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Instantaneous A Priori SNR Estimation by Cepstral
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Abstract—As the a priori signal-to-noise ratio (SNR) contains
crucial information about a signal’s mixture of speech and noise,
its estimation is subject to steady research. In this paper, we in-
troduce a novel a priori SNR estimator based on synthesizing an
idealized excitation signal in the cepstral domain. Our approach
utilizes a source-filter decomposition in combination with a cepstral
excitation manipulation in order to recreate an idealized excitation,
which is subsequently shaped by an immanent envelope. In con-
trast to the well-known decision-directed approach by Ephraim
and Malah, an instantaneous estimate is obtained, which is less
prone to sudden acoustic environmental changes and musical noise.
Additionally, the proposed estimator is able to preserve weak har-
monic structures resulting in a spectrum that is more full-bodied.
We present both a speaker-independent and a speaker-dependent
variant of the new a priori SNR estimator, both showing more
than 2 dB ΔSNR improvement versus state of the art, without any
significant increase in speech distortion.

Index Terms—A priori SNR, speech enhancement.

I. INTRODUCTION

A priori SNR estimation has long been an important topic
in speech enhancement. Having only a single mixture at

hand most likely impedes enhancement tasks since no knowl-
edge about the individual components of the observed mixture
is available. Consequently, the need to estimate an a priori SNR
arises and has been subject to research in several publications
[1]–[7]. Algorithms such as voice activity detection [8], speech
presence probability estimation [9] and, most importantly, spec-
tral weighting rules for noise reduction algorithms [1], [2], [10],
[11] take great profit from reliable a priori SNR estimates.

The decision-directed (DD) approach to estimate the a pri-
ori SNR by Ephraim and Malah [1] has been published along
with a spectral amplitude estimator for noise reduction and is
basically a weighted sum of two components. The first compo-
nent is depicting the ratio of the previous frame’s squared clean
speech amplitude estimate and the provided noise power esti-
mate also taken from the previous frame. The second component
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is an instantaneous estimate derived from the current frame’s a
posteriori SNR. The weights of both components sum up to
unity and as proposed in [1] the weight for the first compo-
nent is chosen close to unity. The approach has been thoroughly
analyzed in [12] and [13], where the analysis of Cappé [12]
has shown, that the DD a priori SNR estimate follows the a
posteriori SNR1 with a delay of one frame.

Cohen proposed a non-causal estimator which buffers a few
frames and thus is capable of differentiating between onsets of
speech and bursts of noise allowing less musical tones and dis-
tortion of transient speech regions [3]. The approach is also less
sensitive to changes in the underlying speech model compared
to the DD technique. In practice all this comes at the price of
some frames of delay.

Breithaupt et al. proposed an estimator [5] which employs a
quefrency-selective smoothing of a maximum likelihood (ML)
speech power spectral density derived from the a posteriori
SNR and the noise power estimate. In the cepstral domain the
coefficients corresponding to the excitation and the envelope are
smoothed differently. As a result they obtain an a priori SNR
estimate that yields better results in a noise suppression frame-
work than the one in [1] w.r.t. spectral distortion and musical
tones, especially in non-stationary environments. However, the
clean excitation is not directly modeled, still leaving potential
for improvement.

A data-driven approach based on the DD formula has been
published in [6]. The two components of the weighted sum
are both input to two different neural networks, discriminating
speech active and inactive frames, with the ideal a priori SNR
as a target during the training process. In a practical system
both networks are evaluated and a linear combination of the
provided outputs yields the final a priori SNR estimate. The
authors are able to show a reduction of speech distortion during
speech onsets while maintaining a high noise attenuation during
speech pause. As the training process requires noise signals the
approach is not entirely independent of the noise type.

Our latest work [7] shows that a simple Gaussian mixture
model (GMM), representing clean speech spectral amplitudes,
is able to provide a ML clean speech amplitude estimate when
preliminary denoising is applied to the observation and subse-
quently the GMM is evaluated. The provided estimate is then
used as numerator for an intermediate a priori SNR estima-

1Please note that the term “a posteriori SNR” in [12] differs from its use in
mainstream literature as introduced in [1].
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tion and continuously improved by repeated filtering and re-
estimation.

Motivated by Cappé’s observation, Plapous et al. propose
a so-called two-step noise reduction (TSNR) technique [14]
which is able to compensate for the one-frame delay. It is used
as a preliminary noise reduction for their harmonic regeneration
noise reduction (HRNR) introduced in [4]. The HRNR approach
employs an improved a priori SNR estimator which applies a
non-linear function to an enhanced time-domain signal in order
to restore lost harmonics in the spectrum. The enhanced signal
is subsequently mixed with the preliminary denoised signal,
according to the calculated gains of the TSNR, and then used
as numerator for the a priori SNR estimate. The applied non-
linearity produces an unnatural harmonic and leads to audible
artifacts in certain low-frequency noise types.

A recent analysis [15] deals with the over- and underestima-
tion of estimated a priori SNR. The authors propose to use a
correction term based on an empirically obtained distribution of
the true bias in dependency of the a priori and a posteriori SNRs.
The distribution is then subject to a vector quantizer which is
later on used to estimate the bias on real data to compensate for
the aberration. They show how to improve the DD and also the
TSNR approach and additionally state that the proposed method
could be used together with any spectral weighting rule.

In this paper we introduce a novel approach that consequently
exploits the a priori knowledge that comes along with a model-
based approach, while staying fully independent of noise types.
The proposed method for instantaneous a priori SNR estimation
without the need for lookahead is based on the source-filter
model representing human speech production and also embraces
the convenience a cepstral representation offers in terms of pitch
estimation and cosine synthesis.

Furthermore, we also address a problem known to occur with
approaches that model solely the spectral shape as they typically
lack the fine structure of the speech spectrum and thus are not
able to suppress noise between the harmonics [16].

In a first stage we employ a preliminary noise reduction driven
by a noise power estimator such as [17]–[19], suitable state-of-
the-art a priori SNR estimation [1], [5]–[7], and a weighting
rule of choice, e.g., [1], [2], [10], [11]. In a second stage we
utilize linear predictive coding (LPC) analysis to decompose
the preliminary denoised signal into its spectral envelope and
excitation followed by a transformation of the excitation signal
to the cepstral domain. Subsequently, we detect the pitch, and,
as a core of our approach, we synthesize an idealized excita-
tion which is shaped by the spectral envelope of the preliminary
denoised signal. The resulting spectrum is finally used as clean
speech amplitude estimate for an instantaneous a priori SNR
numerator. We then extend our approach to using two variants
of excitation manipulation (synthetic and template-based) and
show improvement of the template-based over the purely syn-
thetically created excitation. Finally, we investigate the potential
of a speaker-dependent (vs. a speaker-independent) setup of our
estimator.

