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Abstract—Various studies have shown that the instrumental
measures wideband PESQ and POLQA are not reliably predict-
ing speech quality for artificial speech bandwidth extension (ABE)
test conditions, as this has never been their scope. Based on data
from a coordinated subjective listening test with 12 ABE variants
developed by 6 different institutions, conducted in 4 languages,
we propose in this work a novel instrumental quality measure
that is specifically suited for narrowband-to-wideband ABE test
conditions. In particular, our contributions are fourfold: First,
we propose quality indicators particularly being able to detect
ABE-related distortions. Second, we investigate the combination
of perceptually and nonperceptually motivated distortion-related
statistics. Third, we propose a support-vector-machine-based high-
performance MOS predictor for ABE speech quality assessment,
finally, we present the training process based on the subjective
listening test data. A k-fold cross-validation test on 1) disjoint
languages, 2) disjoint speakers, and 3) disjoint ABE solutions
proves the superiority of our proposed measure in the ITU-T-
recommended categories accuracy, consistency, and linearity com-
pared to both, wideband PESQ and POLQA.

Index Terms—Artificial speech bandwidth extension, objective
speech quality assessment, perceptual model.

I. INTRODUCTION

S PEECH quality degradation in telephone calls originates
from numerous reasons. Environmental influences, such as

additive background noise or the interference of speech signals
into the transmitting path (acoustic echoes) can cause severe
degradation in terms of speech quality. Furthermore, device
characteristics of the employed handsets often result in a non-
flat frequency response of the transmission system causing ad-
ditional distortion to the received speech signal. Additionally,
coding of speech is usually performed by lossy compression
algorithms. Most speech enhancement approaches try to com-
pensate for these quality degradation factors, however, operating
at the sampling frequency determined by the transmission.
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Still most of today’s phone calls are established at a sampling
rate of 8 kHz, i.e., a theoretical acoustical bandwidth of up to
4 kHz. While syllable intelligibility in this so-called narrowband
(NB) speech is at around 90% [1], up to 98% can be reached
by an acoustical bandwidth of 7 kHz at a sampling frequency
of 16 kHz. This is referred to as wideband (WB) speech. Espe-
cially the intelligibility of fricative sounds, exhibiting most of
their energy at frequencies above 4 kHz, is increased. Further-
more, speech quality, measured on the 5-point mean opion score
(MOS) [2] scale (1: “bad”, 5: “excellent”), rises when switching
from NB to WB speech [3]. The synonym for telephony calls
based on WB-capable speech codecs is HD Voice. Successfully
establishing an HD Voice call, however, depends on a lot of fac-
tors: (1) near-end and far-end handsets need to be WB-capable,
(2) the network cell infrastructure needs to support HD Voice,
and (3) the provider’s backbone network must be capable of WB
(tandem speech coding or transcoder-free) operation through-
out the entire connection. Further requirements must be met
to establish international mobile HD Voice calls and to support
inter-operator handovers. If any of these prerequisites is not met,
the call can only be established in NB mode.

Bridging the transition from NB- to a purely WB-based
telecommunication service, artificial speech bandwidth exten-
sion (ABE) algorithms aim at restoring the missing upper band
(UB), i.e., the frequency components between 4 and 8 kHz,
which have either never been captured by the microphone or
have been omitted during NB transmission. ABE solutions are
a downlink feature, i.e., they are employed in the receiving path
of the transmission. ABE solutions often split the extension by
means of the source-filter model for speech production into two
sub-problems: calculation of an UB residual signal and an UB
spectral envelope. While estimation of the UB residual typically
utilizes simple modulation techniques of the NB residual, the
UB spectral envelope estimation might be codebook-based [4],
Gaussian mixture model-based [5], [6], hidden Markov model-
based [7]–[10], or neural network-based [11]. Direct log spectra
estimation was investigated using sum product networks, re-
stricted Boltzman machines (RBMs), conditional RBMs, (deep)
autoencoders, and sum-product networks [12], [13]. A deep neu-
ral network (DNN) is employed in [14] to directly estimate the
UB log power spectrum, while in [15], [16] a cepstral represen-
tation of the UB is estimated using a DNN.

In [17] a higher intelligibility especially for the important
/s/ sound [18] could be shown. Regarding speech quality, sev-
eral subjective listening tests [3], [11], [19]–[21] showed an
increased speech quality for at least some ABE solutions. In
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these conducted listening tests the ABE input NB signals were
all clean speech data subject to speech transcoding, and in
some cases also further preprocessing steps were taken, apply-
ing device and/or transmission characteristics to the NB speech
signal.

To evaluate subjective speech quality in general, the Inter-
national Telecommunications Union (ITU-T) defined several
test methodologies (P.800, [2]). Since subjective tests demand a
huge amount of time and financial resources, instrumental qual-
ity measures predicting an average human vote have been devel-
oped to overcome these disadvantages. Obviously, instrumental
measures aim at having only a small deviation between their es-
timated values (objective listening quality, dubbed MOSLQO )
and the ground truth subjective votes (subjective listening qual-
ity, dubbed MOSLQS ), obtained from an absolute category rat-
ing (ACR) listening test. Well-known reference-based measures
are perceptual evaluation of speech quality (PESQ, P.862) [22]
and its still heavily used WB extension WB-PESQ (P.862.2)
[23]. Amongst other improvements, the successor perceptual
objective listening quality assessment (POLQA, P.863) [24] is
also capable of processing speech signals with even higher sam-
pling frequencies. These algorithms have been proven to be
very reliable in terms of predicting accurate MOSLQO values
w.r.t. a low root mean square error (RMSE) and high correla-
tion coefficients, but they have not been developed for any use
with ABE-processed speech signals. Besides reference-based
measures, so-called non-intrusive measures exist, which do not
require a reference signal for MOSLQO estimation.

