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A Noniterative Method for Reconstruction of Phase
From STFT Magnitude

Zdeněk Průša, Peter Balazs, Senior Member, IEEE, and Peter Lempel Søndergaard

Abstract—A noniterative method for the reconstruction of the
short-time fourier transform (STFT) phase from the magnitude
is presented. The method is based on the direct relationship
between the partial derivatives of the phase and the logarithm of
the magnitude of the un-sampled STFT with respect to the Gaus-
sian window. Although the theory holds in the continuous setting
only, the experiments show that the algorithm performs well even in
the discretized setting (discrete Gabor transform) with low redun-
dancy using the sampled Gaussian window, the truncated Gaussian
window and even other compactly supported windows such as the
Hann window. Due to the noniterative nature, the algorithm is very
fast and it is suitable for long audio signals. Moreover, solutions of
iterative phase reconstruction algorithms can be improved consid-
erably by initializing them with the phase estimate provided by the
present algorithm. We present an extensive comparison with the
state-of-the-art algorithms in a reproducible manner.

Index Terms—STFT, Gabor transform, phase reconstruction,
gradient theorem, numerical integration.

I. INTRODUCTION

THE phase retrieval problem has been actively investigated
for decades. It was first formulated for the Fourier trans-

form [1] and later for generic linear systems [2]. In this paper,
we consider a particular case of the phase retrieval problem;
the reconstruction from the magnitude of the Gabor transform
coefficients obtained by sampling the STFT magnitude at dis-
crete time and frequency points [3]. The need for an effective
way to reconstruct the phase arises in audio processing appli-
cations such as source separation and denoising [4], [5], time-
stretching/pitch shifting [6], channel mixing [7], and missing
data imputation [8].

The problem has already been addressed by many authors.
Among the iterative algorithms, the most widespread and influ-
ential is the algorithm introduced by Griffin and Lim [9] (GLA)
which inspired several extensions [10], [11] (FleGLA) and
[12], [13] (TF-RTISI-LA). For a detailed overview of the al-
gorithms based on GLA we refer the reader to the work by
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Sturmel and Daudet [14]. A different approach was taken by
Decorsiere et al. [15] (lBFGS). They expressed the problem
as an unconstrained optimization problem and solve it using
the limited memory Broyden-Flatcher-Goldfarb-Shanno algo-
rithm. It is again an iterative algorithm and the computational
cost of a single iteration is comparable to that of GLA. Other
approaches are based on reformulating the task as a convex op-
timization problem [16]–[19]. The dimension of the problem
however squares, which makes it unsuitable for long audio sig-
nals which typically consist of tens of thousands of samples
per second. Eldar et al. [20] assume the signal to be sparse in
the original domain, which is not realistic in the context of the
audio processing applications mentioned above. An approach
presented by Bouvrie and Ezzat [21] is based on solving a non-
linear system of equations for each time frame. The authors
proposed to use an iterative solver and initialize it with samples
obtained from previous frames. The algorithm is, however, de-
signed to work exclusively with a rectangular window, which is
known to have bad frequency selectivity.

The common problem of the iterative state-of-the-art algo-
rithms is that they require many relatively expensive iterations
in order to produce acceptable results. A non-iterative algorithm
proposed by Beauregard et al. [22] (SPSI) is based on the notion
of phase consistency used in the phase vocoder [6]. Although
the algorithm is simple, fast and it is directly suitable for the
real-time setting, it relies on the fact that the signal consists of
slowly varying sinusoidal components and fails for transients
and broadband components in general. Magron et al. [23] intro-
duced a similar algorithm based on phase unwrapping (PU). It
follows the same idea as SPSI for harmonic components but it
tries to treat the impulse-like components separately.

In this paper, we propose a non-iterative algorithm called
Phase Gradient Heap Integration (PGHI). The theory behind
PGHI has been known at least since 1979 when Portnoff [24]
presented a simple relationship between the partial derivatives of
the phase and the log of the magnitude of a STFT computed us-
ing a Gaussian window. Given the phase gradient expressed us-
ing the magnitude gradient and given the phase at one point, one
can invoke the gradient theorem to integrate and obtain the phase
elsewhere. To our knowledge, no such algorithm has been pub-
lished yet. In our previous work [25], we have presented a special
case of PGHI adapted to the real-time setting. The present paper
focuses on providing a complete mathematical treatment and
on a thorough comparison with other algorithms in the offline
setting. The aforementioned algorithms SPSI and PU are in fact
close to the PGHI algorithm since they both basically perform
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a simple integration of the estimate of instantaneous frequency
and in case of PU also of the local group delay, which are com-
ponents of the STFT phase gradient. Their approach however
cannot estimate the gradient at every time-frequency position
and the estimation requires analysing the spectrogram content.

In the spirit of reproducible research, the implementation of
the algorithms, audio examples, color version of the figures as
well as scripts reproducing experiments from this manuscript
are freely available at http://ltfat.github.io/notes/040. The code
depends on our Matlab/GNU Octave [26] packages LTFAT
[27], [28] and PHASERET available at http://ltfat.github.io and
http://ltfat.github.io/phaseret , respectively.

