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Abstract—In many under-resourced languages it is possible to
find text, and it is possible to find speech, but transcribed speech
suitable for training automatic speech recognition (ASR) is un-
available. In the absence of native transcripts, this paper proposes
the use of a probabilistic transcript: A probability mass function
over possible phonetic transcripts of the waveform. Three sources
of probabilistic transcripts are demonstrated. First, self-training
is a well-established semisupervised learning technique, in which a
cross-lingual ASR first labels unlabeled speech, and is then adapted
using the same labels. Second, mismatched crowdsourcing is a
recent technique in which nonspeakers of the language are asked
to write what they hear, and their nonsense transcripts are decoded
using noisy channel models of second-language speech perception.
Third, EEG distribution coding is a new technique in which
nonspeakers of the language listen to it, and their electrocortical
response signals are interpreted to indicate probabilities. ASR was
trained in four languages without native transcripts. Adaptation
using mismatched crowdsourcing significantly outperformed
self-training, and both significantly outperformed a cross-lingual
baseline. Both EEG distribution coding and text-derived phone
language models were shown to improve the quality of probabilistic
transcripts derived from mismatched crowdsourcing.

Index Terms—Automatic speech recognition, EEG, mismatched
crowdsourcing, under-resourced languages.
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I. INTRODUCTION

UTOMATIC speech recognition (ASR) has the potential
A to provide database access, simultaneous translation, and
text/voice messaging services to anybody, in any language, dra-
matically reducing linguistic barriers to economic success. To
date, ASR has failed to achieve its potential, because successful
ASR requires very large labeled corpora; the human transcribers
must be computer-literate, and they must be native speakers of
the language being transcribed. Large corpora are beyond the
resources of most under-resourced language communities; we
have found that transcribing even one hour of speech may be be-
yond the reach of communities that lack large-scale government
funding. In order to create the databases reported in this paper,
for example, we sought paid native transcribers, at a competi-
tive wage, for the 68 languages in which we have untranscribed
audio data. We found transcribers willing to work in only eleven
of those languages, of which only seven finished the task.

Instead of recruiting native transcribers in search of a perfect

reference transcript, this paper proposes the use of probabilistic
transcripts. A probabilistic transcript is a probability mass func-
tion, pg (¢), specifying, as a real number between 0 and 1, the
probability that any particular phonetic transcript ¢ is the correct
transcript of the utterance. Prior to this work, machine learning
has almost always assumed that the training dataset contains
either deterministic transcripts (ppr(¢) € {0,1}, commonly
called “supervised training”) or completely untranscribed ut-
terances (commonly called “unsupervised training,” in which
case we assume that py, s (¢) is given by some a priori lan-
guage model). This article proposes that, even in the absence
of a deterministic transcript, there may be auxiliary sources
of information that can be compiled to create a probabilistic
transcript with entropy lower than that of the language model,
and that machine learning methods applied to the probabilistic
transcript are able to make use of its reduced entropy in order
to learn a better ASR. In particular, this paper considers three
useful auxiliary sources of information:

1) SELF-TRAINING: ASR pre-trained in other languages
is used to transcribe unlabeled training data in the target
language.

2) MISMATCHED CROWDSOURCING: Human crowd
workers who don’t speak the target language are asked
to transcribe it as if it were a sequence of nonsense
syllables.

3) EEG DISTRIBUTION CODING: Humans who do not
speak the target language are asked to listen to its
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extracted syllables, and their EEG responses are inter-
preted as a probability mass function over possible pho-
netic transcripts.

II. BACKGROUND

Suppose we require that, in order to develop speech technol-
ogy, it is necessary first to have (1) some amount of recorded
speech audio, and (2) some amount of text written in the target
language. These two requirements can be met by at least several
hundred languages: speech audio can be recorded from podcasts
or radio broadcasts, and text can be acquired from Wikipedia,
Bibles, and textbooks. Recorded speech is, however, not usually
transcribed; and the requirement of native language transcription
is beyond the economic capabilities of many minority-language
communities.

