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Abstract—Gunshot acoustic analysis is a field with many practi-
cal applications, but due to the multitude of factors involved in the
generation of the acoustic signature of firearms, it is not a trivial
task. The main problem arises with the strong spatial dependence
shown by the recorded waveforms even when dealing with the same
weapon. However, this can be lessen by using a spatially diverse re-
ceiver such as a wireless acoustic sensor network. In this work, we
address multichannel acoustic weapon classification using spatial
information and a novel decision fusion rule based on it. We pro-
pose a fusion rule based on maximum likelihood estimation that
takes advantage of diverse classifier ensembles to improve upon
classic decision fusion techniques. Classifier diversity comes from
a spatial segmentation that is performed locally at each node. The
same segmentation is also used to improve the accuracy of the local
classification by means of a divide and conquer approach.

Index Terms—Decision fusion, gunshots, multi-channel classifi-
cation, wireless acoustic sensor networks.

I. INTRODUCTION

W EAPON acoustic analysis has practical applications in
many fields such as forensics, security, gun control or

military tactics to name a few. Thus, the acoustic signature pro-
duced by explosive propelled weapons has been subject of study
for some decades now [1]–[3]. In recent years, this field has be-
come more relevant mainly due to the development of sniper
detection and localization systems [4] aided by sensor fusion
techniques and Wireless Acoustic Sensor Networks (WASN)
[5]–[7]. Renewed interest in this topic has produced multiple
approaches to gunshot detection over the last decade, whereas,
acoustic weapon classification has not been widely studied
yet with only a few available precedents [8], [9]. Regarding
detection, most proposals use a simple acoustic event detector
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followed by a classification stage (gunshot vs other sounds) us-
ing pattern recognition techniques such as Gaussian Mixture
Models (GMM) or Support Vector Machines (SVM) [10]–[12]
in conjunction with classic acoustic analysis features. The stan-
dard approach to obtain spatial information relies on array pro-
cessing [13]. However, in the context of a WASN, precise node
localization and inter-node synchronization are basic require-
ments (for array processing) that are not easily met, and they
still are under active research [14], [15].

The biggest problem in this field is the strong dependence
on the shooter’s location and orientation shown by the recorded
waveforms, mostly because the acoustic disturbance created
by firearms is highly directional [16] and its short time dura-
tion makes it behave like an impulse. This way, the perceived
sounds are heavily influenced by the environment so that two
recordings of the same gunshot taken at two distant locations
can be completely dissimilar. On the other hand, one of the main
contributions of WASN is the increase on spatial diversity pro-
vided by the large area that can be covered by the sensors [17].
From a classification standpoint, an acoustic signal recorded at
a certain distance from the source is going to be convoluted and
mixed with unwanted noise, affecting the accuracy of the clas-
sification system. Nonetheless, WASNs can provide multiple
observations of an acoustic event, making it possible to obtain
a more robust classification by fusing the available data [18].
Multi-observation classification has similarities with Bootstrap
Aggregation (bagging) [19]. Classic bagged classification tech-
niques such as AdaBoost or Random Forests take advantage
of an ensemble of “weak” classifiers in order to “boost” the
classification using decision fusion. In our case, since we have
multiple observations of a single acoustic event, we can fuse the
decision taken by an ensemble of nodes to achieve higher accu-
racy than that of the best node [20] in the same way as bagged
classification. Multi-channel acoustic event detection and clas-
sification is rapidly gaining attention. Some recent examples on
the literature (all of them using decision fusion) include [21],
[22] and [23].

We propose a multi-channel weapon classification system
that makes use of spatial information for a novel Maximum
Likelihood-based decision fusion rule that accounts the relative
location of nodes as a weight for their decisions. The system is
intended for opportunistic WASNs, where each node has access
to one microphone and computing capabilities, but cannot be
seen as a wireless microphone array due to hardware limita-
tions. Take as an example a dynamic wireless network formed
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Fig. 1. Differences in blast wave radiation from an ellipsoid volume at two
points.

by smartphones in which the lack of internode synchronization
or the poor knowledge about the location of the nodes preclude
the use of classic array processing. In this work, we are not con-
sidering the non-idealities of real wireless networks, however it
is important to highlight that there are some problems regard-
ing the transmission of node decisions, such as the presence of
fading channels [24], faulty sensors [25] or transmission errors
[26]. The proposed weighting method has some similarities with
[27], where node weights are based on sensor-source distance.

Our local classification approach was first proposed on [28],
it is based on a Divide and Conquer (D&C) strategy [29], the
objective of which is to overcome the uncertainty produced by
the lack of spatial references by taking advantage of simple
problems to segment the space into a series of regions that
are tackled independently. This spatial segmentation is later
employed for the decision fusion scheme.

The paper is structured as follows: Section II briefly describes
the acoustic model of gunshots; Section III presents the local
classifier used by the nodes; on Section IV our decision fusion
proposal is presented; finally, on Sections V and VI we describe
the experiments, the obtained results and we extract some con-
clusions about the presented work.