According to [23], WB-PESQ suffers from lower prediction
accuracy when the signal under test has severe bandwidth lim-
itations. POLQA, however, claims to be able to operate well
enough on bandwidth-extended1 speech signals [24]. In [20]
two ABE solutions with different parameterization were evalu-
ated in a subjective listening test and results were compared to
MOSLQO values predicted by WB-PESQ and POLQA. Pulakka
et al. found that both instrumental measures performed accept-
ably, while in their study POLQA outperformed WB-PESQ
w.r.t. the correlation coefficient. It was indicated, however, that
both instrumental measures might not accurately predict the
rank order of the ABE conditions under test. Furthermore, in
[25] five ABE solutions were evaluated in a subjective listening
test and compared to the results from WB-PESQ and POLQA.
For WB-PESQ a correlation of 0.93 and for POLQA of 0.87
was found. In the subjective listening test, a statistically signif-
icant difference between NB and the ABE solutions could not
be shown. In [19] six ABE conditions were part of a subjective
listening test. The results show a correlation to the predicted
subjective scores from WB-PESQ of 0.82 and from POLQA of
only 0.75. In a statistical analysis one of the ABE conditions un-
der test was found to be better than the underlying NB condition.
Concluding on these prior works, the capability of WB-PESQ
and POLQA to accurately predict MOSLQO values for ABE-
processed signals is questionable. In scientific publications, of-
ten spectral or cepstral distortion measures have been used [8],
[14]–[16], [26]. MOS-predicting measures, however, have the

1not: artificially bandwidth-extended

big advantage of providing ratings that can be qualitatively un-
derstood and compared by non-experts. Moreover, correlation
to subjective listening test results is typically reported for these
measures. Obviously, a robust instrumental measure for ABE
signals would be highly desirable for those being concerned
with development and evaluation of ABE algorithms.

In this work, a reference-based measure for quality as-
sessment of artificially bandwidth-extended speech signals is
presented, focusing on the upper band extension. The main
contributions are: (1) new quality indicators particularly be-
ing able to detect ABE-related distortions, (2) a combination of
perceptually and non-perceptually influenced distortion-related
statistics, (3) a high performance MOS predictor for linking the
measured distortions to an adequate speech quality score, and
(4) model parameter training based on a sophisticated subjective
listening test [3], conducted in 4 different languages including
ABE solutions from 6 different institutions and consortia, lead-
ing the field of ABE research.

The article is structured as follows: For ease of presentation,
abbreviations for some distortion-related statistics are defined
in Sec. II. The underlying listening test, serving as ground truth
for development and evaluation of the instrumental measure, is
briefly sketched in Sec. III. Afterwards, the algorithmic design
of the instrumental measure is explained in Sec. IV, including
the description of the newly developed quality indicators and
the employed MOS predictor. In Sec. V evaluation metrics and
three cross-validation experiments are outlined. The results of
the proposed instrumental measure for the three experiments
are reported and compared to the existing measures POLQA
and WB-PESQ. Finally, conclusions are drawn in Sec. VI.

II. NOTATIONS OF DISTORTION-RELATED STATISTICS

For better reading, some distortion-related statistics that are
frequently used throughout this work are abbreviated as follows.
First of all,

μ(D(z);Z) :=
1
|Z|

∑

z∈Z
D(z),

is the mean of a distortion-related entity D(z), calculated over
all frames and/or frequency bands z ∈ Z , with |Z| denoting the
cardinality of set Z . Secondly,

σ2(D(z);Z) :=
1
|Z|

∑

z∈Z

(
D(z)−μ(D(z);Z)

)2
,

denotes the variance of D(z), calculated over all z ∈ Z .
Accordingly,

σ(D(z);Z) =
√

σ2(D(z);Z)

abbreviates the standard deviation of D(z), calculated over all
z ∈ Z . Here D(z) is only dependent on z and the statistics is
computed over set Z . If the entity D depends on two variables
(D(y, z)), the statistics could be calculated over set Y , set Z , or
over both sets {Y,Z}. This means that

μ(D(y, z);Z)



386 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 2, FEBRUARY 2017

TABLE I
OVERVIEW OF CONDITIONS IN THE SUBJECTIVE LISTENING TEST

c Conditions

1−6 NB-MNRU: 6, 12, 18, 24, 30, ∞ dB
7−12 WB-MNRU: 5, 15, 25, 35, 45, ∞ dB
13 AMR-NB @ 12.2 kbps
14−25 ABE0 1 , ..., ABE1 2

26−28 AMR-WB @ 8.85, 23.05, 23.85 kbps

provides a mean value for each y ∈ Y , while

μ(D(y, z);Y,Z) := μ(μ(D(y, z);Y);Z)

results in a single mean value. The same holds for calculation
of variance and standard deviation.

Finally, Pearson’s correlation coefficient [22] ρ for D(z) and
D̂(z), calculated over all z ∈ Z , is given as

ρ(D(z), D̂(z);Z) :=
∑

z∈Z(D(z)−μ(D(z);Z))·
(
D̂(z)−μ(D̂(z);Z)

)
√∑

z∈Z(D(z)−μ(D(z);Z))2·
√∑

z∈Z
(
D(z)−μ(D̂(z);Z)

)2 .

III. UNDERLYING SUBJECTIVE LISTENING TEST

In order to develop an instrumental measure for artificially
bandwidth-extended speech signals, a subjective listening test
is needed to deliver ground truth MOSLQS values. Such a test
is supposed to reflect some variety of ABE solutions to model
the link between ABE-processed speech signals and subjective
votes. In order to achieve this variety, Technische Universität
Braunschweig and NXP Software cooperated with six different
institutions or consortia that processed speech data using their
ABE solutions [5], [7], [10], [11], [26], [27]. Some of them pro-
vided more than one solution or more than one parameterization
of their solution, leading to a total of 12 different ABE variants
ABE01 , ..., ABE12 . Please note that only ABE solutions with a
maximum algorithmic latency of 30 ms were considered. In the
final ACR test setup, presented in Table I, the ABE conditions
are accompanied by so-called anchor conditions, namely NB-
and WB-modulated noise reference units (MNRUs) at differ-
ent speech-to-modulated noise power ratios as well as adaptive
multirate NB (AMR-NB)- and AMR-WB-coded speech at dif-
ferent AMR bit rates. AMR-NB-coded speech served as input
to all 12 ABE variants. In addition, language dependency of
the perceived subjective quality shall be considered, thus condi-
tions were tested in English, Chinese (Mandarin), German and
Korean. A speech corpus, providing high-quality speech data
for all languages under test was acquired from SpeechOcean
[28], providing an identical recording environment thus ensur-
ing comparability throughout the languages.

