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Active Learning Based Constrained Clustering For
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Abstract—Most speaker diarization research has focused on un-
supervised scenarios, where no human supervision is available.
However, in many real-world applications, a certain amount of
human input could be expected, especially when minimal human
supervision brings significant performance improvement. In this
study, we propose an active learning based bottom-up speaker clus-
tering algorithm to effectively improve speaker diarization perfor-
mance with limited human input. Specifically, the proposed active
learning based speaker clustering has two different stages: explore
and constrained clustering. The explore stage is to quickly discover
at least one sample for each speaker for boosting speaker clustering
process with reliable initial speaker clusters. After discovering all,
or a majority, of the involved speakers during explore stage, the con-
strained clustering is performed. Constrained clustering is similar
to traditional bottom-up clustering process with an important dif-
ference that the clusters created during explore stage are restricted
from merging with each other. Constrained clustering continues un-
til only the clusters generated from the explore stage are left. Since
the objective of active learning based speaker clustering algorithm
is to provide good initial speaker models, performance saturates
as soon as sufficient examples are ensured for each cluster. To
further improve diarization performance with increasing human
input, we propose a second method which actively select speech
segments that account for the largest expected speaker error from
existing cluster assignments for human evaluation and reassign-
ment. The algorithms are evaluated on our recently created Apollo
Mission Control Center dataset as well as augmented multiparty
interaction meeting corpus. The results indicate that the proposed
active learning algorithms are able to reduce diarization error rate
significantly with a relatively small amount of human supervision.

Index Terms—Active learning, bottom-up clustering, speaker
diarization.

I. INTRODUCTION

S PEAKER diarization is the process of automatically de-
tecting who spoke when in an audio sequence. With an
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increasing amount of audio resources, speaker diarization be-
comes an important technology in many applications such as
information retrieval [1], meeting annotations [2], [3], and con-
versation analysis [4]. Recently, speaker diarization has largely
been applied for Rich Transcription (RT), where it plays the role
of providing speaker indexes and other auxiliary information for
improved speech-to-text transcriptions.

As a sequential process, speaker diarization normally in-
volves several components such as voiced activity detection
(VAD), speaker change detection (segmentation), clustering,
and re-segmentation [5]–[7]. Among theses components, the
core part of speaker diarization is clustering, where segments
originated from the same audio sources such as speaker, mu-
sic, and noise, are grouped together. Due to its significance,
various speaker clustering solutions have been proposed. The-
ses include, but not limited to, bottom-up approach [8]–[10],
also known as agglomerative hierarchical clustering (AHC),
top-down approach [11]–[13], and recently proposed global op-
timization approaches [14], [15].

Bottom-up clustering is in general the most popular strategy
among various clustering solutions. It starts by treating each in-
dividual segment, obtained in the segmentation stage, as separate
clusters, and iteratively merging the closest two clusters until
a specified stopping criteria is satisfied. While not as popular
as its counterpart, the top-down approach has also been widely
applied and some studies have reported that it could achieves
comparable results with bottom-up clustering [16]. Different
from bottom-up based approach, top-down clustering starts from
modeling the entire audio as single model and iteratively split-
ting the model into sub clusters until a stopping criteria is met.
Despite their differences, both bottom-up and top-down based
approach are iterative processes and have the drawback of error
propagation. A recently proposed clustering algorithm, Integer
Linear Programming (ILP) [14], [15], attempts to overcome this
drawback by finding the cluster assignments that minimize the
within-cluster dispersion. While the ILP based solutions could
avoid the drawbacks of error propagation, it must start with ini-
tial clusters containing a sufficient numbers of samples in order
to model its attributes (e.g., i-Vector). Therefore, ILP is mostly
performed after bottom-up clustering.

Along with the development in speaker clustering, the dis-
tance metrics used for measuring whether two segments belong
to the same class, have also made significant improvement from
the original Bayesian information criteria (BIC) [17], [18], gen-
eralized log-likelihood ratio (GLR) [19], Kullback-Leibler (KL)
divergence [20], to the more recent i-Vector based distances such
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as cosine distance score (CDS) [21] and probabilistic linear
discriminant analysis (PLDA) based distance [22], [23]. Other
alternative distance metrics based on information theoretic
frameworks, have also been proposed and showed competi-
tive results [9]. Recently, deep neural network (DNN) based
approaches have also been applied for speaker embedding fea-
ture extraction [24], i-Vector extraction [25], as well as speaker
clustering [26].

Despite the success of recent improvement on speaker clus-
tering algorithms, distance computations, as well as other non-
trivial components, speaker diarization still remains a challeng-
ing task in many real-word applications. This is especially true
when the audio quality is suboptimal or the speech commu-
nication comprises large proportions of fast speaker turns and
short homogeneous speech segments. For example, diarization
of telephone conversations are notably more challenging com-
pared with broadcast news diarization or many meeting room
diarization.

