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Abstract—This paper presents a new hybrid approach called
duration-controlled long short-term memory (LSTM) for poly-
phonic sound event detection (SED). It builds upon a state-of-the-
art SED method that performs frame-by-frame detection using a
bidirectional LSTM recurrent neural network (BLSTM), and in-
corporates a duration-controlled modeling technique based on a
hidden semi-Markov model. The proposed approach makes it pos-
sible to model the duration of each sound event precisely and to
perform sequence-by-sequence detection without having to resort
to thresholding, as in conventional frame-by-frame methods. Fur-
thermore, to effectively reduce sound event insertion errors, which
often occur under noisy conditions, we also introduce a binary-
mask-based postprocessing that relies on a sound activity detec-
tion network to identify segments with any sound event activity, an
approach inspired by the well-known benefits of voice activity de-
tection in speech recognition systems. We conduct an experiment
using the DCASE2016 task 2 dataset to compare our proposed
method with typical conventional methods, such as nonnegative
matrix factorization and standard BLSTM. Our proposed method
outperforms the conventional methods both in an event-based eval-
uation, achieving a 75.3% F1 score and a 44.2% error rate, and
in a segment-based evaluation, achieving an 81.1% F1 score, and
a 32.9% error rate, outperforming the best results reported in the
DCASE2016 task 2 Challenge.

Index Terms—Duration control, hidden semi-Markov model
(HSMM), hybrid model, long short-term memory (LSTM), poly-
phonic sound event detection (SED), recurrent neural network.

I. INTRODUCTION

THE goal of sound event detection (SED) is to detect the
beginning and end of sound events and to identify and

label these sounds. SED has great potential for use in many
applications, such as retrieval in multimedia databases [1], life-
logging [2], activity monitoring [3]–[5], environmental context
understanding [6], automatic control of devices in smart homes
[7], analysis of noise pollution [8], and so on. Improvements
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in machine learning techniques have opened new opportunities
for progress in these challenging tasks. As a result, SED has
been attracting more and more attention, and research in the
field is becoming more active. It is notable that several SED
challenges have recently been held, such as the CLEAR AED
[9], the TRECVID MED [10], and the DCASE Challenge [11],
[12].

SED can be divided into two main categories, monophonic
and polyphonic, which are used in different scenarios. In mono-
phonic SED, the maximum number of simultaneously active
sound events is assumed to be one. Because real-world sound
events include a wide range of sounds, which vary in their acous-
tic characteristics, duration, and volume, such as the sound of
glass breaking, typing on keyboards, knocking on doors, the
turning of book pages, human speech, and so on, correctly de-
tecting and identifying such sound events is already difficult,
even in the monophonic case. On the other hand, in polyphonic
SED, there can be any number of simultaneously active sound
events. Polyphonic SED is a more realistic task than mono-
phonic SED because it is likely that several sound events will
occur simultaneously in real-world situations. But it is also even
more difficult, due to the overlapping of multiple sound events.

The most typical SED method is to use a hidden Markov
model (HMM), where an emission probability distribution is
represented by Gaussian mixture models (GMM-HMM), with
mel frequency cepstral coefficients (MFCCs) as features [13],
[14]. In the GMM-HMM approach, each sound event, as well
as the silence between events, is modeled by an HMM, and
the maximum likelihood path is determined using the Viterbi
algorithm. However, this approach typically achieves only lim-
ited performance, and requires heuristics, such as the number of
simultaneously active events, to perform polyphonic SED.

Another approach is to use non-negative matrix factorization
(NMF) [15]–[18]. In NMF approaches, a dictionary of basis
vectors is learned by decomposing the spectrum of each single-
sound event into the product of a basis matrix and an activation
matrix, and then combining the basis matrices of all of the
sound events. The activation matrix at test time is estimated
using the combined basis vector dictionary, and then used either
for estimating sound event activations or as a feature vector
which is passed on to a classifier. These NMF-based methods
can achieve good performance, but they do not take correlation
in the time direction into account, and perform frame-by-frame
processing. As a result, the prediction results lack temporal
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stability, and therefore, extensive post-processing is required. It
is also necessary to find the optimal number of bases for each
sound event.

More recently, methods based on neural networks have been
developed, which have also achieved good SED performance
[19]–[26]. A single network is typically trained to solve a multi-
label classification problem involving polyphonic sound event
detection. Some studies [20], [22], [23], [25] have also utilized
recurrent neural networks (RNN), which are able to take into
account correlations in the time direction. Although these ap-
proaches achieve good performance, they still must perform
frame-by-frame detection and do not have an explicit duration
model for the output label sequence. Additionally, threshold
values for the actual outputs need to be carefully determined in
order to achieve the best performance.

