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Statistical Parametric Speech Synthesis Incorporating
Generative Adversarial Networks

Yuki Saito , Shinnosuke Takamichi , Member, IEEE, and Hiroshi Saruwatari , Member, IEEE

Abstract—A method for statistical parametric speech synthe-
sis incorporating generative adversarial networks (GANs) is pro-
posed. Although powerful deep neural networks techniques can
be applied to artificially synthesize speech waveform, the synthetic
speech quality is low compared with that of natural speech. One
of the issues causing the quality degradation is an oversmoothing
effect often observed in the generated speech parameters. A GAN
introduced in this paper consists of two neural networks: a dis-
criminator to distinguish natural and generated samples, and a
generator to deceive the discriminator. In the proposed framework
incorporating the GANs, the discriminator is trained to distinguish
natural and generated speech parameters, while the acoustic mod-
els are trained to minimize the weighted sum of the conventional
minimum generation loss and an adversarial loss for deceiving
the discriminator. Since the objective of the GANs is to minimize
the divergence (i.e., distribution difference) between the natural
and generated speech parameters, the proposed method effectively
alleviates the oversmoothing effect on the generated speech pa-
rameters. We evaluated the effectiveness for text-to-speech and
voice conversion, and found that the proposed method can gener-
ate more natural spectral parameters and F0 than conventional
minimum generation error training algorithm regardless of its hy-
perparameter settings. Furthermore, we investigated the effect of
the divergence of various GANs, and found that a Wasserstein GAN
minimizing the Earth-Mover’s distance works the best in terms of
improving the synthetic speech quality.

Index Terms—Statistical parametric speech synthesis, text-to-
speech synthesis, voice conversion, deep neural networks, genera-
tive adversarial networks, over-smoothing.

I. INTRODUCTION

S TATISTICAL parametric speech synthesis (SPSS) [1] is a
technique that aims to generate natural-sounding synthetic

speech. Text-to-speech (TTS) synthesis [2] is a technique for
synthesizing speech from text, and voice conversion (VC) [3]
is a technique for synthesizing speech from another one while
preserving linguistic information of original speech. In SPSS,
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acoustic models represent the relationship between input fea-
tures and acoustic features. Recently, deep neural networks
(DNNs) [4] have been utilized as the acoustic models for TTS
and VC because they can model the relationship between input
features and acoustic features more accurately than conven-
tional hidden Markov models [5] and Gaussian mixture mod-
els [6]. These acoustic models are trained with several training
algorithms such as the minimum generation error (MGE) cri-
terion [7], [8]. Techniques for training the acoustic models to
generate high-quality speech are widely studied since they can
be used for both TTS and VC. However, the speech parameters
generated from these models tend to be over-smoothed, and the
resultant quality of speech is still low compared with that of
natural speech [1], [9]. The over-smoothing effect is a common
issue in both TTS and VC.

One way to improve speech quality is to reduce the difference
between natural and generated speech parameters. For instance,
since the parameter distributions of natural and synthetic speech
are significantly different [10], we can improve the synthetic
speech quality by transforming the generated speech parame-
ters so that their distribution is close to that of natural speech.
This can be done by, for example, modeling the probability dis-
tributions in a parametric [6] or non-parametric [11] way in the
training stage, and then, generating or transforming the synthetic
speech parameters by using the distributions. The more effec-
tive approach is to use analytically derived features correlated to
the quality degradation of the synthetic speech. Global variance
(GV) [6] and modulation spectrum (MS) [12] are well-known
examples for reproducing natural statistics. These features work
as a constraint in the training/synthesis stage [13], [14]. Nose
and Ito [15] and Takamichi et al. [13] proposed methods that
reduce the difference between the Gaussian distributions of nat-
ural and generated GV and MS. However, quality degradation
is still a critical problem.

In order to address this quality problem, in this paper we
propose a novel method using generative adversarial networks
(GANs) for training acoustic models in SPSS. A GAN consists
of two neural networks: a discriminator to distinguish natural
and generated samples, and a generator to deceive the discrimi-
nator. Based on the framework, we define a new training crite-
rion for the acoustic models; the criterion is the weighted sum
of the conventional MGE training and an adversarial loss. The
adversarial loss makes the discriminator recognize the gener-
ated speech parameters as natural. Since the objective of the
GANs is to minimize the divergence (i.e., the distribution dif-
ference) between the natural and generated speech parameters,
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our method effectively alleviates the effect of over-smoothing
the generated speech parameters. Moreover, our method can be
regarded as a generalization of the conventional method using
explicit modeling of analytically derived features such as GV
and MS because it effectively minimizes the divergence with-
out explicit statistical modeling. Also, the discriminator used
in our method can be interpreted as anti-spoofing, namely, a
technique for detecting synthetic speech and preventing voice
spoofing attack. Accordingly, techniques and ideas concerning
anti-spoofing can be applied to the training. We evaluated the ef-
fectiveness of the proposed method in DNN-based TTS and VC,
and found that the proposed algorithm generates more natural
spectral parameters and F0 than those of the conventional MGE
training algorithm and improves the synthetic speech quality re-
gardless of its hyper-parameter settings which control the weight
of the adversarial loss. Furthermore, we investigated the effect of
the divergence of various GANs, including image-processing-
related ones such as the least squares GAN (LS-GAN) and
the Wasserstein GAN (W-GAN), and speech-processing-related
ones such as the f -divergence GAN (f -GAN). The results of
the investigation demonstrate that the W-GAN minimizing the
Earth-Mover’s distance works the best in regard to improving
synthetic speech quality.