Due to the limitations within current speaker diarization sys-
tems using exclusively audio/speech information, a number of
recent studies have proposed to exploit auxiliary information for
improved speaker diarization performance. For example, the lin-
guist information such as speaker name occurring patterns, are
extracted from the speech transcripts to provide additional in-
formation during speaker clustering [27]. The speech transcript
could be obtained from a manual transcriptions as well as au-
tomatic speech recognition (ASR) system. Another important
supplementary information that is present in many speaker di-
arization applications is the visual information. Audio-visual
speaker diarization has also been studied [28], [29]. However,
these auxiliary information are obtainable only in certain sce-
narios and not applicable to the broad category of speaker di-
arization applications.

In this study, we propose an active learning based bottom-up
speaker clustering algorithm that effectively utilize human in-
put to improve speaker diarization performance. Our proposed
algorithm is based on the assumption that human input could be
engaged during the speaker diarization process in certain appli-
cations. This scenario is especially plausible if small amounts
of human engagement could bring significant performance im-
provements. Another assumption we made in this study is that
the human performs better than machine when answering the
question of whether a given segment pair is from the same
speaker or not. This assumption is based on the results from
previous studies that while current automatic speaker recogni-
tion systems showed comparable performance with human in
a clean speech condition, in adverse conditions human signif-
icantly outperform a machine [30], [31]. Besides, many audio
streams contain higher level information such as video, spoken
names, and contextual informations that could effectively be
employed by a human in performing speaker recognition.

While humans can effectively determine whether two seg-
ments belong to the same speaker or not, tagging ground truth
speaker labels of an audio stream containing a large number
of participants is a significantly more difficult task. This is due
to limitations in how human remembers voices from unfamil-
iar speakers. Therefore, the comprehensive labeling of speaker

index for these tasks should be achieved by answering a series
of queries: where a yes or no type question is suggested for
given pair of segments if they belong to the same speaker or
not. The total number of queries for obtaining perfect clustering
results require a human to evaluate N (N −1)

2 queries in a worst
case scenario, where N indicates the number of speech segments
[32]. Therefore, an effective active query selection strategy is
necessary in order to practically employ human input to boost
the speaker diarization performance.

The use of active learning has been extensively studied for
image clustering and other data mining tasks. However, only
a limited number of studies in the area of speaker diarization,
have investigated the use of active learning. For example, the
study in [32] has proposed to use active learning to obtain back-
ground speaker labels from unlabeled data for training a PLDA
system. While the study in [32] bears some similarity to our
current study, the ultimate goal of [32] was to locate reliable
samples sufficient enough to train a PLDA system to improve
speaker recognition, rather than clustering the entire dataset as in
speaker diairization. Another study, that employs active learning
for speaker diarization is [33]. However, the criteria of active se-
lection for human labeling in [33] is simply based on the length
of speech segments, which is not applicable in many speaker
diarization scenarios where the variance of segment length is
small.

To effectively employ human input for speaker diarization, we
first need to identify improving which part of speaker cluster-
ing components could bring the largest improvement in overall
speaker diarization performance. A recent study [34] has eval-
uated several key components for speaker diarization and con-
cluded that initial speaker models from pure and reliably labeled
data could lead to a significant improvement in overall speaker
diarization performance. Motivated by this study, we designed
our active learning algorithm to quickly discover all or a ma-
jority of the speakers in an audio stream in the explore phase,
and initiate speaker models using reliably labeled speech seg-
ments. We also propose to perform constrained clustering after
the explore stage, where initial clusters from the explore stages,
will constrained not to be merged with each other. The pro-
posed algorithms could also be interpreted as a way of turning
unsupervised speaker clustering problems into a slightly super-
vised or semi-supervised close-set speaker identification task
[35], with speaker model updates at each iteration. Compared
to other semi-supervised speaker diarization approaches such as
transfer learning which requires a separate labeled dataset [24],
[26], the proposed active learning based approaches does not
have the problem of domain mismatch.

In addition to use active learning for improved bottom-up
speaker clustering, we also investigate the use of active learn-
ing for cluster reassignment after the completion of the clus-
tering process. The objective of the proposed active learning
based cluster reassignment, is to actively select certain speech
segments with clustered labels for human evaluation and reas-
signment. The essence of active learning based cluster reassign-
ment is to effectively locate the most informative segments. In
this study, we select speech segments with the largest expected
speaker error as candidates for human evaluation and correction.
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To summarize, in this study, we investigate the use of ac-
tive learning for speaker diarization. We propose two alterna-
tive strategies where active learning is employed for bottom-
up speaker clustering and post-clustering reassignment, respec-
tively. The remainder of paper is organized as follows. In
Section III, we introduce previous studies on the applications
of active learning for bottom-up clustering. In Section II, we
presents an overview of the bottom-up speaker clustering based
on an i-Vector cosine distance score (CDS), which serves as our
baseline system. In Sections III-A and III-B, we describe our
proposed active learning algorithms for bottom-up speaker clus-
tering and post-clustering cluster reassignment, respectively. We
present the experiments and obtained results in Section V, and
finally highlight algorithm advancements and impact, and draw
conclusions in Section VI.