In this study, we propose a duration-controlled LSTM system
which is a hybrid system of a hidden semi-Markov model and a
bidirectional long short-term memory RNN (BLSTM-HSMM),
where output duration is explicitly modeled by an HSMM on
top of a BLSTM network. The proposed hybrid system was
inspired by the BLSTM-HMM hybrid system used in speech
recognition systems [27]–[30]. In this study, we extend the use
of the hybrid system to polyphonic SED and, more generally,
to multi-label classification problems. Our approach not only
allows the implicit capture of various sound event characteris-
tics and correlation information in the time axis, through the use
of deep recurrent neural networks with low-level features, but
also allows to explicitly model the duration of each sound event
through the use of an HSMM. This makes it possible to per-
form sequence-by-sequence detection without having to resort
to the thresholding used in conventional frame-by-frame meth-
ods. Furthermore, in order to effectively reduce the sound event
insertion errors which are often observed under noisy condi-
tions, we additionally propose using a binary-mask-based post-
processing. Specifically, we employ a sound activity detection
(SAD) network which determines whether a segment contains
only silence or an active sound event of any type, based on
an idea inspired by the well-known benefits of voice activity
detection in speech recognition systems [31]–[33].

The rest of this paper is organized as follows: Section II
discusses various types of recurrent neural networks and the
concept of long short-term memory. Section III explains the
basics of hidden semi-Markov models. Section IV describes our
proposed method in detail. In Section V, we describe the design
of our experiment and compare the performance of the proposed
method with conventional methods. Finally, we conclude the
paper and discuss future work in Section VI.

II. OVERVIEW OF RECURRENT NEURAL NETWORK

ARCHITECTURES

A. Bidirectional Long Short-Term Memory

A bidirectional long short-term memory recurrent neural net-
work (BLSTM) is a layered network with feedback structures
from both the previous time step and the following time step,
whose layers consist of long short-term memory (LSTM) [34],
[35]. Compared with unidirectional structures, the bidirectional

Fig. 1. BLSTM.

structure makes it possible to propagate information not only
from the past but also from the future, giving bidirectional net-
works the ability to exploit the full context of an input sequence.
LSTM architectures prevent the so-called vanishing gradient
problem [36] and allow the memorization of long-term context
information. The structure of a BLSTM is illustrated in Fig. 1
(for simplicity of presentation, Fig. 1 and the following formu-
lations only consider a single hidden layer). As shown in Fig. 1,
LSTM layers are characterized by a memory cell st , and three
gates: 1) an input gate gIt , 2) a forget gate gFt , and 3) an output
gate gOt . Each gate g∗ has a value between 0 and 1. The value
0 means the gate is closed, while the value 1 means the gate is
open. The memory cell memorizes information about the past,
the input gate decides whether to pass on the input, and the out-
put gate decides whether to pass on the output. In other words,
these gates prevent the propagation of unnecessary signals. The
forget gate decides whether to forget the information memorized
in the memory cell.

Let us denote a sequence of feature vectors as X =
{x1 ,x2 , . . . ,xT }. In an LSTM layer, the output vector of the
LSTM layer ht is calculated as follows:

gIt = σ(WIxt + WI
rht−1 + pI � st−1 + bI ), (1)

gFt = σ(WF xt + WF
r ht−1 + pF � st−1 + bF ), (2)

st = gIt � f(WCxt + WC
r ht−1 + bC ) + gFt � st−1 , (3)

gOt = σ(WOxt + WO
r ht−1 + pO � st + bO ), (4)

ht = gOt � tanh(st), (5)

where superscripts I , F , O, and C indicate the input, forget,
output gates, and memory cell, respectively,� represents point-
wise multiplication, σ represents a logistic sigmoid function, f
represents an activation function, W∗ and W∗

r denote the input
weight matrices and recurrent weight matrices, respectively, b∗

are bias vectors, and p∗ are peephole connection weights. A
peephole connection is a connection between a memory cell
and a gate, which enables to control the behavior of a gate
depending on the state of the memory cell. In a BLSTM layer,
the output vector of the forward LSTM layer

−→
h t and that of

the backward LSTM layer
←−
h t (defined similarly to the forward

layer but with all sequences time-reversed) are both calculated
using these equations. Finally, the output vector of the output
layer yt is calculated as follows:

yt = g
(−→
W
−→
h t +

←−
W
←−
h t + b

)
, (6)
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Fig. 2. BLSTM with a projection layer.

where g represents an activation function,
−→
W and

←−
W represent

the weight matrix between the output layer and the forward
LSTM layer, and between the output layer and the backward
LSTM layer, respectively, while b denotes the bias vector of the
output layer.

B. Projection Layer

In general, it is known that the deep structure of neural net-
works is what gives them their impressive generalization power.
However, building a deep LSTM network with a lot of param-
eters requires huge memory resources and involves high com-
putational costs. Projection layers have been proposed as a way
to address this issue and allow the creation of very deep LSTM
networks [27], [28]. The use of projection layers can reduce not
only the computational cost but also the effect of overfitting, im-
proving the generalization power. The architecture of a BLSTM
with a projection layer is shown in Fig. 2. The projection layer,
which is a linear transformation layer, is inserted after an LSTM
layer, and it outputs feedback to the LSTM layer. With the in-
sertion of a projection layer, the hidden layer output ht−1 in
(1)–(4) is replaced with the projection layer output pt−1 , and
the following equation is added:

pt = WP ht , (7)

where WP denotes the projection weight matrix.