In Section II of this paper, we briefly review conventional
training algorithms in DNN-based TTS and VC. Section III
introduces GANs and proposes a method for speech synthesis
incorporating those GANs. Section IV presents the experimental
evaluations. We conclude in Section V with a summary.

II. CONVENTIONAL DNN-BASED SPSS

This section describes the conventional training algorithm for
DNN-based SPSS, including TTS and VC.

A. DNN-Based TTS

1) DNNs as Acoustic Models: In DNN-based TTS [16],
acoustic models representing the relationship between linguis-
tic features and speech parameters consist of layered hierar-
chical networks. In training the models, we minimize the loss
function calculated using the speech parameters of natural and
synthetic speech. Let x = [x�1 , . . . ,x�t , . . . ,x�T ]� be a linguis-
tic feature sequence, y = [y�1 , . . . ,y�t , . . . ,y�T ]� be a natural
speech parameter sequence, and ŷ = [ŷ�1 , . . . , ŷ�t , . . . , ŷ�T ]� be
a generated speech parameter sequence, where t and T de-
note the frame index and total frame length, respectively. xt

and yt = [yt (1) , . . . , yt (D)]� are a linguistic parameter vec-
tor and a D-dimensional speech parameter vector at frame t,
respectively.

2) Acoustic Model Training: The DNNs that predict a nat-
ural static-dynamic speech feature sequence Y = [Y �1 , . . . ,
Y �t , . . . ,Y �T ]� from x are trained to minimize a de-
fined training criterion. Y t = [y�t ,Δy�t ,ΔΔy�t ]� is a nat-
ural static-dynamic speech feature at frame t. Given a pre-

dicted static-dynamic speech feature sequence Ŷ = [Ŷ
�
1 , . . . ,

Ŷ
�
t , . . . , Ŷ

�
T ]�, the most standard criterion is the mean squared

error (MSE) LMSE(Y , Ŷ ) between Y and Ŷ defined as

follows:

LMSE

(
Y , Ŷ

)
=

1
T

(
Ŷ − Y

)�(
Ŷ − Y

)
. (1)

A set of the model parameters θG (e.g., weight and bias of
DNNs) is updated by the backpropagation algorithm using the
gradient ∇θG LMSE(Y , Ŷ ).

To take the static-dynamic constraint into account, the min-
imum generation error (MGE) training algorithm was pro-
posed [8]. In MGE training, the loss function LMGE(y, ŷ) is
defined as the mean squared error between natural and gener-
ated speech parameters as follows:

LMGE (y, ŷ) =
1
T

(ŷ − y)� (ŷ − y)

=
1
T

(
RŶ − y

)� (
RŶ − y

)
. (2)

R is a DT -by-3DT matrix given as

R =
(
W�Σ−1W

)−1
W�Σ−1 , (3)

where W is a 3DT -by-DT matrix for calculating dynamic
features [5] and Σ = diag[Σ1 , . . . ,Σt , . . . ,ΣT ] is a 3DT -
by-3DT covariance matrix, where Σt is a 3D-by-3D co-
variance matrix at frame t. Σ is separately estimated using
training data. We define the speech parameter prediction as
ŷ = RŶ = G(x; θG), where θG denotes the acoustic model
parameters and it is updated by the backpropagation algorithm
using the gradient of the generation error,∇θG LMGE(y, ŷ). As
described in [8], the gradient includes∇Ŷ LMGE(y, ŷ) given as
R�(ŷ − y)/T .

Phoneme duration is predicted in the same manner with-
out dynamic feature calculation. Let d = [d1 , . . . , dp , . . . , dP ]�

be a natural phoneme duration sequence, and d̂ = [d̂1 , . . . ,

d̂p , . . . , d̂P ]� be a duration sequence generated using duration
models described as DNNs. p is the phoneme index and P is the
total number of phonemes. The model parameters are updated
to minimize LMSE(d, d̂).

B. DNN-Based VC

DNN-based acoustic models for VC convert input speech
features to desired output speech features. In training, a dynamic
time warping algorithm is used to temporally align source and
target speech features. Using the aligned features, x and y, the
acoustic models are trained to minimize LMGE(y, ŷ), the same
as DNN-based TTS.

III. DNN-BASED SPSS INCORPORATING GAN

A. Generative Adversarial Networks (GANs) [17]

A GAN is a framework for learning deep generative mod-
els, which simultaneously trains two DNNs: a generator and
discriminator D(y; θD). θD is a set of the model parameters
of the discriminator. The value obtained by taking the sigmoid
function from the discriminator’s output, 1/(1 + exp(−D(y))),
represents the posterior probability that input y is natural data.
The discriminator is trained to make the posterior probability 1
for natural data and 0 for generated data, while the generator
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Fig. 1. Loss function and gradients for updating the discriminator. Param. Gen.
indicates the speech parameter generation [5]. Note that, the model parameters
of the acoustic models are not updated in this step.

is trained to deceive the discriminator; that is, it tries to make
the discriminator make the posterior probability 1 for generated
data.

In the GAN training, the two DNNs are iteratively updated
by minibatch stochastic gradient descent. First, by using natural
data y and generated data ŷ, we calculate the discriminator loss
L

(GAN)
D (y, ŷ) defined as the following cross-entropy function:

L
(GAN)
D (y, ŷ) = − 1

T

T∑
t=1

log
1

1 + exp (−D (yt))

− 1
T

T∑
t=1

log
(

1− 1
1 + exp (−D (ŷt))

)
.