II. BASELINE SYSTEM

The baseline speaker diarization system used in this study, is a
bottom-up speaker clustering algorithm with an i-Vector cosine
distance score (CDS) as the distance metric. In this section, we
briefly discuss i-Vector extraction, CDS measure and the overall
bottom-up speaker clustering process.

A. i-Vector Extraction

In an i-Vector extraction framework, speaker and channel
dependent GMM supervectors are modeled as follows:

M = m + Tw, (1)

where m is the supervector obtained from the universal back-
ground model (UBM), T is the low rank total variability matrix
representing the basis of the reduced total variability space, and
w is the weights of the low rank factor loadings referred to as
i-Vectors.

The estimation of the total variability matrix T employs ex-
pectation maximization (EM) method as described in [36]. After
training the total variability matrix, the i-Vector of given speech
utterance is extracted as the conditional expectation of i-Vector
distribution given observation features.

w∗
s = E[P (ws |Xs)], (2)

where w∗
s is the i-Vector of the given speech utterance s, Xs is

the clean observation features, P (ws |Xs) is the conditional dis-
tribution of the i-Vector given observation features, and E[·] in-
dicates the expectation. Finally, the i-Vector of the given speech
utterance can be represented using the Baum-Welch zeroth (Ns)
and centralized first (Fs) order statistics,

w∗
s = (T ′NsΣ−1T + I)−1TΣ−1Fs, (3)

where Σ is the covariance matrix obtained from UBM model
and I is the identity matrix.

B. Cosine Distance Score

A comparison of i-Vectors from two different segments or
clusters could be successfully achieved with a simple cosine
similarity measure. The i-Vector of each cluster is computed by

concatenating all segments belong to that cluster. When it comes
to computing the distance between a segment and a cluster, the
segment is treated as a cluster with only one segment. The
cosine distance score between two i-Vectors could be expressed
as follows:

score (wi, wj ) =
wT

i · wj

||wi || · ||wj || . (4)

Note that, the score of the cosine distance ranges between
[−1, 1]. The greater the number is towards 1, the greater the
similarity exists between the two vectors. The cosine distance
score has been a popular metric for speaker recognition in i-
Vector space [37].

C. Bottom-Up Speaker Clustering

Bottom-up clustering, also known as hierarchical agglom-
erative clustering (HAC), has been the most popular speaker
clustering approach used for speaker diarization. It typically
starts by treating all homogeneous speech segments as sepa-
rate clusters, and iteratively merging pairs of cluster that are
close using a metric. In our study, for each iteration, we find
two segments that have the highest cosine similarity, and merge
them into a single cluster. After each iteration, i-Vectors are ex-
tracted from the updated clusters with newly merged segments
and normalized to have zero mean followed by length normal-
ization. The i-Vector of a cluster is extracted after concatenating
all segments within that cluster. We continue the iterations until
the CDS of the two closest cluster reach specified minimum
stopping criteria.

III. ACTIVE LEARNING

Active learning is a semi-supervised machine learning al-
gorithm where the purpose is to effectively and interactively
engage human input for improved labelling performance. Ac-
tive learning based constrained clustering has been extensively
studied for image clustering tasks [38]–[40] and in the broader
area of data mining [41], [42]. A number of algorithms have
been proposed to use active learning for clustering unlabeled
data with “human in the loop”. The key idea behind these algo-
rithms is to actively select pairs of appropriate data for human
to provide answers in a form of binary: yes or no response. Most
algorithms in these studies target flat clustering approaches such
as k-means clustering, and normally composed of two stage: ex-
plore and consolidate [41], [42]. The purpose of the explore
phase is to find the centroids of unique clusters, while the aim
of the consolidate stage is to locate the most informative data
pairs for human labelling.

While the fundamental problem of these studies is similar to
the problem we have in speaker diarization, active learning for
speaker diarization is a more challenging task due to the reasons
listed below. First, different from flat clustering, hierarchical
agglomerative clustering (HAC) in speaker diarization requires
one to iteratively update the cluster statistics at each iteration.
Therefore, the decisions in the current iteration are correlated
to the decisions made in previous iterations, and therefore it is
difficult to quantify the importance of each query pair during
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Fig. 1. Diagram of active learning based bottom-up speaker clustering. The red dotted block is active learning component where human involves.

clustering due to such dependencies. Another important differ-
ence is that, the total number of cluster centroids in speaker
diarization are unknown most of time. Due to these differences,
a direct replication of active learning algorithms developed in
these studies is not viable for speaker diarization.

A. Active Learning Based Speaker Clustering

Due to error propagation characteristics of bottom-up speaker
clustering, having a good initial cluster model has a significant
impact on the final speaker diarization performance. In this
section, we present a detailed description of our proposed active
learning strategy for bottom-up speaker clustering. As noted
in the introduction, the proposed algorithm has two clustering
components: explore and constrained clustering as shown in the
Fig. 1.

