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LID-Senones and Their Statistics for
Language Identification
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Abstract—Recent research on end-to-end training structures for
language identification has raised the possibility that intermedi-
ate language-sensitive feature units exist which are analogous to
phonetically sensitive senones in automatic speech recognition sys-
tems. Termed language identification (LID)-senones, the statistics
derived from these feature units have been shown to be benefi-
cial in discriminating between languages, particularly for short
utterances. This paper examines the evidence for the existence of
LID-senones before designing and evaluating LID systems based on
low- and high-level statistics of LID-senones with both generative
and discriminative models. For the standard NIST LRE 2009 task
on 23 languages, LID-senone-based systems are shown to outper-
form state-of-the-art deep neural network/i-vector methods both
when LID-senones are used directly for classification and when
LID-senone statistics are used for i-vector formation.

Index Terms—Language identification deep neural network
i-vector LID-senones.

I. INTRODUCTION

LANGUAGE identity is an inherent attribute of speech ut-
terances, but not one that is easy to conceptualise in either

acoustic or phonotactic terms. While the phonetic content of
utterances is relatively easy to model using end-to-end schemes
labelled at a frame level, it is difficult to map language identity
at a frame level, and therefore difficult to label training data for
supervised learning. Working backwards from a language iden-
tification (LID) label, it becomes necessary to find an effective
utterance representation which is sensitive to language informa-
tion, but is in turn derived from frame-level features extracted
from a section of input speech.

i-vector based approaches [1], [2] currently achieve state-
of-the-art performance for LID. An i-vector utterance repre-
sentation is both compact and representative of the underlying
utterance. However, i-vectors are learned in an unsupervised
fashion without using language labels. They therefore rely
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upon techniques such as linear discriminant analysis (LDA)
and within-class covariance normalization (WCCN) to build
backend models for LID.

In the search for LID-sensitive features, we note that deep
learning techniques such as deep neural networks (DNNs) [3],
[4], have demonstrated their capabilities in several related fields
to infer powerful feature extraction layers. DNNs have also been
shown to improve i-vector performance in terms of acoustic
modelling.

Song et al. [5], Richardson et al. [6] and Jiang et al. [7]
each used deep bottleneck features (DBFs) for LID. These fea-
tures were extracted by deep bottleneck networks (DBNs) that
had been extensively pre-trained for automatic speech recog-
nition (ASR) [8]. DBFs, used in this way, were shown to be
inherently robust for different speakers, channels and back-
ground noise. Meanwhile Lei et al. [9], Kenny et al. [10] and
Ferrer et al. [11] proposed systems which collected sufficient
statistics using structured DNNs to form effective representa-
tions of the underlying phonemes or their states. These together
provide very good evidence that DNNs are effective for both
front-end frame-level feature extraction as well as back-end
utterance-level modelling, assuming that sufficient good quality
training data is available.

It is therefore clear that DBFs or senones, both derived from
DBN acoustic modelling, are effective at representing language-
based content, although hybrid combinations may be better still.
However these feature extractors must be trained using phoneme
or phoneme state labels rather than LID labels. This means that
languages with similar phonetic content and statistics will be
encoded with similar features, complicating the task of the back-
end LID classifier. Instead, we believe it would be better if the
feature extractors themselves produced features which are more
language-discriminative.

In an aim to construct more task-aware features, recent LID
research has tended towards building end-to-end schemes that
are trained with LID labels. For example, Jiang et al. [12]
showed that fine tuning pre-trained DNN parameters using an
LID-specific corpus can improve performance. However his
scheme used lattice-based optimisation to adjust parameters of
final layers, and this fine tuning did not back propagate to earlier
acoustic layers.

We also note that convolutional neural networks (CNNs) have
demonstrated impressive front-end feature representation ca-
pabilities for large-scale speech and visual object recognition
tasks [13], [14]. Multi-layer CNNs can be decomposed into a
front-end stack of convolutional and pooling layers, followed
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by a back end stack of fully-connected layers and then a classi-
fier. The convolution-pooling layer pairs in the front-end stack
can be thought of as feature extractors, whereas the final stack
maps frame-level features into an utterance representation that
is amenable to linear classification. For LID tasks, Lozano-
Diez et al. [15] evaluated different CNN structures and demon-
strated early results for end-to-end methods that performed
comparably to shifted delta cepstra (SDC) i-vector systems.

Lopez-Moreno et al. [16] and Gonzalez-Dominguez
et al. [17] also presented end-to-end schemes that performed
well using large scale DNNs and long short-term memory
(LSTM) recurrent neural networks (RNN). Interestingly, the
evidence from these papers is that CNNs can perform well,
but appear to have different strengths to DNNs. Both machine
learning methods are able to learn useful and related, but quite
different, inferences.

With this background, the authors set out to combine the
strengths of DNN and CNN. Convinced by the need to incor-
porate end-to-end training, this could not be based around the
current state-of-the-art i-vector methods. Instead, a DNN-CNN
hybrid [18] was introduced, that combined powerful DBN-based
feature extraction followed by CNN-based language modelling.
The structure used a stack of convolutional layers to form
language-discriminative units from DNN deep bottleneck fea-
ture inputs. These units, named LID-senones [18], were then
classified by being averaged over a context time window us-
ing spatial pyramid pooling (SPP) [19] to form an utterance
representation. The entire system was trained end-to-end with
language labels. When tested on the six most highly confused
language pairs from the NIST LRE 2009 corpus, this language
identification network (LID-net) outperformed state-of-the-art
methods for short duration utterances, and matched them on
longer duration utterances [18]. While performance was good,
LID-net had several weaknesses. First it did not make use of
higher level statistics, basing its classification only on averag-
ing the LID-senones. Secondly, it named the units LID-senones
but did not explore this interesting idea further. Thirdly, LID-
net was evaluated with only the 6 most confused LRE 2009
languages, only in terms of equal error rate (EER).