(4)

θD is updated by using the stochastic gradient ∇θD L
(GAN)
D

(y, ŷ). Fig. 1 illustrates the procedure for computing the dis-
criminator loss. After updating the discriminator, we calculate
the adversarial loss of the generator L

(GAN)
ADV (ŷ) which deceives

the discriminator as follows:

L
(GAN)
ADV (ŷ) = − 1

T

T∑
t=1

log
1

1 + exp (−D (ŷt))
. (5)

A set of the model parameters of the generator θG is updated
by using the stochastic gradient ∇θG L

(GAN)
ADV (ŷ). Goodfellow

et al. [17] showed this adversarial framework minimizes the ap-
proximated Jensen–Shannon (JS) divergence between two dis-
tributions of natural and generated data.

B. Acoustic Model Training Incorporating GAN

Here, we describe a novel training algorithm for SPSS which
incorporates the GAN. As for the proposed algorithm, acoustic
models are trained to deceive the discriminator that distinguishes
natural and generated speech parameters.

Fig. 2. Loss functions and gradients for updating acoustic models in the
proposed method. Note that the model parameters of the discriminator are not
updated in this step.

The loss function of speech synthesis is defined as the fol-
lowing:

LG (y, ŷ) = LMGE (y, ŷ) + ωD
ELM G E

ELA D V

L
(GAN)
ADV (ŷ) , (6)

where L
(GAN)
ADV (ŷ) makes the discriminator recognize the gen-

erated speech parameters as natural, and minimizes the diver-
gence between the distributions of the natural and generated
speech parameters. Therefore, the proposed loss function not
only minimizes the generation error but also makes the dis-
tribution of the generated speech parameters close to that of
natural speech. ELM G E and ELA D V denote the expectation val-

ues of LMGE(y, ŷ) and L
(GAN)
ADV (ŷ), respectively. Their ratio

ELM G E /ELA D V is the scale normalization term between the
two loss functions, and the hyper-parameter ωD controls the
weight of the second term. When ωD = 0, the loss function
is equivalent to the conventional MGE training, and when
ωD = 1, the two loss functions have equal weights. A set
of the model parameters of the acoustic models θG is up-
dated by using the stochastic gradient LG(�y, �̂y). Fig. 2 illus-
trates the procedure for computing the proposed loss func-
tion. In our algorithm, the acoustic models and discrimina-
tor are iteratively optimized, as shown in Algorithm 1. When
one module is being updated, the model parameters of the
another are fixed; that is, although the discriminator is in-
cluded in the forward path to calculate L

(GAN)
ADV (ŷ) in LG(y, ŷ),

θD is not updated by the backpropagation for the acoustic
models.

The discriminator used in our method can be regarded as a
DNN-based anti-spoofing (voice spoofing detection) [18], [19]
that distinguishes natural and synthetic speech. From this per-
spective, a feature function φ(·) can be inserted between speech
parameter prediction and the discriminator as shown in Figs. 1
and 2. The function calculates more distinguishable features in
anti-spoofing than the direct use of speech parameters them-
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Algorithm 1: Iterative optimization for acoustic models and
discriminator.

1: η := learning rate
2: for number of training iterations do
3: for all training data (x,y) do
4: generate ŷ from the acoustic models:

ŷ = G(x).

5: update θD while fixing θG :

θD ← θD − η∇θD L
(GAN)
D (y, ŷ).

6: update θG while fixing θD :

θG ← θG − η∇θG LG(y, ŷ).

7: end for
8: end for

Fig. 3. Architecture to calculate isochrony-level duration from phoneme du-
ration. In the case of Japanese, which has mora isochrony, each mora duration
is calculated from the corresponding phoneme duration, e.g., the mora duration
of /ra/ is calculated as the sum of the phoneme durations of /r/ and /a/.

selves. Namely, instead of y and ŷ in (4) and (5), φ(y) and
φ(ŷ) are used. In training the acoustic models, the gradient
∂φ(ŷ)/∂ŷ is used for backpropagation. For example, when
φ(ŷ) = Wŷ, the gradient W� is used for backpropagation.

C. Application to F0 and Duration Generation

Our algorithm is simply applied to the spectral parameter
generation and conversion for TTS and VC. Here, we extend
our algorithm to F0 and duration generation in TTS. For F0
generation, we use a continuous F0 sequence [20] instead of the
F0 sequence because of the simple implementation. The input
of the discriminator is the joint vector of a spectral parameter
vector and continuous F0 value of each frame.

For duration generation, although we can directly apply
our algorithm to phoneme duration, it is not guaranteed that
naturally-distributed phoneme duration has natural isochrony
of the target language (e.g., moras in Japanese) [21]. There-
fore, we modify our algorithm so that the generated duration
naturally distributes in the language-dependent isochrony level.
Fig. 3 shows the architecture. In the case of Japanese, which
has mora isochrony, each mora duration is calculated from the
corresponding phoneme durations.

Fig. 4. Matrix representation to calculate isochrony-level duration. This is an
example in the case of a syllable-timed language such as Chinese.

The discriminator minimizes the cross-entropy function by
using the isochrony-level duration, while the generator min-
imizes the weighted sum of the MSE between natural and
generated phoneme durations and the adversarial loss using
the isochrony-level durations. Since the calculation of the
isochrony-level duration is represented as the matrix multipli-
cation shown in Fig. 4, the backpropagation is done using the
transpose of the transformation matrix.