In each language, two female (F1, F2) and two male (M1,
M2) speakers provided the sentences under test. Even though
these speakers differ across languages, for ease of presentation,
we will not use different notations of speakers in each language.
Each speaker in the database contributed four utterances, con-
sisting of two sentences with a short pause between them. One of
those utterances was used during the familiarization phase of the

subjective test and is therefore not considered in the remaining
part of this paper.

Due to the huge amount of conditions under test, two separate
subtests were conducted in each of the languages. Those sub-
tests contained all of the anchor conditions, but only half of the
ABE conditions. To enable a joint view onto the results, the sub-
jective scores obtained from the subtests needed to be merged.
Simply adding them would bias the statistical properties, thus a
mapping was necessary before merging them. Since the anchor
conditions are common ground of both subtests, they served as
reference point for calculating linear regression coefficients. For
each language, a global mean per anchor condition over both
subtests was calculated. Then linear regression coefficients were
found, mapping only the anchor conditions from each subtest
towards this global mean. Subsequently, the subjective votes for
all of the conditions including the ABE conditions were subject
to the respective linear regression. Finally, the mapped subjec-
tive votes from the subtests were merged for each condition.
More details of the underlying listening test are not necessary
for the subject of this work; the interested reader may consult
[3] for further details.

Each speech signal being used in the listening test was eval-
uated by more than one subject. In the context of instrumental
measures for speech quality assessment, these multiple votes per
speech signal can only be processed as one average value per
signal. Therefore, in the following, MOSLQS will refer to the
mean of individual votes given to the respective speech signal.

The speech signals presented in the listening test along with
the MOSLQS will be taken up again in Sec. V-A, where the
training of the MOS predictor is described.

IV. THE INSTRUMENTAL MEASURE FOR

BANDWIDTH-EXTENDED SPEECH SIGNALS

In this section, the proposed approach to instrumental quality
assessment of artificially bandwidth-extended speech signals is
presented (see Fig. 1).

After an initial signal preprocessing step described in
Sec. IV-A, frame-wise calculated quality indicators (QI) are
obtained which constitute a comparison of the reference to the
degraded signal particularly focusing on typical errors evoked
from ABE algorithms. QIs are calculated on time domain repre-
sentations (Sec. IV-B) or on perceptually-processed frequency
domain representations (Sec. IV-C) of the reference and de-
graded speech signal. Features are derived from the presented
QIs by calculating their mean and variance over time, however,
some QIs directly result in a single value and do not need further
time integration. Finally, the obtained features are concatenated
to feature vector x, which serves as input to the MOS predictor,
explained in Sec. IV-D.

In a preceding training phase, a parameterization of the MOS
predictor will be found, establishing a link between the observed
feature vector x and the respective MOSLQS value from the
subjective listening test. Once the parameterization is found,
the MOS predictor will compute MOSLQO values based on
feature vectors during the operative phase as shown in Fig. 1.
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Fig. 1. High-level processing overview of the proposed instrumental speech
quality measure for artificially bandwidth-extended speech signals.

A. Signal Preprocessing

The proposed instrumental quality measure inputs a quality-
degraded speech signal ˆ̄s′(n), i.e., the bandwidth-extended
speech signal, along with a respective reference speech sig-
nal s̄′(n), with n being the sample index for signals sampled
at a frequency of fs = 16 kHz. Please note that the reference
signal is uncoded and free of any distortion. Based on the input
signals, the instrumental measure outputs an MOSLQO value.

As depicted in Fig. 1, processing starts with a delay estimation
and time alignment of the input speech signals. This is done
by means of maximizing the correlation and potential removal
of initial and final samples. After this both resulting signals
s̄(n) and ˆ̄s(n) share a common length |N | with sample index
n∈N ={0, 1, . . . , |N |−1}.

The reference speech signal s̄(n) is then subject to a simple
voice activity detection (VAD), computing

VAD(t)=

⎧
⎨

⎩
1, if

μ(s̄2(n); N (t))
μ(s̄2(n); N )

> θVAD

0, else,
(1)

with θVAD = 0.0001 andN (t) = {n | (t−1)L ≤ n ≤ tL − 1}
defining the sample indices of frame t∈T ={1, ..., |T |=
�|N |/L�}. Note that �.� specifies the floor operator, |T | be-
ing the amount of frames included in the set T . The frame
length is set to L=256 samples per frame, i.e., 16 ms at a
sampling frequency of fs = 16 kHz. Subsequently, we iden-
tify two sets of frame indices: T1 ={t | VAD(t)=1} and
T0 ={t | VAD(t)=0}.

The time-aligned speech signals s̄(n) and ˆ̄s(n) are then sub-
ject to a modified active speech level normalization to match
−26 dBov (c.f. P.56, [29]), only considering frequency compo-
nents below 4 kHz. This modification eliminates the influence

Fig. 2. Detailed overview of the processing for feature extraction. Time-
aligned and level-adjusted signals s(n) and ŝ(n) as well as the frame-wise
voice-activity information VAD(t) are input to the feature extraction. First,
basic features are calculated. Afterwards perceptual features are extracted, and
finally all features are concatenated into feature vector x.

of the UB during level adjustment and takes into account that a
synthetic UB might be under- or overestimated w.r.t. its energy
by an ABE solution and thus normalization of this energy might
interfere with the necessity to determine the degree of such
degradation. To accomplish all this, the reference and degraded
speech signals are subject to a high-order finite impulse response
low-pass filter with cut-off frequency at 4 kHz and subsequent
decimation by a factor of two. Based on these downsampled
signals, the scaling factors αs and αŝ are determined by ap-
plying ITU-T P.56 [30]. Level adjustment is then performed
by s(n) = αs · s̄(n) and ŝ(n) = αŝ · ˆ̄s(n), respectively. The re-
sulting speech signals provide the input for subsequent feature
extraction.