A. Contribution

Both the promise of the end-to-end DNN-CNN hybrid ap-
proach and the interesting concept of LID-senones, raised a
number of questions that this paper sets out to explore. In
particular we design and evaluate two new task aware struc-
tures that evaluate discriminative and generative versions of
the LID-senone based classifier. Results will be presented be-
low that show substantial performance improvement over other
published systems on NIST LRE 2009 for all utterance dura-
tions. The specific contributions that this paper makes in each
area are shown below;

1) The assumption that lower layers of a CNN, trained from
bottleneck features with language labels, can extract LID-
senones is examined further in Section IV to provide a ba-
sis to build classifiers for these features and their statistics.

2) The spatial pyramid pooling (SPP) methods of LID-net
made use of averaging of LID-senones. Since i-vector

based systems benefit from higher order statistics, we ex-
periment with bilinear pooling to collect first and second
order LID-senone posterior statistics in Section V-C.

3) Recent research has shown that outputs from differ-
ent network layers can contain complementary informa-
tion which is useful for classification in LID [20]. In
Section II-A, we design a new structure called LID-bnet
which explores the effectiveness of combining statistics
across different layers.

4) Given that this make use of higher level statistics for clas-
sification, we explore the possibility of using the same
information to form i-vectors in LID-net-i in Section V-D.

Our evaluations make use of all 23 languages of NIST LRE
2009 and report performance in standard terms using both
equal error rate (EER) and Cavg , with separate results for 30s,
10s and 3s utterances. Performance evaluation of each system
will be presented in Section V and discussed in Section VI.
Section VII will conclude this paper and present suggestions
for further work.

II. END-TO-END LID-NET STRUCTURES

A. LID-Net System

LID-net is a task-aware neural network that spans from frame
to utterance level, as shown in Fig. 1 [18]. The whole system
includes a DNN front end followed by a deep CNN compris-
ing multiple convolutional layer blocks, then a spatial pyramid
pooling [19] (SPP) layer followed by a fully connected classifi-
cation layer. The DNN front end acts as a feature transformer,
trained to output task-specific language-sensitive features (we
call these LID-features) from general acoustic input features, in
this cases PLPs. Since DNN systems are known to be effective
at a frame level [16],[17], these layers process acoustic features
frame by frame.

Given that the lower DNN layers act as a feature extractor,
the subsequent layers can be considered an utterance represen-
tation extractor. We know that the statistics of senones can be
discriminative in languages [11], [21], but we aim for a similar
feature that is task-aware, which we name LID-senones. These
are derived by the CNN from LID-features and have statistics
that are even more discriminative for LID – we will explore
LID-senones further in Section IV-A.

The input to the DNN layers is current frame PLP, ΔPLP
and ΔΔPLP features over a 10 − 1 − 10 context window. The
DNN output is a compact vector representation (LID-features)
which is stacked across a further sliding time window to
form a two dimensional input image for the CNN. The CNN
contains a deep stack of convolutional blocks (each consisting
of a convolutional layer followed by a batch normalization
‘bnorm’ layer [22]), with SPP used to gather statistics of output
predictions from across each variable length utterance into a
vector which is then classified into a language identity by the
final fully connected layer.

As mentioned previously, the input data to the SPP block
(i.e., the output data from the end of the CNN convolutional
layer stack) are termed LID-senones and will be explored fur-
ther in Section IV. Unlike a normal pooling layer with a fixed



JIN et al.: LID-SENONES AND THEIR STATISTICS FOR LANGUAGE IDENTIFICATION 173

Fig. 1. End-to-end LID-net system spanning DNN feature extractor (left), through deep CNN layers (centre), pooling and fully connected classifier (right). The
notation K@1×N means that there are K channels of 1 by N sized features.

Fig. 2. LID-bnet showing second order pooling of statistics from (a) within the same convolutional block and (b) across different blocks. The notation K@1 × N
means that there are K channels of 1 by N sized features.

pooling size yielding variable output dimension for variable in-
put length, SPP maintains a fixed number of pools irrespective
of the length of input. If input feature vector size is C chan-
nels of M × M images (i.e., C@M × M ), and we implement
[L,L] SPP, it means that the feature vector will be segmented
into L × L parts with a pooling size of

⌈
M
L

⌉
and stride is

⌊
M
L

⌋
,

with every sub-spatial region executing max/average pooling.
By this mechanism, C channels would give an L × L × C fea-
ture matrix, which is reshaped to an (L × L × C)@1 × 1 multi-
dimensional matrix. The important fact is that the output feature
size is independent of M .

LID-net evaluated in this paper uses a SPP pooling size of
[1, 1] since this was found to give consistently better perfor-
mance than [1, 2] SPP. The fixed size SPP output vector is then
mapped to output language identity labels through a single fully
connected (fc) layer. The detailed design and evaluation of LID-
net will be given in Section V-B.