D. GANs to be Applied to the Proposed Method

The GAN framework works as a divergence minimization
between natural and generated speech parameters. As described
in Section III-B, the original GAN [17] minimizes the ap-
proximated JS divergence. From the perspective of the di-
vergence minimization, we further introduce additional GANs
minimizing other divergences: f -GAN [22], Wasserstein GAN
(W-GAN) [23], and least squares GAN (LS-GAN) [24]. The di-
vergence of the f -GAN is strongly related to speech processing
such as a nonnegative matrix factorization [25], [26], and the ef-
fectiveness of the W-GAN and LS-GAN in the image processing
is known. The discriminator loss L

(∗-GAN)
D (y, ŷ) and adversar-

ial loss L
(∗-GAN)
ADV (ŷ) introduced below can be used instead of

(4) and (5), respectively.
1) f -GAN [22]: The f -GAN is the unified framework that

encompasses the original GAN. The difference between dis-
tributions of natural and generated data is defined as the f -
divergence [27], which is a large class of different divergences
including the Kullback–Leibler (KL) and JS divergence. The
f -divergence Df (y‖ŷ) is defined as follows:

Df (y‖ŷ) =
∫

q (ŷ) f

(
p (y)
q (ŷ)

)
dy, (7)

where p(·) and q(·) are absolutely continuous density functions
of y and ŷ, respectively. f(·) is a convex function satisfying
f(1) = 0. Although various choices of f(·) for recovering pop-
ular divergences are available, we adopt ones related to speech
processing.

KL-GAN: Defining f(r) = r log r gives the KL divergence
as follows:

DKL (y‖ŷ) =
∫

p (y) log
p (y)
q (ŷ)

dy. (8)
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The discriminator loss L
(KL-GAN)
D (y, ŷ) is defined as follows:

L
(KL-GAN)
D (y, ŷ) = − 1

T

T∑
t=1

D (yt)

+
1
T

T∑
t=1

exp (D (ŷt)− 1) , (9)

while the adversarial loss L
(KL-GAN)
ADV (ŷ) is defined as follows:

L
(KL-GAN)
ADV (ŷ) = − 1

T

T∑
t=1

D (ŷt) . (10)

Reversed KL (RKL)-GAN: Since the KL divergence is not
symmetric, the reversed version, called reversed KL (RKL) di-
vergenceDRKL(y‖ŷ) differs fromDKL(y‖ŷ), which is defined
as follows:

DRKL (y‖ŷ) =
∫

q (ŷ) log
q (ŷ)
p (y)

dy = DKL (ŷ‖y) . (11)

Defining f(r) = − log r gives the discriminator loss
L

(RKL-GAN)
D (y, ŷ) as follows:

L
(RKL-GAN)
D (y, ŷ) =

1
T

T∑
t=1

exp (−D (yt))

+
1
T

T∑
t=1

(−1 + D (ŷt)) , (12)

while the adversarial loss L
(RKL-GAN)
ADV (ŷ) is defined as follows:

L
(RKL-GAN)
ADV (ŷ) =

1
T

T∑
t=1

exp (−D (ŷt)) . (13)

JS-GAN: The JS divergence without approximation can be
formed within the f -GAN framework. Defining f(r) = −(r +
1) log r+1

2 + r log r gives the JS divergence as follows:

DJS (y‖ŷ) =
1
2

∫
p (y) log

2p (y)
p (y) + q (ŷ)

dy

+
1
2

∫
q (ŷ) log

2q (ŷ)
p (y) + q (ŷ)

dy. (14)

The discriminator loss L
(JS-GAN)
D (y, ŷ) is defined as follows:

L
(JS-GAN)
D (y, ŷ) = − 1

T

T∑
t=1

log
2

1 + exp (−D (yt))

− 1
T

T∑
t=1

log
(

2− 2
1 + exp (−D (ŷt))

)
,

(15)

while the adversarial loss L
(JS-GAN)
ADV (ŷ) is defined as follows:

L
(JS-GAN)
ADV (ŷ) = − 1

T

T∑
t=1

log
2

1 + exp (−D (ŷt))
. (16)

Note that, the approximated JS divergence minimized by the
original GAN is 2DJS(y‖ŷ)− log(4) [17].

2) Wasserstein GAN (W-GAN) [23]: To stabilize the ex-
tremely unstable training of the original GAN, Arjovsky
et al. [23] proposed the W-GAN, which minimizes the Earth-
Mover’s distance (Wasserstein-1). The Earth-Mover’s distance
is defined as follows:

DEM (y, ŷ) = inf
γ

E(y,ŷ)∼γ [‖y − ŷ‖] , (17)

where γ(y, ŷ) is the joint distribution whose marginals are re-
spectively the distributions of y and ŷ. On the basis of the
Kantorovich–Rubinstein duality [28], the discriminator loss
L

(W -GAN)
D (y, ŷ) is defined as follows:

L
(W -GAN)
D (y, ŷ) = − 1

T

T∑
t=1

D (yt) +
1
T

T∑
t=1

D (ŷt) , (18)

while the adversarial loss L
(W -GAN)
ADV (ŷ) is defined as follows:

L
(W -GAN)
ADV (ŷ) = − 1

T

T∑
t=1

D (ŷt) . (19)

We assume the discriminator to be the K-Lipschitz function.
Namely, after updating the discriminator, we clamp its weight
parameters to a fixed interval such as [−0.01, 0.01].

3) Least Squares GAN (LS-GAN) [24]: To avoid the gradient
vanishing problem of the original GAN using the sigmoid cross
entropy, Mao et al. [24] proposed the LS-GAN, which formu-
lates the objective function minimizing the mean squared error.
The discriminator loss L

(LS-GAN)
D (y, ŷ) is defined as follows:

L
(LS-GAN)
D (y, ŷ) =

1
2T

T∑
t=1

(D (yt)− b)2

+
1

2T

T∑
t=1

(D (ŷt)− a)2 , (20)

while the adversarial loss L
(LS-GAN)
ADV (ŷ) is defined as follows:

L
(LS-GAN)
ADV (ŷ) =

1
2T

T∑
t=1

(D (ŷt)− c)2 , (21)

where a, b, and c denote the labels that make the discriminator
recognize the generated data as generated, the natural data as
natura, and the generated data as natural, respectively. When
they satisfy the conditions b− c = 1 and b− a = 2, the diver-
gence to be minimized is the Pearson X 2 divergence between
p(y) + q(ŷ) and 2q(ŷ). Because we found that these conditions
degrade quality of synthetic speech, we used alternative condi-
tions suggested in [24, eq. (9)], i.e., a = 0, b = 1, and c = 1.