III. HIDDEN SEMI-MARKOV MODEL

A. Hidden Markov Model

A hidden Markov model (HMM) is a well-known gener-
ative model which can deal with variable-length sequential
data. To make the extension to the hidden semi-Markov model
(HSMM) easier to understand, we first give a brief overview of
HMMs. The structure of a typical left-to-right HMM is shown
in Fig. 3(a). Let us assume that we have sequential observations
X = {x1 ,x2 , . . . ,xT }. Each HMM state i ∈ S = {1, . . . , N}
has an emission probability distribution ei(x) and the transition
from state i to state j is represented by the transition proba-
bility aij . While the emission probability distribution ei(x) is
typically modeled with a Gaussian mixture model (GMM), in
a hybrid neural network/HMM model, it is calculated using a
pseudo likelihood trick (see Section IV-C). The maximum like-
lihood estimate of a state sequence for an HMM is commonly

Fig. 3. Structural difference between an HMM and HSMM. (a) Hidden
Markov model. (b) Hidden semi-Markov model.

obtained using the Viterbi algorithm. To perform the Viterbi al-
gorithm, we introduce two variables: the forward variable δt(i),
which represents the maximum likelihood that the partial state
sequence ends at time t in state i, and the back pointer ψt(i),
which records the corresponding likelihood-maximizing pre-
transition state. The forward variable δ0(i) is initialized using
an initial state probability πi , and the back pointer ψ0(i) is
initialized as 0. These are calculated recursively as follows:

δt(j) = max
i∈S
{δt−1(i)aij ej (xt)}, (8)

ψt(j) = arg max
i∈S

{δt−1(i)aij ej (xt)}. (9)

After the recursive calculation, the maximum likelihood P ∗ and
maximum likelihood state s∗T are calculated as follows:

P ∗ = max
i∈S
{δT (i)}, (10)

s∗T = arg max
i∈S

{δT (i)}. (11)

Now, we can calculate the maximum likelihood path {s∗1 , s∗2 ,
. . . , s∗T } using the following equation:

s∗t = ψt+1(s∗t+1), (12)

starting at the maximum likelihood state s∗T at time T and
moving backwards. The entire process of maximum likelihood
estimation in HMMs using the Viterbi algorithm is shown in
Algorithm 1.

B. Hidden Semi-Markov Model

One major problem with HMMs is that they are limited
in their ability to represent state duration. In HMMs, state
duration probabilities are implicitly represented by state tran-
sition probabilities, therefore, HMM state duration probabili-
ties inherently decrease exponentially with time. However, du-
ration probabilities in real data do not necessarily follow an
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Fig. 4. Difference in duration probability.

Algorithm 1: HMM Viterbi Algorithm.
Initialization:

1: δ0(i) = πi, i ∈ S
2: ψ0(i) = 0, i ∈ S

Inference:
3: for t = 1 to T do
4: for j = 1 to N do
5: δt(j) = max

i∈S
{δt−1(i)aij ej (xt)}

6: ψt(j) = arg max
i∈S

{δt−1(i)aij ej (xt)}
7: end for
8: end for

Termination:
9: P ∗ = max

i∈S
{δT (i)}

10: s∗T = arg max
i∈S

{δT (i)}
Traceback:
11: for t = T − 1 to 1 do
12: s∗t = ψt+1(s∗t+1)
13: end for

exponentially decreasing distribution. Consequently, the repre-
sentation of duration in HMMs may be inappropriate and cause
a discrepancy between the model and the data. This will be es-
pecially apparent in SED, where we need to deal with various
types of sounds with various durations.

One solution to this problem is to use hidden semi-Markov
models [37], [38]. The structure of an HSMM is shown in
Fig. 3(b), and the difference in state duration probability be-
tween an HMM and an HSMM is shown in Fig. 4. In HSMMs,
duration d ∈ D = {1, 2, . . . ,D} at state j is explicitly modeled
by a probability distribution pj (d). The parameters of pj (d) are
estimated using maximum likelihood estimation, and the max-
imum duration D is decided based on the mean and variance
of pj (d). The Viterbi algorithm can be extended to the case of
HSMMs by modifying the definitions and recurrence formulas
of the forward variable δ and the back pointer ψ as follows:

δt(j, d) = max
i∈S,d ′∈D

{δt−d(i, d′)aij pj (d)ej (xt−d+1:t)}, (13)

ψt(j, d) = (t− d, s∗, d∗), (14)

Algorithm 2: HSMM Viterbi Algorithm.
Initialization:

1: δd(i, d) = πipi(d)ei(x1:d), i ∈ S, d ∈ D
2: ψd(i, d) = (0, 0, 0) i ∈ S, d ∈ D

Inference:
3: for t = 1 to T do
4: for j = 1 to N do
5: for d = 1 to D do
6: δt(j, d) = max

i∈S,d ′∈D
{δt−d(i, d′)aij pj (d)ej

(xt−d+1:t)}
7: (s∗, d∗) = arg max

i∈S,d ′∈D
{δt−d(i, d′)aij pj (d)ej

(xt−d+1:t)}
8: ψt(j, d) = (t− d, s∗, d∗)
9: end for

10: end for
11: end for
Termination:
12: P ∗ = max

i∈S,d∈D
{δT (i, d)}

13: (s∗1 , d
∗
1) = arg max

i∈S,d∈D
{δT (i, d)}

Traceback:
14: t1 = T , n = 1
15: while tn > 1 do
16: n← n+ 1
17: (tn , s∗n , d

∗
n ) = ψtn −1

(s∗n−1 , d
∗
n−1)