II. GUNSHOT ACOUSTIC MODEL

Explosive propelled weapons produce their characteristic
sound as a result of the rapid expansion of gases at the end
of their barrel, formally known as muzzle blast. Weber’s spec-
trum is a model used to estimate the Fourier spectrum of blast
waves on free air as a function of the radius of the expanding
gas sphere [30], that is included in ISO norm 17201-2 [31].
According to this model, the energy of the explosion, thus, the
radius of the gas sphere (Weber radius), is directly related to the
wavelength of the blast. On firearms, the constraining effect of
the barrel during the expansion affects the shape of the expelled
gases making muzzle blasts highly directional. Directivity can
then be explained as a relation between the listener location and
the perceived Weber radius (Rw ) [32]. Fig. 1 shows the differ-
ences in amplitude and time duration of the blast waves created
by an ellipsoid volume at two points.

The second component is the shock wave created by super-
sonic projectiles. For a projectile with a speed V > c, defining
Mach number as Ma = V/c, where c is the speed of sound,

Fig. 2. Geometric model of shock wave propagation.

Fig. 3. Recorded waveforms of a .45 caliber handgun at two distant locations.

the generated shock wave propagates in conic shape forming an
angle θM a = arcsin(1/Ma) with the bullet trajectory as shown
in Fig. 2. It is commonly called N-wave due to its characteristic
geometry and, unlike the muzzle blast, it has a local influence
(its energy is much lower) since it only appears at distances
close enough to the trajectory of the bullet.

On a real scenario the recorded waveform may be very dif-
ferent from that described by the ideal model. In close range
recordings, ground reflections from both muzzle blasts and
shock waves, along with the sound produced by the firing mech-
anism of the weapon, are most likely overlapped with the direct
signal. While, in long range recordings, the influence of the
propagation path has a great impact on the received sound, due
to its impulse-like components.

Additionally, non-idealities on the recording equipment can
also produce some artifacts, the most relevant being signal sat-
uration either at the microphone or at the analog front-end.
Saturation is very likely to occur given the high sound pressure
levels created by muzzle blasts that can exceed 140 dB.

Fig. 3 illustrates various of these effects with two recordings
of a .45 caliber handgun. It is worth mentioning that the di-
rectivity of the muzzle blast combined with undesired acoustic
phenomena, commonly makes the differences between record-
ings of the same weapon at distant locations greater than those
of different weapons recorded at the same location.
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Fig. 4. Energy moving average of a gunshot recorded at two locations. Se-
lected signal segment represented by a light gray area.

III. ACOUSTIC WEAPON CLASSIFICATION

This section describes the classification system used locally
by the nodes. We are working with three broad categories: rifles,
handguns and shotguns.

A. Feature Set

The proposed feature set is composed of 29 features: 22 stan-
dard features and 7 model-based features. It is computed using
a signal segment s of length 10.7 ms (1024 samples at 96 kHz)
that contains the Muzzle blast. This segment is selected from the
starting point of the Muzzle blast which is detected using a mov-
ing average of the squared input signal with a rectangular win-
dow (length 0.67 ms) as shown in Fig. 4. The standard features
are composed of two temporal features extracted from s and
a series of spectral descriptors extracted from its Fast Fourier
Transform (FFT) z. From s we compute its energy level in deci-
bels (as 20 log10(

∑
sn

2)) and its zero-crossing rate. From z we
extract 4 spectral descriptors, namely: centroid, kurtosis, slope
and roll-off [33]. z is also used to compute 16 Mel-frequency
Cepstral Coefficients (MFCCs) [34].

Model based features are used to collect some temporal infor-
mation that is not clearly reflected by standard features. Since
the muzzle blast is always appearing (perfect detection is as-
sumed) and it is the main source of energy, a secondary energy
source preceding it with a lower energy level and shorter time
duration must be an N-wave. (see Fig. 4 for a visualization of
this statement). N-waves only appear with supersonic ammu-
nition, and even then, the microphone has to be close enough
to the trajectory of the projectile to capture it. From here, two
conclusions can be made: weapons firing subsonic ammunition
(such as shotguns) do not have N-waves and neither do those
recordings taken from the back of shooter. On top of this, the
longer the distance to the shooter the larger the Time Difference
of Arrival (TDoA) between the N-wave and the muzzle blast.
This information is obtained using the TDoA between energy
clusters as a feature (see Fig. 4). In case only one cluster appears,
it is set to a default value (zero).

The remaining model-based features are focused on the
Muzzle blast waveform. They have more to do with the spatial
aspect of the problem since the shape of the muzzle blast is a

Fig. 5. Original signal, TVD processed signal and reference points for model-
based feature extraction.

good range indicator (overlapping reflections at close range and
convolution at long range). We propose to extract some shape de-
scriptors using an algorithm that scans s in order to find its more
prominent tipping points p (peaks and valleys). Fig. 5 illustrates
this and the following concepts with an example taken from our
database. The signal is first processed using Total Variation De-
noising (TVD) [35]. TVD gets rid of the small variations in the
signal but unlike low-pass filtering it preserves sharp edges. The
positive and negative sections of the TVD processed signal are
scanned independently using Matlab’s findpeaks function (the
negative section is first inverted). Local peaks are avoided by
setting conditions to the peak finding algorithm (based on heuris-
tics), specifically, minimum peak height and minimum distance
between peaks. Once the tipping points have been found, tak-
ing the index value of the first two elements of p we use their
Time Difference (TD) as a representative value of the duration
of the first cycle and their amplitude ratio (A1/A2) as a sym-
metry measurement. We also find the zero-crossing points of
the the first cycle and use them to compute its half cycle ratio
(TS1/TS2) and its energy (20 log10(

∑t2
n=t1

sn
2)). Lastly, we

include the number of tipping points and their maximum time
difference as features, seeing that they are a good indicator of
the presence of ground reflections.