The structure of this paper is as follows: In Section II we
introduce our mathematical notations and some baseline esti-
mators, which serve as reference in the evaluation. Next, we

present our cepstral processing methodology in Section III fol-
lowed by the two proposed manipulation schemes in Section IV.
In Section V we present the experimental results and discussion
separately, and conclude the paper in Section VI.

II. NOTATIONS AND BASELINES

We assume an additive model for the microphone signal y(n)
in the time domain as

y(n) = s(n) + d(n), (1)

with s(n) being the clean speech signal we are interested in, and
d(n) being the noise signal we aim to suppress. The discrete-
time sample index is n. The corresponding frequency-domain
representation by applying the discrete Fourier transform (DFT)
is

Y�(k) = S�(k) + D�(k), (2)

with frame index � and frequency bin index k being restricted
by the DFT size K to 0 ≤ k ≤ K − 1. Furthermore, as most
approaches do, we assume that the speech and noise signals are
zero-mean and statistically independent of one another.

A. Noise Power Estimation

An estimate of the noise power, which is denoted by σ̂D
� (k)2 ,

is required for noise reduction and can be obtained by several
algorithms which have been published in the past. Among those
is the minimum statistics (MS) approach [17], which is a com-
monly utilized estimator with good performance in stationary
and non-stationary environments. Besides, there are further es-
timators such as the minima-controlled estimator proposed in
[18], or estimators based on the minimum mean-square error
(MMSE), e.g., [20].

B. Spectral Weighting Rules

The desired clean speech spectral estimate is generally ob-
tained by applying a real-valued gain function, also referred
to as spectral weighting rule G�(k), to the observed signal as
follows

Ŝ�(k) = Y�(k) · G�(k). (3)

Thereby, the noisy phase is usually maintained as motivated in
[1], [21], [22], although some more recent publications support
phase-aware speech enhancement [23]–[25]. As the potential of
amplitude-based speech enhancement seems not yet exhausted,
we feel comfortable to focus on these in the following.

Amongst the most famous weighting rules utilized to calcu-
late gain functions G�(k), we find the well-known Wiener filter
(WF) [10], the MMSE short-time spectral amplitude estimator
(MMSE-STSA) [1], the MMSE log-spectral amplitude estima-
tor (MMSE-LSA) [2], and the super-Gaussian joint maximum a
posteriori (SG-jMAP) estimator [11]. The aforementioned var-
ious frequency bin-selective gain functions G�(k) are mostly
(nonlinear) functions f(·) of the a priori SNR

ξ�(k) =
σS

� (k)2

σD
� (k)2 (4)
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and partly also of the a posteriori SNR

γ�(k) =
|Y�(k)|2
σD

� (k)2 (5)

allowing us to compute G�(k) as:

G�(k) = f (ξ�(k), γ�(k)) . (6)

Since both entities require quantities that are not available in
practice they need to be estimated (or at least components of
them). We denote estimated entities with a hat (̂·) as accent.

C. A Priori SNR Estimation

In this section we briefly sketch three baseline approaches
which will later serve to compare our approach against.

1) Decision-Directed (DD): The historic breakthrough to
estimate the a priori SNR is the already mentioned DD ap-
proach by Ephraim and Malah [1]. In summary, the DD formula
narrows down to

ξ̂DD
� (k) =

(1 − βDD) · max {γ̂�(k) − 1, 0} + βDD
|Ŝ�−1(k)|2
σ̂D

�−1(k)2 ,
(7)

with βDD and (1 − βDD) being the weights of both components
as mentioned in the introduction. Subsequently, as proposed in
[12], the a priori SNR estimate is lower-bounded to a certain
ξmin to avoid musical tones.

2) Selective Cepstro-Temporal Smoothing (CTS): This
method, proposed by Breithaupt et al. [5], is utilizing prop-
erties of the cepstral representation to obtain a more precise a
priori SNR estimate. The core of this approach is an adaptive,
first-order recursive smoothing of the cepstrum of the ML clean
speech estimate cŜ M L

� (m) according to

c̄Ŝ
� (m) = α�(m) · c̄Ŝ

�−1(m) + (1 − α�(m)) · cŜ M L

� (m), (8)

where c̄Ŝ
� (m) is the smoothed version of the cepstrum and

m ∈ M = {0, 1, . . . , K − 1} is the cepstral bin index. The cep-
strum of the ML clean speech estimate in this particular case is
obtained as
(
cŜ M L

� (m)
)K−1

m=0
= IDFT

{(
log |ŜML

� (k)|2
)K−1

k=0

}
, (9)

with

|ŜML
� (k)|2 = σ̂D

� (k)2 · max
{
ξML
� (k), ξML

min
}

. (10)

The ML a priori SNR floor ξML
min > 0 is a small number yielding

numerical stability, while

ξML
� (k) = γ�(k) − 1, (11)

as shown in [5]. Parameter α�(m) is not only time-variant,
but also quefrency-selective. Cepstral coefficients with small
indices controlling the shape of the spectral envelope are to
be smoothed only slightly, whereas the higher-indexed cepstral
coefficients are supposedly related to noise and thus heavily
smoothed. An exception is made for bins related to the fun-
damental frequency as these are suggested to be smoothed

even less than the envelope-related quefrencies. Therefore, this
method relies on a cepstral pitch estimation. For the detailed
smoothing scheme we refer to [5]. After a bias compensation
required due to the smoothing in the logarithmic domain and in-
verse transformation the final a priori SNR estimate is obtained
as

ξ̂CTS
� (k) = max

{
|Ŝ�(k)|2
σ̂D

� (k)2 , ξmin

}
, (12)

with
(
|Ŝ�(k)|2

)K−1

k=0
= exp

(
κ + DFT

{(
c̄Ŝ
� (m)

)K−1

m=0

})
, (13)

and κ being a log-amplitude spectrum bias compensation. In
our simulations an improved bias compensation term has been
used as presented in [26]. The noise power estimation is not
further restricted to any specific method. Finally, note that an
instantaneous extension to CTS could be employed as being
done in [27].

3) Harmonic Regeneration (HRNR): The HRNR approach
by Plapous et al. [4] is based on the DD estimator, but taking
Cappé’s observation into account to compensate for the one-
frame delay of the a priori SNR, underlying some preliminary
spectral weights GDD

� (k). The authors employ a two-step noise
reduction technique (TSNR) to accomplish the delay compen-
sation. Therefore, they introduce a second gain function

GTSNR
� (k) = f(ξ̂TSNR

� (k), γ̂�(k)) (14)

with an updated a priori SNR

ξ̂TSNR
� (k) =

|Y�(k) · GDD
� (k)|2

σ̂D
� (k)2 (15)

being responsible for the actual compensation. A harmonic spec-
tral regeneration method operates on the TSNR-enhanced sig-
nal Y�(k) · GTSNR

� (k), applying a simple non-linear function
in the time domain, here half-wave rectification, and thereby
boosting the harmonics of voiced frames. After transformation
the spectrum is depicted as Š�(k), which is not directly used
for clean speech estimation but for another a priori SNR esti-
mate ξ̂HRNR

� (k). To obtain this estimate, Š�(k) is mixed with
the TSNR-enhanced signal according to the corresponding gain
function as follows

ξ̂HRNR
� (k) =

α�(k) · |Y�(k) · GTSNR
� (k)|2 + (1 − α�(k)) · |Š�(k)|2

σ̂D
� (k)2

(16)

where the authors propose to use weights α�(k) = GTSNR
� (k).