The paper is organized as follows. Section II summarizes
the necessary theory of the STFT and the Gabor analysis,
Section III presents the theory behind the proposed algorithm,
Section IV contains a detailed description of the numerical algo-
rithm. Finally, in Section V we present an extensive evaluation
of the proposed algorithm and comparison with the iterative
and non-iterative state-of-the-art algorithms using the Gaussian
window, the truncated Gaussian window, the Hann and the Ham-
ming windows.

II. GABOR ANALYSIS

The STFT and its sampled version, the Gabor transform,
are ubiquitous tools for audio analysis and processing. In this
section, we define essential formulas for the analysis and the
synthesis with respect to a generic window. We will further focus
on the properties of the Gaussian window, which is essential for
deriving the fundamental equations the PGHI algorithm is based
on.

A. STFT

The short-time Fourier transform of a function f ∈ L2(R)
with respect to a window g ∈ L2(R) can be defined as1

(Vg f)(ω, t) =
∫

R
f(τ + t)g(τ)e−i2πωτ dτ, ω, t ∈ R, (1)

assuming both f, g are real valued. The magnitude and phase
components can be separated by

Mf
g = |Vg f | and Φf

g = arg (Vg f) , (2)

assuming arg(·) returns the principal value of the angle.
Using the modulation (Eω f) (τ) = ei2πωτ · f(τ) and transla-
tion (Ttf) (τ) = f(τ − t) we get the alternative representation
(Vg f) (ω, t) = 〈f, TtEω g〉.

The Gaussian function is a particularly suitable window func-
tion as it possesses optimal time-frequency properties (achieves
minimum time-frequency spread [3]) and it allows an algebraic
treatment of the equations. It is defined by the following formula

ϕ
λ
(t) = e−π

t 2
λ =

(
D√λϕ1

)
(t), (3)

where λ ∈ R+ denotes the “width” or the time-frequency ratio
of the Gaussian window and Dα is a dilation operator such that

1In the literature, two other STFT phase conventions can be found. The
present one is the most common in the engineering community.

(Dαf)(t) = f(t/α),α �= 0. The Gaussian is invariant under the
Fourier transform (up to normalization) for λ = 1 and we will
use the shortened notation ϕ = ϕ1 in the following text.

B. Discrete Gabor Transform–DGT

The discrete Gabor transform coefficients c ∈ CM×N of a
signal f ∈ RL with respect to a window g ∈ RL can be obtained
as [29]

c(m,n) =
L−1∑
l=0

f(l + na)g(l)e−i2πml/M (4)

for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1, M = L/b is the
number of frequency channels,N = L/a number of time shifts,
a is the length of the time shift or a hop size in samples in the
time direction and b is a hop size in samples in the frequency
direction and (l + na) is assumed to be evaluated modulo L.
Separating amplitude and phase also in the discrete case we get

c(m,n) = s(m,n) · eiφ(m,n) , (5)

s denoting magnitude of the coefficients and φ denoting
their phase. In the matrix notation, we can write cvec = F∗gf ,
where cvec ∈ CMN denotes the vectorized c such that cvec(m+
nM) = c(m,n) and F∗g is a conjugate transpose of L×MN
matrix Fg (note that this matrix has a very particular block-
structure [30]). The DGT can be seen as sampling of the STFT
(both of the arguments ω and t and the involved functions f and
g themselves) of one period of L-periodic continuous signal f
such that

c(m,n) = (Vg f) (bm, an) +A(m,n), (6)

for m = 0, . . . ,M − 1, n = 0, . . . , N − 1 where A(m,n)
models both the aliasing and numerical errors introduced by
the sampling. The range of m can be shrunken to the first
�M/2	+ 1 values as the remaining coefficients are only dif-
ferent by complex conjugation. Moreover, the zero-frequency
coefficients (m = 0) are always real and so are the Nyquist-
frequency coefficients (m = M/2) if M is even.

Signal f can be recovered (up to a numerical precision error)
using the following formula

f(l) =
N−1∑
n=0

M−1∑
m=0

c(m,n)g̃(l − na)ei2πm (l−na)/M (7)

for l = 0, . . . , L− 1. In the matrix notation, we can write f =
Fg̃cvec. Here g̃ is the canonical dual window, defined by

g̃ =
(
FgF∗g

)−1
g. (8)

See e.g. [31] for conditions under which the product FgF∗g
is (easily) invertible and [32], [33] for efficient algorithms for
computing (4), (7) and (8). In particular the block structure can
be used for a pre-conditioning approach [30].

One period of the discretized and periodized Gaussian win-
dow with the peak at l = 0 is given by

ϕ
λ
(l) =

∑
k∈Z

e−π
( l+ k L ) 2

λL , l = 0, . . . , L− 1. (9)
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We assume that L and λ are chosen such that the overlap of
the window “tails” after periodization is numerically negligible
and therefore it is sufficient to sum over k ∈ {−1, 0} in practice
since for k = 0 we obtain the right tail and for k = −1 we
obtain the left tail (periodically wrapped). The width of the
Gaussian window at its relative height h ∈ [0, 1] can be written
as (expressed from (9) using just k = 0)

wh =

√
−4 log(h)

π
λL. (10)

The width is given in samples and it can be a non-integer
number. This equation becomes relevant when working with
truncated Gaussian window and when determining λ for non-
Gaussian windows. For other window type used, we took λ of the
closest Gaussian window in the least mean square error sense.
The window was obtained via a simple heuristic search. Note
that all windows used in this manuscript are odd symmetric,
such that they have a unique center sample, and they are non-
causal such that they introduce no delay. Finally, the discrete
Fourier transform of such windows is real.