A modified version of this feature set was first proposed in
[28]. In that work the focus of the specialized features was set
on the N-wave. We have since realized that muzzle blasts are a
more reliable information source and have changed the approach
accordingly, achieving a small decrease of the classification
error rate.

B. Single-Channel Gunshot Spatial Information Extraction

In order to take advantage of spatial information without re-
sorting to classic localization algorithms, we have reformulated
some of the problems of the field, turning them into simpler
problems that do not require the use of multiple information
sources to be solved.

Using a single microphone, it is no longer possible to trian-
gulate the shooter’s location. However, some information can
be obtained by making a rough estimation of his/her proximity
to the node. In the current implementation, we are discerning
between close range (d < 20m) and medium range (d > 20m)
discharges, nevertheless, the proposed methodology is valid for
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Fig. 6. Schematic representation of the spatial segmentation provided by the
first classification stage (range/aligment).

Fig. 7. Simplified diagram of the LS-LDA Classifier tree.

further subdivisions. Trajectory estimation also suffers from the
lack of spatial references. It has been replaced by a rough esti-
mate of the proximity of the sensor to the trajectory of the bullet
into two broad alignment categories: on-axis and off-axis. On-
axis implies that N-waves might appear at a given microphone
location, while off-axis represents any other location.

This way each node has a certain degree of knowledge about
its location in relation to the gunshot that can be exploited using
a D&C strategy. This is performed by employing the outcomes
of the range and alignment estimators to segment the space into
four regions, according to Fig. 6.

C. LS-LDA Classification Tree

Since spatial influence on the signals is the main problem for
classification, in [28] we first proposed to analyze different spa-
tial regions independently. This is achieved with a classification
tree that uses the outcome of two spatial estimators to segment
the space by selecting between a set of localized weapon clas-
sifiers. The localized classifiers are designed using a specific
subset of events, so that, they do not contemplate the existence
of the other regions. In more correct terms we can say that the
first stage is performing a division of the feature space (before
weapon classification) based on a priori knowledge on the ob-
servation. A simplified diagram of the classifier tree is shown
in Fig. 7. Notice that on the second stage only one localized
classifier is active at a time, based on the values of R (range
estimation) and A (alignment estimation).

We are using Least Squares Linear Discriminant Analysis
(LS-LDA) [36] for every classifier in the tree instead of more
“capable” solutions, because non-linear classifiers have shown
an overfitting tendency when dealing with the presented prob-
lems, specially with weapon classification as we will see later.
LS-LDA is a linear classification method, albeit it is possible
to approximate nonlinear boundaries with a piece-wise linear
function by assigning different classifiers to different regions of
the feature space as the tree does.

The output of a LS-LDA for a given observation, is obtained
as a linear combination of the feature vector x of length L,
according to: y = b +

∑L
n=1 wnxn , where b is a bias value

and wn is the weight applied to the n-th feature. Multi-class
LS-LDA is commonly tackled defining C binary classes and
applying one-against-all, which entails that only one class is
labeled as true for a given observation (one-hot encoding). This
way, the output is a vector y = [y1 , ..., yC ]T where each element
represents the “score” of one of the classes. The final decision
D is taken by selecting the largest element of y using:

D = arg max
c

(yc). (1)

Let us consider a training set composed of N observations,
where each element is qi = [1, xi1 , ..., xiL ]T , i = 1, ..., N . In
matrix form, we can define an input matrix Q of dimensions
(L + 1) × N and a weight matrix V of dimensions C × (L +
1), where C is the number of target classes, so that the output is
computed as Y = V · Q. If we also define a binary target matrix
T of dimensions C × N representing the desired outputs (true
class labels in one-hot encoding), the error can be expressed as
E = V · Q − T. LS-LDA feature weights are computed in a
single matrix operation with:

V = TQT (QQT )−1 . (2)

In order to obtain the weight matrices for the classifier tree,
let us begin with the first stage by defining two target vectors tA

and tB of length N that represent the true range and alignment
labels respectively. From these two vectors and input matrix Q
the weights for the first stage are computed with:

vA = tAQT (QQT )−1 , and vB = tB QT (QQT )−1 . (3)

From where the range and alignment estimations of each obser-
vation are obtained as:

Ri =

{
1 if vAqi > 0.5

0 if vAqi ≤ 0.5
, and Ai =

{
1 if vB qi > 0.5

0 if vB qi ≤ 0.5
.