This constitutes the final a priori SNR estimate; again, the
noise power estimator can be chosen from available literature
for each of the proposed stages.

Throughout this paper we refer to a system that is com-
posed of a noise power estimator (Section II-A), an a priori
SNR estimation (Section II-C), and a spectral weighting rule
(Section II-B) as either a common or a preliminary noise
reduction.
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Fig. 1. Block diagram of the cepstral processing framework for our proposed a priori SNR estimation. The preliminary noise reduction consists of the MS
noise power estimation algorithm, the DD a priori SNR estimation approach, and the MMSE-LSA spectral weighting rule.

III. NEW CEPSTRAL PROCESSING FRAMEWORK FOR A PRIORI

SNR ESTIMATION

In this section we present the cepstral processing frame-
work of our a priori SNR estimator, and provide some moti-
vation for cepstral domain processing. Fig. 1 depicts its overall
architecture.

A. Preliminary Noise Reduction

Similar to [4], we also employ a preliminary denoising stage
before applying the actual approach. The motivation is to fa-
cilitate the extraction of required information for the proposed
a priori SNR estimation. As it will rely on a pitch estimation,
our approach benefits from the preliminary noise reduction ren-
dering pitch estimation more robust, even in very low-SNR
conditions. We target the preservation of harmonics which are
often strongly attenuated, especially in adverse environments.
In practice, this preliminary noise reduction is not limited to
any specific components or approaches, but we propose to rely
on a common noise reduction scheme being composed of some
noise power estimation (e.g., minimum statistics [17]), the DD
approach to a priori SNR estimation [1], and the MMSE-LSA
spectral weighting rule [2] (referring to the left light gray block
in Fig. 1).

B. Source-Filter Decomposition

Decomposing the preliminary denoised signal into its enve-
lope and excitation (e.g., by LPC analysis) allows us to break
down the enhancement task into two individual problems, thus
enabling specific enhancement methods to be applied to each of
the components, separately. However, in this paper we focus on
the excitation only.

Our proposed method exploits knowledge about the process
of human speech generation, especially of voiced speech. There-
fore, it is important to have a reliable pitch estimation which is
on the one hand supported by the preliminary denoising stage,
and on the other hand by analyzing the excitation signal. For
these reasons, we decompose the preliminary denoised signal
Ȳ�(k) into the spectral excitation R�(k) and its spectral envelope
H�(k), which is understood as the source and the filter, respec-
tively. In each frame � the spectral envelope H�(k) is obtained
by first applying the K-point inverse discrete Fourier transform
(IDFT) to the squared magnitude spectrum |Ȳ�(k)|2 , resulting

in the sequence of autocorrelation coefficients
(
ϕȳ,ȳ

� (ν)
)K−1
ν=0 = IDFT

{(|Ȳ�(k)|2)K−1
k=0

}
. (17)

The first N + 1 < K elements ϕȳ,ȳ
� (ν), ν ∈ {0, 1, . . . , N}

are used to compute a set of N LPC coefficients a�(i),
i ∈ {1, 2, . . . , N} by the Levinson-Durbin recursion. The LP
analysis filter in the DFT domain (1 − A�(k)) is then simply
obtained by applying the K-point DFT to a sequence of the pre-
viously calculated N LPC coefficients, padded with K − N − 1
zeros:

(A�(k))K−1
k=0 = DFT {(0, a�(1), . . . , a�(N), 0, . . . , 0)} . (18)

The LP analysis filter is employed to process the preliminary
denoised signal Ȳ�(k) to retrieve the respective residual signal
as [28]:

R�(k) = Ȳ�(k) · (1 − A�(k)) , (19)

while the spectral envelope is given by the inverse filter as

H�(k) =
1

1 − A�(k)
. (20)

LPC analysis is an established method for source-filter de-
composition [28]. An alternative to computing the envelope
could have been simple liftering in the cepstral domain (i.e., tak-
ing only the lower part of the cepstrum), which, however, does
not provide the exact same results as the Levinson-Durbin re-
cursion of LPC analysis [29, Sec. 9.5.1].

Further investigations towards the processing framework as
shown in Fig. 1 have also shown that a residual signal obtained
via LPC analysis, being subsequently transformed into the cep-
stral domain, is better suited for later manipulation. This is
further elaborated on in Section IV-B.

C. Cepstral Excitation Representation

Next, we obtain a cepstral representation of a signal by ap-
plying the discrete cosine transform of type II (DCT-II), but
also an IFFT could have been chosen as in [5]. Additionally,
we present some of its inherent, convenient properties we take
advantage of. To further analyze the spectrum of the excitation
signal in a first step we compute the cepstral coefficients upon
the excitation signal’s logarithmic magnitude spectrum as [30]

cR
� (m) =

K−1∑
k=0

log (|R�(k)|) · cos
[
πm (k + 0.5) 1

K

]
(21)
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Fig. 2. Example of an idealized synthetic excitation for K = 256. Upper
panel: Cepstrum cR

� (m) with mF 0 = 64 and cR
� (64) = 60, representing a

single zero-mean cosine in the log-spectral domain. Lower panel: Log-spectrum
20 log10 |R� (k)| according to (22), showing only K

2 + 1 bins.

with m ∈ M = {0, 1, . . . ,K − 1}. The obtained cepstrum has
a doubled resolution since we compute it on the whole spectrum
(and not only on K

2 + 1 bins). The inverse DCT-II (IDCT-II) will
be required in a later stage at the end of the cepstral excitation
manipulation (CEM) and is calculated as

|R̂�(k)| =

exp

(
cR̂

� (0)
K + 2

K

K−1∑
m=1

cR̂
� (m) · cos

[
πm (k + 0.5) 1

K

]
)

.