III. STFT PHASE RECONSTRUCTION

The algorithm is based on the direct relationship between the
partial derivatives of the phase and the log-magnitude of the
STFT with respect to the Gaussian window. More precisely,
the time derivative of the log-magnitude defines the frequency
derivative of the phase and, vice versa, the frequency derivative
of the log-magnitude defines the time derivative of the phase. In
this section, we derive such relations and show that, in theory,
it is possible to reconstruct the phase from its gradient up to a
constant global phase shift. We include a complete derivation
since the relations for the STFT as defined in (1) have not
appeared in the literature, as far as we know. Our approach
is based on the properties of the Bargmann transform [3], [34]
which is closely related to the STFT with respect to the Gaussian
window with λ = 1.

A. Phase-Magnitude Relationship

It is known that the Bargmann transform of f ∈ L2(R)

(Bf) (z) =
∫

R
f(τ)e2πτ z−πτ 2− π

2 z
2
dτ, z ∈ C (11)

is an entire function [35] and that it relates to the STFT defined
in (1) such that

(Bf)(z) = eπ itω+π |z |
2

2 (Vϕf)(−ω, t), (12)

assuming f is real valued and z = t+ iω. Furthermore, the
logarithm of the Bargmann transform is an entire function (apart
from zeros) and the real and imaginary parts of log(Bf)(z) can
be written as

log(Bf)(t+ iω) = u(ω, t) + iv(ω, t) (13)

u(ω, t) = π(t2 + ω2)/2 + logMf
ϕ (−ω, t) (14)

v(ω, t) = πtω + Φf
ϕ (−ω, t) (15)

and using the Cauchy-Riemann equations

∂u

∂t
(ω, t) =

∂v

∂ω
(ω, t),

∂u

∂ω
(ω, t) = −∂v

∂t
(ω, t) (16)

we can write (substituting ω′ = −ω) that

∂

∂ω′
Φf
ϕ (ω′, t) = − ∂

∂t
logMf

ϕ (ω′, t) (17)

∂

∂t
Φf
ϕ (ω′, t) =

∂

∂ω′
logMf

ϕ (ω′, t) + 2πω′. (18)

A little more general relationships can be obtained for win-
dows defined as g = Oϕ1 (O being a fixed bounded operator)
and Proposition 1.

Proposition 1: Let O,P be bounded operators such that for
all (ω, t) there exist differentiable, strictly monotonic functions
η(t) and ξ(ω), such thatTtEωO = PTη (t)Eξ(ω ) and let g = Oϕ1 .
Then

∂

∂ω
Φf
g (ω, t) = − ∂

∂t
logMf

g (ω, t) · ξ
′(ω)
η′(t)

(19)

∂

∂t
Φf
g (ω, t) =

∂

∂ω
logMf

g (ω, t) · η
′(t)

ξ′(ω)
+ 2πξ(ω)η′(t).

(20)

Proof: Consider

(Vg f) (ω, t) = 〈f, TtEω g〉 = 〈f, TtEωOϕ1 〉

=
〈
P∗f, Tη (t)Eξ(ω )ϕ1

〉
=

(
Vϕ1

(P∗f)
)
(ξ(ω), η(t))

and therefore

∂

∂t
Φf
g (ω, t) =

∂

∂t

[
ΦP

∗f
ϕ1

(ξ(ω), η(t))
]

=
[
∂

∂η
ΦP

∗f
ϕ1

(ξ(ω), η(t))
]
· η′(t).

Furthermore

∂

∂ω
logMf

g (ω, t) =
[
∂

∂ξ
logMP∗f

ϕ1
(ξ(ω), η(t))

]
· ξ′(ω).

Combining this with (18) we obtain (20)

∂

∂t
Φf
g (ω, t) =

[
∂

∂η
ΦP

∗f
ϕ1

(ξ(ω), η(t))
]
· η′(t)

=
[
∂

∂ξ
logMP∗f

ϕ1
(ξ(ω), η(t)) + 2πξ(ω)

]
· η′(t)

=
∂

∂ω
logMf

g (ω, t) · η
′(t)

ξ′(ω)
+ 2πξ(ω)η′(t).

The other equality can be shown using the same arguments
and (17). �

ChoosingO = D√λ, ξ(ω) =
√

λω and η(t) = t/
√

λ leads to
equations for dilated Gaussian window ϕ

λ

∂

∂ω
Φf
ϕ

λ
(ω, t) = −λ

∂

∂t
logMf

ϕ
λ
(ω, t) (21)

∂

∂t
Φf
ϕ

λ
(ω, t) =

1
λ

∂

∂ω
logMf

ϕ
λ
(ω, t) + 2πω. (22)
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The relations were already published in [24], [36]–[38] in
slightly different forms obtained using different techniques than
we use here. The equations differ because the authors of the
above mentioned papers use different STFT phase conventions.
Chassande-Mottin et al. [36] showed that similar equations exist
even for general windows. They however involve additional
non-analytic terms and thus it seems they cannot be exploited
directly. Moreover, the experiments presented in Section V show
that the performance degradation is not too significant when
using windows resembling the Gaussian window like the Hann,
the Hamming or the Blackman window.