B. LID-bnet System

In LID-net, the SPP layer collects the mean of LID-senones
for classification. As we will see in Section V, this slightly out-
performs current state-of-the-art methods. But we note that it has
been demonstrated that other LID techniques gain a substantial
performance improvement by using higher order senone statis-
tics [7]. It is thus reasonable to expect that higher order statistics
from LID-senones will likewise be beneficial. Since SPP can-
not collect higher order statistics, we adopted another pooling
technique from the image processing domain, where two di-
mensional feature maps are common. The bilinear method of

Lin et al. [23] works well on classification tasks, which is essen-
tially the machine learning task we are performing in LID-net.
Bilinear Pooling is computed in a spatial, rather than temporal
domain, although our image is formed across a time context
so does inherently incorporate temporal information. The input
image to be pooled is the utterance-length stacked set of LID-
senones that are output from the final convolutional layer. The
fixed size output from bilinear pooling are LID-senone statistics
over each utterance, and these are then classified by two fully
connected neural network layers, into a language identity target.
We name this LID-bnet, and present the block diagram in Fig. 2

We will show later in Section V-C how bilinear pooling can
be adapted to yield equivalents of both first and second order
Baum-Welch statistics based upon the choice of pooling inputs.
We also note that bilinear pooling is where the pooling inputs can
be taken from two CNN layers within the same convolutional
block, or from layers in different convolutional blocks. These
two options are shown in Fig. 2 with the top diagram showing
bilinear pooling both from the final convolutional block, and the
lower diagram performing cross-layer pooling from the final two
convolutional blocks.

We will separately evaluate each pooling method and input
arrangement in Section V-B.

III. RELATED WORK

A. DNN/i-Vector System

The baseline LID system used for comparison in this paper
is the DNN/i-vector method [5], [9], [10] using statistics from
bottleneck [7] features to form an i-vector [6], [11].
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Fig. 3. Structure of the DNN/i-vector system based on senone statistics.

This well studied state-of-the-art technique requires a good
quality related dataset, usually from the ASR domain, to train a
DNN to extract phoneme states from either MFCC or PLP input
representations, generally with context (e.g., SDC). This DNN,
and its front-end layers before a bottleneck constriction, are then
used directly in the LID system, typically after fine tuning with
LID training data. For LID classification, the trained network
is used for front-end feature extraction, with those features plus
their statistics used for i-vector formation. This process is shown
in Fig. 3. The DNN network input consists of PLP features (con-
catenated with ΔPLP and ΔΔPLP features over a 10 − 1 − 10
context window), and the output are senones. Deep bottleneck
features (DBF) are activations from an intermediate bottleneck
layer which are used along with senone posteriors for i-vector
formation as shown in the right half of Fig. 3, in four processing
steps (S1 to S4). The full detail on the baseline system can be
found in [7]. The front end DB feature extractor is trained using
the SwitchBoard corpus.

In Fig. 3 the DNN stack is shown on the left, trained with
senone labels. The lower half of that stack is essentially a feature
extractor, producing DBFs from the constricted bottleneck layer.
In DNN/i-vector these DBF features are used, along with the
senone posteriors, for classification. However each of the new
systems proposed in this paper, such as LID-net, use the same
LID-features as input to their CNN stacks. For fair comparison,
these extractors are identical: The weights of the trained DNN
layers up to the bottleneck are transferred to the new systems,
and used as fixed front-end LID-feature extractors.

IV. LID-SENONE ANALYSIS

A. What are LID-Senones?

Senones are known as the individual and distinct repeated
units that make up a sequence of phones in spoken utterances.
By breaking words into triphones or senones, it is hoped that the
smaller units better encode how phones are affected by context.

The important characteristics of senones is that they should
be speaker, channel, language and noise insensitive but should
be sensitive to phone state. For ASR, senone based techniques
predominate in state-of-the-art systems [24] which make use of
between about 3000 to 9000 senones for English. Senones have
also performed well for speaker identification (SID) [9], and for
LID tasks, even though both language and speaker information
are unlikely to be completely encoded phonetically.

For LID systems, the use of better machine learning tech-
niques has improved performance, but the rate of performance
improvement may be slowing. This prompts the question as
to whether more task-aware alternatives to ASR senones can
be found for LID. Such representation units would need to be
speaker, channel and noise insensitive, but language-sensitive.
Thus they would need to be trained with LID data using lan-
guage labels, rather than triphone state labels (ruling out the
existing DNN/i-vector methods which cannot be trained end-to-
end using language labels).

In the same way that DNN/i-vector systems build a feature
transformer from input PLP features, trained with senone labels,
to yield DBF features, LID-net trains a feature transformer from
input DBF features (called LID-features), with LID labels, to
yield intermediate output features. We have termed these LID-
senones [18] and will now explore their characteristics further.

B. LID-Senone Statistics

To explore the statistics from LID-senones, the activations
from the CNN convolutional block prior to the fully connected
layer in LID-net were captured and analysed. We did the same
for senones from the DNN/i-vector system for comparison, ex-
tracted directly from the trained DNN classifier with senone
output (the left side of Fig. 3). In total, a selection of about 20
different short utterances were selected from the LID training
corpus for Dari and for Farsi, two highly confused languages.
The utterances had different phonetic content and were by
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Fig. 4. 0th order activation statistics of 30 features for consecutive utterances for (a) Farsi senones, (b) Farsi LID-senones, (c) Dari senones and (d) Dari
LID-senones.

different speakers. The 20 Dari utterances were applied to the
DNN/i-vector system and to LID-net. Utterance-level features
were captured from each system – these were the senones and
LID-senones respectively. The process was repeated for the 20
Farsi utterances. The entire senone dimensionality is too large
to conveniently visualise, so we selected a random subset of 30
senone and LID-senone activation statistics for display (using
the same features in each case). These are plotted in Fig. 4. The
Farsi utterances are plotted on top and the Dari utterances be-
low, with senone statistics on the left and LID-senone statistics
on the right. In each plot, statistics for the same sequence of
30 features is presented along the x-axis (left-to-right), for 20
difference utterances along the y-axis (front-to-back), The plot
firstly shows that senone statistics are more sparse than those
for LID-senones, but clearly shows strong repeated structural
features in the LID-senone plots (running front-to-back). These
indicate feature distribution patterns that are quite distinctly
unique for each language. In fact, it should be noted that the
plots were not normalized – if the LID-senone plots are normal-
ized to their peak activation value, the intra-class similarity and
inter-class difference is even more apparent.

