using a variational approach [18]. The conditional
posterior distributions of model parameters G, Z, and S are
calculated by using the likelihood function ((16)) and the prior
distributions ((18)–(28)) by marginalizing out parameters πt
and φ as follows:

Gf d |X,Θ¬Gf d
∼ IWC(ν ′f d ,G

′
f d), (79)

ztf |X,Θ¬zt f
∼ Categorical(π′

tf ), (80)

sk |X,Θ¬sk ∼ Categorical(φ′
k ), (81)

The conditional posterior parameters ν ′f d ,G′
f d ,π′

tf , andφ′
k are

given by

ν ′f d = ν0 +
∑

tk

ztf k skd , (82)

G′
f d = G0

f d +
∑

tk

xtfxtf
H

∑
l wklf hklt

ztf k skd , (83)

π′
tf k =

∏

d

(
1

|∑l wklf hkltGf d | exp

(
− x

H
tfG

−1
f dxtf∑

l wklf hklt

))sk d

× (aπ0 + n¬ftk ), (84)

φ′kd =
∏

tf

(
1

|∑l wklf hkltGf d | exp

(
− x

H
tfG

−1
f dxtf∑

l wklf hklt

))zt f k

× (aφ0 + c¬kd ), (85)

where n¬ftk indicates the number of TF bins assigned to source k
at frame twithout frequency f , and c¬kd is the number of sources
assigned to direction d without source k.

Although the conditional posterior of each parameter W or
H is proportional to the complete joint likelihood given by the
product of (21), (23), and (24), it is difficult to directly get sam-
ples from the conditional posterior because of the complicated
form of (21). Therefore, the log-likelihood function defined by
(21) is lower-bounded by a tractable auxiliary function having
auxiliary variables. More specifically, letting λtf kl = wklf hklt ,

the log-likelihood is given by

log p (X |W ,H ,Z,S,G) =

∑

tf

∑

kd

(
− log

∣∣∣∣∣
∑

l

λtf klGf d

∣∣∣∣∣− tr

(
X tfG

−1
f d∑

l λtf kl

))zt f k skd
+ C3 ,

(86)

where X tf = xHtfx and C3 is a constant. To derive a lower
bound of (86), we use two inequalities used in [18]. First, for
a convex function f(z) = − log |z|, we use a first-order Taylor
approximation around an arbitrary point α as follows:

− log |z| ≥ − log |α| − z

α
+ 1, (87)

where the equality holds when α = z. Second, for a concave
function g(z) = − 1

z , we use Jensen’s inequality that for any
vector β such that βl ≥ 0 and

∑
l βl = 1 as follows:

− 1∑
l zl

= − 1∑
l βl

zl
βl

≥ −
∑

l

βl
1
zl
βl

= −
∑

l

β2
l

1
zl
, (88)

where the equality holds when βl = zl∑
l ′ zl ′

.
Using Inequalities (87) and (88), the log-likelihood function

given by (86) is lower-bounded by L3 as follows:

log p (X |W ,H,Z,S,G)

≥
∑

tf

∑

kd

(
M

(
− log |αtf k | −

∑
l λtf kl

αtf k
+ 1
)
− log |Gf d |

− tr
(
X tfG

−1
f d

)∑

l

β2
tf kl

1
λtf kl

)zt f k sk d
+ C3

def= L3 , (89)

where αtf k and βtf kl are newly introduced auxiliary variables.
The auxiliary function L3 is maximized (i.e., the equality holds)
when αtf k and βtf kl are given by

αtf k =
∑

l

λtf kl and βtf kl =
λtf kl∑
l ′ λtf kl ′

. (90)

The parameters wklf and hklt can be sampled from the fol-
lowing conditional distributions proportional to the product of
(23), (24), and (89):

wklf |X,Θ¬wk l f
∼ GIG(γwklf , ρ

w
kf l , τ

w
kf l), (91)

hklt |X,Θ¬hk l t ∼ GIG(γhklt , ρ
h
klt , τ

h
klt). (92)