The STFT phase gradient of a signal f with respect to dilated
Gaussian ϕ

λ
will be further denoted as

∇Φf
ϕ

λ
(ω, t) =

[
∂

∂ω
Φf
ϕ

λ
(ω, t),

∂

∂t
Φf
ϕ

λ
(ω, t)

]
. (23)

Note that the derivative of the phase has a peculiar pole pattern
around zeros [39].

B. Gradient Integration and the Phase Shift Phenomenon

Knowing the phase gradient, one can exploit the gradient
theorem (see e.g. [40]) to reconstruct the original (unwrapped)
phase Φf

ϕ
λ
(ω, t) such that

Φf
ϕ

λ
(ω, t)− Φf

ϕ
λ
(ω0 , t0) =

∫ 1

0
∇Φf

ϕ
λ
(r (τ)) · dr

dτ
(τ) dτ,

(24)
where r(τ) = [rω (τ), rt(τ)] is any curve starting at (ω0 , t0) and
ending at (ω, t) provided the phase at the initial point (ω0 , t0)
is known. When the phase is unknown completely, we con-
sider Φf

ϕ
λ
(ω0 , t0) = 0 which causes a global phase shift. The

phase shift of the STFT carries over to the global phase shift
of the reconstructed signal through the linearity of the recon-
struction. One must, however, treat real input signals with care
as the phase shift breaks the complex conjugate relation of the
positive and negative frequency coefficients. This relationship
has to be either recovered or enforced because if one simply
takes only the real part of the reconstructed signal the phase
shift can cause amplitude attenuation or even causes the sig-
nal to vanish in extreme cases. To explain this phenomenon,
consider the following example where we compare the effect
of the phase shift on analytic and on real signals. We denote
the constant phase shift as ψ0 and define an analytic signal as
xan(t) = A(t)eiψ (t) . The real part including the global phase
shift (eiψ0 ) is given as R(xan(t)eiψ0 ) = A(t) cos(ψ(t) + ψ0)
which is what one would expect. Similarly, we define a real sig-
nal as x(t) = A(t)

2

(
eiψ (t) + e−iψ (t)

)
and the real part of such

signal with the global phase shift ψ0 amounts toR(x(t)eiψ0 ) =
A(t) cos(ψ0) cos(ψ(t)) which causes the signal to vanish when
ψ0 = π/2 + kπ, k ∈ Z.

In theory, the global phase shift of the STFT of a real signal
can be compensated for, leaving only a global signal sign am-
biguity. For real signals, it is clear that the following holds for
ω �= 0

Φ̃f
ϕ

λ
(ω, t) + Φ̃f

ϕ
λ
(−ω, t) = 2ψ0 . (25)

After the compensation, due to the phase wrapping, the phase
shift is still ambiguous up to an integer multiple of π, which
causes the aforementioned signal sign ambiguity.

IV. THE ALGORITHM

In the discrete time setting (recall Section II-B; in par-
ticular (4) and (5)) the STFT phase gradient approximation
̂∇Φϕ

λ
(bm, an) = ∇φ(m,n) is obtained by numerical differ-

entiation of slog (m,n) = log (s(m,n)) as

∇φ(m,n) = [φω (m,n),φt(m,n)] (26)

=
[
−λ

a
(slogDt)(m,n),

1
λb

(Dωslog)(m,n)+2πm/M
]

(27)

where Dt ,Dω denote matrices performing the numerical differ-
entiation of slog along rows (in time) and columns (in frequency)
respectively. The matrices are assumed to be scaled such that
the sampling step of the differentiation scheme they represent
is equal to 1. The central (mid-point) finite difference scheme
(see e.g. [41]) is the most suitable because it ensures the gra-
dient components to be sampled at the same grid. The steps of
the numerical integration will be done in either horizontal or
vertical directions such that exclusively one of the components
in dr

dτ from (24) is zero. Due to this property, the gradient can
be pre-scaled using hop sizes a and b such that

∇φSC(m,n) = [bφω (m,n), aφt(m,n)] (28)

=
[
− λL

aM
(slogDt)(m,n),

aM

λL
(Dωslog )(m,n)

+ 2πam/M
]
. (29)

Note that the dependency on L can be avoided when (10) is
used to express λL. This is useful e.g. when the signal length is
not known in advance.