18: end while

where s∗, d∗ and t− d represent the previous state, its duration,
and its end time, respectively, and s∗ and d∗ are calculated using
the following equation:

(s∗, d∗) = arg max
i∈S,d ′∈D

{δt−d(i, d′)aij pj (d)ej (xt−d+1:t)}, (15)

where the value of ej (xt−d+1:t) is computed as follows:

ej (xt−d+1:t) =
t∏

τ=t−d+1

ej (xτ ). (16)

After the recursive calculation, the maximum likelihood P ∗,
maximum likelihood state s∗1 and its duration d∗1 are calculated
as follows:

P ∗ = max
i∈S,d∈D

{δT (i, d)}, (17)

(s∗1 , d
∗
1) = arg max

i∈S,d∈D
{δT (i, d)}. (18)

Finally, we can obtain the maximum likelihood path {s∗N , s∗N−1 ,
. . . , s∗1} and its duration {d∗N , d∗N−1 , . . . , d

∗
1} by applying the

following equation recursively:

(tn , s∗n , d
∗
n ) = ψtn −1

(s∗n−1 , d
∗
n−1) (19)

The entire HSMM Viterbi algorithm procedure is shown in
Algorithm 2. Note that the ability of the HSMM to explic-
itly model the duration of each state by introducing the duration
probability distribution pj (d) comes at the expense of an in-
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Fig. 5. System overview.

crease in the computational cost of the Viterbi algorithm from
O(NT ) to O(NTD), as compared with an HMM.

IV. PROPOSED METHOD

A. System Overview

An overview of our proposed system, separated into train-
ing and test phases, is shown in Fig. 5. In the training phase,
we extract the feature vectors and perform cepstral mean
normalization (CMN) for each training audio sample (see
Section IV-B), and divide each active event into three
segments of equal length in order to assign left-to-right
states, thus obtaining initial state labels for the HMM
(or HSMM). Using the feature vectors and state labels,
we train a sound event detection (SED) network (see
Section IV-C), and a sound activity detection (SAD) network
(see Section IV-D). The labels are also utilized for calculating
the priors of HMM and HSMM states, as well as for training the
transition probability of the HMM or the duration probability
distribution of the HSMM (see Section IV-C). After training, we
perform the Viterbi decoding to update the state labels for the
training data, and then repeat the training of the SED network
and the transition (or duration) probabilities several times.

In the test phase, we extract the feature vectors from an input
audio sample and perform CMN. The feature vectors are used
as inputs for both the SED network and the SAD network. The
SED network estimates each state posterior, while the SAD
network estimates a binary mask which indicates global sound
event activity, i.e., whether one or more sound events of any
types are active in a given segment. Finally, we apply this binary
mask to the activation of each sound event obtained using Viterbi

decoding (see Section IV-D), and perform more post-processing
(see Section IV-E).

B. Feature Extraction

The input signal is divided into 25 ms windows with 40%
overlap, and 100 log mel-filterbank features are then calculated
for each window. We use more bands than usual since the res-
olution of high frequency components is important for SED.
Next, we perform cepstral mean normalization for each piece of
training data, obtaining an input feature vector xt at each frame
t. These operations are performed using HTK [39].

C. Hybrid Model

We utilize two hybrid systems, BLSTM-HMM and BLSTM-
HSMM, to capture sound-event-dependent temporal structures
explicitly and also to perform sequence-by-sequence detection
without the thresholding that is necessary when using conven-
tional frame-by-frame methods. While the BLSTM-HMM im-
plicitly models the duration of each sound event via its transi-
tion probabilities, the BLSTM-HSMM can explicitly do so via
its duration probabilities. We also extend the hybrid neural net-
work/HMM framework, which is generally used to handle multi-
class classification problems, to handle multi-label classification
problems for polyphonic SED. To do this, we build a three-state,
left-to-right HMM (or HSMM) with a non-active state for each
sound event. The structures of our HMM and HSMM are shown
in Fig. 6(a) and (b), respectively, where n = 0, n = 5 and n = 4
represent the initial state, final state, and non-active state, re-
spectively. Note that the non-active state only pertains to the
absence of activity for a particular sound event, and does not
indicate whether other sound events are active or not.
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Fig. 6. Difference between proposed HMM and HSMM. (a) Proposed hidden Markov model. (b) Proposed hidden semi-Markov model.