1) Explore: The purpose of the explore phase, is to quickly
discover all speaker clusters contained within the audio streams,
and finding at least one speech segment for each speaker cluster.
To achieve this, we use the farthest first query search (FFQS)
proposed by [41]. During FFQS, a speech segment is randomly
selected from all speech segments to be used as a seed seg-
ment. The selected speech segment is then used to initialize
the first cluster. After creating the first speaker cluster, the next
segment is selected which is farthest from all existing clusters.
The chosen segment is then made available for human compar-
ison to provide expert opinion. If the chosen segment belongs
to all existing clusters, the new segment is merged to corre-
sponding cluster. Otherwise, a new cluster is created from the
selected segment. Note that in order to decide whether a given
speech segment belongs to a target cluster or not, we compose
a query pair using the segment in question and the longest seg-
ment within the target cluster. If the answer from this query is
“true”, then the segment belongs to the target cluster, otherwise
is separated. The FFQS process continues until the pairwise
comparison operations reach the specified maximum number
defined by the user. The details of the explore phase is detailed
in Algorithm 1.

While the above algorithms can effectively identify and es-
tablish the speaker clusters in the audio streams, its performance
varies a lot depending on which seed segment is selected. This
problem is due to the randomness during initial seed selection.
The previous studies in k-means clustering has revealed that
if the initial seed data is closer to actual centroids, the proce-
dure is more likely to achieve favorable clustering results [43].
Motivated by this, an initial unsupervised bottom-up cluster-
ing process is performed in our solution, where the centroid

segments of these clusters are used as initial seeds to start the
FFQS algorithm for active learning based speaker clustering.
Note that, the ‘consolidation’ step that normally performs after
‘explore’ stage in previous studies from image clustering i [41],
[42] is not applied in our algorithm. This is mainly because the
active learning based cluster reassignment algorithm that will
be proposed in Section III-B could achieve the same thing, but
more effectively as it only considers the segments that have
higher chance of being incorrectly clustered.

2) Constrained Merging: After the initial explore phase,
standard bottom-up clustering is performed with two impor-
tant exceptions. First, the clusters CK

k=1 created during the ex-
plore stage are restricted from merging with each other. Second,
the stopping distance threshold during conventional bottom-up
clustering is no longer necessary, as we have assumed all in-
volved speakers are discovered during the explore phase. Here,
bottom-up clustering will continues until only CK

k=1 clusters
remain.

B. Active Learning Based Cluster Reassignment

In the previous section, we proposed to use active learning
during the speaker clustering process. Alternatively, human in-
put could also be involved after clustering, to evaluate and also
repair incorrectly labeled speech segments. This is quite similar
to the use of active learning in automatic speech recognition
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Fig. 2. Diagram of active learning based bottom-up speaker clustering. The red dotted block is active learning component where human involves.

(ASR), where the transcripts of sentences estimated with less
confidence are selected for human to make corrections. How-
ever, the same algorithms used for ASR could not be directly
applied in speaker diarization for several reasons. Firstly, the
confidence measure used for ASR is not appropriate for speaker
diarization. Moreover, the evaluation and reassignment process
of potentially erroneous segments are also more diverse, and
difficult in speaker diarization.

The proposed active learning based cluster reassignment pro-
cedure here has three major components as shown in Fig. 2.

1) Candidate Selection: The cluster reassignment solution
starts with selecting the candidate speech segments for human
experts to review. In order to effectively select the most infor-
mative segments, we rank order all speech segments in terms of
expected speaker error (ESE). In other words, we select speech
segments that will produce the largest expected speaker error
reduction. In this study, we compute the expected speaker error
for each speech segment as follows.

E(xj , Cxj
) = P (xj |Cxj

) · Jxj ∈Cx j

+ (1 − P (xj |Cxj
)) · Jxj /∈Cx j

(5)

where xj indicates jth speech segment, Cxj
is the cluster as-

signed to speech segment xj , P (xj |Cxj
) is the probability of

segment xj belonging to cluster Cxj
, Jxj ∈Cx j

is the speaker
error if xj belongs to cluster Cxj

, and Jxj /∈Cx j
is the speaker

error if xj does not belong to cluster Cxj
. We could also write

that

Jxj ∈Cx j
= 0

Jxj /∈Cx j
=

dj∑n
i=1 di

(6)

where dj is the length of speech segment xj , and
∑n

i=1 di is the
total length sum of all speech segments in test audio stream.

We compute P (xj |Cxj
) by modeling a multivariate Gaussian

distribution using the i-Vectors of all the segments of a given
cluster. Therefore,

P (xj |Cxj
) = P (wj |Cwj

), (7)

where wj is the i-Vector extracted from speech segment xj . We
normalize the probability so the sum is one.