Together, this provides some evidence that LID-senone statis-
tics derived from LID-net are more discriminative for language
than senones derived from an ASR acoustic model.

C. LID-Senone Extraction

Although the same type of LID-features are used in all sys-
tems, LID-senones are extracted from the output of the stack of
CNN convolutional blocks in Figs. 1 and 2, and are subject to
a number of parameter choices within the CNN.

For two dimensional input features, CNNs analyse small
blocks across two axes in a stepwise fashion, usually with di-
mensions such as 3 × 3 or 5 × 5. This is sensible because pic-
tures generally have very high spatial correlation across those
scales. However this is not true in practice for LID-features,
which tend to have very low spatial correlation.

To visualise this, the correlation matrix of a set of LID-
features is plotted in Fig. 5. Diagonal values are high, whereas
off-diagonal correlations are generally small or even negative,
giving little evidence for the use of small convolutional kernels.
We thus adopt a kernel size that covers the entire dimension of
LID-features, namely 1@50 × n where the dimension of LID-
features is 50, and the size of the features after convolutional
layer 1 is K1@1 × (N − n + 1).

Given this input feature map, to ascertain how many frames
of LID-features are suitable for constructing a LID-senone, we
explored different LID-feature contexts, with a filter length of
50 × n in the first convolutional layer, beginning with n = 1 and
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Fig. 5. Autocorrelation matrix for typical 50 dimensional LID-features.

Fig. 6. Evaluations with different convolutional filter lengths.

testing with a step size of 5 up to 31. For efficient evaluation, we
only used the 6 most confusable languages from the NIST LRE
2009 corpus (namely the language-pairs of Russian - Ukrainian,
Hindi - Urdu and Dari - Farsi) to obtain raw EER performance
for each filter size and utterance length.

Results are presented in Fig. 6 and show that the trend in
all durations is that the best performance is obtained with a
context size of around 21. We therefore adopted a 1@50 × 21
kernel size, which means a 10 − 1 − 10 sliding window of LID-
features is used to form the image input to the first convolutional
layer.

Since, from Section III-A, we note that LID-features in the
DNN/i-vector system are also derived from a fixed 10 − 1 −
10 context window of PLP features (i.e., 21 acoustic frames),
it means that a total span of 41 frames of acoustic features
contribute to each LID-senone. This contrasts to evidence in [7]
showing that just 21 frames of acoustic features are the optimal
contribution for each senone for LID tasks (hence the use of
10 − 1 − 10 context in DNN/i-vector).

Having sized the feature dimensionality and context of LID-
senones, these features will form the basic input for all CNN
systems evaluated in this paper.

D. Using LID-Senones to Form i-Vectors

If LID-senones can indeed represent basic units that are dis-
criminative for languages in a similar way to senones for ASR
tasks, this raises the question as to whether LID-senones can

replace senones in other systems. For example, it may be possi-
ble to use total variability (TV) modelling to obtain a language
discriminant utterance representation i-vector. This is effectively
replacing the role of DBFs and senones in the DNN/i-vector sys-
tem with LID-senones. In other words, LID-senones could re-
place the DBFs while LID-senones posteriors replace the senone
posteriors. If such a hypothesis is reasonable, then the resulting
system should be more language sensitive than the DNN/i-vector
baseline. We therefore construct and evaluate just such a system,
naming it LID-net-i, with a structure as shown in Fig. 7.

The detailed structure and evaluation of the LID-net-i system
will be presented in Section V-D.

V. IMPLEMENTATION AND EVALUATION

A. Evaluation Methodology and Experimental Data

To evaluate the effectiveness of the proposed systems and
compare against the baseline, we used the NIST LRE 2009
dataset and testing protocol. The 2009 language recogni-
tion evaluation (LRE) comprised 23 target languages, namely:
Amharic, Bosnian, Cantonese, Creole, Croatian, Dari, English-
American, English-Indian, Farsi, French, Georgian, Hausa,
Hindi, Korean, Mandarin, Pashto, Portuguese, Russian, Spanish,
Turkish, Ukrainian, Urdu and Vietnamese.

1) Training and Testing Data: Training utterances for each
language were from Conversational Telephone Speech (CTS)
and narrow band Voice of America (VOA) radio broadcasts. The
CTS data used for training incorporated material from previous
evaluations conducted by NIST (LRE 1996, LRE 2003, LRE
2005 and LRE 2007). The utterances were mainly collected from
CallFriend, CallHome and Mixer databases The VOA partition
data was from the NIST-provided datasets: VOA2 and VOA3.

The training data for each language is quite imbalanced, with
recordings for languages like Mandarin and English-American
exceeding 100 hours. By contrast there was less than 5 hours of
English-Indian data. It should also be noted that some language
data was collected from only one of the sources. Up to about
15 hours of each target language was selected for training and
approximately 80 separate 30s duration utterances set aside for
use as the development dataset (the remainder was used for
training).

The test utterances are also divided into three duration groups,
i.e., 30s, 10s and 3s, comprising 10,376, 10,427 and 10,375
speech utterances respectively.

2) Testing and Performance Evaluation: The language de-
tection task in LRE 2009 is to determine whether a hypothesised
language is spoken within a test segment or not [25]. Since test
utterances vary in length, performance was evaluated separately
for approximate utterance lengths of 30s, 10s and 3s, with the
latter task being particularly difficult since short utterances could
contain very little language-specific information and were often
too short to yield meaningful statistics.