For the HMM, the transition probabilities are learned from
the sequences of state labels, where we simply calculate the
number of transitions from state i to state j and normalize it
to meet the definition of a probability. On the other hand, for
the HSMM, the transition probabilities of the left-to-right states
are fixed at 0.99 (the remaining 0.01 corresponding to the self-
loop), and that of the non-active state is fixed at 0.01 (with the
remaining 0.99 corresponding to the self-loop). These transition
probabilities were determined through preliminary experiments.
We represent duration using the gamma distribution in the three
left-to-right states and a uniform distribution in the non-active
state, defining the duration probability pc,j (d) for state j of the
HSMM for event c as:

pc,j (d) =

{
dkc , j −1 exp(−θc , j d)

θ
k c , j
c , j Γ(kc , j )

(j = 1, 2, 3)
1
Dc

(j = 4)
, (20)

where kc,j and θc,j respectively denote the shape and scale pa-
rameters of the gamma distribution, obtained through maximum
likelihood estimation using the state labels, and Dc is the maxi-
mum duration length of the three left-to-right states for event c.
In this study, Dc is determined as follows:

Dc = max
j∈{1,2,3}

{μc,j + 3σc,j} , (21)

where μc,j and σc,j respectively denote the mean and standard
deviations of the duration of state j of event c.

In our hybrid model, the network is used to calculate the state
posterior P (sc,t = j|xt), where c ∈ {1, 2, . . . , C} denotes the
sound event index, j ∈ {1, 2, . . . , N} the index of states except
for the initial and final states, and sc,t represents the state of
event c at time t. The emission probability ec,j (xt) for state j
of event c can be obtained from the state posterior using Bayes’
theorem as follows:

ec,j (xt) = P (xt |sc,t = j) =
P (sc,t = j|xt)P (xt)

P (sc,t = j)
, (22)

where P (sc,t) represents the prior of HMM (or HSMM)
states. Note that the factor P (xt) is irrelevant in the Viterbi

Fig. 7. Proposed network structures. (a) SED network. (b) SAD network.

computations. The structure of our proposed network is shown
in Fig. 7(a), where ỹc,t represents the state posterior of event c
at time t. This network has three hidden layers, each consist-
ing of a BLSTM layer with 1,024 nodes and a projection layer
with 512 nodes, and an output layer with C ×N nodes. These
network structures are determined through preliminary experi-
ments. A softmax operation is used to ensure that the values of
posterior P (sc,t |xt) sum to one for each sound event c in frame
t, as follows:

P (sc,t = j|xt) =
exp(ac,j,t)∑N

j ′=1 exp(ac,j ′,t)
, (23)

where a represents the activation of the output layer node.
The network is optimized using back-propagation through time
(BPTT) [40] with Adam [41] and dropout [42] using cross-
entropy as shown in the following multi-class, multi-label ob-
jective function:

E(Θ) = −
C∑
c=1

N∑
j=1

T∑
t=1

yc,j,t ln(P (sc,t = j|xt)), (24)
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where Θ represents the set of network parameters, and yc,j,t is
the state label. This objective function can be seen as a kind of
multi-task learning [43] of multi-class classification problems.
Multi-task learning is a technique to solve a task with additional
tasks using a shared input representation, and the effectiveness
has been confirmed in various fields such as speech recognition
[44], and natural language processing [45]. Note that this objec-
tive function is not the same as the multi-class objective function
in a conventional DNN-HMM because our SED network esti-
mates state posteriors with respect to each sound event HMM
(or HSMM), not the state posteriors of states of all HMMs (or
HSMMs). State priorP (sc,t) is calculated by counting the num-
ber of occurrences of each state using the training data labels.
However, in this study, since our synthetic training data does
not represent actual sound event occurrences, the prior obtained
from occurrences of each state has to be made less sensitive.
Therefore, we smooth P (sc,t) as follows:

P̂ (sc,t) = P (sc,t)α , (25)

whereα is a smoothing coefficient. In this study, we setα to 0.01.
Finally, we calculate the state emission probability using (22)
and perform the Viterbi algorithm for each HMM (or HSMM)
to obtain the maximum likelihood path as shown in Section III.

D. SAD Network

A common problem when performing polyphonic SED under
noisy conditions is a decrease in performance due to insertion
errors, which occur when background noise is mistaken for
sound events, even though there are no actual sound events in
that segment. To solve this problem, we propose the use of
binary masking with a sound activity detection (SAD) network.
The SAD network identifies segments in which there is sound
event activity of any type, similarly to voice activity detection
(VAD) in the field of speech recognition [31], [32]. In this study,
we train the network shown in Fig. 7(b). This network has
three hidden layers, each consisting of a BLSTM layer with 512
nodes, a projection layer with 256 nodes, and an output layer
with a single node. The structure of the SAD network is almost
the same as that of the SED network, however the SAD network
does not differentiate between the types of the sound events,
and therefore it tends to concentrate on background noise. The
SAD network, which performs a simple binary classification,
is optimized using BPTT with Adam and dropout under the
following sigmoid cross-entropy objective:

E(Θ) = −
T∑
t=1

{yt ln(ỹt) + (1− yt) ln(1− ỹt)} , (26)

where yt represents the reference data indicating the presence
or absence of sound events and ỹt is the SAD network output.
We use a threshold of 0.5 to convert SAD network outputs into a
binary mask M, and apply it to the activations Ac of each sound
event c predicted by the BLSTM-HMM (or BLSTM-HSMM),
as follows:

Ãc = M�Ac , (27)

Fig. 8. Outline of each post-processing step. (a) Apply median filter. (b) Fill
gaps. (c) Remove short duration events.

where both Ac and M are a binary vector of length T . Note that
the same binary mask M is applied to the activations of each
sound event, and that the binary mask only has an effect on the
insertion of sound events, not on the substitution or deletion of
sound events.