∑K
k=1 P (wj |Ck ) = 1. (8)

2) Evaluation: After selecting candidate segments, a human
expert will determine whether the given segment belongs to
its assigned cluster. The process of employing human input to
decide whether a segment belongs to a cluster, is more difficult
than the strategy we used in explore phase in Section III-A.

Here, we can not simply select a single longest segment as a
representative of the cluster for comparison. This is due to the
fact that the chosen longest segment of the cluster, could be an
incorrect assignment. Therefore, we employ a majority voting
based segment cluster evaluation strategy. Under this strategy,
the segment in question is paired with each segment within a
target cluster, resulting in multiple query pairs. If a majority of
these answers for the pairs are true (two segments belong to the
same cluster), we will make a decision that the given speech
segment has the correct cluster assignment, and vice versa.

While the above strategy is robust for evaluating whether a
given segment belongs to target cluster, it involves a significant
number of query pairs for human evaluation. One heuristic used
in our study is to set a maximum query number limit “V ” for
each segment evaluation. We rank speech segments assigned
to target cluster by its confidence P (x|c), and select the top
V confident segments as representatives of that cluster. These
selected representative segments will be paired with the test
segment for a majority voting based evaluation.

3) Correction: After detecting segments with incorrect clus-
ter assignments in the evaluation stage, we need to find the
correct cluster designation for these segments. To accomplish
this, we employ an N-best cluster evaluation. We find the N
most possible cluster candidates of a given segment by ranking
the i-Vector Gaussian posterior probabilities P (x|C). Next, the
human expert will evaluate whether the given segment belongs
to any of these N clusters, using the majority voting scheme as
in the evaluation stage.

IV. TEST DATA

We perform experiments on two different speech corpora: the
CRSS-UTDallas Apollo Mission Control Center (MCC) audio
corpus and AMI meeting corpus [44].

A. Apollo-MCC Audio Corpus

During the NASA Apollo mission, all communications be-
tween astronauts, flight controllers, and their backroom support
teams inside NASA mission control center (MCC) are contin-
uously recorded using a 30-track analog reel-to-reel recording
machine. During each mission, a total of 60 audio channels
are simultaneously recorded including the voices from more
than hundreds of different participants of the mission. The Uni-
versity of Texas at Dallas (UTDallas), University of Maryland
College Park (UMD), and Johnson Space Center (JSC) have
combined the effort to digitize this data resource and have gen-
erated up to 19,000 hours of audio data from various missions
of both Apollo and Gemini programs. The 19,000 hours are the
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Fig. 3. Apollo Mission Control Center (MCC) communication overview. The red dotted parts are space-to-ground communications, including astronauts voice
from space, and the black dotted parts are ground communications between hundreds of flight controllers and their ’backroom’ support staffs.

combinations of audio from all 60 audio channels. These mis-
sion audio captures the full scope of each Apollo mission com-
munication. Therefore, the corpus is extremely attractive for
learning human-to-human communications, group interaction,
as well as developing robust speech systems.

Moreover, as the speech community relies on labeled audio
data to perform scientific research as well as algorithmic de-
velopment, we have prepared a ‘Task Specific’ corpus based
on a subset of Apollo-11 audio recordings. We performed our
experiment here on this subset of Apollo-11 audio record-
ings which includes 3 synchronized channels: Flight director
(FD) loop, Electrical, Environmental and Consumables Man-
ager (EECOM) loop, and Guidance, Navigation, and Controls
Systems Engineer(GNC) loop. Each of these audio recordings
spanning approximately 10-hours before, and after the first lunar
landing. This initial 28 hours task corpus has been transcribed
to have speaker labels by well-trained speech science students
from UTDallas1.

The audios in Apollo-MCC datasets includes two types of
communication: space-to-ground communications between as-
tronauts and Capsule Communicator (CAPCOM), and ground
communications between hundreds of flight controllers and
“backroom” support staff, see Fig. 3. Most of the audio are
recorded with close-talking microphones or traditional tele-
phone handsets, and are in general good audio quality. Au-
dio channels from astronauts are often transmitted through
Earth’s global dedicated telephone channels to Houston, TX
from ground stations where the signal was received. Flight
directors as well as their “backroom” support staff voice are
recorded through intercom circuits called “loops”. Each flight
controller has their own loop, which records the entire commu-
nication within that channel. The Apollo-MCC audio corpus is

1The task corpus will be released to the speech community for research and
algorithmic development: http://crss.utdallas.edu

TABLE I
SYNOPSIS OF APOLLO-MCC AUDIO DATASET

Session Name Speech (seconds) Speech Segments Participants

FD-01 252 161 9
FD-02 314 152 9
FD-03 123 63 10
FD-04 651 358 13
FD-05 457 226 14
FD-06 979 531 12
FD-07 394 267 13
FD-08 486 340 15
FD-09 217 126 13
FD-10 964 713 13
EECOM-01 1206 585 20
EECOM-02 563 252 20
EECOM-03 1014 471 31
EECOM-04 808 384 20
EECOM-05 812 357 26
EECOM-06 475 270 23
EECOM-07 553 337 21
EECOM-08 411 261 19
EECOM-09 744 430 31
GNC-01 859 270 17
GNC-02 735 346 21
GNC-03 653 291 25
GNC-04 1347 494 20
GNC-05 798 440 21
GNC-06 985 456 24
GNC-07 829 481 24
GNC-08 764 435 29
GNC-09 1728 995 29

separated into 28 individual audio streams, with each contain-
ing 60 minutes of audio. A summary of all information for this
audio set, including the length of pure speech after removing
silence, the number of homogeneous speech segments, and the
total number of participants in each audio stream, are listed in
Table I.
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Fig. 4. Cumulative histogram as a function of speech segments length for
Apollo-MCC audio corpus and AMI meeting corpus.