B. Feature Extraction: Basic Features

Figure 2 depicts the detailed block diagram of the feature ex-
traction (cf. Fig. 1). The time-aligned and level-adjusted speech
signals s(n) and ŝ(n), as well as the voice activity information
VAD(t) serve as input to the feature extraction. The result is
a single composite feature vector x per speech file, represent-
ing different aspects of the distortion contained in the degraded
speech signal.

1) Global Signal-to-Degraded-Speech Ratio (GSDSR): The
global signal-to-degraded-speech ratio (GSDSR), adapted from
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[31], is defined as

GSDSR=10log10

(∑
n∈N s2(n)∑
n∈N ŝ2(n)

)
. (2)

This value is directly used as one of the features in vector x.
Due to its ’global SNR’ nature, it is able to detect high energy
(short-term) disturbances in the degraded file.

2) Segmental Speech-to-Speech Distortion Ratio (SSDR):
The QI segmental speech-to-speech distortion ratio (SSDR) is
based on a frame-wise comparison of the two input speech sig-
nals according to [32]. A lookahead and a look-back are not
employed, therefore the analysis window length is L as well,
with a frame shift of Ls =L. It is calculated by first deriving

SSDR′(t) = 10log10

( ∑
n∈N (t) s(n)2

∑
n∈N (t)

(
ŝ(n) − s(n)

)2

)
,

and subsequent limitation steps resulting in SSDR(t)=
max {min {SSDR′(t), 30 dB} ,−10 dB} . Calculated over
voice-active frame set T1 , the mean and variance

μ(SSDR(t); T1), (3)

σ2(SSDR(t); T1), (4)

can detect energy and phase errors over all frequencies. On
the other hand, deriving a mean and variance feature only over
voice-inactive frame set T0 ,

μ(SSDR(t); T0), (5)

σ2(SSDR(t); T0), (6)

allows to identify ABE reconstruction artifacts particularly for
background noise.

3) Logarithmic Spectral Distance (LSD): The QI logarith-
mic spectral distance (LSD) is employed according to [33].
In contrast to the SSDR QI, a lookahead and a look-back
of L−=L+ =128 samples is used, hence the analysis win-
dow length is Nw =512. To tackle the spectral leakage ef-
fect, a Hamming window of length Nw is applied to the
extended speech frames, yielding sw (n) and ŝw (n), n∈
Nw (t)={n | (t−1)L−L− ≤ n ≤ tL−1+L+} for the refer-
ence and the degraded speech signal, respectively. The frames
of windowed speech signals sw (n) and ŝw (n) are zero-padded
to a length of K =1024 and subsequently the short-term spectra
S(t, k) and Ŝ(t, k) of the reference and degraded input signal
are derived by means of the K-point discrete Fourier transform
(DFT). The LSD measure is then calculated as follows:

LSD(t)=

√√√√ 1
ku−kl +1

∑ku

k=kl

[
10log10

(
|S(t, k)|2

|Ŝ(t, k)|2

)]2

.

The lower and upper frequency bin bounds kl and ku limit
the measure to a certain frequency range. For the imple-
mentation of the instrumental measure the frequencies be-
tween 50 Hz≤f ≤7 kHz are taken into account, therefore kl =
� K

16000 Hz · 50 Hz� = 3 and ku =� K
16000 Hz · 7000 Hz� = 448.

This yields two further single features, derived from speech
frames only (V AD(t) from (1) can still be used due to the same

TABLE II
DEFINITION OF BARK BANDS b [34]

frame rate):

μ(LSD(t); T1), (7)

σ2(LSD(t); T1). (8)

These features are used to identify errors in the estimated UB
spectrum of the ABE solution under test. Modifications of the
NB part of the degraded signal, e.g., speech coding, are also
reflected.

C. Feature Extraction: Perceptual Features

Besides basic features, the input speech signals are also sub-
ject to a processing that adopts aspects of human speech per-
ception. Sottek’s hearing model [35], [36] processes the input
signals via an outer and middle ear filtering and subsequent de-
composition of the signals using a Bark band filter bank [34].
Besides merging the frequency components of the input sig-
nal into critical bands b∈B={1, . . . , 21}, human perception
is taken into account by reducing the excitation level at each
band to match the frequency-dependent threshold in quiet. An
overview of the lower and upper edge frequency fl(b) and fu (b),
as well as the center frequency fc(b) and the bandwidth fΔ(b)
for different Bark bands is given in Table II.

In Sottek’s model, each Bark band b represents a set of ad-
jacent auditory hair cells located at the corresponding area on
the human cochlea. By means of the Hilbert transform a tem-
poral envelope is calculated for each band, representing the
mean firing rates, i.e., the perceptual sensation at the respec-
tive auditory hair cells over time. The auditory hair cells have
a frequency-dependent maximum firing rate, meaning that per
Bark band only an upper-limited information rate can be pro-
cessed by humans. Therefore, the Hilbert envelopes, represent-
ing the perceptual sensation at a certain Bark band are low-pass
filtered with the respective cut-off frequency. The hearing model
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representations H(�, b)∈R+ and Ĥ(�, b)∈R+ (see Fig. 2) are
the result of the perceptual processing step for the reference and
the degraded speech signals, respectively. Since a higher time
resolution of a 3.3 ms frame rate is used for the perceptual pro-
cessing, a further frame index � ∈ L is introduced. The sets L1
and L0 are obtained from T1 and T0 , respectively, and contain
the frame indices of voice active and inactive portions of the
input signals. This is achieved by assigning that V AD(t) value
to V AD(�), where the center of frame � is closest to the center
of frame t.

Please note that frequency and Bark band are non-linearly
related. The higher the Bark band index b, the larger the fre-
quency bandwidth fΔ(b) covered by Bark band b. Thus, when
calculating mean or variance according to Section II over set B,
a compensation factor

P (b) =
fΔ(b)∑

β∈B fΔ(β)
(9)

has to be applied.
Based on the hearing model representations, further frame-

wise calculated QIs are calculated.
1) Absolute Bark Band-Based Distortion: The QI absolute

Bark band-based distortion is calculated as

ΔHabs(�, b) = 10log10

(
|H(�, b)|2

|Ĥ(�, b)|2

)
.