E. Post-Processing

In order to smooth the output sequence, we perform three
kinds of post-processing:

1) Apply a median filter with a predetermined filter span;
2) Fill gaps which are shorter than a predetermined number;
3) Remove events whose duration is shorter than a predeter-

mined length.
An outline of each post-processing step is illustrated in Fig. 8.

Based on preliminary experiments, we set the median filter span
to 150 ms (15 frames), the acceptable gap length to 0.1 s (10
frames), and the minimum duration threshold length for each
sound event to 3/4 of the minimum duration for that sound event
as calculated from the training data.

V. EXPERIMENTS

To evaluate our proposed method, we used the DCASE2016
task 2 dataset [12]. The dataset includes a training set consisting
of 20 clean audio files per event class, a development set con-
sisting of 18 synthesized audio files of 120 seconds in length,
and an evaluation set consisting of 54 synthesized audio files
of the same length as the development set files. The 54 files of
the evaluation set consist of 18 audio files with different con-
tent each synthesized under three different signal-to-noise ratio
(SNR) conditions: −6 dB, 0 dB, and 6 dB. Out of 54 files, 27
are monophonic, and the rest are polyphonic. The number of
sound event classes in the dataset is 11. The evaluation set is
synthesized using unknown samples, but the development set is
synthesized using the training set, making it a closed condition
development set.

For this study, we chose to further split the training data,
keeping 75% of the samples to build our training set, and hold-
ing out the rest in order to build an open condition development
set, which was lacking in the original dataset. By open condi-
tion development set, we refer here to a development set that
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is based on data not included in the (newly defined) training
set. We thus randomly selected 5 samples (out of 20) per event
from the training set and generated 18 samples of 120 seconds
in length, similar to the original DCASE2016 task 2 develop-
ment set. These generated samples are used as development
data to check performance under open conditions. We used
the remaining 15 samples per class to build our own training
data. Instead of simply using the original training data, which
is too small for training an RNN with sufficient depth, we aug-
mented the training data by synthetically generating our own
training data using the clean samples and background noise as
follows:

1) Generate a silence signal of a predetermined length;
2) Randomly select a sound event sample;
3) Add the selected sound event to the generated silence

signal at a randomly selected location;
4) Repeat steps 2 and 3 a predetermined number of times;
5) Add a background noise signal at a predetermined SNR.

A. Experimental Conditions

We set the signal length to 4 s, the total number of events
to a value from 3 to 5, the number of simultaneous events to
a value from 1 to 5 (1 corresponding to the monophonic case),
and SNR to a value from −9 dB to +9 dB. We then synthe-
sized 100 000 audio samples, for a total length of 111 hours.
Both event-based (onset-only) and segment-based evaluation
are conducted, and F1 scores (F1) and error rates (ER) were uti-
lized as the evaluation criteria. Event-based evaluation consid-
ers true positives, false positives and false negatives with respect
to event instances, while segment-based evaluation is done in a
fixed time grid, using segments of one second length to compare
the ground truth and the system output (see [46] for more de-
tails). We built our proposed hybrid system using the following
procedure:

1) Divide an active event into three segments of equal length
in order to assign left-to-right state labels;

2) Train the SED network using these state labels as super-
vised data;

3) Calculate the prior using these state labels;
4) (For HMM) Train the transition probability using these

state labels by Viterbi training;
(For HSMM) Train the duration probability distribution
using the maximum likelihood estimation;

5) Calculate the maximum likelihood path with the Viterbi
algorithm;

6) Use the maximum likelihood paths as new state labels;
7) Repeat steps 2–6.
In this study, when calculating the maximum likelihood path,

we fixed the alignment of non-active states, i.e., we only aligned
event-active HMM states because we know the perfect align-
ment of non-active states due to the use of synthetic data. When
training the networks, we monitored the objective functions on
the development set at every epoch and stopped training ac-
cordingly, using an early stopping strategy. All networks were
trained using the open source toolkit TensorFlow [47] with a

TABLE I
EXPERIMENTAL CONDITIONS

Sampling rate 44,100 Hz
Window size 25 ms
Shift size 10 ms
# training data 4 s × 100k samples
# development data 120 s × 18 samples
# evaluation data 120 s × 54 samples
# sound event classes 11
Learning rate 0.001
Initial scale 0.001
Gradient clipping norm 5
Batch size 128
Time steps 400
Optimization method Adam [41]

single GPU (Nvidia GTX Titan X)1. Details of the experimental
conditions are shown in Table I.

B. Experimental Results

To confirm the performance of our proposed method, we com-
pared it with two conventional methods, NMF (DCASE2016
task 2 baseline) [12] and standard BLSTM [20]. The NMF was
trained with 15 clean samples per class using the DCASE2016
task 2 baseline script [12]. The BLSTM had the same network
structure as the one shown in Fig. 7(a), with the exception that
the output layer was replaced withC nodes with sigmoid activa-
tion functions, with one node for each sound event. Each node’s
output yc ∈ [0, 1] was binarized to determine event activity. We
set the threshold to 0.5, i.e., sound event c is considered to be
active if yc > 0.5, and inactive otherwise.