A. ASR in Under-Resourced Languages

Krauwer [27] defined an under-resourced language to be one
that lacks: stable orthography, significant presence on the inter-
net, linguistic expertise, monolingual tagged corpora, bilingual
electronic dictionaries, transcribed speech, pronunciation dic-
tionaries, or other similar electronic resources. Berment [3] de-
fined a rubric for tabulating the resources available in any given
language, and proposed that a language should be called “under-
resourced” if it scored lower than 10.0/20.0 on the proposed
rubric. By these standards, technology for under-resourced lan-
guages is most often demonstrated on languages that are not
really under-resourced: for example, ASR may be trained with-
out transcribed speech, but the quality of the resulting ASR can
only be proven by measuring its phone error rate (PER) or word
error rate (WER) using transcribed speech. The intention, in
most cases, is to create methods that can later be ported to truly
under-resourced languages.

The International Phonetic Alphabet (IPA [21]) is a set of
symbols representing speech sounds (phones) defined by the
principle that, if two phones are used contrastively (i.e., they
represent distinct phonemes) in any language, then those phones
should have distinct symbolic representations in the IPA. This
makes the IPA a natural choice for transcripts used to train cross-
language ASR systems, and indeed ASR in a new language can
be rapidly deployed using acoustic models trained to repre-
sent every distinct symbol in the IPA [39]. However, because
IPA symbols are defined phonemically, there is no guarantee
of cross-language equivalence in the acoustic properties of the
phones they represent. This problem arises even between di-
alects of the same language: a monolingual Gaussian mixture
model (GMM) trained on five hours of Levantine Arabic can be
improved by adding ten hours of Standard Arabic data, but only
if the log likelihood of cross-dialect data is scaled by 0.02 [18].

Better cross-language transfer of acoustic models can be
achieved, but only by using structured transfer learning meth-
ods, including neural networks (NN) and subspace Gaussian
mixture models (SGMM). SGMMs use language-dependent
GMMs, each of which is the linear interpolation of language-
independent mean and variance vectors [37], e.g., 16% relative
WER reduction was achieved in Tamil by combining SGMM

with an acoustic data normalization technique [32]. NN transfer
learning can be categorized as tandem, bottleneck, pre-training,
phone mapping, and multi-softmax methods. In a tandem sys-
tem, outputs of the NN are Gaussianized, and used as features
whose likelihood is computed with a GMM; in a bottleneck
system, features are extracted from a hidden layer rather than
the output layer. Both tandem [44] and bottleneck [47] features
trained on other languages can be combined with GMMs [47] or
SGMMs [20] trained on the target language in order to improve
WER.

A hybrid ASR is a system in which the NN terminates in
a softmax layer, whose outputs are interpreted as phone or
senone [7] probabilities. Knowledge of the target language
phone inventory is necessary to train a hybrid ASR, but it is
possible to reduce WER by first pre-training the NN hidden
layers with multilingual data [17], [45]. A hybrid ASR can be
constructed using very little in-language speech data by adding a
single phone-mapping layer [42] or senone-mapping layer [10]
to the output of the multilingual NN. A multi-softmax system
is a network with several different language-dependent softmax
layers, each of which is the linear transform of a multilingual
shared hidden layer [17], [38], [47].

B. Self-Training

Self-training is a class of semi-supervised learning techniques
in which a classifier labels unlabeled data, and is then re-trained
using its own labels as targets. Self-training is frequently used
to adapt ASR from a well-resourced language to an under-
resourced language [5], [30], or in some cases, to create target-
language ASR by adapting several source-language ASRs [48].
A self-trained classifier tends to be too conservative, because the
tails of the data distribution are truncated by the self-labeling
process [40]; on the other hand, a self-trained classifier needs to
be conservative, because the error rate of the learned classifier
increases at a rate more than proportional to the error rate of the
self-labeling process [19]. Self-training is therefore most use-
ful when the in-language training data are filtered, to exclude
frames with confidence below a threshold [46], and/or weighted,
so that some frames are allowed to influence the learned param-
eters more than others [16]. Self-training of NN systems has
been shown to be about 50% more effective (1.5 times the error
rate reduction) as self-training of GMM systems [19].