General distortion features derived from this QI are

μ
(
P (b) · |ΔHabs(�, b)|; L1 ,B

)
, (10)

σ2(P (b) · |ΔHabs(�, b)|; L1 ,B
)
. (11)

To specifically detect distortions related to added (+) and omit-
ted (−) energy over all Bark bands b ∈ B, meaning also in-
creased or decreased loudness, respectively, the following frame
sets are defined:

L+ ={� | μ(ΔHabs(�, b); B)>0},
L−={� | μ(ΔHabs(�, b); B)≤0}.

Please note that also frequency bands below 4 kHz influence
these frame sets. Means and variances are calculated for added
and omitted components (∩ stands for intersection of sets):

μ(P (b) · |ΔHabs(�, b)|; L+ ∩ L1 ,B), (12)

σ2(P (b) · |ΔHabs(�, b)|; L+ ∩ L1 ,B), (13)

μ(P (b) · |ΔHabs(�, b)|; L− ∩ L1 ,B), (14)

σ2(P (b) · |ΔHabs(�, b)|; L− ∩ L1 ,B). (15)

To further focus specifically on over- and underestimation errors
of ABE solutions w.r.t. synthesized UB energy, meaning hissing
or lisping artifacts, respectively, the following frame sets for
added and omitted energy over all Bark bands defined in the UB
are calculated:

LUB+ = {� | μ(ΔHabs(�, b);BUB)>0},
LUB−= {� | μ(ΔHabs(�, b);BUB)≤0},

withBUB ={b | 4 kHz≤fl(b)<fu (b)≤8 kHz} ={19, 20, 21}.
From this, the following features are computed:

μ(P (b) · |ΔHabs(�, b)|; LUB+ ∩ L1 ,B), (16)

σ2(P (b) · |ΔHabs(�, b)|; LUB+ ∩ L1 ,B), (17)

μ(P (b) · |ΔHabs(�, b)|; LUB− ∩ L1 ,B), (18)

σ2(P (b) · |ΔHabs(�, b)|; LUB− ∩ L1 ,B). (19)

2) Relative Bark Band-Based Distortion: The QI relative
Bark band-based distortion, inspired by [37], is calculated as
follows:

ΔHrel(�, b)=10log10

(
|H(�, b)|2

(
|H(�, b)| − |Ĥ(�, b)|

)2

)
.

After limiting ΔHrel(�, b) to a maximum of 45 dB, two features
focusing on the UB frequency components are calculated:

μ(P (b) · |ΔHrel(�, b)|; L1 ,BUB), (20)

σ2(P (b) · |ΔHrel(�, b)|; L1 ,BUB). (21)

These features exhibit a high sensitivity to smaller distortions.
3) Spectral Balance Ratio (SBR): The spectral balance ra-

tio (SBR) links lower and upper frequency components of both
input signals and therefore is an important QI for the spectral bal-
ance as restored by ABE algorithms. First, both inputs H(�, b)
and Ĥ(�, b) need to be integrated over different frequency bands.
The SBR is then defined as

SBR(�) =

10log10

(
μ(P (b)·|H(�, b)|2 ;BUB)
μ(P (b)·|H(�, b)|2 ;BLB)

/
μ(P (b)·|Ĥ(�, b)|2 ;BUB)

μ(P (b)·|Ĥ(�, b)|2 ;BLB)

)
,

with Bark band set BLB ={b|1 kHz≤fl(b)<fu (b)≤4 kHz} =
{10, . . . , 17}, covering frequency components from 1.08 kHz
up to 3.70 kHz, thus discarding low-frequent noise in the de-
graded signal. Note that the term P (b) in (9) employs set BLB or
BUB here, respectively. For calculation of features, the following
frame sets are defined:

LSBR+ ={� | SBR(�)>0},
LSBR−={� | SBR(�)≤0}.

Five features quantifying the amount of imbalance in both di-
rections as well as their relative frequency are obtained:

μ(SBR(�); LSBR+), (22)

σ2(SBR(�); LSBR+), (23)

μ(SBR(�); LSBR−), (24)

σ2(SBR(�); LSBR−), (25)

|LSBR+ |
|LSBR−|

. (26)
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4) Modified Normalized Covariance Metric (NCM): The
modified normalized covariance metric (NCM) (c.f. [38]) is
a correlation-based comparison of filter bank outputs resulting
in a single value. While in [38] the reference and degraded
speech signal are subject to a gammatone filter bank and sub-
sequent calculation of band-wise temporal envelopes via the
Hilbert transform on the filter bank outputs, we use the percep-
tually influenced temporal envelopes contained in the hearing
model representations H(�, b) and Ĥ(�, b) for further process-
ing. First, a Bark band-dependent normalized correlation ratio
(NCR), based on the correlation over time, is calculated:

NCR′
ρ(b) = 10log10

⎛

⎜⎝
ρ(|H(�, b)|, |Ĥ(�, b)|;L1)2

(
1 − ρ(|H(�, b)|, |Ĥ(�, b)|;L1)

)2

⎞

⎟⎠ .

After limiting the NCR′
ρ(b) to a range of [−15, 15] dB and

subsequently scaling it to a range of [0, 1] following

NCRρ(b)=
min

(
max

(
NCR′

ρ(b),−15 dB
)
, 15 dB

)
+15 dB

30 dB
,

a single feature is obtained:

μ(NCRρ(b),B). (27)

5) Two-Dimensional Pearson’s Correlation: The Pearson’s
correlation coefficient ρ2D for two-dimensional input sig-
nals is used to compare the two hearing model-processed
signals H(�, b) and Ĥ(�, b). This feature sets the focus on
the temporal and spectral progress, while precise equality of
frequency components over time is less important. It is calcu-
lated as follows:

ρ2D =

∑
�∈L
∑

b∈B

(
|H(�, b)| − H

)(
|Ĥ(�, b)| − Ĥ

)

√√√√∑
�∈L
∑

b∈B

(
|H(�, b)| − H

)2
√√√√∑

�∈L
∑

b∈B

(
|Ĥ(�, b)| − Ĥ

)2
,

with H =μ(|H(�, b)|;L,B) and Ĥ =μ(|Ĥ(�, b)|;L,B). Fi-
nally, we compute a 2D Pearson’s correlation ratio (PCR) as