The conditional posterior parameters γ∗∗ , ρ∗∗, and τ ∗∗ are

γwklf = aw0 , (93)

ρwklf = bw0 +
∑

td

Mhklt
αtf k

, (94)

τwklf =
∑

td

tr(X tfG
−1
f d )

β2
tf kl

hklt
, (95)

γhklt = ah0 , (96)

ρhklt = bh0 +
∑

f d

Mwklf
αtf k

, (97)

τhklt =
∑

f d

tr(X tfG
−1
f d )

β2
tf kl

wklf
. (98)
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D. Mixture–Mixture Model

The mixture-mixture model estimates six model parameters
G, Z, S, U , W , and H . All the parameters can be updated
efficiently by directly sampling from the conditional posterior
distributions. The conditional posterior of each parameter is
proportional to the complete joint likelihood given by the prod-
uct of (22)–(24), and (26)–(29), and samples are taken from
each conditional posterior after parameters πt , φ, and ψtk are
marginalized out as follows:

wklf |X,Θ¬wk l f
∼ GIG(γwklf , ρ

w
klf , τ

w
klf ), (99)

hklt |X,Θ¬hk l t ∼ GIG(γhklt , ρ
h
klt , τ

h
klt), (100)

Gf d |X,Θ¬Gf d
∼ IWC(ν ′f d ,G

′
f d), (101)

ztf |X,Θ¬zt f
∼ Categorical(π′

tf ), (102)

sk |X,Θ¬sk ∼ Categorical(φ′
k ), (103)

utf k |X,Θ¬ut f k l
∼ Categorical(ψ′

tf k ). (104)

The conditional posterior parameters γ∗∗ , ρ∗∗, τ ∗∗ , ν ′f d ,G′
f d , π′

tf ,
φ′
k , and ψ′

tf k are given by

γwklf = aw0 −Mnfkl , (105)

ρwklf = bw0 , (106)

τwklf =
∑

td

xHtfG
−1
f dxtf

hklt
ztf k skdutf kl , (107)

γhklt = ah0 −Mntkl , (108)

ρhklt = bh0 , (109)

τhklt =
∑

f d

xHtfG
−1
f dxtf

wklf
ztf k skdutf kl , (110)

ν ′f d = ν0 +
∑

tk

ztf k skd , (111)

G′
f d = G0

f d +
∑

tk l

xtfxtf
H

wklf hklt
ztf k skd , (112)

π′
tf k =

∏

ld

(∣∣∣∣
1

wklf hkltGf d

∣∣∣∣ exp

(
−x

H
tfG

−1
f dxtf

wklf hklt

))sk d ut f k l

× (aπ0 + n¬ftk ), (113)

φ′kd =
∏

tf l

(∣∣∣∣
1

wklf hkltGf d

∣∣∣∣ exp

(
−x

H
tfG

−1
f dxtf

wklf hklt

))zt f k ut f k l

× (aφ0 + c¬kd ), (114)

ψ′
tf kl =

∏

d

(∣∣∣∣
1

wklf hkltGf d

∣∣∣∣ exp

(
−x

H
tfG

−1
f dxtf

wklf hklt

))zt f k sk d

× (aψ0 + n¬ftkl), (115)

where nf kl (ntkl) indicates the number of TF bins at frequency
f (frame t) assigned to source k and basis l, and n¬ftkl indicates

the number of TF bins at frame t assigned to source k and basis
l except for frequency f .