The numerical integration of the phase gradient is performed
over the prominent contours of the spectrogram first in order to
reduce accumulation of the error. The magnitude of the coeffi-
cients is used as a guide such that integration paths are chosen
adaptively following the spectrogram ridges first. Such behav-
ior is achieved by employing a heap data structure (from the
heapsort algorithm [42]), which it is used for holding pairs
(m,n) and it has the property of having (m,n) of the maximum
|c(m,n)| always at the top. It is further equipped with efficient
operations for insertion and deletion. Even after employing the
heap, nothing stops the integration paths to go trough areas with
coefficients small in magnitude where the phase gradient es-
timate is unreliable [39]. Therefore, in order to avoid further
accumulation of the error, we introduce the relative magnitude
tolerance tol. It causes the algorithm to perform the integration
only locally on “islands” of coefficients above tol with the max
coefficient within the island serving as the zero phase refer-
ence. The coefficients below tol are assigned a random phase
(uniformly distributed random values from the range [0, 2π]).
The randomization of the phase of the coefficients below the
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tolerance is chosen over the zero phase because in practice it
helps to avoid the impulsive disturbances introduced by the
small phase-aligned coefficients. The algorithm is summarized
in Algorithm 1 and a graphical step-by-step example can be
found at the accompanying webpage.

After φ̂(m,n) has been estimated by Algorithm 1, it is com-
bined with the target magnitude of the coefficients such that

ĉ(m,n) = s(m,n)eiφ̂(m,n) (30)

and the signal f̂ is recovered by simply plugging these coeffi-
cients into (7).

A. Practical Considerations

In this section, we analyze the effect of the discretization
on the performance of the algorithm. The obvious sources of
error are the numerical differentiation and integration schemes.
However, the aliasing introduced by subsampling in time and
frequency domains is more serious. In the discrete time setting,
since the signal is considered to be band-limited and periodic, the
truly aliasing-free case occurs whena = 1, b = 1 (M = L,N =
L) regardless of the time or the frequency effective supports of
the window. DGT with such setting is however highly redundant
and only signals up to several thousands samples in length can
be handled effectively.

In the subsampled case, the amount of aliasing and there-
fore the performance of the algorithm depends on the effective
support of the window. Increasing a introduces aliasing in fre-
quency and increasing b introduces aliasing in time. The effect
of the length of the time hop size a on the performance of
the algorithm is illustrated by the phase error plots depicted in
Fig. 1. In the aliasing free case [Fig. 1(b)], the algorithm even
achieves a constant phase shift for all coefficients with rela-
tive magnitude above −60 dB (cf. phase shift phenomenon in
Section III-B). This behavior however quickly deteriorates when
longer hop size is introduced [Fig. 1(c) and (d)]. The length of
the signal is 5888 samples and the time-frequency ratio of the
Gaussian window is λ = 1. The hop size in frequency is b = 1
(i.e. M = 5888).

Even though the Gaussian window is, in theory, infinitely
supported in both time and frequency, it decays exponentially
and therefore aliasing might not significantly degrade the per-
formance of the algorithm when choosing the hop sizes and the
effective support carefully. Obviously the finer the hop sizes
the higher the computational cost. The authors recommend to
use redundancyM/a = 8 and λ = aM/L or simply 87.5% win-
dow overlap with compactly supported windows. Such setting
is also used in Section V. An interesed reader can find a demo
script comparing several window overlaps at the accompanying
web page.

Since it is clear that the phase shift achieved by the algorithm
is not constant, the conjugate symmetry of the DGT of real
signals cannot be easily recovered. Therefore, we reconstruct the
phase only for the positive frequency coefficients and enforce
the conjugate symmetry to the negative frequency coefficients.

Algorithm 1: Phase Gradient Heap Integration–PGHI.
Input: DGT phase gradient

∇φSC(m,n) =
(
φSC
ω (m,n),φSC

t (m,n)
)

obtained from (29), magnitude of DGT coefficients
|c(m,n)|, relative tolerance tol.

Output: Estimate of the DGT phase φ̂(m,n).
1 Set I = {(m,n) : |c(m,n)| > tol ·max (|c(m,n)|)};
2 Assign random values to φ̂(m,n) where (m,n) /∈ I;
3 Construct a self-sorting heap for (m,n) pairs;
4 while I is not ∅ do
5 if heap is empty then
6 Insert (m,n)max = arg max(m,n)∈I (|c(m,n)|)

into the heap;
7 φ̂(m,n)max ← 0;
8 Remove (m,n)max from I;
9 end

10 while heap is not empty do
11 (m,n)← remove the top of the heap;
12 if (m+ 1, n) ∈ I then
13 φ̂(m+ 1, n)←

φ̂(m,n) + 1
2

(
φSC
ω (m,n) + φSC

ω (m+ 1, n)
)
;

14 Insert (m+ 1, n) into the heap;
15 Remove (m+ 1, n) from I;
16 end
17 if (m− 1, n) ∈ I then
18 φ̂(m− 1, n)←

φ̂(m,n)− 1
2

(
φSC
ω (m,n) + φSC

ω (m− 1, n)
)
;

19 Insert (m− 1, n) into the heap;
20 Remove (m− 1, n) from I;
21 end
22 if (m,n+ 1) ∈ I then
23 φ̂(m,n+ 1)←

φ̂(m,n) + 1
2

(
φSC
t (m,n) + φSC

t (m,n+ 1)
)
;

24 Insert (m,n+ 1) into the heap;
25 Remove (m,n+ 1) from I;
26 end
27 if (m,n− 1) ∈ I then
28 φ̂(m,n− 1)←

φ̂(m,n)− 1
2

(
φSC
t (m,n) + φSC

t (m,n− 1)
)
;