Experimental results are shown in Table II. First, we focus on
the differences in the performance of each system. Our proposed
system (a BLSTM-HSMM with post-processing and SAD bi-
nary masking) achieved the best performance of all of the meth-
ods for both event-based and segment-based evaluation crite-
ria, and also outperformed all of the methods submitted to the
DCASE2016 task 2 Challenge [12]. Note that the conventional
systems [18], [24] were trained using the whole training set,
whereas our systems are trained using only part of the training
set in order to hold out data for the preparation of an open devel-
opment set. From these results we can see that it is important for
polyphonic SED methods to take the duration of sound events
into account, especially by explicitly modeling event duration.

Next, we focus on the effect of post-processing. For the
BLSTM method, we can confirm that post-processing was
clearly effective. However, this could not always be confirmed
for our proposed hybrid models: this could be expected, because
the prediction results are already smoothed as a result of the use
of HMM or HSMM. In other words, the use of a dynamic mod-
eling technique such as HMM or HSMM can effectively smooth
the output sequence, and therefore, it can alleviate the need for
post-processing.

1Our proposed system implementation is available at: https://github.com/kan-
bayashi/dcase2016task2
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TABLE II
EXPERIMENTAL RESULTS

Event-based (dev./eval.) Segment-based (dev./eval.)

Model F1 score [%] Error rate [%] F1 score [%] Error rate [%]

NMF (Baseline) 31.0/24.2 148.0/168.5 43.7/37.0 77.2/89.3
BLSTM 69.9/60.1 73.2/91.2 87.2/77.1 25.8/44.4
+ post-processing 81.5/71.2 35.7/50.9 89.3/79.0 20.3/36.8
+ SAD binary masking 82.2/73.7 34.0/45.6 89.5/79.9 19.8/34.3
BLSTM-HMM 80.0/71.0 38.6/55.1 88.8/79.6 20.4/37.4
+ post-processing 81.3/71.7 35.2/52.3 89.1/79.5 19.4/36.7
+ SAD binary masking 82.6/74.9 32.7/44.7 89.7/80.5 18.3/33.8
BLSTM-HSMM 82.3/71.9 34.7/51.7 91.3/79.8 16.7/37.0
+ post-processing 82.3/72.1 34.4/51.4 91.1/79.7 16.7/37.0
+ SAD binary masking 85.0/75.3 28.9/44.2 91.5/81.1 15.8/32.9
I. Choi et al. [24] –/67.1 –/61.8 –/78.7 –/36.7
T. Komatsu et al. [18] –/73.8 –/46.2 –/80.2 –/33.1

Fig. 9. Class-wise segment-based error rates.

Finally, we focus on the effect of SAD network binary mask-
ing. Our results confirmed the effectiveness of our proposed
SAD masking method when used with all methods, especially
for reducing the error rate on the evaluation set. This is because
there is more background noise in the evaluation set than in the
development set, leading to many insertion errors. (Note that
the SAD network by itself achieved an F1 score of 97.7% for
the development set and 94.8% for the evaluation set in frame-
wise detection.) It is interesting to note that even though we
used almost the same network architecture and exactly the same
data, we could obtain an improvement in performance by us-
ing a slightly different objective function between the SED and
SAD networks. This is because using a simple objective func-
tion for the SAD network makes it easy to train the network,
and combining different tendency models has a performance
effect similar to a model ensemble technique. This results also
implies that multi-task learning can be used effectively, i.e., the
objective function of an SAD network can be utilized as a regu-
larization term in the objective function of an SED network. We
will investigate this further in future work.

C. Analysis

In this section, we discuss the details of the performance
of the BLSTM-based methods. Class-wise segment-based er-
ror rates are shown in Fig. 9, which displays the rates af-
ter both post-processing and SAD binary masking have been

TABLE III
PERFORMANCE UNDER DIFFERENT SNR CONDITIONS

Segment-based (BLSTM/HMM/HSMM)

SNR [dB] F1 score [%] Error rate [%]

6 81.2/80.8/82.9 32.1/32.6/28.6
0 80.2/80.8/81.6 33.7/33.4/31.7
−6 78.2/79.9/78.8 37.2/35.3/38.4

applied. Focusing first on differences in performance for various
sound events, we note that detection performance for doorslam,
drawer, and pageturn were very low. This is because the volume
of the doorslam and drawer sound events were very low, mak-
ing them difficult to detect when there was background noise,
resulting in many deletion errors. Even humans have difficulty
detecting these sounds under low SNR conditions. The poor
results for pageturn occurred for a different reason, however.
One reason for the low detection performance for pageturn was
the large number of insertion errors due to the difference in the
background noise between the training and evaluation sets. The
background noise in the development set is almost the same as
in the training set, and in that case we did not observe a large
number of insertion errors. However, background noise in the
evaluation set is different from that in the training set, so there
is a possibility that the network focused on a specific pattern
in the feature vector, similar to one observed in the background
noise of the evaluation set.