E. NA-Factor Model

The NA-factor model estimates three model parameters λ,
R, and G. rkd and Gf d can be sampled from (41), (42), and
(51)–(56) where

∑
l wklf hklt is replaced with λtf k . In the same

way as the factor-factor and mixture-factor models, the condi-
tional posterior distribution of λtf k is given by

λtf k ∼ GIG(γλ
tf k , ρ

λ
tf k , τ

λ
tf k ). (116)

The conditional posterior parameters are given by

γλ
tf k = aλ

0 , (117)

ρλ
tf k = bλ0 +

∑

d

rkdtr
(
Gf dΩ−1

tf

)
, (118)

τλ
tf k =

∑

d

r−1
kd tr

(
G−1
f dΦtf kdX tfΦH

tf kd

)
, (119)

where Ωtf and Φtf kd are defined by Ωtf =
∑

kd λtf k rkdGf d

and Φtf kd = λtf k rkdGf d(
∑

k ′d ′ λtf k ′rk ′d ′Gf d ′)−1 .

F. NA-Mixture Model

The NA-mixture model estimates three model parameters λ,
G, Z, and S. Gf d , ztf k and skd can be sampled from (79)–
(85) where

∑
l wklf hklt is replaced with λtf k and λtf k can be

sampled from a conditional posterior distribution given by

λtf k ∼ GIG(γλ
tf k , ρ

λ
tf k , τ

λ
tf k ). (120)

The conditional posterior parameters are given by

γλ
tf k = aλ

0 − ztf kM, (121)

ρλ
tf k = bλ0 , (122)

τλ
tf k =

∑

d

ztf k skdx
H
tfG

−1
f dxtf . (123)

V. EVALUATION

This section presents source separation results obtained with
simulated convolutive mixture signals.

A. Experimental Conditions

We synthesized mixture sounds as test data. Fig. 9 shows
the locations of microphones and sources. Three sources were
convoluted using impulse responses measured with four mi-
crophones in a room where the reverberation time RT60 was
400 ms. We used music signals (including guitar, bass, vocal, hi-
hat, and piano sounds), speech signals selected from the SiSEC
data set [37], and the JNAS phonetically balanced Japanese ut-
terances [38]. Thirty mixture signals were used for evaluation:
ten samples of music mixtures, ten samples of speech mixtures,
and ten samples of music and speech mixtures. The audio sig-
nals sampled at 16 kHz were analyzed with STFT with a 512-pt
Hanning window and a 256-pt shift. The average length of mix-
ture signals was 5.22 sec. We also examined the separation
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Fig. 9. Locations of microphones and sources.

performance for two times longer mixture signals. In this ad-
ditional evaluation, to make each source signal, two utterances
randomly selected from the JNAS database were concatenated
or two times longer signal was extracted from the beginning of
each musical piece.

The proposed factor-factor, mixture-factor, factor-mixture,
mixture-mixture methods were compared with IVA [24] and
MNMF [14] and with the NA-factor and NA-mixture [8] mod-
els using only a spatial model. MNMF is similar to the factor-
factor model except that the factor-factor model is based on a
Bayesian model that can use prior knowledge on steering vec-
tors. When spatial correlation matrices are restricted to rank-1
matrices and the source model is forced to be time-invariant,
MNMF reduces to IVA [16]. The number of iterations for IVA
and that for MNMF were 100 and 200, respectively. The number
of basis spectra for MNMF was 20. The parameters of IVA and
MNMF were initialized randomly and estimated by using the
majorization-minimization methods.

The steering vectors {g0
f d}F,Df=1,d=1 for all directions were

measured with an angular interval of 5◦ (D = 72) in an ane-
choic room. This is important to maximize the potential of the
proposed models. Once this measurement is done, the proposed
models can be used in different echoic conditions without any
special treatments (e.g., level-difference compensation). Hyper-
parameters were determined such that the prior expectation of
diagonal elements of the covariance matrix in the likelihood
function equals 1 as follows: aw0 = ah0 = ar0 = bw0 = 1, br0 = 1

D ,
and G0

f d = ν(g0
f d(g

0
f d)

H + εI). bh0 varied depending on the
model: bh0 = 1 in mixture-mixture, bh0 = 1

L in factor-mixture,
and bh0 = 1

K×L in factor-factor and mixture-factor. The other

parameters were determined experimentally: aπ0 = aφ0 = 10,
aψ0 = 1, L = 20, ν0 = M + 1, and ε = 0.01. All the models
were implemented using the C++ language. The parameters of
each method were updated or sampled 200 times: 180 sam-
ples were abandoned as burn-in and 20 samples were used
to estimate sound sources (I = 20). The signal-to-distortion
ratio (SDR), signal-to-inferences ratio (SIR), and signal-to-
artifacts ratio (SAR) [39] were used to evaluate the separation
performance.