C. Mismatched Crowdsourcing

In [24], a methodology was proposed that bypasses the need
for native language transcription: mismatched crowdsourcing
sends target language speech to crowd-worker transcribers who
have no knowledge of the target language, then uses explicit
mathematical models of second language phonetic perception
to recover an equivalent phonetic transcript (Fig. 1). Majority
voting is re-cast, in this paradigm, as a form of error-correcting
code (redundancy coding), which effectively increases the ca-
pacity of the noisy channel; interpretation as a noisy channel
permits us to explore more effective and efficient forms of error-
correcting codes. Assume that cross-language phone mispercep-
tion is a finite-memory process, and can therefore be modeled



52 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2017

Human
listener
modeled by a
misperception

Human
transcriber
modeled as
a phoneme-
to-grapheme
FST, p(A[Y)

Human talker

modeled by a A: Annotation-

language
orthography
<vak paychan>

w =Utterance-
language words

<dlP Ugdli>

pronunciation

¢ =Utterance
phones
[vazk pofiatfain]

1) =Perceived
phones
[vak pertfan]

Fig. 1. Mismatched Crowdsourcing: crowd workers on the web are asked
to transcribe speech in a language they do not know. Annotation mistakes
are modeled by a finite state transducer (FST) model of utterance-language
pronunciation variability (reduction and coarticulation), composed with an
FST model of non-native speech misperception (mapping utterance-language
phones to annotation-language phones), composed with an inverted grapheme-
to-phoneme (G2P) transducer.

EEG feature classifiers trained on
feature-labeled English phones

' Foreign phone
——> misperception

(_sonorant ) probabilities

Fig.2. EEGresponses are recorded while the listener hears speech in his native
language. A bank of distinctive feature classifiers are trained. The listener then
hears speech in an unfamiliar language, and his EEG responses are classified,
in order to estimate arc weights in the misperception FST.

EEG response to
foreign phones
(epoched & averaged)

—

by a finite state transducer (FST). The complete sequence of
representations from utterance language to annotation language
can therefore be modeled as a noisy channel represented by
the composition of up to three consecutive FSTs (Fig. 1): a
pronunciation model, a misperception model, and an inverted
grapheme-to-phoneme (G2P) transducer.

D. Electrophysiology of Speech Perception

The human auditory system is sensitive to within-category
distinctions in speech sounds, but such pre-categorical percep-
tual distinctions may be lost in transcription tasks, where a
listener must filter their percepts through the limited number
of categorical representations available in their native language
orthography. EEG distribution coding is a proposed new method
that interprets the electrical evoked potentials of an untrained lis-
tener (measured by electroencephalography or EEG) as a prob-
ability distribution over the phone set of the utterance language
(Fig. 2). A transcriber, in this scenario, listens to speech in
both his native language and an unfamiliar non-native target
language, while his EEG responses are recorded. From his re-
sponses to English speech, an English-language EEG phone
recognizer is trained [9]. Misperception probabilities p(1|¢)
are then estimated: for each non-native phone ¢, the classifier
outputs are interpreted as an estimate of p(1|¢).

III. ALGORITHMS THAT INDUCE A PROBABILISTIC TRANSCRIPT

A deterministic transcript is a sequence of phone symbols,
o' = [¢4,...,dY, ] where ¢’ is asymbol drawn from the phone
set of the utterance language.

Fig.3. A probabilistic transcript (PT) is a probability mass function (pmf) over
candidate phonetic transcripts. All PTs considered in this paper can be expressed
as confusion networks, thus, as sequential pmfs over the null-augmented space
of IPA symbols. In this schematic example, () is the null symbol, symbols in
brackets are IPA, and numbers indicate probabilities.

A probabilistic transcript is a probability mass function (pmf)
over the set of deterministic transcripts. Capital letters denote
random variables, lowercase denote instances: ®/, is a random
variable whose instance is ¢!, . Denote the probability of tran-
script ¢ as pge (¢'), where p (“reference”) means that pg (¢°)
is a reference distribution—a distribution specified by the prob-
abilistic transcription process, and not dependent on ASR pa-
rameters during training. The distribution label ®¢ is omitted
when clear from the instance label, e.g., p(¢'), but pge (u).
Superscript denotes waveform index, while subscript denotes
frame or phone index. Absence of either superscript or sub-
script denotes a collection, thus ® = {®', ..., ®*} (with in-
stance value ¢ = {¢',...,¢"}) is the random variable over
all transcripts of the database. In all of the work described in
this paper, the probabilistic transcript is represented as a confu-
sion network [31], meaning that it is the product of independent

symbol pmfs p(¢!, ):
L L M
p(9) = [T (@) =T II r(s1) (1)
(=1 (=1m=1

The pmf p(¢’) can be represented as a weighted finite state
transducer (WFST) in which edges connect states in a strictly
left-to-right fashion without skips, and in which the edges con-
necting state m to state m + 1 are weighted according to the
pmf p(¢y, ) (Fig. 3).