Focusing now on the differences in performance among
BLSTM-based methods, we can see that the overall trends
for each model were similar. However, the combination of the
BLSTM with an HMM or HSMM was not always effective for
all of the sound event classes. To investigate this in detail, per-
formance under different SNR conditions was examined and the
results are shown in Table III, which again displays the perfor-
mance after both post-processing and SAD binary masking have
been applied. From these results we can see that the performance
of all of the models degraded under the low SNR condition, and
that the BLSTM-HSMM method was especially susceptible to
the effect of background noise. The details of the segment-based
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TABLE IV
DETAILS OF SEGMENT-BASED ERROR RATES WITHOUT SAD MASKING

Segment-based Error rate (BLSTM/HMM/HSMM)

SNR [dB] S [%] D [%] I [%]

6 8.2/8.0/7.1 4.6/5.4/3.6 22.2/22.1/20.7
0 8.9/7.6/7.6 4.9/5.2/4.5 22.3/23.1/23.1
-6 9.0/7.8/8.2 7.6/6.6/5.3 22.7/24.4/30.9

TABLE V
DETAILS OF SEGMENT-BASED ERROR RATES WITH SAD MASKING

Segment-based Error rate (BLSTM/HMM/HSMM)

SNR [dB] S [%] D [%] I [%]

6 8.2/8.2/7.3 4.8/5.9/5.5 19.1/18.7/15.9
0 8.7/7.6/7.4 5.4/6.0/6.0 19.5/19.8/18.4
-6 9.0/7.6/7.8 7.9/7.1/6.2 20.3/20.6/24.5

error rates without SAD masking are shown in Table IV, and
those with SAD masking are shown in Table V, where S, D, and
I represent the substitution, deletion, and insertion error rates,
respectively. Focusing on the substitution error rate, we can
confirm that the combination of the BLSTM with an HMM or
HSMM was always effective for the reduction of substitution
errors. This is because each sound event has a different duration,
and therefore substitution errors can be reduced by modeling the
duration of each sound event. However, regarding the insertion
error rate, while the BLSTM and BLSTM-HMM maintained
their performance with only a slight degradation under the low
SNR condition, the performance of BLSTM-HSMM fell dras-
tically. This is because the BLSTM-HSMM method models the
duration of sound events, forcing them in particular to sustain
a certain length, and the mistakenly inserted sound events were
thus of significant duration. This caused long-term frame mis-
takes, and consequently, the performance decreased drastically.
The use of SAD network binary masking improved performance
by reducing the number of insertion errors, however, there was
still a gap between the performance of the BLSTM-HSMM
and the other methods under the low SNR condition. As a re-
sult, although the BLSTM-HSMM method achieved the best
results on average, by examining details of the performance of
each method we can see that each model has advantages and
disadvantages. Hence, we hypothesized that it would be advan-
tageous to develop a model which combines the feature of each
of the BLSTM-based methods. To confirm this, we devised a
system combination in which the majority result of the outputs
of the three methods was selected as the output, after which
post-processing and SAD masking were applied. Performance
results for the system combination are shown in Table VI, where
the numbers in parentheses represent the amount of improve-
ment from the best results in Table II. The combination of the
three methods achieved the best performance, which supports
our above hypothesis.

Finally, we focus on differences in performance when per-
forming monophonic versus polyphonic SED task. The results

TABLE VI
PERFORMANCE OF SYSTEM COMBINATION

Criteria F1 score [%] Error rate [%]

Event-based 76.3 (+1.0) 42.0 (−2.2)
Segment-based 82.4 (+1.3) 30.2 (−2.7)

TABLE VII
PERFORMANCE FOR DIFFERENT TASKS

Segment-based (BLSTM/HMM/HSMM)

Task F1 score [%] Error rate [%]

polyphonic 79.2/79.5/80.0 34.7/34.0/33.0
monophonic 81.1/82.4/82.9 33.7/33.4/32.8

are shown in Table VII. Somewhat surprisingly, all of the mod-
els achieved similar performance on both tasks, and there was
only a slight difference in performance between the monophonic
task and the much more challenging polyphonic task.

VI. CONCLUSION

In this study, we proposed a new hybrid approach for poly-
phonic SED called duration-controlled LSTM, which incorpo-
rates a duration-controlled modeling technique based on an
HSMM and a frame-by-frame detection method based on a
BLSTM. Our proposed duration-controlled LSTM made it pos-
sible to model the duration of each sound event explicitly and
also allowed us to perform sequence-by-sequence detection
without having to resort to the kind of thresholding necessary in
conventional frame-by-frame methods. Furthermore, to reduce
the insertion errors which often occur under noisy conditions we
also proposed the use of a binary-mask-based post-processing
step using an SAD network to identify segments with any kind
of sound event activity. Our proposed method outperformed not
only conventional methods such as NMF and standard BLSTM,
but also the best results submitted for the DCASE2016 task2
Challenge. Furthermore, we confirmed that combining the three
BLSTM-based methods brings about further improvement.

In future work, we will develop a model which encompasses
advantages of each BLSTM-based method. We also would like
to investigate multi-task training in which the objective function
of an SAD network is utilized as a regularization term in the
objective function of the SED network. Additionally, we plan
to apply our proposed method to a larger real-world recording
dataset, and to investigate the use of sequential discriminative
training for both the BLSTM-HMM and BLSTM-HSMM meth-
ods [29], [48].
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