(22)

After the manipulations, the residual signal is mixed with the
spectral envelope of the preliminary denoised signal as

|Ŝ�(k)| = |R̂�(k)| · |H�(k)| (23)

which is used as numerator for the final a priori SNR estimate
in an instantaneous fashion as follows

ξ̂�(k) =
|Ŝ�(k)|2
σ̂D

� (k)2 . (24)

One of the most important properties of the cepstrum is the
possibility to find a quefrency corresponding to the pitch by
simple peak picking [31]. Thus, we estimate the pitch bin index
mF0 in a very naı̈ve way by a maximum search of the cepstrum
in a defined range specified by naturally occurring pitch values.
Our focus is restricted to pitch frequencies F0 from about 50 Hz
to 500 Hz. Using2 f = 2fs

m , the resulting cepstral bin indices at
sampling frequency fs = 8 kHz are therefore in the range m ∈
MF0 = {m500 = 32, . . . , m50 = 320}. Pitch estimation on the
basis of the residual signal after preliminary noise reduction is
then simply performed according to

mF0 = arg max
μ∈MF 0

(
cR
� (μ)

)
. (25)

A further convenience is now the ability to easily synthesize
a cosine in the log-spectral domain, by creating a cepstrum
with only one non-zero bin. An example of such an idealized
synthetic excitation is given in Fig. 2. The idea behind it is
the fact that in voiced speech production harmonics occur at
multiples of the fundamental frequency F0 , starting at F0 . A

2The factor 2 stems from the doubled resolution of our cepstrum definition
(21).

Fig. 3. Block diagram of the proposed cepstral excitation manipulation
based on an idealized synthetic excitation.

cosine in the log-spectral domain models this quite well already,
as the maxima are located directly at the fundamental frequency
and due to the periodicity also at the harmonics.

IV. CEPSTRAL EXCITATION MANIPULATION (CEM)

In the following, we introduce ways to manipulate the exci-
tation in the cepstral domain (referring to the upper right gray
block in Fig. 1). These methods form the core of our proposed
approach. First, a manipulation towards an idealized synthetic
excitation is introduced and second, a template-based alternative
is presented.

A. Idealized Synthetic Excitation (CEMID)

The first option we propose to manipulate the excitation in
the cepstral domain is to completely replace it by an ideal-
ized synthetic one, followed by the IDCT-II (22) and some
final manipulation of the start and the end of the log-spectrum
(see Fig. 3). Having found the index mF0 of the cepstral peak
amplitude which corresponds to the pitch according to (25),
we overestimate its amplitude and transfer it into our synthetic
cepstrum

cR̂
� (mF0 ) = cR

� (mF0 ) · α�(mF0 ), (26)

while the remaining quefrencies, except for (m = 0), are as-
signed a zero amplitude:

cR̂
� (m) = 0, ∀m /∈ {0,mF0 } . (27)

In order to retain the energy of the preliminary denoised signal’s
residual, we preserve the cepstral energy coefficient (m = 0):

cR̂
� (0) = cR

� (0). (28)

The proposed overestimation factor α�(m) ≥ 1 could be
time-variant and cepstral bin-dependent. While Fig. 2, upper
panel, shows an example cepstrum, Fig. 4, upper panel, de-
picts the same cepstrum with applied cepstral overestimation
factor. The resulting effect on the log-spectrum can be seen in
Fig. 4, center panel, where a one-view comparison of both log-
spectra is provided. Now, the benefit of the directed amplitude
overestimation becomes obvious: The overestimation allows a
narrower modeling of the harmonics (positive half waves), and
also a correspondingly strong emphasis of the valleys (negative
half waves) resulting in an increased attenuation between the
harmonics. Note that this effect would not be obtained when
boosting the harmonics in a shaped or already power-adjusted
spectrum with a simple overestimation factor, as this would re-
sult only in a shift of the spectrum leaving the negative half
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Fig. 4. Example of an idealized synthetic excitation with overestimation
factor α� (mF 0 ) = 2.2, DFT length K = 256, and optionally with preserved

cepstral energy coefficient. Upper Panel: Cepstrum cR̂
� (m) with mF 0 = 64

and cR̂
� (64) = 60 · 2.2 = 132, representing a single zero-mean cosine in the

log-spectral domain. Center Panel: Log-spectra 20 log10 |R� (k)| (bold, dotted
line from Fig. 2, lower panel) and 20 log10 |R̂� (k)| (dashed line, using (26)).
Lower panel: Log-spectra 20 log10 |R̂� (k)| from center panel (dashed line),

and power-adjusted log-spectra with additional cR̂
� (0) = 90 (solid line). All

log-spectra show only K
2 + 1 bins.

waves unmodified. Besides, since our manipulation is in the
cepstral domain, our approach translates consistently to all har-
monics. This effect is difficult to achieve when operating in the
spectral domain.

An overestimation of the energy coefficient would result in
a scaling of the whole spectrum which is not desired here, as
explained above. An example spectrum depicting the effect of
(28) is shown in Fig. 4, lower panel, solid plot.

Naturally, spectral content of voiced human speech starts to
occur at the fundamental frequency (after one period of the
cosine), then being followed by the corresponding harmonics at
multiples of the fundamental frequency, but there should be no
spectral content prior to the fundamental frequency. Motivated
by our observations during the training of excitation templates,
we assume a similar effect at high frequencies (see Fig. 5, upper
panel). Thus, a continuation of the cosine beyond the highest,
fully representable harmonic is also not desired.

Similarly, in the HRNR approach [4, Fig. 8] a continuous
harmonic log-amplitude spectrum is obtained. A problem that
has been left unattended there is the falsely introduced half
period at low frequencies, which is caused by the non-linear
function in [4], applied in order to regenerate harmonics.

To tackle this issue, we propose a simple continuation of
the decay of the cosine at low and high frequencies (instead of
Fig. 4, lower panel, solid line, now Fig. 5, lower panel). To iden-
tify the first local minimum prior to the fundamental frequency
we utilize f = 2fs

m to obtain the corresponding pitch frequency

Fig. 5. Upper panel: Example of a log-spectrum excitation template for
mF 0 = 64, obtained as described in Section IV-B. Lower panel: Example of
an idealized synthetic excitation log-spectrum with preserved cepstral energy
coefficient, overestimation factor α� (mF 0 ) = 1.5, and applied start and end
decay to remove the two false half periods.

F0 based on the estimated cepstral bin index mF0 from (25).
We now convert the pitch frequency F0 to its corresponding
real-valued frequency-domain ”bin index” as k̃F0 = F0 · K

fs
, on

basis of the simple relation that K
2 corresponds to fs

2 and ev-
ery frequency bin index containing a related frequency can be
obtained by linear interpolation. Due to the periodicity of the co-
sine we compute the integer bin index of the first local minimum
according to

kmin =
⌈

k̃F 0
2

⌉
, kmin ∈ {0, 1, . . . ,K−1} . (29)

The maximum for the high frequencies is found by analyzing
whether the highest possible harmonic frequency and thus the
corresponding period of the cosine fits into the non-redundant
frequency range as limited by fs

2 , or not, according to (30)
shown at the bottom of the page.