29 Insert (m,n− 1) into the heap;
30 Remove (m,n− 1) from I;
31 end
32 end
33 end

B. Exploiting Partially Known Phase

In some scenarios, the true phase of some of the coefficients
is available. In order to exploit such information, the proposed
algorithm has to be adjusted slightly. First, we introduce a mask
to select the reliable coefficients and second, we select the bor-
der coefficients i.e. coefficients with at least one neighbor in
the time-frequency plane with unknown phase. Then we sim-
ply initialize the algorithm with the border coefficients stored
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Fig. 1. Spectrogram of a spoken word greasy (a). The absolute phase differ-
ences of the STFT of the original and reconstructed signal in the range [0, π]
for varying time hop size a (b) (c) (d). The errors CdB and RdB are introduced
in Section V. The phase difference was set to zero (white color) for coefficients
with the relative magnitude below −60 dB. (a) Spectrogram, a = 1 (b) a = 1,
CdB = −57.02,RdB = −22.93 (c) a = 16, CdB = −28.17,RdB = −2.18 (d)
a = 32, CdB = −24.06,RdB = −1.21.

Algorithm 2: Initialization for Partially Known Phase.
Input: Set of indices of coefficientsM with known phase

φ(m,n).
1 φ̂(m,n)← φ(m,n) for (m,n) ∈M;
2 for (m,n) ∈M∩ I do
3 if (m+ 1, n) /∈M or (m− 1, n) /∈M or

(m,n+ 1) /∈M or (m,n− 1) /∈M then
4 Add (m,n) to the heap;
5 end
6 end

in the heap. Formally, Algorithm 1 will be changed such that
steps summarized in Algorithm 2 are inserted after line 1. Note
that the phase of the border coefficients can be used directly
(i.e. no unwrapping is necessary). Depending on the situation,
the phase might be propagated from more than one border co-
efficient, however the phases coming from distinct sources are
never combined.

C. Connections to Phase Vocoder

In this section we discuss some connections between the pro-
posed algorithm and the phase vocoder [6] and consequently
with algorithms SPSI [22] and PU [23]. The phase vocoder al-
lows the signal duration to be changed by employing non-equal

analysis and synthesis time hop sizes. A pitch change can be
achieved by playing the signal at a sampling rate adjusted by
the ratio of the analysis and synthesis hop sizes. In the synthe-
sis, the phase must be kept consistent in order not to introduce
artifacts. In the phase reconstruction task, the original phase is
not available, but the basic phase behavior can be yet exploited.
For example, it is known that for a sinusoidal component with a
constant frequency the phase grows linearly in time for all fre-
quency channels the component influences in the spectrogram.
For these coefficients, the instantaneous frequency (STFT phase
derivative with respect to time (22)) is constant and the local
group delay (STFT phase derivative with respect to frequency
(21)) is zero.

Algorithms SPSI and PU estimate the instantaneous fre-
quency in each spectrogram column (time frame) from the mag-
nitude by peak picking and interpolation. The instantaneous fre-
quency determines phase increments for each frequency channel
m such that

φ(m,n) = φ(m,n− 1) + 2πam0/M, (31)

where m0 is the estimated, possibly non-integer instantaneous
frequency belonging to the interval [0, �M/2	]. This is exactly
what the proposed algorithm does in case of constant sinusoidal
components, except the instantaneous frequency is determined
from the DGT log-magnitude. Integration in Algorithm 1 per-
forms nothing else than a cumulative sum of the instantaneous
frequency in the time direction.

The algorithm PU goes further and also employs an impulse
model. The situation is reciprocal to sinusoidal components such
that the phase changes linearly in frequency for all coefficients
belonging to an impulse component but the rate is only constant
for fixed n and it is inversely proportional to the local group
delay n0 − n such as

φ(m,n) = φ(m− 1, n) + 2πa(n− n0)/M, (32)

where an0 is the time index of the impulse occurrence. Again,
this is what the proposed algorithm does for coefficients corre-
sponding to impulses.

The advantage of the proposed algorithm over the other two
is that the phase gradient is computed from the DGT log-
magnitude such that it is available at every time-frequency po-
sition without even analysing the spectrogram content. This
allows an arbitrary integration path which combines both the
instantaneous frequency and the local group delay according
to the magnitude ridge orientation. In the other approaches, the
phase time derivative can be only estimated in a vicinity of sinu-
soidal components and, vice versa, the frequency derivative only
in a vicinity of impulse-like events. Obviously, such approaches
will not cope well with deviations from the model assumptions
although careful implementation can handle multiple sinusoidal
components with slowly varying instantaneous frequencies and
impulses with frequency-varying onsets. The difficulty of the
PU algorithm lies in detecting the onsets in the spectrogram and
separating the coefficients belonging to the impulse-like compo-
nent from the coefficients belonging to sinusoidal components.