Several metrics can be used to assess LID performance (in
terms of one-versus-all language detection). Classical equal er-
ror rate (EER) gives the performance when false acceptance and
false rejection rates are equal. Average decision cost (Cavg ) [25]
is a measure of the cost of taking incorrect decisions over all
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Fig. 7. Structure of the CNN-DNN LID-net-i i-vector based system using LID-senone statistics gathered from the upper end-to-end system to form a background
model (steps S1 and S2) to create a total variability (T) matrix (S3), needed to obtain an i-vector from each utterance statistic (S4). Notation K@1 × N means
that there are K channels of 1 by N sized features.

languages;

Cavg =
1

2NT

∑

l∈LT

{

PM (l) +
1

NT − 1

∑

l ′∈LN

PF (l, l′)

}

where PM and PF are the miss (rejection) and false miss error
rates respectively and LT and LN represent the target and non-
target languages (NT is the number of target languages). We
also made use of DET curves [26], to visualise the range of
possible system operating points.

For our evaluations, we trained and tested separate networks
for the 30s, 10s and 3s tasks. Although they had the same struc-
ture, they contained different weights after training. As men-
tioned above, the 3s task was particularly difficult, whereas the
nature of the 30s task made it much easier. However we made
use of training data augmentation techniques to divide the longer
utterances into shorter segments to help train the 3s and 10s
networks. The consequence is that those networks enjoyed the
benefits of far more training data than the 30s network, meaning
that the performance of each network is constrained in different
ways.

2) DNN Front End Layers Configuration and Training

All LID-net, LID-bnet, LID-net-i and DNN/i-vector sys-
tems utilised the same front end DNN layers. These began
as a 6 layer DNN with central 50 dimensional bot-
tleneck layer (i.e., 48 × 21 − 2048 − 2048 − 50 − 2048 −
2048 − 3020). We used Switchboard for training the DNN to
give DBFs. After training, the layers up to the bottleneck layer

were transferred to each new system and then trained end-to-end
using LRE 2009 training data. The posteriors at the output of
the CNN layers are denoted LID-senones. These layers are all
listed in Table I for each system.

Given that the DNN layers were pre-trained and fixed to act as
a feature extractor, the following CNN layers were then trained
directly on LID data to learn a mapping from input LID-features
to utterance-level LID labels. The configuration settings used for
each neural network stack are given in Table I, with layers 10
and 11 for LID-net and LID-bnet shown separately, since the
former network ended at layer 11 rather than layer 12. Each
CNN block actually consisted of a convolutional layer followed
by batch normalisation (‘bnorm’). A dropout of 0.5 was also
applied after the first two convolutional blocks, and each system
was trained with a learning rate that began at 0.05, and was
then multiplied by 0.1 after every 5 epochs, terminating after
15 epochs. Batch size was variable (it was maximised to fit into
GPU memory of 12GBytes and therefore was dependant upon
the size of the training data set), ranging from 256 for the 3s
LID-net system, 128 for 3s LID-bnet, 64 and 32 respectively
for the 10s systems, 16 and 8 for the 30s systems. All pooling
layers in these systems used average rather than max pooling.

B. Evaluation of LID-net System

As shown in Table I, LID-net had six convolutional layers, tak-
ing LID-features derived from the DNN plus context as input.1

1The notation used in this paper is that a size of K@H × W means there are
K channels of height H features with width W .
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TABLE I
NEURAL NETWORK CONFIGURATIONS FOR LID-NET AND LID-BNET SYSTEMS

Layer Stage Input Size Configuration

1 DNN layer1 (48 × 21) × N connections: (48 × 21) × 2048
2 DNN layer2 2048 × N connections: 2048 × 2048
3 DNN layer3 2048 × N connections: 2048 × 50
4 CNN block1 1@50 × N conv1 filter 1@50 × 21 / bnorm
5 CNN block2 512@1 × (N − 20) conv2 filter 512@1 × 1 / bnorm
6 CNN block3 512@1 × (N − 20) conv3 filter 512@1 × 1 / bnorm
7 CNN block4 512@1 × (N − 20) conv4 filter 512@1 × 1 / bnorm
8 CNN block5 512@1 × (N − 20) conv5 filter 512@1 × 1 / bnorm
9 CNN block6 512@1 × (N − 20) conv6 filter 512@1 × 1 / bnorm
10 (LID-net) SPP K@1 × (N − 20) SPP pooling size: [1, N − 20]
10 (LID-bnet) bilinear O2P K@1 × (N − 20) input from convs 5,6 and 6,6
11 (LID-net) full connection K@1 × 1 connections: K × 23 outputs
11 (LID-bnet) full connection1 (K × K )@1 × 1 connections: (K × K ) × 512
12 (LID-bnet) full connection2 512@1 × 1 connections: 512 × 23 outputs

TABLE II
COMPARISON BETWEEN LID-NET, DBF/I-VECTOR AND GMM/I-VECTOR

FROM [11]

System 30s 10s 3s

EER Cavg EER Cavg EER Cavg

GMM/i-vector [11] - 1.15 - 1.98 - 6.82
DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net-32 1.49 1.05 2.74 1.54 7.67 6.02
LID-net-64 1.54 0.75 2.92 1.64 7.76 5.99
LID-net-128 1.55 0.91 2.89 2.00 7.58 6.15
LID-net-256 1.46 1.21 2.66 1.46 7.57 5.05
LID-net-512 1.50 0.74 2.81 1.49 7.79 6.64

Performance is given in EER (%) and Cav g (%).