Here, we have to distinguish between two cases: either, the
highest depictable harmonic frequency (F0 · � fs

2F0
�) including

its falling edge (+F0
2 ) fits into the non-redundant frequency

range (≤ fs

2 ) or it overlaps (> fs

2 ). For the former we simply
calculate the frequency of the last local minimum at the end
of the falling edge of the last harmonic (F0 · � fs

2F0
� + F0

2 ) and

calculate its corresponding frequency bin index (·K
fs

). For the lat-
ter, since this frequency would be outside of the non-redundant
frequency range, we calculate it for the last but one harmonic
(� fs

2F0
� − 1), accordingly. For more clarity we refer to the lower

panel of Fig. 5, depicting kmin , k̃F0 , and also kmax .
For all k < kmin and k > kmax the real-valued cosine in the

log-spectral domain is discarded and simply to be extended
linearly with the slope around k = kmin and k = kmax , respec-
tively. The proposed mechanism is one possibility to solve the
issue quite well already, as a comparison of Fig. 5, upper and
lower panel, suggests. Alternatively, different monotonically

kmax =

⎧
⎪⎨
⎪⎩

⌈(
F0 ·

⌊
fs

2F0

⌋
+ F0

2

)
· K

fs

⌉
, for F0 ·

⌊
fs

2F0

⌋
+ F0

2 ≤ fs

2
⌈(

F0 ·
(⌊

fs

2F0

⌋
− 1
)

+ F0
2

)
· K

fs

⌉
, for F0 ·

⌊
fs

2F0

⌋
+ F0

2 > fs

2

(30)
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Fig. 6. Block diagram of the proposed cepstral excitation manipulation
based on excitation templates.

increasing and decreasing functions could be applied to model
the start and end decay as required.

B. Cepstral Excitation Templates (CEMSI , CEMSD)

In the cepstral excitation manipulation as described before,
the idealized synthetic excitation carries no specific information
except for the location of harmonics and a proper energy coeffi-
cient. However, further investigations have shown that a resid-
ual signal that is obtained via LPC analysis and subsequently
transformed into the cepstral domain holds non-negligible infor-
mation in the remaining bins. As a consequence, the synthetic
excitation lacks attributes of the human vocal chords and lungs,
being responsible for the naturalness of the modeled excitation
signal. Thus, with the now described alternative approach we
aim at modeling these components in more detail by creating ex-
citation templates based on excitation signals originating from
LPC analysis. A high-level diagram of the cepstral excitation
manipulation is depicted in Fig. 6. We obtain cepstral excita-
tion templates in two different ways, depending on whether they
are going to be speaker-independent (SI) or speaker-dependent
(SD). In the following we describe a general way which is used
for both, SI and SD templates, where for the latter it is just a first
stage towards a more speaker-specific modeling. In general, the
idea is to have a cepstral excitation template for each detectable
pitch bin value m ∈ MF0 . For this, clean speech training ma-
terial is analyzed and subsequently the DFT spectrum S�(k) of
each frame � is separated into spectral envelope and excitation
signal (see Fig. 1 and assume Ȳ�(k) = S�(k)). The DCT-II is
employed to transform the excitation signal into the cepstral
domain and the pitch bin index mF0 is estimated as explained
in Section III-C. Accordingly, we collect the set

CmF 0
=
{
cR

� |cR
� (mF0 ) ≥ cR

� (μ) ∀μ ∈ MF0

}
(31)

of all cepstral vectors in the training material belonging
to each particular pitch bin index mF0 ∈ MF0 , with cR

� =(
cR
� (0), . . . , cR

� (m), . . . , cR
� (K − 1)

)
. Now, the cepstral repre-

sentation allows us to average per bin over all cepstral excitations
in a given set and to obtain a representative excitation template
for each pitch bin index mF0 as

c̄R (mF0 ) =
1

|CmF 0
|
∑

cR ∈Cm F 0

cR , ∀mF0 : |CmF 0
| > 0, (32)

where | · | is the cardinality of a certain set. If a set is empty, the
codebook entry is assigned an all-zero vector. Furthermore, we
drop the frame index � as it is only required during the collection
of the training material in (31).

The templates can be obtained either in an SI or an SD fashion,
only depending on the training data. We propose to use the
following adaptation scheme to create SD templates on basis
of SI templates. At first, we separately obtain the SI templates
c̄R (mF0 ) and preliminary SD templates čR (mF0 ) stemming
from much less data of the target speaker, both according to
(31) and (32), differing only in the training material. The actual
adaptation is a weighted mixture of both, SI and SD templates
for each given pitch bin index mF0 as

c̃R (mF0 ) = β(mF0 ) · c̄R (mF0 ) + (1 − β(mF0 )) · čR (mF0 )
(33)

with

β(mF0 ) =
|C̄mF 0

|
|C̄mF 0

| + δ · |ČmF 0
| (34)

where δ ≥ 1 allows to compensate for the typical lack of SD
training material and to artificially emphasize the SD material.

Having obtained and stored the cepstral excitation templates,
their application is very similar to the scheme in Section IV-A.
After having detected the pitch bin index mF0 according to (25),
the SD (33) or SI (32) cepstral excitation template addressed by
mF0 is taken. Here, e.g., for SI templates:

cR̂
� (m) = c̄R (mF0 ,m) ∀m /∈ {0,mF0 } . (35)

The subsequent manipulations from (26) to (28) are applied as
before in order to obtain a level consistent with the preliminary
denoised signal where (27) is replaced by (35). The proposed
start and end decay from (29) and (30) can optionally be ap-
plied to compensate for aberrations due to noise in the training
material.

If an empty template (originating from |CmF 0
| = 0 during

training) has been selected by the detected pitch bin index mF0 ,
we do not apply the manipulations from (26) to (28). Instead,
we continue with the all-zero cepstral template c̄R (mF0 ) which
results in a flat spectrum with unity amplitude. Thus, in such a
situation of uncertainty, we do not harm the signal nor do we
necessarily enhance it since the clean speech estimate |Ŝ�(k)|
then reduces to solely the envelope |H�(k)|. Alternatively, one
could also employ the idealized approach in such cases or learn
missing templates in an adaptive manner. We comment on the
amount of empty templates and their selection frequency during
test at the end of Section V-D.

V. EXPERIMENTAL EVALUATION

We embed the proposed and the baseline a priori SNR esti-
mators in a common noise reduction algorithm to evaluate their
performance and analyze their behavior in four different noise
types, six different SNR conditions and with two commonly em-
ployed spectral weighting rules. Four different quality measures
are utilized to compare the different approaches.

A. Experimental Setup

Throughout the whole experimental section of this contribu-
tion we employ a sample rate fs = 8 kHz with a frame size of
32 ms, corresponding to K = 256 samples, and a 50% frame
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shift by 128 samples. As analysis and overlap-add synthesis
window we utilize a periodic square root Hann window and
for the source-filter decomposition we compute N = 10 LPC
coefficients.