E. Discussions

The proposed loss function (6) is the combination of a multi-
task learning algorithm using discriminators [29] and GANs. In
defining LG(y, ŷ) = L

(GAN)
ADV (ŷ), the loss function is equivalent

to that for the GAN. Comparing with the GANs, our method
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Fig. 5. Scatter plots of mel-cepstral coefficients with several pairs of dimen-
sions. From the left, the figures correspond to natural speech, the conventional
MGE algorithm, and the proposed algorithm (ωD = 1.0). These mel-cepstral
coefficients were extracted from one utterance of the evaluation data.

is a fully supervised setting, i.e., we utilize the referred in-
put and output parameters [30] without a latent variable. Also,
since only the backpropagation algorithm is used for train-
ing, a variety of DNN architectures such as long short-term
memory (LSTM) [31] can be used as the acoustic models and
discriminator.

Using the designed feature function φ(·), we can choose not
only analytically derived features (e.g., GV and MS) but also au-
tomatically derived features (e.g., auto-encoded features [32]).

As described above, our algorithm makes the distribution of
the generated speech parameters close to that of the natural
speech. Since we perform generative adversarial training with
DNNs, our algorithm comes to have a more complicated prob-
ability distribution than the conventional Gaussian distribution.
Fig. 5 plots natural and generated speech parameters with sev-
eral mel-cepstral coefficient pairs. Whereas the parameters of
the conventional algorithm are narrowly distributed, those of
the proposed algorithm are as widely distributed as the natural
speech. Moreover, we can see that the proposed algorithm has
a greater effect on the distribution of the higher order of the
mel-cepstral coefficients.

Here, one can explore which components (e.g., analyt-
ically derived features and intuitive reasons [33]) the al-
gorithm changes. Fig. 6 plots the averaged GVs of natu-
ral and generated speech parameters. We can see that the
GV generated by the proposed algorithm is closer to the
natural GV than that of the one produced by the conven-
tional algorithm. This is quite natural result because compen-
sating distribution differences is related to minimizing mo-
ments differences [34], [35]. Then, we calculated a maximal
information coefficient (MIC) [36] to quantify a nonlinear

Fig. 6. Averaged GVs of mel-cepstral coefficients. Dashed, black, and blue
lines correspond to natural speech, the conventional MGE, and the proposed
algorithm, respectively.

Fig. 7. MICs of natural and generated mel-cepstral coefficients. The MIC
ranges from 0.0 to 1.0, and the two variables with a strong correlation have a
value closer to 1.0. From the left, the figures correspond to natural speech, the
conventional MGE algorithm, and the proposed algorithm (ωD = 1.0). These
MICs were calculated from one utterance of the evaluation data.

TABLE I
STATISTICS OF NATURAL (“NATURAL”) AND GENERATED (“MGE”

AND “PROPOSED”) CONTINUOUS F0

Mean Variance

Natural 4.8784 0.076853
MGE 4.8388 0.032841
Proposed (ωD = 1.0) 4.8410 0.032968

correlation among the speech parameters. The results are shown
in Fig. 7. As reported in [10], we can see that there are weak cor-
relations among the natural speech parameters, whereas strong
correlations are observed among those of the generated speech
parameters of the MGE training. Moreover, the generated mel-
cepstral coefficients of our algorithm have weaker correlations
than those of the MGE training. These results suggest that the
proposed algorithm compensates not only the GV of the gen-
erated speech parameters but also the correlation among the
parameters. Also, the statistics of continuous F0 , phoneme du-
ration, and mora duration are listed in Tables I, II, and III,
respectively. The bold values are the closest to natural statistics
in the results. In Tables II and III, “Proposed (phoneme)” and
“Proposed (mora)” indicate that the proposed methods applied
to phoneme and mora duration, respectively. We can see that
the proposed method also makes the statistics closer to those of
the natural speech than the conventional method. In the results
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TABLE II
STATISTICS OF NATURAL (“NATURAL”) AND GENERATED (“MSE”

AND “PROPOSED (*)”) PHONEME DURATION

Mean Variance

Natural 16.314 126.20
MSE 14.967 47.665
Proposed (phoneme, ωD = 1.0) 14.963 75.471
Proposed (mora, ωD = 1.0) 15.074 73.207

TABLE III
STATISTICS OF NATURAL (“NATURAL”) AND GENERATED (“MSE”

AND “PROPOSED (*)”) MORA DURATION

Mean Variance

Natural 25.141 131.93
MSE 23.492 60.891
Proposed (phoneme, ωD = 1.0) 24.794 96.828
Proposed (mora, ωD = 1.0) 24.978 96.682

concerning duration generations, “Proposed (mora),” tends to
reduce the difference in the mean rather than in the variance.

Our algorithm for spectrum and F0 , proposed in Section III-C,
compensates the joint distribution of them. Therefore, we can
perform the distribution compensation considering correla-
tions [38] between different features. Also, compensating
dimensionality differences [39] can be applied for deceiving
the discriminator. Since the time resolutions in phoneme
duration and mora duration are different, our algorithm
considering isochrony is related to multi-resolution GAN [40]
and hierarchical duration modeling [41].