The voice communication style within the Apollo mission
control center is quite different from traditional meeting cor-
pora, including many focused short speech segments which was
intended to improve communication efficiency for each lunar
mission. Fig. 4 shows a cumulative histogram as a function of
speech segments length. It can be seen that the Apollo-MCC
audio dataset is composed of larger proportions of short speech
segments (less than 3 sec) than the AMI meeting data. In addi-
tion, the Apollo-MCC audio dataset has relatively large num-
ber of participants (i.e., anywhere from 9 to 31 participants)
as shown in Table I. Another important factor is that all data,
speakers and communications are real and naturalistic, and re-
flect the collective effort of one of the most challenging en-
gineering milestones for mankind. Overall, the diarization of
Apollo-MCC audio dataset is clearly a realistic and challenging
task.

B. AMI Meeting Dataset

We also evaluate the proposed algorithms on the popular 12-
meeting subset of Augmented Multi-Party Interaction (AMI)
corpus [44], [45]. This is approximately 5.4 hours of data with
each session varying between 15–30 minutes. The AMI corpus
contains both audio and visual data, while we only use the audio
data recorded with headset microphones in our experiments. The
corpus represents a natural meeting scenario. A total of three
participants are involved in each of these 12-meetings, where the
discussion focused on the task to design a new remote control
device. The summary information this corpus is listed in Table II.

V. EXPERIMENTS AND RESULTS

In this section, we perform experiments to evaluate proposed
active learning based algorithms for speaker diarization. All
experiments in our study use diarization error rate (DER) as
evaluation metric.

TABLE II
SYNOPSIS OF 12 MEETING SUBSET OF AMI CORPUS

Session Name Speech (seconds) Speech Segments Participants

IS1000a 809 309 3
IS1001a 165 102 3
IS1001b 912 315 3
IS1001c 591 212 3
IS1003b 868 342 3
IS1003d 661 441 3
IS1006b 1288 315 3
IS1006d 698 436 3
IS1008a 346 77 3
IS1008b 920 137 3
IS1008c 926 236 3
IS1008c 729 230 3

A. System Setup

1) Segmentation: Since the purpose of this study is to eval-
uate active learning based bottom-up clustering strategies, we
use reference boundaries to define homogeneous segments. The
use of such oracle segmentation information in our study is im-
portant, as we want to focus only on the bottom-up clustering
strategy, and not introduce irrelevant errors caused by incor-
rect segmentation. Previous work has shown that the clustering
step for speaker diarization could be developed independent of
other modules [13], [34]. In addition, having a fixed segmenta-
tion with oracle pairwise query answers between segments, are
needed for developing an active learning based solution in order
to avoid expensive human labeling in the experimental stage.

2) i-Vector Extraction: The i-Vector is extracted using the
Mel-Frequency Cepstral Coefficients (MFCCs). The 13 dimen-
sional MFCC with delta and delta-delta (39-dim in total) are
computed every 10 ms using a 25 ms analysis window. We use a
512 mixture universal background model (UBM) trained using
the entire corpus data. The final i-Vector has 32 dimensions after
factor analysis based dimension reduction.

B. Active Learning Based Speaker Clustering

In this experiment, we evaluate the performance of active
learning based speaker clustering by varying the available
amount of oracle query pairs. Note that the total number of
queries to achieve a perfect clustering result is N (N −1)

2 in the
worst case, where N is the total number of segments in the
test audio. For all experiments in this study, it is assumed that
the system has accessed to reference answers of selected query
pairs, and therefore no errors from human experts. Future work
could explore the impact of human errors on final system per-
formance.

Here, we evaluate the proposed algorithm by varying the
quantity of query pairs in proportion to the total number of
segments N . For example, if a test audio stream has 1000 speech
segments, an active learning of 0.1 · N query pairs means we
have access to 100 query pairs out of 1000 ∗ (1000 − 1)/2 total
pairs. If we assume each speech segment has an average length
of 2 seconds, the evaluation of 100 query pairs will require
approximately 400 (100*2*2) seconds for human evaluation.
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Fig. 5. Results of proposed active learning based speaker clustering algorithm
on AMI meeting corpus. The soldi line is the diarization error rate (DER) with
constrained clustering, while the dotted line is result obtained with unconstrained
clustering as in baseline speaker clustering algorithms. Both constrained and
unconstrained clustering performed after explore stage. The horizontal axis is
the amount of query pairs proportional to total number of speech segments N .