PCR′
2D = 10log10

(
(ρ2D )2

(1−ρ2D )2

)
,

which will be negative for correlation coefficients ρ2D < 0.5,
and positive high-valued for correlation coefficients close to one.
Final limitation to the range [−10, 55] dB leads to the feature

PCR2D = min (max (PCR′
2D ,−10 dB) , 55 dB) . (28)

D. MOS Predictor

In the final operative phase, the MOS predictor maps the
obtained feature vector x to an MOSLQO value, as shown in
Fig. 1. To achieve this, a training has to be performed. In the
training phase, a set of speech files presented in the subjective
listening test (Sec. III) is subject to the signal preprocessing
(Sec. IV-A) and feature extraction (Sec. IV-B and IV-C) steps,

resulting in one feature vector x per file. Together with the
respective MOSLQS values given by the participants of the lis-
tening test, they form an input/target pair {x(i),MOSLQS(i)},
indexed by i ∈ ITr , where |ITr | is the number of different speech
files in the underlying subjective listening test that is assigned
to a training set.

Mathematically speaking, the MOS predictor can be consid-
ered as function

g : x 	→ MOSLQO ,

which is found under the condition that

μ
((

g(x(i)) − MOSLQS(i)
)2 ; ITr

)
!→ min . (29)

Note that a neural network is a possible choice for the MOS
predictor, but due to the rather small amount of available training
data, a robust set of weights and biases is hard to find. Therefore
the MOS predictor function g(·) is defined as the well-known
ε-support vector regression (ε-SVR) [39], exhibiting excellent
generalization capabilities also on smaller input/target data sets.

The training phase is shown in the left part of Fig. 3, aiming
at finding a function g(·) that fulfills (29). The ε-SVR is trained
in a normalized input domain w.r.t. zero mean and unit variance.
This is achieved by

xnorm(i) =
x(i) − μ(x(i); ITr)

σ(x(i); ITr)

for all i ∈ ITr . Subsequently, the normalized data is used to
derive the function g(·) trained via the LibSVM framework
[40]. The resulting ε-SVR model is characterized by a Gaussian
radial basis function and parameter ε, which defines the allowed
error on the training data set indexed by ITr during calculation
of function g(·). In addition, parameter C which represents the
cost for misclassification during model training, and parameter
γ which is the inverse width parameter of the Gaussian radial
basis function, are selected in the training phase.

In the operative phase, feature vector x is calculated from the
two input signals, i.e., a reference and degraded speech signal
according to Fig. 1 upper and center part. After normalizing the
feature vector using the mean and the standard deviation values
as calculated during the training phase according to

xnorm =
x − μ(x(i); ITr)

σ(x(i); ITr)
,

the normalized vector is subject to the ε-SVR, according to

MOSLQO = g(xnorm).

V. EVALUATION METRICS, SETUP, AND RESULTS

First, we describe the evaluation setup for benchmarking the
proposed instrumental measure in Sec. V-A. In our work we have
to cope with a scarce data issue, which is why we chose cross-
validation experiments. Afterwards, evaluation metrics for the
proposed measure are presented in Sec. V-B. The presentation of
the performance results of the new instrumental speech quality
measure and their discussion will constitute Sec. V-C.
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Fig. 3. Evaluation setup of the statistical model. Left part: Detailed block diagram of the training phase of the MOS predictor: Input/target pairs of x(i) and
MOSLQS (i) indexed by training data set ITr are each normalized and then subject to SVR training. Function g(·) and parameters for normalizing the input/target
pairs are the result of the training phase. Right part: Detailed block diagram of the evaluation phase of the MOS predictor: Based on the preceding training phase
using training data indexed by set ITr , MOSLQO values are calculated by means of the SVR for all feature vectors x(j) from the evaluation data set indexed by
j ∈ IEv . Together with the ground truth MOSLQS (j) values, evaluation metrics are calculated.

TABLE III
DEFAULT CONDITIONS INCLUDED IN THE TRAINING AND EVALUATION DATA SET

FOR THE CROSS-VALIDATION EXPERIMENTS A AND B

Sets Condition(s)

ITr WB-MNRU 35, 45, ∞ dB
AMR-NB @ 12.2 kbps
ABE0 1 , ..., ABE1 2

AMR-WB @ 8.85, 23.05, 23.85 kbps

IE v AMR-NB @ 12.2 kbps
ABE0 1 , ..., ABE1 2

AMR-WB @ 23.05 kbps

A. Evaluation Setup: Cross-Validation

This section describes the evaluation setup of the MOS pre-
dictor from subsection IV-D. Due to the relatively small amount
of available data, three different k-fold cross-validation exper-
iments are defined to rate the performance of the instrumental
measure in three different disciplines: language independence,
speaker independence, and the ability to generalize on ABE
solutions, which were not part of the training data set. Fig. 3 vi-
sualizes the training and evaluation procedure for each of the ex-
periments presented in this subsection. All available input/target
pair indices I are divided into a set ITr for SVR training and
an evaluation set IEv for measuring the predictive power of the
MOS predictor. While evaluation metrics will be introduced in
the next subsection, in this subsection the focus lies on defining
a variety of data splits, constituting the conducted experiments.

In general, the training and evaluation scheme shown in Ta-
ble III was used for the cross-validation experiments. To direct
the instrumental measure towards the influence of acoustical
bandwidth on perceptual quality, the speech data and subjective
votes from the first 9 MNRU conditions were omitted from the
SVR training. The AMR-NB condition is used as one of lower
performance, while the remaining WB-MNRU conditions and
AMR-WB conditions serve as upper performance cases. For
evaluation of the measure, the AMR-NB condition, AMR-WB
at 23.05 kbps, and all of the ABE conditions were used.

The underlying data for training and evaluation was analyzed
in [3]. We found that statistical properties of the MOS ratings

TABLE IV
EXPERIMENT A: DISJOINT LANGUAGES

Sets A1 A2 A3 A4

ITr left out English English English
Chinese left out Chinese Chinese
German German left out German
Korean Korean Korean left out

IE v English Chinese German Korean

would change if the results from the different languages were
merged to obtain a single global result. Therefore we conducted
the result analysis for each language under test separately [3].
For the proposed measure, however we train the MOS predictor
using multiple languages at once. This is due to the fact that we
want to design a language-independent measure, which does not
require a new training process before being applied to speech
material in a new language.