Regarding related work, Kaneko et al. [42] proposed a gen-
erative adversarial network-based post-filter for TTS. The post-
filtering process has high portability because it is independent
of original speech synthesis procedures, but it comes at a high
computation cost and has a heavy disk footprint in synthesis.
In contrast, our algorithm can directly utilize original synthe-
sis procedures [43]. Also, we expect that our algorithm can be
extended to waveform synthesis [44], [45].

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the proposed
algorithm in terms of spectral parameters, F0 , and duration gen-
eration in DNN-based TTS, and then evaluate spectral parameter
conversion in DNN-based VC.

A. Experimental Conditions in TTS Evaluation

We used speech data of a male speaker taken from the ATR
Japanese speech database [46]. The speaker uttered 503 pho-
netically balanced sentences. We used 450 sentences (subsets
A to I) for the training and 53 sentences (subset J) for the
evaluation. Speech signals were sampled at a rate of 16 kHz,
and the shift length was set to 5 ms. The 0th-through-24th
mel-cepstral coefficients were used as spectral parameters and
F0 and 5 band-aperiodicity [47], [48] were used as excitation

parameters. The STRAIGHT analysis-synthesis system [49]
was used for the parameter extraction and the waveform synthe-
sis. To improve training accuracy, speech parameter trajectory
smoothing [50] with a 50 Hz cutoff modulation frequency was
applied to the spectral parameters in the training data. In the
training phase, spectral features were normalized to have zero-
mean unit-variance, and 80% of the silent frames were removed
from the training data in order to increase training accuracy.

The DNN architectures are listed in Table IV. In the spectral
parameter generation (Sections IV-B1 and IV-B2), the acous-
tic models predicted static-dynamic feature sequence of the
mel-cepstral coefficients (75-dim.) from the 274-dimensional
linguistic features frame by frame, and the discriminator used
frame-wise static mel-cepstral coefficients (25-dim.). Here,
since F0 , band-aperiodicity, and duration of natural speech were
directly used for the speech waveform synthesis, we only used
some of the prosody-related features such as the accent type.
In the spectral parameter and F0 generation (Section IV-B3),
the acoustic models predicted static-dynamic feature sequence
of the mel-cepstral coefficients, continuous log F0 [20], and
band-aperiodicity with a voiced/unvoiced flag (94-dim.) from
the 442-dimensional linguistic features frame by frame, and
the discriminator used the joint vector of the frame-wise static
mel-cepstral coefficients and continuous log F0 (26-dim.). In
the duration generation (Section IV-B3), we constructed dura-
tion models that generate phoneme duration from corresponding
linguistic features (439-dim). The acoustic models were trained
using MGE training.

In the training phase, we ran the training algorithm based
on minimizing the MSE (1) [16] frame-by-frame for the ini-
tialization of acoustic models and then we ran the conventional
MGE training [8] with 25 iterations. Here, “iteration” means
using all the training data (450 utterances) once for training.
The discriminator was initialized using natural speech and syn-
thetic speech after the MGE training. The number of iterations
for the discriminator initialization was 5. The proposed training
and discriminator re-training were performed with 25 iterations.
The expectation values ELM G E and ELA D V were estimated at
each iteration step.

B. Evaluation in TTS

1) Objective Evaluation With Hyper-Parameter Settings: In
order to evaluate our algorithm, we calculated the parameter
generation loss defined in (2) and the spoofing rate of the
synthetic speech. The spoofing rate is the number of spoofing
synthetic speech parameters divided by the total number of syn-
thetic speech parameters in the evaluation data. Here, “spoofing
synthetic speech parameter” indicates a parameter for which
the discriminator recognized the synthetic speech as natural.
The discriminator for calculating the spoofing rates was con-
structed using natural speech parameters and generated speech
parameters of the conventional MGE training. The generation
loss and spoofing rates were first calculated with various hyper-
parameter ωD settings.

Fig. 8 shows the results for the generation loss and spoofing
rate.
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TABLE IV
ARCHITECTURES OF DNNS USED IN TTS EVALUATIONS

Spectral parameter generation
(Section IV-B1 and IV-B2)

Spectral and F0 parameter
generation (Section IV-B3)

Duration generation
(Section IV-B4)

Acoustic models 274–3 × 400 (ReLU)–75 (linear) 442–3 × 512 (ReLU)–94 (linear) 442–3 × 512 (ReLU)–94 (linear)
Discriminator 25–2 × 200 (ReLU)–1 (sigmoid) 26–3 × 256 (ReLU)–1 (sigmoid) 1–3 × 256 (ReLU)–1 (sigmoid)
Duration models N/A 439–3 × 256 (ReLU)–1 (linear) 439–3 × 256 (ReLU)–1 (linear)

Feed-forward networks were used for all architectures. ReLU indicates rectified linear unit [37].

Fig. 8. Parameter generation loss (above) and spoofing rate (below) for various
ωD for spectral parameter generation in TTS.

As ωD increases from 0.0, the generation loss monotonically
increases, but from 0.4, we cannot see any tendency. On the other
hand, the spoofing rate significantly increases as ωD increases
from 0.0 to 0.2; from 0.2, the value does not vary much. These
results demonstrate that the proposed training algorithm makes
the generation loss worse but can train the acoustic models to
deceive the discriminator; in other words, although our method
does not necessarily decrease the generation error, it tries to
reduce the difference between the distributions of natural and
generated speech parameters by taking the adversarial loss into
account during the training.

2) Investigation of Convergence in Training: To investigate
the convergence of the proposed training algorithm, we ran the
algorithm through 100 iterations. Fig. 9 plots the generation loss
and adversarial loss for the training and evaluation data. We can
see that both loss values are almost monotonically decreased in
training. Although the values of evaluation data strongly vary

Fig. 9. Parameter generation loss (above) and adversarial loss (below) for the
training data (blue-dashed line) and evaluation data (red line).

after a few iterations, they can converge after several more iter-
ations.