The NTT super wideband database [32] is used as a basis
and thus downsampled to 8 kHz. We only use the American
and British English sets which consist of eight and six speakers,
respectively, where each set offers an equal number of speakers
per gender. The database comes with 120 utterances for each
American English and 100 for each British English speaker.
Thus, we decided to artificially decrease the amount to 100 files
for American English speakers by random picking, amounting
to a total of 14 speakers and 1400 utterances. Next, we use 80%
of each speaker’s material for training and the remaining 20%
for SI and SD testing. For our SI experiments, we decided to
use a leave-one-out method to increase the amount of training
material. For this, we generate a training set for each speaker
separately containing the training material of the 13 other speak-
ers consisting of 13 × 80 = 1040 utterances. The training ma-
terial for the SD adaptation is represented by the 80 utterances
of each speaker which have been left out during the SI train-
ing. The training itself of the SI and SD templates is conducted
according to Section IV-B with applied start and end decay.

The four different noise types are taken from the ETSI [33]
database and represent road, car, office, and pub noise. Each
segment used to generate the microphone signal is randomly
extracted matching the length of the clean speech file. We pro-
cess the files at six different SNR conditions ranging from−5 dB
up to 20 dB in steps of 5 dB. The level of the clean speech and
the noise is measured by the active speech level and the root-
mean-square level, respectively, according to ITU-T P.56 [34]
and both adjusted also according to P.56 prior to superposition.
In total we process 14 × 20 × 4 × 6 = 6720 files for each a
priori SNR estimator under test. Please note that for the SD
experiments, we switch the SD templates corresponding to each
speaker being processed, accordingly.

The evaluation of the different a priori SNR estimators is
placed in a common noise reduction system with MS noise
power estimation, one of the a priori SNR estimators under
test (DD, HRNR, CTS, CEMID, CEMSI, CEMSD) and the two
spectral weighting rules (MMSE-LSA and SG-jMAP) used to
calculate the final gains G�(k) which are limited to Gmin =
−15 dB.

The DD approach is tuned with optimal parameters3 adopted
from [35] for each of the weighting rules.

For the HRNR approach a preliminary noise reduction is
required for which we also use the MS noise power estimation,
DD a priori SNR estimation with βDD = 0.985 and ξmin =
−15 dB as it is just an intermediate step. Furthermore, GDD

� (k)
and GTSNR

� (k) are calculated using the WF as proposed and we

3Optimal parameters for DD a priori SNR estimation for the two weighting
rules:

MMSE-LSA: βDD = 0.975, ξmin = −15 dB

SG-jMAP: βDD = 0.993, ξmin = −14 dB.

follow the author’s suggestion and utilize α�(k) = GTSNR
� (k)

as weights for the mixing in (16) .
The CTS implementation was kindly provided by the authors

and thus the parameters left as originally initialized.
Our three proposed estimators CEMID, CEMSI, and CEMSD,

share the same preliminary noise reduction with the HRNR
approach except for the weighting rule being MMSE-LSA (in-
stead of the WF) as mentioned in Section III-A. The overes-
timation factor for (26) is empirically determined and set to
α�(mF0 ) = 2. The required parameter to compensate the lack
of speaker-dependent data is found for this particular training
set with δ = 30.

B. Quality Measures

To measure the quality of our proposed a priori SNR esti-
mator in two example noise reduction contexts, we employ the
so-called white-box approach [36], i.e., we calculate the gains
G�(k) and subsequently apply it not only to the microphone
signal Y�(k) in order to obtain the enhanced signal, but also
to the clean speech component S�(k) and the noise component
D�(k), separately. The obtained components after IDFT and
overlap-add are called the filtered clean speech component s̃(n)
and the filtered noise component d̃(n), respectively, which is
applicable by assuming (2). The measures are operating not on
the enhanced signal ŝ(n), but only on the filtered and unfiltered
components with the latter as a reference.

The segmental noise attenuation (NA) [37] is calculated as

NAseg = 10 log10

[
1
|L|
∑
�∈L

NA(�)

]
, (36)

with

NA(�) =
∑N −1

ν=0 d(ν + �N)2

∑N −1
ν=0 d̃(ν + �N + Δ)2

,

where � defines a segment of length N = 256 samples, Δ is
compensating the sample delay of the filtered signal, and 1

|L| is
a normalization factor since |L| is the cardinality of the set L,
containing all frames. The segmental NA depicts the average
of a local frame-wise ratio of the noise component and the
corresponding filtered noise component and is sought to be
high.

Different from that we define a global measure

ΔSNR = SNRout − SNRin, (37)

where SNRin is the SNR of the clean speech and noise com-
ponent measured according to ITU P.56 [34], and SNRout cor-
respondingly for the filtered components. This measure gives
a more general information of the achieved noise suppression
over the whole file compared to the segmental NA. A positive
ΔSNR indicates an improved SNR after processing.

Please note that the segmental NA and the ΔSNR are not
directly related due to their different scopes (local and global)
and have to be interpreted separately, as a high segmental NA
is not necessarily indicating great SNR improvement and vice
versa.
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TABLE I
DETAILED EVALUATION OF SEGMENTAL NA, ΔSNR, PESQ MOS-LQO, AND SEGMENTAL SSDR, FOR THE FOUR DIFFERENT NOISE TYPES, FIVE SNR

CONDITIONS, THE BASELINES VS. THE PROPOSED A Priori SNR ESTIMATORS, AND THE MMSE-LSA SPECTRAL WEIGHTING RULE

The first measure to assess the quality of the filtered clean
speech component is the segmental speech-to-speech-distortion
ratio (SSDR) [37] calculated as

SSDRseg =
1

|L1 |
∑
�∈L1

SSDR(�) (38)

where L1 depicts the set of speech active frames obtained by a
simple energy threshold-based voice activity detection operat-
ing on the clean speech signal s(n). Additionally, SSDR(�) is
limited to values between −10 dB and 30 dB by

SSDR(�) = max {min {SSDR′(�), Rmax} , Rmin} .

The actual ratio necessary for computation is obtained by

SSDR′(�) = 10 log10

[∑N −1
ν=0 s(ν + �N)2

∑N −1
ν=0 e(ν + �N)2

]

where the speech distortion is

e(ν + �N) = s̃(ν + �N + Δ) − s(ν + �N).

A high segmental SSDR indicates low speech distortion and
thus good preservation of the speech component.

Furthermore, we employ the PESQ mean opinion score
(MOS-LQO) [38] to obtain another measure for the quality
of the filtered clean speech component. Please note that in line
with P.1100 [39, Sec. 8] we do not utilize the enhanced speech
ŝ(n) in the PESQ measure but the separately processed speech

component s̃(n) as PESQ has not been validated for potential
artifacts caused by noise reduction algorithms. We aim at being
more compliant to P.862 [38] by doing so.

C. Experimental Results: Details

We provide a detailed evaluation for both the MMSE-LSA
and the SG-jMAP spectral weighting rule in the following
Tables I and II. Each table depicts the four quality measures
for all of the noise types in the SNR conditions from −5 dB
to 15 dB averaged over the whole test set, where the best
scores are highlighted in boldface. For the computation of the
mean over SNRs also the 20 dB SNR condition has been in-
cluded, which is, however, left out as separate column simply
due to space restrictions. This allows for a very extensive anal-
ysis of the tested a priori SNR estimators for each condition
separately.