With respect to the SVR, the parameter ε has direct influence
on the number of support vectors and thus on complexity and
generalization capabilities of the SVR model. For each subex-
periment presented in the following, we select an ε ∈ [0.1, 1.0] in
steps of 0.1 for which an SVR model results that has a maximum
of 50% of input data pairs |IEv | as support vectors. Furthermore,
we bias the found ε by 0.2 to prevent overfitting to the rather
small training data set. Parameter C is also found in an itera-
tive process on the training data set via minimizing the RMSE
error on the training data set. This parameter is found using
equidistant sampling points on the logarithmic range [1, 10000].
Parameter γ = 1

2σ 2 is set to 1/2 using the a priori knowledge
that the input data is of unit variance.

1) Experiment A - Disjoint Languages: In experiment A,
the available data is split after the respective language of the
utterances. This experiment aims at quantifying the ability of
generalization w.r.t. unseen languages. Please note that this ex-
perimental design also implicitly means that there is no speaker
overlap. Experiments follow the scheme presented in Table IV
(Table III is still valid). A total of four subexperiments A1-A4
is conducted.
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TABLE V
EXPERIMENT B: DISJOINT SPEAKERS

Sets B1 B2 B3 B4

ITr left out F1 F1 F1
F2 left out F2 F2
M1 M1 left out M1
M2 M2 M2 left out

IE v F1 F2 M1 M2

TABLE VI
EXPERIMENT C: DISJOINT ABE SOLUTIONS

2) Experiment B - Disjoint Speakers: Experiment B is set up
to evaluate speaker dependency in general. All combinations of
three speakers in training and one speaker in evaluation define
subexperiments B1-B4 as shown in Table V (Table III is still
valid). A total of four subexperiments is conducted.

3) Experiment C - Disjoint ABE Solutions: To quantify the
generalization ability of the instrumental measure on unseen
ABE conditions, experiment C splits the available ABE condi-
tions into two equally-sized sets, where always one is used for
training and the other for testing (this is different to Table III).
Using both ABE condition splits once in training and once
in evaluation results in two subexperiments C1 and C2. This
modified setup is shown in Table VI. When used in practice,
the instrumental measure will rather have to cope with unseen
speakers than languages. Therefore we will conduct subexper-
iments C1 and C2 each under the constraints defined in ex-
periment B, leading to disjoint speakers as well. Consequently
2 × 4 = 8 subsubexperiments are conducted.

B. Evaluation Metrics

The metrics presented in the following evaluate an instrumen-
tal measure w.r.t. its predictive power, after the MOS predictor
has been trained on training set ITr . For better distinction of
training and evaluation phase, input/target pairs used for eval-
uation are indexed by variable j ∈ IEv . Based on the feature
vectors x(j) the new measure calculates MOSLQO(j) values as
shown in Fig. 3.

In the remaining part of this section, metrics taken from ITU-T
P.1401 [41] for evaluating instrumental measures are presented.

According to ITU-T P.1401, statistical evaluation of instrumen-
tal measures (of any kind) needs to be tested in three categories:
Accuracy, consistency, and linearity against subjective data. For
determining the accuracy of the predicted results we employ the
RMSE of the absolute prediction error. Also being file-based,
consistency is evaluated using the epsilon-insensitive RMSE,
which qualitatively measures errors due to outliers. As check
for linearity we employ Pearson’s correlation coefficient as well
as rank order, calculated over the predicted condition means.

1) Accuracy - RMSE: The file-based absolute prediction
error is calculated as follows:

Perror(j) = MOSLQS(j)−MOSLQO(j). (30)

The respective RMSE over all files from the evaluation data set
indexed by j ∈ IEv is then given as [41]

RMSE =

√
1

|IEv |−1

∑
j∈IE v

(Perror(j))
2 . (31)

A smaller RMSE value indicates better prediction performance
and is employed for evaluation of accuracy of the proposed
measure.

2) Consistency - Epsilon-Insensitive RMSE: To evaluate to
which degree the predicted results are consistent, the epsilon-
insensitive absolute prediction error P ∗

error is calculated. Only
those predicted MOSLQO , which are scored outside of the 95%
confidence interval are taken into account. The calculation fol-
lows

P ∗
error(j) = max

(
0, |Perror(j)|−CI+

95(j)
)
, (32)

with CI+
95(j) being half of the confidence interval calculated

over all votes from the test subjects on the respective condition
of speech signal indexed by j. From this, the epsilon-insensitive
RMSE∗ can be calculated [41]:

RMSE∗ =

√
1

|IEv | − 1

∑
j∈IE v

(P ∗
error(j))

2 . (33)

Consistency is indicated by a small RMSE∗ metric, which is
caused by a small number of outliers or small-valued P ∗

error of
an instrumental measure. Implicitly, also a large CI+

95(j) for
the respective file can cause a small RMSE∗ value, however,
please keep in mind that a large CI+

95(j) means that the subjects’
votes varied a lot.

3) Linearity - Correlation and Rank Order: As linear-
ity check, we calculate Pearson’s correlation coefficient ρ
and Kendal’s τ over condition-based MOS means. For the
instrumentally-measured MOSLQO values, condition-based
means are obtained as follows:

MOSLQO(c) = μ
(
MOSLQO(j); I(c)

Ev

)
,

with I(c)
Ev indexing all files belonging to condition c (cf. Table I)

in the evaluation data set. The condition-based means for the
subjective votes MOSLQS(c) are derived accordingly.