B. Experimental Results

The experimental results are listed in Tables II–IV, in which
the rightmost columns show the SDRs for longer mixture
signals. In terms of SDR and SAR, the factor-factor model

TABLE II
EXPERIMENTAL RESULTS FOR MUSIC MIXTURES

SDR SIR SAR SDR∗

IVA [24] 0.3 dB 4.9 dB 5.7 dB − 2.5 dB
MNMF [14] 1.0 dB 6.2 dB 6.7 dB − 0.4 dB
Factor-Factor 3.3 dB 7.9 dB 7.4 dB 3.3 dB
Mixture-Factor 3.7 dB 9.3 dB 6.7 dB 3.1 dB
Factor-Mixture 0.5 dB 8.3 dB 3.6 dB − 0.3 dB
Mixture-Mixture 1.2 dB 9.8 dB 3.3 dB − 0.4 dB
NA-Mixture [8] 0.5 dB 8.1 dB 3.8 dB − 0.6 dB

∗Separation performance for longer mixture signals.

TABLE III
EXPERIMENTAL RESULTS FOR SPEECH MIXTURES

SDR SIR SAR SDR∗

IVA [24] 3.4 dB 7.5 dB 7.1 dB 2.6 dB
MNMF [14] 4.8 dB 10.0 dB 7.7 dB 5.2 dB
Factor-Factor 6.1 dB 12.1 dB 7.8 dB 7.0 dB
Mixture-Factor 5.7 dB 13.4 dB 6.9 dB 7.3 dB
Factor-Mixture 4.9 dB 15.0 dB 5.6 dB 6.2 dB
Mixture-Mixture 5.0 dB 15.3 dB 5.9 dB 6.7 dB
NA-Mixture [8] 5.1 dB 14.8 dB 5.9 dB 6.2 dB

∗Separation performance for longer mixture signals.

TABLE IV
EXPERIMENTAL RESULTS FOR MUSIC AND SPEECH MIXTURES

SDR SIR SAR SDR∗

IVA [24] 0.1 dB 5.3 dB 5.3 dB 0.3 dB
MNMF [14] 1.8 dB 8.6 dB 6.1 dB 2.8 dB
Factor-Factor 4.9 dB 12.6 dB 6.5 dB 4.9 dB
Mixture-Factor 4.6 dB 13.4 dB 5.7 dB 4.8 dB
Factor-Mixture 1.7 dB 11.6 dB 4.2 dB 3.3 dB
Mixture-Mixture 3.1 dB 14.7 dB 4.1 dB 2.7 dB
NA-Mixture [8] 2.5 dB 12.3 dB 4.4 dB 2.3 dB

∗Separation performance for longer mixture signals.

worked better than almost all of the other methods. In terms
of SIR, the mixture-mixture model worked best for all mix-
tures. Although the separated signals sounded clear because of
the clustering nature of mixture modeling, severe distortion was
caused. Regarding the spatial model, the factor models achieved
higher SDRs than the mixture models. Regarding the source
model, there was little difference between the factor and mixture
models. Fig. 10 shows the power spectrograms of ground-truth
signals and Figs. 11–14 show the those of the sounds separated
with the proposed methods. We can see large difference between
the spatial factor and mixture models and little difference in the
source model.