It was trained end-to-end with LID labels, using SPP to col-
late utterance level statistics for classification by the single fully
connected layer 11. We evaluated LID-net with a number of
different pooling lengths from 32 to 512 in the feature map after
CNN block 6 for comparison. Its performance is compared, in
Table II, to the current state-of-the-art DBF/i-vector system. A
notation such as LID-net-32 means that the feature map after
CNN block 6 pooled across 32 features.

The benefits of end-to-end training are evident from the per-
formance: it outperformed the baseline DBF/i-vector system
over all scales, particularly for the most difficult 3s task. These
results lend some confidence to the idea of greater language dis-
criminating ability implicit in LID-senones. From these results,
pooling over 256 features appears to be a reasonable choice,
among tested configurations, for all scales.

C. Evaluation of LID-bnet System

The structure of LID-bnet is shown in Fig. 2 and its detailed
configuration given in Table I. It shared the same three lowest
layer structures and weights with LID-net, since DNN layers 1 to
3 were pre-trained in a bottleneck network on good and extensive
ASR material. The next six CNN convolutional blocks had the
same configuration as in LID-net, but different weights and
thus extracted different LID-senones. This due to CNN layers
being trained in a backwards direction from the output end of

the network, and that end of the network differed substantially
between LID-net and LID-bnet.

In LID-net, the frame-level LID-senones were pooled into
an utterance representation by SPP after CNN block 6, however
this only made use of simple averaging. As mentioned in Section
II-A, in order to obtain higher order statistics it was necessary
to replace SPP.

C. LID-bnet Configuration

The bilinear pooling function B can be written as fA,B =
B(fA,fB) [23]. Let fA and fB be the A and B feature maps
derived from structured CNN layers A and B. These could be
from the same CNN block or from different CNN blocks (shown
in Fig. 2(a) and (b) respectively).

If fA,B is the output of bilinear pooling, the size of fA and
fB are (H × W ) × KA and (H × W ) × KB respectively (re-
shaped from KA@H × W and KB @H × W respectively), im-
plying both fA and fB must have the same feature dimension
W and H to be compatible, but could subsequently pool over
different length sets of features.

The bilinear pooling operation can be developed to fA,B =
B(fA,fB) = P(fA

T · fB). The feature map outputs are com-
bined at each location using the matrix outer product, thus the
shape of (fA

T · fB) is simply KA × KB . To obtain an utter-
ance representation descriptor, the pooling function P aggre-
gates the bilinear feature across the entire spatial domain of one
combination at different scales.

Elements in feature map fA are defined as fAd(t) (d =
1 . . . KA , t = 1 . . . N ) and fB , after the softmax operation, be-
comes γ, which can be viewed as the posterior of corresponding
LID-senones at a frame level, with elements defined as γk (t)
(k = 1 . . . KB , t = 1 . . . N ). Using the feature map fA and γ,
the first order LID-senone statistics are,

fAB(k) =
1
N

N∑

t=1

γk (t) · fA(t) (1)

If we instead use feature maps fA and fB directly, the bilinear
pooling would model the second order LID-senone statistics,

fAB =
1
N

fA
T · fB (2)



JIN et al.: LID-SENONES AND THEIR STATISTICS FOR LANGUAGE IDENTIFICATION 179

TABLE III
PERFORMANCE OF CROSS- AND SAME-LAYER LID-BNET ON 3S UTTERANCES

FOR DIFFERENT POOLING LENGTHS K

K Cross-layer network Same-layer LID-net

2nd order 1st order 2nd order 0th order

EER ACC EER ACC EER ACC EER ACC

32 6.97 72.89 7.08 72.99 7.19 72.80 7.67 71.63
64 6.94 73.11 7.15 72.99 7.16 73.04 7.76 71.52
128 7.05 72.86 7.08 73.03 7.25 73.23 7.58 71.79
256 7.09 73.43 7.37 72.56 7.13 73.40 7.57 71.87
512 6.86 72.77 7.11 71.43 7.17 73.05 7.79 71.53

If fA and fB are from the same layer in the CNN, this would
be the formula to compute O2P in [27, eq. (1)]. In [27] it is a
second order statistic computed over image spatial dimensions,
but in LID-bnet, features are derived across acoustic analysis
frame contexts. This means that while it differs from a traditional
Baum-Welch second order statistic, it is effectively still a second
order time domain statistic.

C. Same- or Cross-Layer Pooling

After transferring trained LID-net parameters to the corre-
sponding LID-bnet, we re-trained using the same training data
to verify whether bilinear pooling improves performance further.
Focusing on 3s utterances, we conducted many experiments to
explore the mechanism for computing first/second order statis-
tics through same- or cross-layer pooling.

Table III lists the performance for various systems on 3s utter-
ances. The number K in each row of the table indicates a test that
involved either LID-net-K or an LID-bnet initialised from LID-
net-K. Performance is given for both cross-layer and same-layer
pooling and results for second and first-order statistics are listed
separately (except for same-layer pooling). LID-net results are
listed on the right for comparison, and we see that all LID-bnet
configurations outperformed the original method. This is thanks
to the robustness that is gained by using high-order LID-senone
statistics. Cross-layer bilinear pooling performed better than
same-layer pooling, which indicates that additional useful in-
formation was being gained by incorporating statistics from an
earlier layer. Using the second order statistics was more robust
in every case than that just first order statistics. Therefore the
following evaluations only list the performance of the best con-
figuration – second order LID-senone statistics obtained from
cross-layer bilinear pooling.