(4)
Now, using the outputs of the first stage, let us make a partition of
Q into four subsets Qk , k = 1, ..., 4 containing the observations
of each of the four spatial regions and defined as:

Q1 = {qi | Ri = 0 and Ai = 0}, (5)

Q2 = {qi | Ri = 0 and Ai = 1}, (6)

Q3 = {qi | Ri = 1 and Ai = 0}, (7)

Q4 = {qi | Ri = 1 and Ai = 1}. (8)
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The reason why we are using the outputs of the first stage in-
stead of the true range and alignment labels for the division of
the training set, is to lessen the restrictions on the segmenta-
tion by letting the classifiers select which observations belong
where. This method of performing the segmentation is the only
difference between the current implementation of the LS-LDA
tree and the one introduced in [28].

Since each of the observations belongs to one of the 4 subsets
and has a true weapon label associated, we can define matrix Tk

as the target matrix of those observations within Qk , so that the
weight matrices of the localized weapon classifiers are obtained
with:

Vk = TkQk
T (QkQk

T )−1 , k = 1, ..., 4. (9)

IV. CLASSIFICATION IN WASN

From a data-fusion point of view, The spatial diversity pro-
vided by a WASN can be exploited either fusing the signals in
the time domain with beamforming [37]; fusing them in the fea-
ture domain [38]; or fusing the individual decisions taken by the
nodes. Our framework does not contemplate the use of WASN
as a wireless microphone array due to hardware limitations, and
so, beamforming is not feasible. In non-uniform ad-hoc WASNs
with different devices from different manufacturers, or without
a good communication layer management, synchronization of
the sampling rates may be hard (or even impossible), and the
resulting signal drift must then be taken into account by the
signal processing algorithms [17]. Given that we are working
on a distributed scenario, decision fusion is preferred since it
minimizes data transmissions and has great scalability capa-
bilities. Regardless of the number of nodes in the network the
main processing remains the same; each node tries to classify
the acoustic event and shares the results with the network. The
only aspect notably affected by an ensemble size increase is the
decision fusion operation, which usually is a less demanding
computation than those carried out locally by the nodes.

A. Decision Fusion

As we have previously mentioned, on a spatially diverse sce-
nario, the signal received at different locations is subjected to
variations that cannot be predicted during the training stage,
which entails a performance decrease. However, since there are
multiple available observations of a single acoustic event, we
can fuse the decisions taken by the nodes to increase accuracy.
Fig. 8 shows a schematic representation of a hypothetical sce-
nario with a gun being fired and the locations of some nodes
forming a WASN.

Let us have an ensemble of M nodes (classifiers) provid-
ing an output Y = [y1 , ...,yM ] with yl = G(xl), l = 1, ...,M,
where G is a function shared by every node in the ensem-
ble and xl is a local observation of x. The final decision is:
D = F (y1 , ...,yM ), where F is the fusion method. Previous
research has shown that the major factor for a better accu-
racy is the diversity in the classification and so, the fusion
method is of secondary interest [39]. However, choosing an

Fig. 8. Schematic representation of a gun being fired inside a WASN (nodes
indicated by numbers).

appropriate fusion method can further improve the performance
of the ensemble.

Two of the most common fusion rules are average fusion and
majority vote [40], although it goes without saying that there
are more alternatives [41]. Average fusion is self explanatory;
the outputs of the ensemble are averaged and treated as that
of a single classifier. Majority vote works with local decisions,
selecting the class label most represented among the M clas-
sifiers. These fusion rules are equivalent when the output of
the classifier ensemble is already a local decision vector (there
is no access to probabilistic outputs). If we were to perform
one-against-all multi-class classification using average fusion,
where the output of each classifier in the ensemble is a vec-
tor ym = [ym1 , ..., ymC]T , with C being the total number of
classes, the final decision D would be obtained with the follow-
ing expression:

D = arg max
c

(
1
M

M∑

m=1

ymc

)

. (10)

Since it is very likely for some of the nodes to perform better
than others [42], it is only logical to assume that we should
assess the contribution of each classifier to the ensemble ac-
cording to some performance metric by adding a weight vec-
tor w = [w1 , ..., wM ]. Doing this, the final decision becomes:
D = F(w1y1 , ..., wM yM ). There are many valid methodolo-
gies to computew, ranging from statistical analysis to heuristics.
One common solution is to use the accuracy of each classifier
to weight its contribution using:

D = arg max
c

(
M∑

m=1

wm ymc

)

,

with: wm = 0.5 log((1 − em )/em , (11)

where em is the error rate of the m-th node.
In this work we propose a custom decision fusion weight-

ing method based on Maximum Likelihood estimation that is
explained below.

B. Maximum Likelihood Decision Fusion

Let us consider that a set of estimations of the likelihood of
a given event belonging to each class is available, where the
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estimation of each node has an associated error that depends on
its relative location to the source, which classifier was used and
the true class of the event. The objective is to obtain the best
possible estimation of the true class of the event by fusing the
available information. Let us also consider that the outputs of the
m-th node ym = [ym1 , ..., ymC] follow a gaussian distribution
so that its Probability Density Function (PDF) is given by:

f(ym ; t,Cm ) =
1

√
(2π)C |Cm |e

(− 1
2 (ym −t)T C−1

m (ym −t)),

(12)
where t is the true class or target vector and Cm is the covariance
matrix of the PDF. In this general case we consider different
covariance matrices for different estimations.