3) Subjective Evaluation of Spectral Parameter Generation:
A preference test (AB) test was conducted to evaluate the qual-
ity of speech produced by the algorithm. We generated speech
samples with three methods:

[MGE:] conventional MGE (= Proposed (ωD = 0.0))
[Proposed (ωD = 0.3):] spoofing rate > 0.99
[Proposed (ωD = 1.0):] standard setting

Every pair of synthetic speech samples generated by using each
method was presented to listeners in random order. Listeners
participated in the assessment by using our crowdsourced sub-
jective evaluation systems.

The results are shown in Fig. 10.
In Fig. 10(a) and (b), the proposed algorithm outperforms

conventional MGE training algorithm in both hyper-parameter
settings. Therefore, we can conclude that our algorithm robustly
yields significant improvement in terms of speech quality re-
gardless of its hyper-parameter setting. Henceforth, we set the
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Fig. 10. Preference scores of speech quality with 95% confidence intervals
(spectral parameter generation in TTS). From the top, the numbers of listeners
were 22, 24, and 22, respectively.

Fig. 11. Preference scores of speech quality with 95% confidence intervals
(spectral parameter and F0 generation in TTS). From the top, the numbers of
the listeners were 19 and 28, respectively. (a) MGE vs. Proposed (sp+F0).
(b) Proposed (sp) vs. Proposed (sp+F0).

hyper-parameter to 1.0 for the following evaluations because
Fig. 10(c) shows that the score of “Proposed (ωD = 1.0)” was
slightly better than that of “Proposed (ωD = 0.3).”

4) Subjective Evaluation of F0 Generation: We evaluated
the effect of the proposed algorithm for F0 generation. We
conducted a subjective evaluation using the following three
methods:

[MGE:] conventional MGE
[Proposed (sp):] proposed algorithm applied only to spectral

parameters
[Proposed (sp+F0):] proposed algorithm applied to spectral

and F0 parameters

Every pair of synthetic speech samples generated by using each
method was presented to listeners in random order. Since Fig. 10
has already demonstrated that the proposed algorithm improves
synthetic speech quality in terms of generating spectral parame-
ters, we did not compare “Proposed (sp)” with “MGE.” Listen-
ers participated in the assessment by using our crowdsourced
subjective evaluation systems.

Fig. 12. Preference scores of speech quality with 95% confidence intervals
(duration generation in TTS). From the top, the numbers of the listeners were 19,
20, and 21, respectively. (a) MSE vs. Proposed (mora). (b) MGE vs. Proposed
(phoneme). (c) Proposed (mora) vs. Proposed (phoneme).

Fig. 13. Accuracy of discriminator. “sp+F0”, “phoneme”, and “mora” denote
using the spectral parameters and F0 , phoneme durations, and mora durations
for discriminating the natural and synthetic speech, respectively.

Fig. 11 shows the results. Since the score of “Proposed
(sp+F0)” is much higher than those of “Proposed (sp)” and
“MGE,” we can confirm the effectiveness of the proposed algo-
rithm for not only spectral parameters but also F0 .

5) Subjective Evaluation of Duration Generation: We eval-
uated the effect of the proposed algorithm for duration genera-
tion. We conducted a subjective evaluation using the following
three methods:

[MSE:] conventional MSE
[Proposed (phoneme):] proposed algorithm applied to
phoneme duration
[Proposed (mora):] proposed algorithm applied to mora
duration

The preference AB test was conducted in the same manner as
in the previous evaluation described in Section.

The results are shown in Fig. 12. There are no significant
differences in the resulting scores. To investigate the reason,
we constructed an discriminator that distinguishes conventional
MSE and natural speech, and calculated the classification accu-
racy. We expect that our algorithm works better when the con-
ventional generated parameters are much distinguished from the
natural ones. As shown in Fig. 13, the accuracy of the discrimi-
nator that uses durations is lower than that of the discriminator
that uses spectral parameters and F0 . This result infers that dis-
tribution compensation by our algorithm does not work well in
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Fig. 14. Preference scores of speech quality with 95% confidence intervals
(compared with the GV compensation).

Fig. 15. Preference scores of speech quality with 95% confidence intervals
(effect of the feature function which is used in anti-spoofing).

duration generation. Henceforth, we did not apply the proposed
algorithm for generating durations.

6) Comparison to GV Compensation: Fig. 6 demonstrated
that our method compensates the GV of the generated speech pa-
rameters. In addition, we investigate whether or not our method
improves speech quality more than explicit GV compensation.
We applied the post-filtering process [51] to the spectral and F0
parameters generated by the MGE training. A preference AB
test with 29 listeners was conducted by using our crowd-sourced
subjective evaluation systems.

Fig. 14 shows the results. Since the score of “Proposed” is
higher than that of the conventional GV post-filter (“MGE-
GV”), we can conclude that our method produces more gain in
speech quality than the conventional GV compensation.

7) Effect of Feature Function: We investigate whether the
feature function used in anti-spoofing is effective to our method.
We adopted the following two functions:

[Identity:] φ(y) = y
[Static & delta [52]:] φ(y) = Wy

“Identity” is equivalent to not using the feature function.
When “Static & delta” is adopted, joint vectors of the static,
delta, and delta-delta mel-cepstral coefficients and continuous
F0 are input to the discriminator. A preference AB test with 31
listeners was conducted by using our crowd-sourced subjective
evaluation systems.

Fig. 15 shows the results.
Clearly, the score of “Static & delta” is much lower than

that of “Identity.” From this result, although “Static & delta”
effectively distinguishes natural and synthetic speech, it does
not improve speech quality.