C. Performance of LID-bnet

Like LID-net, LID-bnet has six convolutional layers, and
again we evaluated with pooling between 32 and 512 feature
maps after CNN layer 6 for comparison. The performance is
shown in Table IV for each tested K, where an K of 32 means
the corresponding LID-net-32 pooled 32 feature maps after CNN
layer 6. Comparing this to the LID-net performance in Table II,
improvement is noted, especially at shorter utterance scales in
both EER and Cavg scores. Although the optimal pooling length

TABLE IV
PERFORMANCE OF CROSS LAYER BILINEAR NETWORK FOR ALL SCALES WITH

DIFFERENT POOLING LENGTHS K

K 30s 10s 3s

EER Cavg EER Cavg EER Cavg

32 1.52 0.77 2.39 1.20 6.97 6.20
64 1.48 0.95 2.40 1.38 6.94 5.32
128 1.59 0.66 2.33 1.50 7.05 5.52
256 1.58 0.87 2.32 1.74 7.09 5.26
512 1.51 0.87 2.43 1.46 6.86 4.38

TABLE V
COMPARISON BETWEEN LID-NET-I POOLING OVER 32, 64 AND 128 FEATURES

AND DNN/I-VECTOR FOR ALL UTTERANCE LENGTH CATEGORIES

System 30s 10s 3s

EER Cavg EER Cavg EER Cavg

GMM/i-vector [11] - 1.15 - 1.98 - 6.82
DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net-i-32 1.46 1.21 2.39 1.79 8.10 6.77
LID-net-i-64 1.43 1.10 2.44 1.87 8.30 7.38
LID-net-i-128 1.41 0.96 2.49 1.88 8.53 7.87

GMM/i-vector is from [11].

in LID-bnet was found to be different for each utterance dura-
tion, the best performance tended to be achieved with a shorter
length than in LID-net. This highlights the compactness of the
the bilinear pooling method: pooling over just 64 features in
LID-bnet can outperform both the DBF/i-vector and the LID-net
EER for shorter utterances. While the difficult 3s task benefits
from improvements in system architecture, the 30s task appears
to be data-limited rather than architecture-limited, and the newer
architectures do not contribute additional data to the task, hence
yield only minimal improvements for that scale.

D. Design and Evaluation of the LID-net-i System

The LID-net-i structure hypothesised in Section IV-D, re-
places the use of DBFs and senones of the DNN/i-vector system
with LID-senones (as derived from LID-net).

In practice, after training a correspondingly sized LID-net
system, we extracted LID-senones and their posteriors, in order
to train a language independent GMM model. From this we
obtained zeroth, first and second order Baum-Welch statistics to
train a T matrix from which we could extract an i-vector. The
i-vectors derived from LID-senones should, if our hypothesis is
correct, incorporate a greater degree of language discriminant
information than those derived from ASR senones.

To implement and evaluate this, we trained several LID-net
systems, each with six convolutional layers. The first five layers
had 512 channels while the sixth layer had a number of channels
which varied from 32 to 128 as required to evaluate different
lengths over which the statistics were pooled. The T matrices
were trained over five epochs and the performance of the final
system obtained in terms of EER (%) and Cavg for all testing
conditions. Results are presented in Table V.
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Fig. 8. Manifold plots [28] for (a) DNN/i-vector, (b) LID-net-i, (c) LID-net and (d) LID-bnet.

The results clearly show the advantages of LID-net-i over
the baseline DNN/i-vector system, as well as the GMM/i-vector
system using DBFs from Ferrer et al. [11]. Since the lower
four systems are identical apart from the source of the utterance
level statistics (from senones and LID-senones respectively), the
results corroborate the hypothesis that LID-senones are better
able to represent language information than senones.

To explore this in a different way, we have used t-SNE [28]
to obtain cluster manifolds for a set of six languages from each
system presented in this paper (four less confused languages
plus one relatively confused language pair were chosen in an
effort to highlight separability). t-SNE is a variant of stochas-
tic neighbour embedding (SNE) that is conveniently able to
visualise high-dimensional data by mapping it into a lower di-
mensionality. In this case we reduce the trained 3s statistics
to three-dimensions and plot views of each system in Fig. 8
that highlight features that include cluster sizes, overlap and
separability.2 For i-vector systems the data is shown after LDA
and WCCN.

2Since it is difficult to visualize three dimensional information from a two
dimensional representation, we have made the original plots available for down-
load from http://www.lintech.org/LID/ in MATLAB .fig format.

The manifold plots show much better class separability for the
new systems compared to the baseline – for example the clusters
in the LID-bnet plot are almost all linearly separable, whereas
the Mandarin, Cantonese and even American English clusters
in the DNN/i-vector system are highly overlapped. This again
highlights the advantages of LID-senones – whether used in
an end-to-end system (LID-net and LID-bnet) or to provide the
statistical utterance level information in an otherwise traditional
i-vector system (LID-net-i).

VI. DISCUSSION OF RESULTS

A. System Performance Summary

To summarise the new systems presented in this paper, the
final performance is given in Table VI, alongside the state-of-
the-art baseline, with the best performing EER and Cavg scores
shown in bold.

Starting with the 30s utterances, which we believe is data-
limited, we see that LID-net-i achieves a 4.7% relative EER
improvement over the baseline. This is due to the advantages
of LID-senones and their statistics, which are designed to be
language discriminant, over the traditional senones. However,
the relative improvement is small because phoneme or tri-phone
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TABLE VI
EVALUATIONS ON DIFFERENT SYSTEMS INCLUDING DNN/I-VECTOR, LID-NET,

LID-BNET AND LID-NET-I

System name 30s 10s 3s

EER Cavg EER Cavg EER Cavg

DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net 1.46 0.74 2.66 1.46 7.57 5.05
LID-bnet 1.48 0.66 2.32 1.20 6.86 4.38
LID-net-i 1.41 0.96 2.39 1.79 8.10 6.77

Performance is given in EER (%) and Cav g (%) for all test conditions.

state statistics do contain language specific information; but this
is only useful when their statistics are abundant enough – and
this is precisely the case for 30s utterances. As expected, the
10s and 3s tasks show a greater relative gain in using LID-
senones, because the utterances are shorter and hence less able
to contribute discriminative senone statistics.