Fig. 6. Results of proposed active learning based speaker clustering algorithm
on Apollo Mission Control Center (Apollo-MCC) audio dataset. The solid line
is the diarization error rate (DER) with constrained clustering, while the dotted
line is result obtained with unconstrained clustering as in baseline speaker
clustering algorithms. Both constrained and unconstrained clustering performed
after explore stage. The horizontal axis is the amount of query pairs proportional
to total number of speech segments N .

This is a small amount of human evaluation time compared to
the potential total time required for a human to obtain perfect
speaker diarization: (1000 ∗ (1000 − 1)/2 ∗ 2 ∗ 2) sec for this
example.

The solid line in Figs. 5 and 6 show the performance of the
proposed active learning based speaker clustering algorithm us-
ing alternative amount of queries. The baseline result is obtained
using a conventional bottom-up clustering with i-Vector cosine
distance score (CDS). The first observation here is that the base-
line DER in Apollo-MCC (40.63%) is much higher than that of
AMI dataset (10.83%)2. Such difference in performance are ex-
pected due to the challenges within the Apollo-MCC dataset as
noted in Section IV-A. The difficulty of speaker diarization is

2Note that, for audio streams with a dominant speaker, a relatively low speaker
DER could be achieved by simply assigning single speaker label to all speech
segments without running any speaker diarization system. To better understand
and compare the DER obtained in our experiments, we calculate the DER by
blindly assigning a single speaker label to all speech segments in our datasets.
We achieve 51.8% DER for AMI dataset and 67.8% DER for Apollo-MCC
dataset.

TABLE III
MEAN ABSOLUTE PERCENTAGE DEVIATION (MAPD) OF PREDICTED SPEAKER

NUMBERS WHEN USING ACTIVE LEARNING BASED SPEAKER CLUSTERING

ALGORITHM WITH DIFFERENT AMOUNT OF QUERY ACCESS

Baseline 0.2 × N 0.4 × N 0.6 × N

MAPD 38% 36% 31% 24 %

Fig. 7. Results of proposed active learning based cluster reassignment algo-
rithm on AMI meeting corpus. The solid line is the diarization error rate (DER)
using the expected speaker error (ESE) as criteria for candidates selection, while
the dotted line is DER obtained by randomly selecting segments as candidates
for evaluation and reassignment. The horizontal axis is the amount of candidate
segments proportional to total number of speech segments N .

Fig. 8. Results of proposed active learning based cluster reassignment algo-
rithm on Apollo Mission Control Center (Apollo-MCC) corpus. The solid line
is the diarization error rate (DER) using the expected speaker error (ESE) as
criteria for candidates selection, while the dotted line is DER obtained by ran-
domly selecting segments as candidates for evaluation and reassignment. The
horizontal axis is the amount of candidate segments proportional to total number
of speech segments N .

highly correlated with the number of speakers within the au-
dio stream. For example, if an audio stream consisted of speech
from only three speakers as in AMI meeting scenarios, we could
achieve 66.6% DER by simply assigning single speaker label
to all speech segments assuming every speakers speaks for the
equal amount. On the other hand, if an audio stream consisted of
speech from 20 speakers as in Apollo-MCC dataset, assigning
single speaker label to all segments achieves 95% DER under the
same assumption. Despite the difference in the baseline DER
performance on AMI and Apollo-MCC dataset, the key out-
come of this experiment is that the DER is measurably reduced
in both dataset with a relatively small amount of query pairs. In
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Fig. 9. The changes of DER on each session of 12-meeting subset of AMI corpus after applying proposed active learning algorithms.

the case of the AMI dataset, the DER is reduced from 10.83%
to 9.09%, a relative of 16% reduction with only 0.05xN query
pairs, while the DER is further reduced to 5.29% with 0.1xN
queries. Fig. 9 illustrates how the DER of each AMI meeting
session improves (or decreases) using the proposed algorithm.
It can be seen that most (8 out of 12) sessions showed some
degree of improvement, with only a small increase in DER for
other sessions.

In the case of the Apollo-MCC dataset, the proposed algo-
rithm is also capable of effectively reducing the DER, although
it requires access to many more queries compared with the
AMI dataset. This points to larger number of participants within
Apollo-MCC dataset, which requires more human input during
the explore stage, to discover all involved speakers. In addition,
the Table III indicates the mean absolute percentage deviation
(MAPD) of predicted speaker numbers reduces as more queries
are being accessed when using active learning based speaker
clustering algorithm. And it is consistently lower than using the
baseline bottom-up clustering algorithm.