At this point, it is possible to obtain the most likely decision
using a Maximum Likelihood estimator of the true class of an
event (t) given a set of samples ym . Thus, the log-likelihood
LL of a given estimation set is obtained with:

LL =
M∑

m=1

log(f(ym ; t,Cm )). (13)

Replacing equation (12) in (13) and simplifying, the following
expression is obtained:

LL =
1
2

M∑

m=1

(− log((2π)C |Cm |)−(ym − t)T C−1
m (ym − t)

)
.

(14)
In order to maximize each component of the log-likelihood
function, expression (14) has to be differentiated with respect
to t and equaled to zero, leading to the following system of
equations:

M∑

m=1

C−1
m t =

M∑

m=1

C−1
m ym (15)

Now, t can be cleared from (15), arriving to :

t̂ =
M∑

m=1

(
M∑

m=1

C−1
m

)−1

C−1
m ym , (16)

where the final decision is:

D = arg max
c

(t̂c), (17)

Notice that the hat indicates that t̂ is an estimate. This is an
implication of the assumptions taken to arrive at this conclusion
that are not necessarily strictly true.

Finally, we can extrapolate this conclusion to define a fusion
rule for our classifier ensemble. Node weights are obtained with:

Wm =

(
M∑

m=1

C−1
m

)−1

C−1
m , (18)

where Wm is a C × C matrix and the weights for each node
and class are found using all the covariance matrices of the
ensemble. Defining an auxiliary vector zm = Wmym , the final

decision is:

D = arg max
c

(
M∑

m=1

zmc

)

. (19)

In the case of a multi-observation classification ensemble,
where all the observations are evaluated with a single classifier
and the influence of node locations has not been characterized,
we have Cm = C, thus, the presented fusion method becomes
equivalent to average fusion. Defining I as the identy matrix and
B = C−1 , we know that B−1B = I and (αB)−1B = (1/α)I,
making wm = 1/M . This result does not hold true when there
is some degree of known error diversity and Cm takes different
values.

C. Proposed Location-Driven Decision Fusion

In order to take advantage of the ML decision fusion, we first
need to characterize the covariance matrix of each node on the
network. Let us assume a hypothetical scenario where both the
location of the nodes and the sources is fixed. It would then be
possible for each node to use its own classifier trained for that
particular scenario, from where Cm could be found. On a real
scenario however, the relative position of the sources and the
nodes is prone to change affecting the classification accuracy.
Albeit, if we were able to characterize the relation between the
classifier output and the relative location of the node we could
still estimate Cm as a function of the location, even when using
a single classifier for the whole ensemble similarly to [27]. For
the time being, we are performing a discrete spatial division as
described in Section III-B where the spatial relation is estimated
by each node between 4 possibilities. For each region, the LS-
LDA tree has an associated covariance matrix Ck , k = 1, .., 4.
This entails that, for every new gunshot, each node assigns Cm

to one of the possible Ck based on this selection. Notice that
this solution is scalable, the more spatial information available
about the source, the greater the spatial segmentation can be.

In order to compute Ck for the present system, lets consider
an output matrix Y = [y1 , ...,yM ] and a target matrix T =
[t1 , ..., tM ] so that the estimation error is E = Y − T. The
sample covariance of the estimation is then:

C =
1
N

(Y − T)(Y − T)T =
1
N

EET , (20)

replacing in this expression with the variables from III-C we
can estimate the covariance matrix of the specialized classifiers
as Ck = 1

N EkEk
T , where Ek = VkQk − Tk .

Since training the classifier using a mean-square-error crite-
rion gives outputs that approximate posterior class probabilities
[43] it is good practice to saturate the outputs using the target
interval as limits (probability 0 to 1) before computing the error.

We have found that for those scenarios where computational
complexity is an issue, it is possible to discard the values of Ck

that are not part of the main diagonal which is equivalent to as-
suming uncorrelated classes. While this method yields slightly
worse results, it has the benefit of turning matrix operations
into element wise operations, since by doing this, matrix Wm

becomes vector wm . This is specially relevant for the inversion
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of the sum. Given that the values of Ck are fixed during train-
ing, they can be stored as Bk = C−1

k , making the inversion of
the sum the only matrix inversion computed during run time.
Expanding further into computational complexity, it is possible
to completely avoid matrix inversions by storing all the possi-
ble values of (

∑M
m=1 C−1

m )−1 on a lookup table. In a system
with M maximum nodes and K possible covariance matrices,
adding a zero matrix C0 as an additional covariance matrix, the
table length can be found as the number of combinations with
repetition using:

(
(K + 1) + M − 1

M

)

− 1 =
(K + M)!

M !K!
− 1, (21)

where (a
b ) represents the combinatorial number. The table is

valid for any WASN with a number of nodes less or equal to
M , since C0 is added in order to consider null contributions
to the sum. This solution is a clear tradeoff between memory
and computing power, so whether or not it is advisable to use
a lookup table will depend on the target platform. With M = 8
and K = 4 there are 494 possible combinations. If C = 3 and
considering single-precision (32-bit) floating-point representa-
tion, the table would require 17.37 kilobytes of memory.