The SDRs were improved for longer speech mixtures and
degraded for longer music mixtures in most methods. The spatial
factor models kept the relatively high SDRs for all kinds of
longer mixture signals. The spatial mixture models were not
suitable to music mixtures because the W-disjoint orthogonality
did not hold. MNMF failed to separate longer music mixtures.
This indicates that longer signals were not approximated well
in the experimental condition because music had larger spectral
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Fig. 10. Spectrograms of musical instrument sounds (ground-truth data). (a) Guitar. (b) Hi-hat. (c) Piano.

Fig. 11. Spectrograms of musical instrument sounds separated from a music signal by using the factor–factor model. (a) Guitar (SDR: 5.7 dB) (b) Hi-hat (SDR:
5.5 dB) (c) Piano (SDR: 7.7 dB)

Fig. 12. Spectrograms of musical instrument sounds separated from a music signal by using the mixture–factor model. (a) Guitar (SDR: 6.3 dB). (b) Hi-hat
(SDR: 5.0 dB). (c) Piano (SDR: 6.6 dB).

Fig. 13. Spectrograms of musical instrument sounds separated from a music signal by using the factor–mixture model. (a) Guitar (SDR: 1.9 dB). (b) Hi-hat
(SDR: 4.1 dB). (c) Piano (SDR: 4.9 dB).

Fig. 14. Spectrograms of musical instrument sounds separated from a music signal by using the mixture–mixture model. (a) Guitar (SDR: 1.8 dB). (b) Hi-hat
(SDR: 1.2 dB). (c) Piano (SDR: 4.8 dB).

variations than speech. In this condition, the prior distribution
onGf d was helpful, resulting in the difference between MNMF
and the spatial factor models.

The performance of the NA-factor model could not be
measured because the estimated sound sources could not be
associated with ground-truth data (some estimated sources in-

cluded no sounds). Although how to represent the source model
made little difference, the source model plays an important role
in combination with the spatial factor model. Since the factor-
factor and mixture-factor models are equivalent to the NA-factor
model when the number of bases L in a source model becomes
infinite, the estimation of L is consider to be essential to the
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TABLE V
ELAPSED TIME OF ONE ITERATION FOR A MIXTURE SIGNAL OF 4.6 S

IVA [24] MNMF [14]

0.02 s 0.60 s

Factor-Factor Mixture-Factor Factor-Mixture Mixture-Mixture

57.3 s 64.2 s 3.26 s 1.97 s

TABLE VI
EVALUATION OF MUSIC SIGNALS SEPARATED FROM MUSIC

AND SPEECH MIXTURES

Source-Spatial SDR SIR SAR

Factor-Factor 1.0 dB 8.4 dB 3.1 dB
Mixture-Factor 0.5 dB 9.5 dB 1.9 dB
Factor-Mixture − 4.7 dB 4.8 dB − 0.2 dB
Mixture-Mixture − 2.1 dB 10.4 dB − 0.7 dB

TABLE VII
EVALUATION OF SPEECH SIGNALS SEPARATED FROM MUSIC

AND SPEECH MIXTURES

Source-Spatial SDR SIR SAR

Factor-Factor 8.8 dB 16.7 dB 9.9 dB
Mixture-Factor 8.7 dB 17.3 dB 9.5 dB
Factor-Mixture 8.1 dB 18.4 dB 8.7 dB
Mixture-Mixture 8.3 dB 19.0 dB 8.8 dB

mixture-factor and factor-factor models. Indeed, the mixture-
factor model did not work when the number of bases L was
equal to the number of time frames T .

While there was not much difference of the SDR for speech
mixtures between the proposed four models, the factor-factor
and mixture-factor models based on the spatial factor model
achieved much higher SDRs than the mixture-mixture model
for music mixtures. This is because the W-disjoint orthogonal-
ity assumption does not hold for music signals. Therefore, the
factor-factor and mixture-factor models are suitable to separate
music mixtures, and the mixture-mixture model is suitable to
separate speech mixtures in terms of SDR.