1) Importance of Constrained Clustering: We also evaluate
the importance of constrained clustering in active learning based
speaker clustering. The dotted lines in Figs. 5 and 6 indicates
performance using traditional bottom-up clustering without any
constraint in merging, after the explore stage. And solid lines in
Figs. 5 and 6 show the performance with constrained clustering.
In comparing these two results, we see that it is extremely impor-
tant to perform constrained clustering. Only a small improve-
ment in the AMI dataset and nearly no improvement in speaker
diarization is observed if constrained clustering is not applied.
This indicates that our proposed active learning based speaker
diarization essentially transforms an unsupervised speaker di-
arization task into something similar to a supervised close-set
speaker identification task, and therefore achieves significant
improvement.

2) Limitations: While the experimental results in Figs. 5
and 6 have shown that active learning based speaker clustering
algorithm reduces DER with a relatively small amount of human
input, performance saturates as we use more queries. This is
expected, as the objective of proposed algorithm is to discover

all involved speakers, and initialize reliable speaker models for
each. As soon as the majority of speakers are discovered with a
relative sufficient number of queries, the benefit of using more
queries significantly decreases. This poses a limitation in certain
scenarios, where human input is needed to further drop a given
DER value to some desired level of performance.

C. Active Learning Based Cluster Reassignment

In this experiment, we continue to explore gains in speaker
diarization performance using our second active learning al-
gorithm: active learning based cluster reassignment. For both
experiments using the Apollo-MCC and AMI meeting corpora,
we use at most 10 instances per cluster, to compose query pairs
for majority voting based evaluation of whether a particular seg-
ment belongs to a target cluster. We also fix our n-best search to
the rank of 3, during the search for correct cluster assignment.
We evaluate our active learning algorithm by varying the amount
of segments we will select for evaluation and reassignment. We
also define this amount to be proportional to the total number
of segments N . For example, if the total number of speech seg-
ments in an audio stream is N = 1000, an evaluation of 0.1xN
segments means the human expert will review 100 speech seg-
ments, which requires access to 100*3*10 queries with correct
answers if we use an n-best rank of 3, and 10 instances per clus-
ter. Note that if some of these 100 speech segments correctly
labelled initially, less queries are required.

The solid lines in Figs. 7 and 8 indicates the performance of
proposed active learning based speaker clustering algorithm on
AMI and Apollo-MCC datasets, respectively. We use clustering
output from active learning based speaker clustering (0.2xN
condition) as a base for performing cluster reassignment. We
can see that the DER drops consistently as more segments are
selected for reassignments. In the case of AMI dataset, the DER
is reduce from 6.15% to 5.49%, a relative of 10% reduction with
reviewing only 0.1xN segments, and this number continues to
reduce as more segments are selected for reassignment.

We also evaluate the effectiveness of using the expected
speaker error (ESE) as a criteria for selecting segment
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candidates for human reassignment. We compare the largest
ESE based candidate selection with baseline random segment
selection scheme. The solid lines in Figs. 7 and 8 indicates per-
formance of using ESE as the criterion, while the dotted line
indicates performance with random segment selection. The re-
sults clearly show that the DER drops at a much faster rate
using ESE based candidate selections, in both AMI and Apollo
datasets.

Fig. 9 illustrates the DER of each AMI meeting session im-
proved (or decreased) using proposed algorithm combined with
active learning based clustering. We also notice that all sessions
of AMI dataset showed different degrees of improvement. A
similar trend is also observed in results from the Apollo-MCC
dataset, although the relative improvement in Apollo-MCC is
relatively smaller than that in AMI dataset. This is mostly be-
cause of the larger number of participants, causing the cluster
reassignment process to be more difficult. Also, the majority
voting based approach we used to determine whether a segment
belongs to target cluster is sensitive to the initial clustering re-
sults. Overall, the DER is consistently dropping as more queries
are allowed.

VI. CONCLUSION

In this study, we have proposed two active learning based
algorithms for speaker diarization. The first algorithm employs
active learning in order to obtain reliable initial speaker models
and to perform constrained acoustic clustering. This essentially
converts a fully unsupervised speaker clustering tasks into a
semi-supervised task similar to speaker identification, where
cluster models are updated after each iteration. By incorporat-
ing such information, the proposed algorithm reduces the DER
significantly, with only access to a relatively small amount of
queries.

Since performance of proposed active learning algorithm for
speaker clustering saturates when a sufficient amount of tokens
are collected for each cluster, we proposed another active learn-
ing algorithm to perform cluster reassignment after the com-
pletion of the initial speaker clustering. Active learning based
cluster reassignment was shown to select the clustered segments
with the largest expected speaker error for human evaluation and
reassignment. Experiments on both the AMI meeting dataset and
Apollo-MCC dataset indicate a clear reduction in the DER, with
greater improvement as more queries are allowed. It was also
shown that the expected speaker error based segment selection
strategy was significantly more effective than random segment
selection.

In this study, we have assumed that the human assistance
provides perfect answers to any query pair on whether the two
segments belong to the same speaker. However, in reality, human
errors are always expected and future studies could explore how
the proposed algorithms would performs or could be improved
with human errors.
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