V. EXPERIMENTS AND RESULTS

After introducing the specifics of the presented classification
system, in this section we will describe the experimental setup
and the obtained results.

A. Database Description

The sounds that make up the database are commercially avail-
able as part of a sound library offered by the company BOOM
Library under the name “GUNS - Construction Kit” [44]. All
the signals are recorded at 96000 Hz using various high-quality
microphones and recording equipment. Not every sound avail-
able on the library was included on the database, some sounds
were discarded due to inconsistency issues and for the sake of
obtaining a balanced database. While the sound library descrip-
tion provides some valuable information about the microphone
locations it is not detailed enough to tackle array processing, on
top of this, various microphone types were used in the record-
ings having differences between them in terms of frequency
response and directivity. While having different microphones
can be beneficial towards diversity, it is far from ideal for array
processing, where the common approach is to assume identical
microphones.

The database contains recordings of 14 weapons: 5 handguns,
5 rifles and 4 shotguns. There are 6 recordings (shot repetitions)
of every weapon at 10 different locations (6 observations per
weapon-location combination), adding up to a total of 840 gun-
shots. Of the 10 unique locations, 4 are labeled as short-range
and 6 as medium range, whereas 6 are labeled as on-axis and
4 as off-axis. N-waves only appear in 22.1% of the recordings,
not appearing at all for 6 of the weapons (2 handguns and every
shotgun) since they use subsonic ammunition.

Fig. 9. Representation of the r-th division of the database with n = 3. Light
gray: Train set, dark gray: Test set.

B. Experiment Description

Our objective is to test the system in as close to real con-
ditions as possible. This implies that, for any given gunshot,
both the shooter’s location and the fired weapon are going to
be new to the system. Since our database is not large enough
for the complexity of the problem, a simple division of the data
into a train set and test set is not efficient. In order to obtain
the presented results we used a hybrid cross validation method
that mixes Leave-One-Out Cross-Validation (LOOCV) [45] and
Repeated random sub-sampling validation. In LOOCV a single
observation is used as the test set and the remaining observations
(N − 1) as the training set. The process is repeated N times,
until every observation has been tested, and then, the results
are averaged to obtain the final performance metrics. Repeated
random sub-sampling validation involves r random divisions of
the data set into two equally sized and disjoint train and test sets
with the consequent result averaging. We are also using random
replacement to keep the train set balanced. Every iteration, b
random sounds of the train set that belong to the tested class are
duplicated, b being the number of observations in the test set.

In every iteration the database is randomly divided into a train
set and a test set equally sized in terms of included positions (5
positions per set). Weapons are tested using LOOCV so that the
test set is formed by the sounds of one gun at 5 positions while
the training set contains the sounds of the remaining weapons
at the remaining positions (13 guns × 5 positions). This is done
in order to maximize the information available to the classi-
fier about weapon classes while testing it with a previously
“unheard” gun recorded at unknown locations. For each of the
guns, r random location-wise database divisions are tested. It
is important to remark that since there are only 5 microphone
locations per division we have decided to count the 6 observa-
tions available per gun-location (og ,l) as additional microphone
locations. Treating repetitions as different locations is justified
by assuming they are recordings of the same gunshot taken at
6 locations very close to each other. In total we consider 30
possible locations (5 locations × 6 repetitions).

The final step involves the generation of p random permu-
tations of the test set without repetition, that is, sorting the
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TABLE I
CLASSIFICATION ERROR FOR DIFFERENT ENSEMBLES OF M CLASSIFIERS USING AVERAGE FUSION RULE

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

LS-LDA tree 30.2% 22.3% 16.9% 13.9% 11.7% 10.2% 8.9% 7.9%
LS-LDA 35.8% 26.9% 22.1% 19.3% 17.2% 15.7% 14.3% 13.5%
MLP 32.9% 23.6% 19.8% 16.8% 14.9% 13.3% 12.2% 11.3%
SVM lin 31.4% 23.7% 19.2% 16.9% 14.8% 13.3% 11.9% 10.9%
SVM RBF 29.4% 21.5% 16.2% 13.9% 12.0% 10.5% 9.5% 8.6%
Random Forest 31.1% 21.2% 16.4% 13.8% 12.1% 10.9% 10.2% 9.6%
K-NN 36.8% 29.6% 24.1% 21% 19.1% 17.3% 14.9% 13.8%

observations included of the test set randomly. For each permu-
tation we obtain the m-th ensemble error rate by fusing the de-
cisions obtained for the first m = 1, ...,M observations. The
final results are computed averaging the errors obtained in the
whole 14 × r × p experiments for each ensemble size. The pre-
sented data uses r = 32 and p = 8 adding up to a total of 3584
iterations.

Fig. 9 shows the r-th division for the third gun (n = 3), the
sounds highlighted in light gray are used to train the classifiers
while the sounds highlighted in dark gray are arranged in p
random permutations in order to test the system. Each cell in
the table contains the six observations available per gun-location
combination. Notice that on each iteration half of the sounds
remain unused.