Which model is best when we want to separate music sounds
and speech sounds in music and speech mixtures? To answer
this question, we consider the results for music and speech mix-
tures listed separately for each kind of sounds in Tables VI
and VII. For music and speech mixtures, the mixture-mixture
model seems to be inferior to the factor-factor model in terms
of SDR. Focusing on the speech signals, however, one sees little
difference between the mixture-mixture and factor-factor mod-
els. Therefore, in terms of SDR, the mixture-mixture model
can extract speech sounds almost as well as the factor-factor
and mixture-factor models even when the mixture sounds in-
clude other kinds of sounds. Further investigations are needed
to discuss whether the mixture-mixture model can be used as
preprocessing for automatic speech recognition because the

mixture-mixture model achieved much lower SARs than the
factor-factor and mixture-factor models.

These results show that the proposed models could success-
fully separate mixture sounds in an unseen environment where
the actual steering vectors are significantly different from those
measured in an anechoic room. The proposed Bayesian models
can flexibly adapt the prior knowledge on the steering vectors
to the environment where mixture signals are observed. Open
problems to be tackled in the future are to deal with moving
sound sources, to achieve real-time source separation, and to
estimate the number of sound sources over time.

C. Computational Costs

In our experiments, all the methods sufficiently converged
within 180 samples. While the mixture-mixture and factor-
mixture models converged within 50 samples, the mixture-factor
and factor-factor models needed to draw more than 100 samples
before convergence. The proposed models were not sensitive
to initialization because the impulse responses measured in an
anechoic room were used as prior information. The time elapsed
for one iteration of each of the proposed methods with a four-
channel input signal (4.6 s) are listed in Table V. The spatial
model had larger impact on computational time than the source
model, and the mixture models needed less computation time
than the factor models except for the mixture-factor model. The
computational cost of the mixture-factor model was larger than
that of the factor-factor model because of the complicated form
of (58). Although the mixture-factor model took 7.8 seconds to
sample the latent variable utf kl , the mixture-factor model could
sample other parameters faster than factor-factor. As shown in
Tables II–V, we found that the factor-factor and mixture-factor
models achieved high SDRs but had large computational costs.
On the other hand, we found that the mixture-mixture model
achieved slightly lower SDRs than the factor-factor and mixture-
factor models but attained remarkably fast computation. There-
fore, the mixture-mixture model may be best in terms of SDR
and SIR if you want to separate fast; otherwise, you should use
the factor-factor or mixture-factor models.

D. Effect of Hyperparameters

We investigated the effect of the hyperparameters on the sep-
aration performances of the proposed and conventional models
by changing the window length (512, 1024, or 2048 pts), the an-
gular interval between sound sources (20, 50, or 80 degrees), and
the number of basis spectra (L = 5, 10, 20, 50) if necessary. The
SDRs obtained by the compared models with different window
lengths under a condition that L = 20 and the angular interval
was 80 degrees were shown in Fig. 15. In our experiment, the
window length of 512 pts was sufficient to attain good SDRs be-
cause the SDRs tend to be degraded according to the increase of
the window length. The factor-factor and mixture-factor mod-
els (spatial factor models) worked well regardless of the sound
characteristics.

The SDRs obtained by the compared models with different
angular intervals under a condition that the window size was
512 pts and L = 20 were shown in Fig. 16. We found that the
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Fig. 15. The SDRs obtained by IVA, MNMF, and the factor–factor, mixture–
factor, factor–mixture, mixture–mixture, and spatial–mixture models with the
window length of 512, 1024, or 2048 pts. (a) Music mixtures. (b) Speech
mixtures. (c) Music and speech mixtures.

SDRs tended to be considerably degraded as the angular inter-
val became small and heavily depended on the characteristics
of mixture signals. The spatial factor models kept good perfor-
mance when the angular interval was 50 or 80 degrees. When
the angular interval was 20 degrees, the spatial factor models
failed while conventional MNMF relatively worked well. In this
condition, the spatial mixture models worked well for speech
mixtures while the source mixture models did so for music and
speech mixtures.