The condition-based Pearson’s correlation coefficient is then
defined as

ρMOS = ρ (MOSLQS(c),MOSLQO(c); CEv) , (34)
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TABLE VII
PROPOSED QABE MEASURE BENCHMARK AND COMPARISON TO POLQA AND WB-PESQ EVALUATING THE THREE CATEGORIES ACCURACY, CONSISTENCY, AND

LINEARITY IN THE THREE DISCIPLINES DISJOINT LANGUAGE, DISJOINT SPEAKERS, AND DISJOINT ABE SOLUTIONS

with CEv being the set of condition indices occurring in the
evaluation set. Besides the correlation coefficient, Kendal’s τ is
employed quantifying correctness of the conditions’ rank order.
It is calculated as follows

τ =
Nc − Nd

1
2 |CEv| · (|CEv| − 1)

, (35)

with Nc and Nd being the number of concordant and discor-
dant pairs, respectively, and |CEv| being the amount of con-
ditions contained in the test data set. For calculating this
metric, all consecutive score pairs {MOSLQS(c),MOSLQO(c)}
and {MOSLQS(c+1), MOSLQO(c+1)} are evaluated. They
count as concordant if

MOSLQS(c) < MOSLQS(c+1) and

MOSLQO(c) < MOSLQO(c+1)

or

MOSLQS(c) > MOSLQS(c+1) and

MOSLQO(c) > MOSLQO(c+1).

Else, they are counted to the number of discordant pairs.
Pearson’s correlation coefficient and Kendal’s τ are used to
investigate the performance of the proposed measure w.r.t. the
P.1401-recommended category of linearity against the underly-
ing subjective data.

C. Results and Discussion

The results of the SVR parameter tuning and of experiments
A,B,C can be found in Table VII.

Parameter tuning according to Sec. V-A on the respective
training data set led to ε = 0.3 (without bias) and C = 1000
in each of the subexperiments. This is fortunate since it allows
further analysis based on a single parameter set. The proposed
instrumental quality measure using these found parameters is in
the following referred to as QABE.

In experiment A (disjoint languages), all ABE conditions are
both in the training and evaluation data set. Just considering
the results of QABE, it can be confirmed that the elements of
the feature vector contain all the information needed to learn
and subsequently predict MOSLQO for ABE-processed signals.
In subexperiment A2, the instrumental measure was evaluated
on the Chinese part of the available data, which is a rather
challenging task, since the result analysis of the underlying sub-
jective listening test showed a gap between NB and WB of
only 0.31 MOS points for Chinese, while in the other languages
higher gaps up to 1.39 MOS points were identified. Even in
this rather challenging subexperiment, QABE’s correlation of
0.875 is similar to WB-PESQ and much better than POLQA.
Interestingly, WB-PESQ has to cope with its highest RMSE
of 0.831 and thus, considering the other metrics, shows an in-
consistent picture concerning subexperiment A2. Looking at
all subexperiments A1-A4 the RMSE values for WB-PESQ
vary quite a lot. Concluding on all disjoint language experi-
ments, QABE outperforms POLQA and WB-PESQ in terms
of rank order in each of the subexperiments. While on average
POLQA shows a somewhat better rank order than WB-PESQ,
POLQA is worse in all other categories, and particularly poor in
correlation. Furthermore, results show a significant advantage
of QABE vs. POLQA and WB-PESQ on average in all three
quality categories.
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Investigating the influence of speaker dependency, experi-
ment B splits all available speakers in disjoint sets for training
and evaluation of QABE. Concerning accuracy, consistency,
and rank order, POLQA and WB-PESQ perform on average
equally bad. Again, POLQA shows very poor correlation per-
formance. Whatever speaker was left out of the training set
and then used for evaluation, the instrumental measure shows
superior generalization capabilities in all of the tested cate-
gories for each subexperiment, with an average correlation even
above 0.95.

Experiment C simulates the probably most common use case
of the instrumental measure: Being trained on several ABE
solutions in a number of languages and then being employed to
assess the speech quality of several ABE solutions (unseen in
training). Although the training data set is reduced by taking only
every other ABE solution, the absolute performance of QABE
drops only slightly. However, considering the results of QABE,
consistently high correlation values of on average 0.927 are a
proof for good generalization capabilities. While WB-PESQ
performs best in subexperiment C2 ∩ B2, results for QABE are
comparable to WB-PESQ in experiment C1∩B3 w.r.t. RMSE∗

and correlation. The rank order of 0.857 scored by WB-PESQ
in this subexperiment deviates quite much from the average of
0.643. On average, QABE outperforms WB-PESQ and POLQA
in all categories of this important experiment, again being the
only measure providing an average correlation of more than 0.9.

Comparing the results of experiments A-C, a high and robust
performance of QABE is proven by the small deviations of
the averaged results of the three categories. In general, there
is only one subexperiment where the instrumental measure did
not score the highest rank order. Furthermore the results suggest
that the instrumental measure takes profit from the additional
information contained in the variety of features used as input for
the MOS predictor. In combination with the powerful ε-SVR,
the proposed measure was able to outperform both WB-PESQ
and POLQA in almost all subexperiments, but most importantly,
on average in all experiments. We should remind ourselves that
WB-PESQ and POLQA have not been developed with focus on
ABE solutions.

Looking back at our proposed features, it becomes clear that
indeed they focus on ABE-typical distortions in the upper band.
Nevertheless, all features depend on the complete wideband
signal which is important for detection of ABE artifacts, but
shall not mean that the here proposed ABE quality measure
adequately also judges lower band artifacts. This is due to the
fact that none of the ABE solutions used in training showed
any severe lower band artifacts: For these cases our proposed
measure cannot and shall not compete with, e.g., POLQA as
applied on the downsampled lower band. In practice, therefore,
we propose a 2-step ABE speech quality assessment approach:
In a first step a pure lower band speech quality assessment using,
e.g., POLQA in NB mode is performed which should yield a
quality not worse than typical AMR conditions. Only if this test
is passed, in a second step our new measure would be applied
to further judge the ABE-processed speech.

Inquiries about availability of the QABE software can be
directed to qabe@ifn.ing.tu-bs.de.

VI. CONCLUSION

In this work, the development and evaluation of an instrumen-
tal measure for artificially bandwidth-extended (ABE) speech
signals was presented. The proposed measure outperforms both
POLQA and wideband PESQ in all conducted k-fold cross-
validation experiments, showing a smaller RMSE, a higher
correlation of well above 0.90, and a higher rank order cor-
relation. These experiments are also proof for good general-
ization capabilities of the proposed instrumental measure w.r.t.
unseen languages, speakers and most-importantly unseen arti-
ficial bandwidth extension solutions. We should note that nei-
ther POLQA nor wideband PESQ were intended for ABE test
conditions.
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