Fig. 2 shows phase deviations achieved by algorithms SPSI
and PU and by the proposed algorithm PGHI. The phase



1160 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 5, MAY 2017

Fig. 2. Spectrogram of an excerpt form the glockenspiel signal (a) and the
absolute phase differences in the range [0, π] for three different algorithms
(b)(c)(d). The phase difference was set to zero (white color) for coefficients
with the relative magnitude below −50 dB. (a) Spectrogram (b) Beauregard
et al. [22] (SPSI) (c) Magron et al. [23] (PU) (d) Proposed (PGHI).

difference at the transient coefficients is somewhat smoother
for PU when compared to SPSI because of the involved im-
pulse model. PGHI produces almost constant phase difference
due to the adaptive integration direction. The setup used in the
example is the following: the length of the signal is L = 8192
samples, time hop size a = 16, number of channelsM = 2048,
time-frequency ratio of the Gaussian window is λ = aM/L.

V. EXPERIMENTS

In the experiments, we use the normalized mean-squared error
to measure the performance

E(x,y) =
‖x− y‖2

‖x‖2
, EdB(x,y) = 20 log10 E(x,y), (33)

where ‖.‖2 denotes the standard energy norm. The spectral
convergence [14] is defined as

C = E (svec, |Pĉvec|) , CdB = 20 log10 C, (34)

where P = F∗gFg̃ i.e. synthesis followed by analysis. Other
authors proposed a slightly different measure E(ĉvec,Pĉvec)2 ,
termed normalised inconsistency measure [10], which rep-
resents the normalised energy lost by the reconstruc-
tion/projection. Such measures clearly do not accurately reflect
the actual signal reconstruction error R = E(f , f̂), but they
are independent of the phase shift. Some other authors evaluate
the algorithms using the signal to noise ratio, which they define
asSNR(x,y) = 1/E(x,y) andSNRdB(x,y) = −EdB(x,y)

Fig. 3. Box plot of C in dB for the MOCHA-TIMIT database. The whiskers
denote the minimum and maximum.

Fig. 4. Box plot of C in dB for the EBU SQAM database. The whiskers denote
the minimum and maximum.

respectively. Unfortunately, as Figs. 1 and 2 show, the phase dif-
ference is usually far from being constant when subsampling is
involved (this holds for any algorithm, even the iterative ones).
Therefore, the time-frames (i.e. individual short-time spectra)
and even each frequency bin within the frame might have a
different phase shift, causing the error R to be very high, even
when the other error measures are low and the actual perceived
quality is good. An interested reader can find sound examples
demonstrating this phenomenon at the accompanying webpage.

The testing was performed on the speech corpus database
MOCHA-TIMIT [43] consisting of recordings of 1 male and 1
female speakers (460 recordings for each, 61 minutes in total).
The sampling rate of all recordings is 16 kHz. The Gabor system
parameters used with this database (Figs. 3 and 5) were: num-
ber of channels M = 1024, hop size a = 128, time-frequency
ratio of the Gaussian window λ = aM/L, time support of the
truncated Gaussian window and the other compactly supported
windows was M samples.

Next, we used the EBU SQAM database of 70 test sound
samples [44] recorded at 44.1 kHz. Only the first 10 seconds
of the first channel was used from the stereophonic recordings
to reduce the execution time to a reasonable value. The Gabor
system parameters used with this database (Figs. 4 and 6) were
the following: number of channels M = 2048, hop size a =
256, time-frequency ratio of the Gaussian window λ = aM/L,
time support of the truncated Gaussian window and of the other
compactly supported windows was M samples.

In the following Section V-A, we evaluate the performance
of the PGHI algorithm alone. Later in Section V-B, we eval-
uate the performance of several iterative algorithms initial-
ized by the outcome of PGHI. In both cases, we will com-
pare the results with the SPSI [22] algorithm. Unfortunately,
we were not able to get good results with the PU [23]
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Fig. 5. Comparison with the iterative algorithms, MOCHA-TIMIT database.
(a) Gaussian window (b) Hann window (c) Hamming window.

algorithm consistently due to the imperfect onset detection and
due to the limitation of the impulse model and so did not
include it here. The implementation of SPSI has been taken
from http://anclab.org/software/phaserecon/ and it was modi-
fied to fit our framework. The most prominent change has been
the removal of the alternating π and 0 phase modulation in
the frequency direction which is not present when computing
the transform according to (4).

The results for the PGHI algorithm were computed via a two
step procedure. In the first step Algorithm 1 with tol = 10−1 was
used, and in the second step, the algorithm was run again with
tol = 10−10 including steps from Algorithm 2 while using the
result from the first step as known phase. This approach avoids
error spreading during the numerical integration and improves
the result considerably when compared to a single run with
either of the thresholds.

A. Comparison With Noniterative Method

Figs. 3 and 4 show box plots of CdB over entire databases
for the SPSI and the proposed algorithm PGHI. The proposed
algorithm very clearly outperforms the SPSI algorithm by a
large margin. The performance of the proposed algorithm further

Fig. 6. Comparison with the iterative algorithms, EBU SQAM database. (a)
Gaussian window (b) Hann window (c) Hamming window.

depends on the choice of the window. While the Gaussian win-
dow truncation introduces only a negligible performance degra-
dation, the choice of Hann or Hamming windows increase the
error by about 2 dB. For a detailed comparison, please find the
scores and sound examples for the individual files from the EBU
SQAM database using the Gaussian window at the accompany-
ing web page.