The SDRs obtained by the compared models with differ-
ent values of L under a condition that the window size was
512 pts and the angular interval was 80 degrees were shown in
Fig. 17. The proposed models were found to work best when
L = 10 or 20. Too many basis spectra degraded the SDRs.

E. Effect of Bayesian Formulation

We investigated the effect of Bayesian formulation in the
factor-factor model, which tends to work best in various set-
tings. This model is a Bayesian and direction-aware extension
of a variant of multichannel NMF [13]. Note that the direction-
aware extension that decomposes the spatial covariance matrix
of each source into the weighted sum of direction-dependent

Fig. 16. The SDRs obtained by IVA, MNMF, and the factor–factor, mixture–
factor, factor–mixture, mixture–mixture, and spatial–mixture models for the
inter-source interval of 20◦, 50◦, and 80◦. (a) Music mixtures. (b) Speech mix-
tures. (c) Music and speech mixtures.

TABLE VIII
EVALUATION OF BAYESIAN INFERENCE OF DIRECTION-DEPENDENT

SPATIAL COVARIANCE MATRICES

Music Speech Music & speech

Factor-Factor 3.3 dB 6.7 dB 4.7 dB
Factor-Factor-fixed 3.8 dB Failed 0.8 dB

covariance matrices was already proposed by [15]. We there-
fore compared our Bayesian model with its restricted version
whose direction-dependent spatial covariance matrix Gf d was
fixed toG0

f d measured in an anechoic room. In our model, on the
other hand, G0

f d is the hyperparameter of the inverse Wishart
prior on Gf d . This enables us to adaptively estimate Gf d in
posterior inference.

The SDRs obtained by the compared methods under a con-
dition that the window size was 512 pts, the source interval
was 80 degrees, and L = 20 (described in Section V-A) were
shown in Table VIII. When Gf d was fixed to G0

f d , the speech
signals could not be separated. For such signals that violate the
low-rankness assumption, spatial information is essential for ac-
curate source separation. On the other hand, the restricted model
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Fig. 17. The SDRs obtained by IVA, MNMF, and the factor–factor, mixture–
factor, factor–mixture, mixture–mixture, and spatial–mixture models for the
numbers of bases, L = 5, 10, 20, 50. (a) Music mixtures. (b) Speech mixtures.
(c) Music and speech mixtures.

was comparable with the proposed model for music mixtures be-
cause the source factor model was effective for the low-rankness
of music spectrograms. Although MNMF can be extended to
haveGf d ’s as in [15] and eachGf d is initialized asG0

f d , it has
no mechanism to associate Gf d with the direction of G0

f d dur-
ing parameter updating. To preventGf d andGf d ′ (d �= d′) from
converging to the same value and let Gf d and Gf ′d (f �= f ′)
indicate the same direction, Bayesian formulation is considered
to be effective.

VI. CONCLUSION

This paper presented multichannel audio source separation
methods based on unified source and spatial models. The source
model represents the generative process of source power spec-
trograms and the spatial model represents that of observed mul-
tichannel spectrograms. Each model can either be a factor model
that represents a generative process as the sum of bases or
sources or a mixture model that represents it as the selection
of bases or sources. Experimental results showed (1) that the
proposed unified models except the factor-mixture model out-
performed the conventional spatial model without the source
model, (2) that the spatial factor model achieved higher SDRs
than the spatial mixture model, (3) that the choice of the source
model had little impact on the separation performance, and (4)
that the mixture models needed less computational cost than the
factor models so that the mixture-mixture model was fastest in

the four proposed methods. With further extensions, we plan to
estimate the number of the sources and basis spectra in a non-
parametric Bayesian manner and to develop an online source
separation algorithm.
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