The covariance matrices of the LS-LDA tree were obtained
from the train set using LOOCV with weapon-location combi-
nations (13 guns × 5 positions repetitions), leaving out all the
available sounds of a gun at a single position and training with
the rest. We opted to compute the train error using cross valida-
tion since the results are less prone to overfitting and so, it yields
a closer estimation to the covariance values found when testing
the system with new observations. As we have previously men-
tioned, the test set was never used in the design phase, including
the estimation of the covariance matrices.

The features are normalized (between 0 and 1 according to the
training set) prior to the training. For the experiments, first we
compared the performance of the LS-LDA tree and some well
established classifiers using the average fusion rule under equal
conditions. Later, we compared the results obtained by the LS-
LDA tree using different fusion rules. During the experiments,
the exact same data set divisions were used for every classifier
and fusion rule tested.

C. Discussion of the Results

Table I shows the results obtained for various classifiers using
the average fusion rule. The classifiers are:

1) LS-LDA tree: The classifier described in Section III-C.
2) LS-LDA: single stage LS-LDA. Trained using Matlab’s

fitcdiscr function.
3) MLP: Multi-Layer Perceptron with 2 hidden layers (12

and 6 neurons) and 3 output neurons. Trained using Mat-
lab’s patternnet function.

4) SVM lin: SVM with a linear kernel. Trained in Matlab
using libSVM [46] in ν-SVC mode with probability es-
timates enabled. Optimal value of hyperparameter ν is

Fig. 10. Error rate (single channel) against number of operations (evaluation)
for different classifiers.

found using cross-validation in the same way as the LS-
LDA tree covariance matrices.

5) SVM RBF: Same as above but using a Radial Basis Func-
tion (RBF) kernel. In addittion to ν, the optimal value of
hyperparameter γ is also found using cross-validation.

6) Random Forest: A classifier ensembe formed by 128 de-
cision trees. Trained using Matlab’s TreeBagger function.

7) K-NN: K-nearest neighbors using L1 norm and the 5 clos-
est neighbors. Trained with Matlab’s fitcknn function.

We are using probabilistic outputs with every classifier and
unless otherwise stated, the employed functions and libraries
are set to their default configuration.

The results show a similar error decrease for every classi-
fier when more nodes are added to the ensemble. This clearly
points at spatial diversity as a major factor for achieving good
accuracies, more relevant than the classifier itself. Neverthe-
less, among the tested classifiers, the LS-LDA tree obtained the
best results for large ensembles while having a lower compu-
tational complexity than some of the other tested methods. In
order to compare the computational cost of the tested classi-
fiers we have calculated a naive approximation to the number
of operations required to evaluate one observation with each
classifier. We assume that memory operations are costless, that
is, data is immediately accesible. In addition to this, we are giv-
ing the same cost to every operator: simple arithmetic operators
(e.g. addition), relational operators (e.g. greater than), complex
functions (e.g. exponentiation, square root, ...) and multiply-
accumulate (MAC); they all take one operation. This is an over-
simplification, although, it can be seen as an approximate to
an implementation using speed optimizations, such as tabulated
functions; and specialized hardware, such as a MAC unit. Fig. 10
shows the classification error (single node) plotted against the
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TABLE II
CLASSIFICATION ERROR FOR THE LS-LDA TREE USING DIFFERENT FUSION RULES. STANDARD DEVIATION IN PARENTHESES

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

Maximum Likelihood 30.2% (4.0%) 20.6% (3.3%) 15.0% (2.8%) 11.6% (2.5%) 9.5% (2.5%) 8.1% (2.3%) 7.0% (2.2%) 5.9% (2.2%)
Average 30.2% (4.0%) 22.3% (3.4%) 16.9% (2.8%) 13.9% (2.7%) 11.7% (2.7%) 10.2% (2.6%) 8.9% (2.6%) 7.9% (2.5%)
Weighted Average 30.2% (4.0%) 22.7% (3.6%) 17.5% (3.2%) 14.5% (3.1%) 12.4% (3.2%) 11.0% (3.0%) 9.7% (2.9%) 8.7% (2.9%)
Majority Vote 30.2% (4.0%) 22.4% (3.1%) 17.2% (2.4%) 14.6% (2.8%) 12.8% (2.1%) 11.6% (2.7%) 10.6% (2.5%) 9.8% (2.5%)
Maximum Vote 30.2% (4.0%) 24.8% (4.2%) 19.8% (3.3%) 17.4% (3.7%) 14.5% (3.2%) 13.1% (3.4%) 11.7% (3.1%) 10.6% (3.1%)
Supervised Average 31.3% (3.3%) 22.0% (2.7%) 16.1% (2.4%) 13.2% (2.4%) 10.8% (2.4%) 9.5% (2.3%) 8.2% (2.3%) 7.2% (2.4%)

number of operations required for different classifiers (logarith-
mic scale).

Table II shows the results obtained using the LS-LDA tree
when different decision fusion rules are applied:

1) Maximum Likelihood: fusion rule proposed in (19).
2) Average: Average fusion described in (10).
3) Weighted Average: weighted variation described in (11),

with em computed from the train set using LOOCV in the
same way as Ck .