For 10s utterances, LID-bnet EER performance is better by
23.9%, not only because it takes advantage of the discrimi-
native capability of the end-to-end structure, but also because
it extracts the high order statistics of the LID-senones. LID-
net-i achieves second best performance with a 21.6% relative
EER improvement over baseline. This is due to the LID-senone
statistics being more discriminative on languages, as well as the
utterance length being sufficient to collect meaningful statistics.
LID-net also achieves a relative 10% EER improvement over
baseline, even though it only simply averages the LID-senones
to get their statistics (again, we note that effectively this means
that LID-senone statistics are better than higher order senone
statistics).

The most difficult 3s utterance task is the most interest-
ing, with the strong modelling capability of the end-to-end
approaches dominating so that both LID-net and LID-bnet out-
perform the i-vector systems. We explain this by arguing that
when shorter utterances are modelled by a generative model,
since there are insufficient statistics available in the speech, the
accuracy of the model is compromised. The generative method
concentrates on the distribution of different languages rather
than pushing the same language into compact clusters, and hence
different languages have a larger variance and greater overlap.
End-to-end training allows LID-net to achieve 29.8% relative
EER improvement over baseline while the bilinear higher order
pooling of LID-bnet achieves 36.4% relative EER improvement.

For all utterance durations, we note that LID-bnet achieves the
best Cavg performance – which we again attribute to the power of
LID-senones. The discriminative method looks for boundaries
between languages, so even when languages are confusable, it
is easier to find an appropriate threshold, and hence have lower
Cavg score than the generative modelling techniques.

B. DET Curve

DET curves [26] are plotted for all systems in Fig. 9, showing
the trade-offs possible between false positive and false negative
detections. The EER results of Table VI are derived from DET
curves (from the transect of a 45◦ line from the origin with

Fig. 9. DET curve plots for all systems and all utterance scales.

each curve), but the overall shape of the curves yields additional
useful information. From Fig. 9 we note firstly that the LID-
bnet system is almost always the highest performing method
at all trade-off positions, whereas the baseline DNN/i-vector
system is almost always the worst among tested systems, with
the exception of low rates of false negatives at the 30s utterance
scale. Secondly, we note that separation between curves at their
centre positions, which represent the span of EER results, are
scale dependent. This means that the 30s scale results are far
closer in the centre than are the 10s results while the 3s results
are more separated. The interpretation of this is that the 30s task
is training data limited, and hence improvements in architecture
of statistics quality have less effect than in the 10s or 3s tasks.
For the 3s task, meanwhile, improvements in architecture lead
to a much greater relative gain in performance. Both of these
characteristics have been noted in the results presented up to
now.

C. Confusion Matrices

Confusion matrices are plotted, normalized to the size of
test data, for each system over a 3s utterance scale in Fig. 10.
The highly confused language pairs are clearly identifiable from
these plots, but apart from those language pairs which we already
know to be inherently confusable, we note some other interesting
features. Firstly, while LID-net and LID-bnet understandably
share similar confusion tendencies, the other systems are much
less similar. In fact LID-net-i arguably resembles DNN/i-vector
confusions more closely. Secondly, again apart from those six
pairs, i-vector and SPP or bilinear pooling methods – while
they use identical information – draw different conclusions. In
fact there is sufficient dissimilarity in the confusion matrices to
raise the intriguing possibility that a performance gain might
be achievable through a fusion of methods. This idea is left for
future exploration.
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Fig. 10. Normalized confusion matrices for 3s utterances for (a) DNN/i-vector, (b) LID-net, (c) LID-bnet and (d) LID-net-i.

VII. CONCLUSION

This paper has presented new language identification struc-
tures that utilise a well trained DNN front end for feature extrac-
tion, followed by a deep stack of convolutional layers, pooling
methods and fully connected output classifiers. There are several
levels of time domain context implicit in the structures, starting
at frame level and culminating in pooling of features or statistics
across an utterance. The key features of these methods are firstly
that they can be trained end-to-end for a language identification
task and secondly that they form an intermediate feature repre-
sentation which we have called LID-senones. The end-to-end
training capability of these systems allows them to be trained
at an utterance level to be more discriminative in terms of
language identity, compared to current state-of-the art systems
such as the DNN/i-vector used as a baseline in this paper, which
is generative in nature. The increased level of discrimination
is borne out in the excellent results that these methods achieve,

particularly for the most difficult 3s utterance LID task; in which
they improve on current state-of-the-art system performance by
over 36% in terms of EER and 41% in terms of Cavg .

The intermediate LID-senone representation derived within
the end-to-end structures is analogous to senones in an ASR
system, and we have explored in some detail how they should
be language sensitive but relatively speaker, channel and noise
insensitive. Evidence presented in this paper shows that LID-
senones encode language identity; their distribution is relatively
unchanging in intra-language comparisons, but significantly dif-
ferent in inter-language comparisons. LID-senone systems are
shown to perform well, even when a DNN/i-vector system is
constructed to use LID-senones instead of senones, yielding
significant performance improvements at all utterance scales.

As future work it would be interesting to explore the noise
robustness of SPP operating over different scales or when pool-
ing a greater number of shorter statistics, perhaps at a syllabic
or word scale.
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