In Table I the performance results for the MMSE-LSA spec-
tral weighting rule are shown. In terms of noise suppression
(measures NAseg and ΔSNR) the CEM approaches clearly show
the strongest performance for each SNR condition, averaged
over all four noise types. Both the DD and the CTS baselines
show poor performance, and have only few SNR/noise type con-
ditions with convincing performance. The HRNR approach is
on average in many cases the best of the baseline approaches
w.r.t. noise suppression, showing particularly good performance
in pub noise (in NAseg, and for medium to high SNRs also best
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TABLE II
DETAILED EVALUATION OF SEGMENTAL NA, ΔSNR, PESQ MOS-LQO, AND SEGMENTAL SSDR, FOR THE FOUR DIFFERENT NOISE TYPES, FIVE SNR

CONDITIONS, THE BASELINES VS. THE PROPOSED A Priori SNR ESTIMATORS, AND THE SG-JMAP SPECTRAL WEIGHTING RULE

in ΔSNR). On the contrary, in the SNR = −5 dB condition,
HRNR’s ΔSNR in pub noise is worst among all schemes, while
it yields the best NAseg in road noise at that SNR. The proposed
CEM schemes are much more consistent in terms of NAseg and
ΔSNR over SNR conditions and noises: The speaker-dependent
CEMSD is best in all cases, except only for NAseg in very low
SNR, where CEMID is slightly ahead.

In terms of the speech component quality (PESQ, SSDRseg)
the picture is partly different: On average over the noise types
CTS performs best in PESQ in most SNRs, being ahead up to
0.15 MOS points vs. the worst CEM approach. Interestingly,
however, in car noise, CEMID is slightly better than CTS in
most SNR conditions. The classical DD approach performs on
a par with other approaches with regard to the PESQ metric,
while HRNR consistently fails to provide an acceptable speech
component quality, both in PESQ and SSDRseg. Surprisingly,
DD delivers very good SSDRseg performance in office and pub
noise, while the CEM approaches perform best in car and road
noise.

In Table II the performance results for the SG-jMAP spectral
weighting rule are shown. In terms of noise suppression (mea-
sures NAseg and ΔSNR) the CEM approaches, especially the
speaker-dependent variant CEMSD, clearly perform best in each
SNR condition, averaged over all four noise types. Both the DD
and here the HRNR baselines show poor performance, and have
no single SNR/noise type condition with convincing NAseg per-
formance. Considering ΔSNR, none of the three baselines has

a single SNR/noise type condition with superior performance.
The CTS approach is on average in most cases the best of the
baseline approaches w.r.t. NAseg, showing particularly good per-
formance in pub noise for medium to high SNRs. Interestingly,
for the SG-jMAP, the DD approach is on average the best base-
line w.r.t. ΔSNR, showing that sophisticated spectral weighting
rules are able to heal some shortcomings of earlier processing
stages such as the SNR estimation. The proposed CEM schemes
are much more consistent in terms of NAseg and ΔSNR over
SNR conditions and noises: The speaker-dependent CEMSD is
best in all cases.

In terms of the speech component quality (PESQ, SSDRseg)
the picture again is partly different: On average over the noise
types, CTS performs best in PESQ for all SNRs, being ahead
up to 0.12 MOS points vs. the worst CEM approach. In car
noise, however, CEMID is on a par with CTS in most SNR
conditions. On average, the DD approach performs quite well
in PESQ, while HRNR consistently settles for the worst score.
The SSDRseg is also mostly in favor of the CTS approach, and
opposite to PESQ, the HRNR approach is found to be slightly
ahead of the DD estimator on average.

Please note that the advantage of a speaker-dependent ap-
proach vs. all other speaker-independent approaches is of course
somehow expected, yet CEMSD is only slightly ahead of our
speaker-independent method CEMSI.

We can summarize for both weighting rules, that on aver-
age over the noise types the CEM approaches perform best in
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Fig. 7. Segmental SSDR and ΔSNR averaged over the four different noise
types for the different a priori SNR estimators under test with the MMSE-LSA
spectral weighting rule.

Fig. 8. Segmental SSDR and ΔSNR averaged over the four different noise
types for the different a priori SNR estimators under test with the SG-jMAP
spectral weighting rule.

terms of NAseg and ΔSNR, and almost on a par with the best
performing method w.r.t. PESQ and SSDRseg. The baselines all
show an imbalanced performance being inferior in one of the
two main categories: For both weighting rules, they are infe-
rior w.r.t. NAseg and ΔSNR (DD, HRNR and CTS). For the
MMSE-LSA weighting rule, HRNR shows poor performance
w.r.t. PESQ and SSDRseg, where for the SG-jMAP weighting
rule HRNR performs poorly w.r.t. PESQ, while DD is only
slightly inferior in SSDRseg.

D. Discussion

To enable further analysis of the results, we plot the
SSDRseg for the two spectral weighting rules over the ΔSNR
(Figs. 7 and 8) and the NAseg (Figs. 9 and 10), respectively.
The plots simplify the interpretation on a more global level
compared to the tables as only two dimensions are considered
at a time. Each plot is a visualization of the mean section from

Fig. 9. Segmental SSDR and segmental NA averaged over the four different
noise types for the different a priori SNR estimators under test with the MMSE-
LSA spectral weighting rule.

Fig. 10. Segmental SSDR and segmental NA averaged over the four different
noise types for the different a priori SNR estimators under test with the SG-
jMAP spectral weighting rule.

the corresponding table. In each figure the different estimators
are specifiable by their respective marker, being + for DD, ∗
for HRNR, and × for CTS, the three illustrating the baseline
algorithms. The proposed techniques are distinguishable by ◦
for the idealized synthetic approach CEMID, � for the template-
based variant CEMSI, and finally ♦ for the speaker-dependent
template-based implementation CEMSD. Each marker depicts
one of the SNR conditions from −5 dB to 20 dB in steps of
5 dB, where the lowest corresponds to the worst and the high-
est to the best condition, respectively. The further a marker is
located to the top right hand corner of each plot, the better is
the performance. The range and scaling of each axis showing its
respective measure is the same to ensure comparability across
the two spectral weighting rules.

The MMSE-LSA estimator is depicted in Fig. 7 showing how
close DD and CTS are. The HRNR approach exhibits quite an
unbalanced behavior as ΔSNR performance is similar to the
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Fig. 11. Evaluation of segmental NA, ΔSNR, PESQ MOS-LQO, and segmental SSDR, averaged over the four different noise types and six SNR conditions
showing the baselines vs. the proposed a priori SNR estimators, and the MMSE-LSA spectral weighting rule.