4) Majority Vote: D is assigned to the class label selected
by the most nodes. Ties resolved by absolute maximum
output.

5) Maximum Vote: hybrid between average and major-
ity vote. Nodes vote for the winning class using their
probabilistic output and assign a zero to the other
classes.

6) Supervised Average: the weights for each zone and class
are obtained using LS-LDA during training. In this con-
figuration wk is a 3 element vector out of 4 possible ones.
The weight vector of each zone is computed with M = 8,
for every training iteration the outputs of the nodes that
have selected one particular zone are averaged, in case
none of the M nodes did, the observation is withdrawn
from the training set.

Of all the tested methods, only the supervised average and the
proposed rule were able to improve upon average fusion. The
proposed Maximum Likelihood fusion rule yields the best re-
sults, obtaining a similar error rate when 6 nodes are used to that
of average fusion with 8 nodes. It is important to highlight that
naive weighted fusion can be counterproductive, as shown in the
table for one common weighted solution. Communication cost is
fairly low regardless of the fusion method employed. Assuming
a network where the outputs are transmitted in single-precision
(32-bit) floating-point format, the total amount of data required
to transmit the outputs of 8 nodes is just 768 bits per evalua-
tion (without considering protocol overhead). With a weighted
scheme, since every node has to have every weight stored, the
only transmission needed is an index (per node) to represent
the selected weight. Encoding said index as a single byte, the
total transmission would increase by 64 bits. Since the system
works with framed audio, the required bit rate with the present
configuration is 78000 bps, although there is no need to take
a decision every frame. In terms of computational complexity,
the proposed fusion rule is by far the most demanding, with a
number of operations proportional to M 2 while for every other
method it is proportional to M . However Maximum Likelihood

fusion can also be made proportional to M by using a tabulated
implementation as suggested in Section IV-C.

The error rates obtained with the LS-LDA tree for range and
alignment estimations are 3.5% and 5.8% respectively, which is
in clear contrast with those obtained for weapon classification
and it is thanks to this degree of accuracy that the spatial division
is able to boost the system.

The obtained results show a strong relationship between the
spatial resolution of the classifiers and the obtained error. From
them, it is clear that the addition of spatial diversity to the
system is of the utmost importance. With the LS-LDA tree, just
by adding a second node in conjunction with the proposed fusion
method, the classification error falls by almost 10% getting as
low as 5.9% when 8 nodes are used. Keep in mind that the
classifiers were trained without using any observations of the
tested guns neither the tested locations, so it is safe to say that
we are working in the most restrictive conditions that the current
database allows.

In order to study the statistical significance level of the results,
a paired-sample t-test has been carried out comparing the error
probabilities obtained for the LS-LDA tree using the proposed
Maximum Likelihood fusion rule with those obtained using the
average fusion rule. Differences are statistically significative
(p < 0.001) for all ensemble configurations with more than one
node, that is, in all the cases in which decision fusion techniques
are applied.

VI. CONCLUSION

In this work we have proposed a novel method for taking
advantage of spatial information to aid multi-channel acoustic
classification of weapons. The obtained results highlight the
relevance of spatial diversity in an application where spatial
dependence on the signals is the biggest problem. They show
how classifier fusion can be an efficient strategy for audio event
classification in WASN even when array processing is not fea-
sible due to technical limitations. Furthermore the presented
Maximum Likelihood fusion rule improves the performance of
classic methodologies. However, in order to take advantage
of this fusion rule, the classifier ensemble needs some degree
of diversity, since it becomes equivalent to the average fusion
rule when a single covariance matrix is considered throughout
the ensemble. On top of this, covariance matrix estimations can
pose a problem in scenarios where the available data is scarce
thus, it needs to be approached with care. We have also shown
that spatial information retrieval from single channel gunshot
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recordings using pattern recognition techniques is a feasible op-
tion, specially when using an adequate feature set tailored to the
particularities of the scenario, and how D&C strategies can be
applied to simplify the complexity of the problem. Our LS-LDA
tree yields better results than some renowned and widely used
classifiers while having a lower computational complexity. The
proposed methodology can be exploited with a larger number
of weapon classes. For as long as a given weapon class encom-
passes weapons with similar and characteristic features, such as
barrel length, caliber, propeller load, projectile velocity, etc, it
would be possible to differentiate those weapons as belonging
to a particular group.

REFERENCES

[1] P. G. Weissler and M. T. Kobal, “Noise of police firearms,” J. Acoust. Soc.
Amer., vol. 56, no. 5, pp. 1515–1522, 1974.

[2] K. S. Fansler, W. P. Thompson, J. S. Carnahan, and B. J. Patton, “A para-
metric investigation of muzzle blast,” DTIC Document, Defense Techni-
cal Information Center, Fort Belvoir, VA, USA, Tech. Rep. ARL-TR-227,
1993.

[3] R. C. Maher, “Acoustical characterization of gunshots,” in Proc. IEEE
Sig. Process. Appl. Public Security Forensics., Apr. 2007, pp. 109–
113.
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