8) Subjective Evaluation Using Complicated Model Ar-
chitecture: Only simple Feed-Forward networks were used
in the above-described evaluations. Accordingly, we confirm
whether our method can improve speech quality even when
more complicated networks are used. We used two-layer uni-
directional LSTMs [31] as both acoustic models and discrimi-
nator. The numbers of memory cells in the acoustic models and

Fig. 16. Preference scores of speech quality with 95% confidence intervals
(comparison in using LSTM).

Fig. 17. MOS scores of speech quality with 95% confidence intervals (com-
parison in divergences of GANs).

discriminator were 256 and 128, respectively. Our method was
applied to spectral and F0 parameters. MGE (“MGE”) and the
proposed (“Proposed”) training algorithm were compared. A
preference AB test with 19 listeners was conducted by using
our crowd-sourced subjective evaluation systems.

Fig. 16 shows the results.
Since the score of “Proposed” is higher than that of “MGE,”

we can demonstrate that our method works for not only simple
architectures but also complicated ones.

9) Effect of Divergence of GAN: As the final investigation
regarding TTS, we compared speech qualities of various GANs.
We adopted the following GANs:

[GAN:] (4) and (5)
[KL-GAN:] (9) and (10)
[RKL-GAN:] (12) and (13)
[JS-GAN:] (15) and (16)
[W-GAN:] (18) and (19)
[LS-GAN:] (20) and (21)

We conducted a MOS test on speech quality. The synthetic
speech generated by using each GAN was presented to listeners
in random order. 55 listeners participated in the assessment by
using our crowdsourced subjective evaluation systems.

Fig. 17 shows the results. We can see that our method works
in the case of all divergences except “KL-GAN” and “JS-GAN.”
Two points are noteworthy: 1) minimizing KL-divergence (KL-
GAN) did not improve synthetic speech quality, but the reversed
version (RKL-GAN) worked, and 2) JS-divergence did not work
well, but the approximated version (GAN) worked. The best
GAN in terms of synthetic speech quality was the W-GAN,
whose MOS score was significantly higher than those of the
LS-GAN, JS-GAN, and KL-GAN.
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Fig. 18. Preference scores of speech quality with 95% confidence intervals
(DNN-based VC). (a) Male-to-male. (b) Male-to-female.

C. Experimental Conditions in VC Evaluation

The experimental conditions such as dataset used in the eval-
uation, speech parameters, pre-processing of data, and training
procedure were the same as the previous evaluations except
for the dimensionality of spectral parameters and DNN archi-
tectures. We constructed DNNs for male-to-male conversion
and male-to-female conversion. The hidden layers of the acous-
tic models and discriminator had 3 × 512 units and 3 × 256
units, respectively. The 1st-through-59th mel-cepstral coeffi-
cients were converted. The input 0th mel-cepstral coefficients
were directly used as those of the converted speech. F0 was lin-
early transformed, and band-aperiodicity was not transformed.
Dynamic time warping was used to align total frame lengths of
the input and output speech parameters.

We generated speech samples with the conventional MGE
training and the proposed training algorithm. We conducted a
preference AB test to evaluate the converted speech quality.
We presented every pair of converted speech of the two sets
in random order and had listeners select the speech sample
that sounded better in quality. Similarly, an XAB test on the
speaker individuality was conducted using the natural speech
as a reference “X.” Eight listeners participated in assessment of
male-to-male conversion case, and 27 listeners participated in
assessment of male-to-female conversion case using our crowd-
sourced subjective evaluation systems.

D. Subjective Evaluation in VC

The results of the preference tests on speech quality and
speaker individuality are shown in Figs. 18 and 19, respectively.
We can find that our algorithm achieves better scores in speech
quality the same as the TTS evaluations. Moreover, we can see
that the proposed algorithm also improves speaker individuality.
We expect that the improvements are caused by compensating
GVs of the generated speech parameters which affect speaker
individuality [6]. These improvements were observed not only
in the inter-gender case but also cross-gender case. Therefore,
we have also demonstrated the effectiveness of the algorithm in
DNN-based VC.

Fig. 19. Preference scores of speaker individuality with 95% confidence in-
tervals (DNN-based VC). (a) Male-to-male. (b) Male-to-female.

V. CONCLUSION

In this paper, we proposed a novel training algorithm for deep
neural network (DNN)-based high-quality statistical paramet-
ric speech synthesis. The algorithm incorporates a framework
of generative adversarial networks (GANs), which adversarily
train generator networks and discriminator networks. In the case
of proposed algorithm, acoustic models of speech synthesis are
trained to deceive the discriminator that distinguishes natural
and synthetic speech. Since the GAN framework minimizes the
difference in distributions of natural and generated data, the
acoustic models are trained to not only minimize the generation
loss but also make the parameter distribution of the generated
speech parameters close to that of natural speech. This is a pi-
oneering method of GAN-based speech synthesis and can be
applied not only statistical parametric approaches but also the
ones such as glottal waveform synthesis [53]. We found that our
algorithm compensated not only global variance but also corre-
lation among generated speech parameters. Experimental evalu-
ations were conducted in both DNN-based text-to-speech (TTS)
synthesis and voice conversion (VC). The results demonstrate
that the proposed algorithm yields significant improvements in
terms of speech quality in both TTS and VC regardless of its
hyper-parameter settings. We also found that the proposed algo-
rithm incorporating the Wasserstein GAN improved synthetic
speech quality the most in comparison with various GANs. In
future work, we will further investigate the behavior in relation
to the hyper-parameter settings, adopt feature functions which
are more effective to detect synthetic speech than the identity
function, and devise discriminator models with linguistic [30]
dependencies.
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