We can only provide a rough timing for the algorithms as
the actual execution time is highly signal dependent and our
implementations might be suboptimal. On a standard PC, the
execution time of PGHI was generally less than 1 second for the
10 second excerpts from the SQAM database. The SPSI algo-
rithm was roughly 6–8 times faster. Our current implementation
of PGHI is however very slow for noise signals.

B. Comparison With Iterative Methods

It is known that the iterative phase reconstruction algorithms
optimize a non-convex objective function and, therefore, the
result depends strongly on the initial phase estimate. In this
section, we compare the effect of PGHI and SPSI initializations
on the performance of the following iterative algorithms:

1) The Griffin-Lim algorithm [9] (GLA).
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2) A combination of Le Roux’s modification of GLA [10]
using the on-the-fly truncated modified update and of
the fast version of GLA [11] with constant α = 0.99
(FleGLA). The projection kernel was always truncated
to size 2M/a− 1 in both directions. This combination
outperforms both algorithms [10] and [11] when used in-
dividually.

3) The gradient descend-like algorithm by Decorsiere et al.
[15] (lBFGS). Unfortunately, the lBFGS implementation
we use (downloaded from [45]) fails in some cases.

In the comparisons, we also include the following algorithm,
which, unfortunately, does not benefit from phase initialization
as it performs its own initial phase guess from the partially
reconstructed signal:

1) Time-Frequency domain Real-Time Iterative Spectrogram
Inversion with Look-Ahead [13] (TF-RTISI-LA). The
number of the look-ahead frames was always M/a− 1
and an asymmetric analysis window was used for the lat-
est look-ahead frame.

Figs. 5 and 6 show average C in dB over the MOCHA-
TIMIT and EBU SQAM databases respectively depending on
the number of iterations with SPSI initialization (solid lines)
and with PGHI initialization (dashed lines). In addition, the
scores and sound examples for individual files from the EBU
SQAM database using the Gaussian window can be found at
the accompanying web page. Graphs for the truncated Gaussian
window are not shown as they exhibit no visual difference from
the graphs for the full-length Gaussian window. Further, the
lBFGS algorithm has been excluded from the comparison using
the EBU-SQAM database (Fig. 6); it failed to finish for a con-
siderable number of the excerpts. The graphs show that PGHI
provides a better initial phase estimate than SPSI for all algo-
rithms considered and the best overall results are obtained when
PGHI is combined with the FleGLA and lBFGS algorithms. The
performance gap is however less prominent for non-Gaussian
windows. That is to be expected as the PGHI algorithm performs
suboptimally. For the non-Gaussian windows the FleGLA and
the lBFGS algorithms give almost equivalent results after 200
iteration for both types of initializations.

In the tests, the execution time of the PGHI algorithm was
comparable to the execution time of 2–4 iterations of GLA
with the Gaussian window and to the execution time of 4–10
iterations for the compactly supported windows.

C. Modified Spectrograms

The main application area of the phase reconstruction algo-
rithms is the reconstruction from modified spectrograms. The
spectrograms are modified in the complex-valued STFT domain.
This could be done by multiplication which leads to so-called
Gabor filters [46]–[48] or by moving/copying of contents. In
general, such a modified spectrogram is no longer a valid (con-
sistent [10]) spectrogram, i.e. there is no signal having such a
spectrogram. Therefore the task is to construct rather than re-
construct a suitable phase. Unfortunately, it is neither clear for
which spectrogram modifications the equations (21) and (22)
still hold nor how it does affect the performance if they do not.

Moreover, an objective comparison of the algorithms becomes
difficult as the error measures chosen above become irrelevant.

Nevertheless, in order to get the idea of the performance of
the proposed algorithm acting on modified spectrograms, we
implemented phase vocoder-like pitch shifting (up and down by
6 semitones) via changing the hop size [6], [49] using all the
algorithms to rebuild the phase. The synthesis hop size a = 256
was fixed and the analysis hop size was changed accordingly to
achieve the desired effect. Sound examples for the EBU SQAM
database along with Matlab/GNU Octave script generating them
can be found at the accompanying web page.

VI. CONCLUSION

A novel, non-iterative algorithm for the reconstruction of the
phase from the STFT magnitude has been proposed. The algo-
rithm is computationally efficient and its performance is com-
petitive with the state-of-the-art algorithms. It can also provide
a suitable initial phase for iterative algorithms.

As future work, it would be interesting to investigate whether
(simple) equations similar to (21) and (22) could be found for
non-Gaussian windows. Moreover, the effect of the aliasing
and spectrogram modifications on the phase-magnitude rela-
tionship should be systematically explored. For that we will
extend Proposition 1 to a more general setting. Ideally, we hope
that a similar result could be possible for α-modulation frames
[50], [51] and warped time-frequency frames [52], [53].

From the practical point of view, a drawback of the proposed
algorithm is the inability to run in real-time setting i.e. to process
streams of audio data in a frame by frame manner. Clearly, the
way how the phase is spread among the coefficients would have
to be adjusted. This was done in [25] where we present a version
of the algorithm introducing one or even zero frame delay.

Further, please note that equations (21) and (22) hold “in the
other direction” as well; meaning they can be used to estimate
the magnitude given the phase. This property might be useful in
many applications since the phase-aware signal processing is a
promising field of research [54], [55].
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