Fig. 12. Evaluation of segmental NA, ΔSNR, PESQ MOS-LQO, and segmental SSDR, averaged over the four different noise types and six SNR conditions
showing the baselines vs. the proposed a priori SNR estimators, and the SG-jMAP spectral weighting rule.

other baselines, but SSDRseg is significantly lower. The CEM
approaches show highest ΔSNR in all conditions with compa-
rable or better speech component quality w.r.t. the baselines.
The flexion of the three curves also indicates a balanced work-
ing point in different SNR conditions. Using SG-jMAP (Fig. 8),
the relationships across the tested algorithms are quite simi-
lar, except that HRNR improves in SSDRseg, and gets worse
in ΔSNR. The CEM algorithms obtain the best ΔSNR at very
comparable speech component quality. For both spectral weight-
ing rules, the CEM implementations among themselves show a
very consistent rank order such that CEMID is marginally outper-
formed by the two template-based algorithms, which are almost
equivalent.

Interestingly, all approaches obtain an increased preservation
of the speech component quality with the SG-jMAP weighting
rule compared to the MMSE-LSA spectral weighting rule at
comparable (DD, CEM) or slightly lower (HRNR, CTS) ΔSNR
values. CEM is ahead of the baseline approaches by a ΔSNR of
at least 2.35 dB (MMSE-LSA) and 2.29 dB (SG-jMAP) on total
average.

Figs. 9 and 10 provide the same analysis but for the
SSDRseg and the NAseg. Fig. 9 depicting MMSE-LSA shows
that CTS outperforms DD in terms of noise attenuation, how-
ever, with comparable quality of the speech component. The
performance of HRNR is more difficult to interpret than before
as the working point clearly is shifted since the single SNR
conditions do not even roughly line up horizontally with the
other baseline approaches under test. This results in a decreased
speech component quality at substantially higher NAseg values
for each condition. Still, the proposed CEM approaches man-
age to show exceeding performance in all SNRs. The SG-jMAP

spectral weighting rule is shown in Fig. 10. DD improves in
NAseg at similar SSDRseg compared to Fig. 9 such that DD
and CTS are much closer now. However, CTS is still able to
consistently show a superior performance compared to the DD
approach. Using SG-jMAP, HRNR loses performance in NAseg,
and becomes better in SSDRseg, resulting in a clearer picture
as opposed to Fig. 9. Best performing is again the CEM group,
showing a similar behavior amongst themselves as in the other
figures. In general, the range of NAseg is the most compressed,
considering the other two figures. CEM is ahead of the base-
line approaches by an NAseg of up to 1.79 dB (MMSE-LSA) and
1.39 dB (SG-jMAP) on total average.

We attribute the strong increase of NAseg and ΔSNR in car
noise mainly to the applied start decay as seen in Fig. 5, as it
causes a good suppression in low frequencies typical for car
noise. Moreover, for negative SNR conditions in pub noise we
encounter cases where some other approach provides the best
results with regard to the noise attenuation and speech compo-
nent quality metrics. This is most likely due to F0 estimation
errors caused by the naı̈ve pitch estimation which is unable to
track a target speaker due to the presence of other speakers. We
assume that the overall increase in NAseg and also ΔSNR is
caused by the introduced overestimation of the harmonics and
the simultaneous attenuation in between them as shown in Fig. 4,
center panel. Specifically, the attenuation between the harmon-
ics should account for the increased overall noise attenuation.
As there is usually a trade-off between noise attenuation and
speech component quality [40], the CEM approach seems to
mitigate this effect and allows us to be nearly on a par with the
best baseline on average in terms of SSDRseg and PESQ, while
maintaining a higher NAseg and ΔSNR.
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To facilitate a conclusive interpretation of Tables I and II
we provide bar charts depicting the overall mean values (last
column of the mean section of Tables I and II for each mea-
sure) in Figs. 11 and 12 for the MMSE-LSA and the SG-jMAP
weighting rule, respectively. Both figures show the advantage
of the proposed approaches on average over the baselines in
terms of NAseg and particularly ΔSNR. The CEM approaches
are ahead of the baselines by at least 2 dB w.r.t. ΔSNR, while
maintaining a very comparable speech component quality in
both other measures, PESQ and SSDRseg. However, the qual-
ity improvement from CEMID to CEMSI or even CEMSD is
only marginal. Nevertheless, CEMSD on average performs best
among the CEM approaches. The HRNR approach seems to
deliver a better speech component quality when used together
with SG-jMAP (as compared to MMSE-LSA), which is strongly
reflected in the SSDRseg measure at the cost of only a minor de-
crease in noise attenuation. Again, this shows how an advanced
weighting rule can mend estimation flaws of earlier compo-
nents in a noise reduction scheme. The DD and CTS baselines
show a quite consistent performance regardless of the applied
weighting rule.

In our experiments we encountered some empty templates
during the training, which is caused by a lack of training mate-
rial. A brief analysis has shown that mostly for lower cepstral
bin indices we find every other set being empty, indicating that
for some higher pitch frequencies (F0 > 400 Hz) no material
has been seen during training. However, we also obtain some
coherent clusters for the lower frequencies. One way to avoid
this could be to reduce the resolution of the cepstrum as we
would not have seen any empty sets with the normal resolution
but also would not have had the gain of the additional precision
reflected by the coherent clusters. Furthermore, we could verify
that an excitation template has been applied to 99.99% of the
frames processed by the template-based methods, showing that
empty templates do not have any significant relevance at this
point. In addition to that, informal listening tests have shown
that the proposed CEM methods also allow for almost musical
tone-free noise suppression due to the instantaneous nature of a
priori SNR estimation.4

VI. CONCLUSION

In this paper we have introduced three novel methods for in-
stantaneous a priori SNR estimation utilizing the source-filter
model for speech production. A preliminary denoised signal is
decomposed into its source and corresponding filter, allowing to
impose an idealized excitation on the degenerated source. The
cepstral domain is exploited to manipulate the excitation signal
at hand. We further enhance the technique by obtaining excita-
tion templates from clean speech in either a speaker-independent
or speaker-dependent fashion, where the latter is the slightly su-
perior approach on average. However, the idealized technique
shows some advantages over the codebook-based approaches,
especially in SNR conditions ≥10 dB where it achieves equal
or even better speech component quality at the cost of slightly

4Audio samples can be found under: https://www.ifn.ing.tu-bs.de/en/ifn/sp/
elshamy/2017-taslp-cem/

lower noise suppression. We tested our algorithms and three
baseline estimators in a common noise reduction algorithm with
two different spectral weighting rules and managed to show a
ΔSNR improvement of more than 2 dB, while the amount of
speech distortion is largely kept on a constant level. Future work
will include an enhancement of not only the excitation but also
the envelope which is still taken from the preliminary denoised
signal. Also a more sophisticated approach to F0 estimation or
tracking could improve our approaches in low-SNR conditions
with multiple speakers.
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