Three different experimental sources were tested for the cre-
ation of a PT. Self-training is now well-established in the field
of under-resourced ASR; we adopted the algorithm of Vesely,
Hannemann and Burget [46]. Mismatched crowdsourcing used
original annotations collected using published methods [25].
EEG was not used independently here, but rather, was used to
learn a misperception model applicable to the interpretation of
mismatched crowdsourcing.

A. Self-Training

The first set of PTs is computed using NN self-training. The
Kaldi toolkit [36] is first used to train a cross-lingual baseline
ASR, using training data drawn from six languages not including
the target language. The goal of self-training, then, is to adapt
the NN to a database containing L speech waveforms in the
target language, each represented by acoustic feature matrix

a' = [af,..., 2], where z{ is an acoustic feature vector. The
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T=Mismatched
Transcripts
trabiza
ta peesome
ta pisha
chah peesh um
shapisha
sabeesham
chapiser
some pizza

Fig. 4. Probabilistic transcription from mismatched crowdsourcing: Tran-
scripts 1" are filtered to remove outliers, and merged to create a confusion
network over orthographic symbols, p(1|T"), from which the probabilistic tran-
script p(¢|T) is inferred. Example shown: Swahili speech, English-speaking
transcribers. Symbols in <> are graphemes, symbols in [] are phones, numbers
are probabilities.

feature matrix 2* represents an utterance of an unknown phone
transcript ¢ = [¢f, ..., #%,] which, if known, would determine
the sequence but not the durations of senones (HMM states)
st =[s{,...,sk].

The feature matrix z° is decoded using the cross-lingual
baseline ASR, generating a phone lattice output. Using scripts
provided by previous experiments [46], the phone lattice is in-
terpreted as a set of posterior senone probabilities p(sf |xf) for
each frame, and the senone posteriors serve as targets for re-
estimating the NN weights. Experiments using other datasets
found that self-training should use best-path alignment to spec-
ify a binary target for NN training [46], but, apparently because
of differences in the adaptation set between our experiments
and previous work, we achieve better performance using real-
valued targets. As in previous work, senones with a posterior
probability below 0.7 were removed from the training set, thus
the training target was a number between 0.7 and 1.0.

!

B. Mismatched Crowdsourcing

The second set of PTs was computed by sending audio in
the target language to non-speakers of the target language, and
asking them to write what they hear. It would be preferable
to recruit transcribers who speak a language with pre-
dictable orthography, but since transcribers in those languages
were more expensive, this experiment instead recruited tran-
scribers who speak American English. Denote using 7' the set
of mismatched transcripts produced by these English-speaking
crowd workers, which we wish to interpret as a pmf over
target-language phone sequences, p(¢|T'). As an intermediate
step, prior work [25] developed techniques to merge texts into
a confusion network p(A|T") over representative transcripts in
the annotation-language orthography (Fig. 4).

Once transcripts have been aligned and filtered to create the
orthographic confusion network p(A|T'), they are then translated
into a distribution over phone transcripts according to:

p(9|T) ~ max p(¢|1)p(A|T)
(p(klcb)
p(%)

The terms other than p(1|T") in Equation (2) are estimated as
follows. p(A) is modeled using a unigram prior over the letter

= max
A

p<¢>) p(A[T) @

sequences in A. p(¢) is modeled using either a cross-lingual
phone unigram, a language-constrained cross-lingual unigram
(the cross-lingual unigram, constrained to take values from the
phone set of the target language), or a language-specific phone
bigram p(¢) = [T _, p(m |¢m 1) Section TV-C describes an
algorithm for training the phone bigram without using pro-
scribed test-language resources; Section V lists the PT accu-
racies achieved using each of these three approaches. p(1|¢) is
called the misperception G2P, as it maps to graphemes in the
annotation language, A, fsrom phones in the utterance language,
¢. Section II-C describes methods that decompose p(1|¢) into
separate misperception and G2P transducers, but it can also
be trained directly using representative transcripts A (and their
corresponding native transcripts) for speech in languages other
than the target language. The model learned in this way is es-
sentially a machine translation model, which translates between
graphemes in the annotation language (A) to phonemes in any
possible utterance language (¢). We assume that misperceptions
depend more heavily on the annotation language than on the ut-
terance language, and that therefore a model p(i|¢) trained
using a universal phone set for ¢ is also a good model of p(1|¢)
for the target language. Note that, while this assumption is not
entirely accurate, it is necessitated by the requirement that no
native transcripts in the target language can be used in building
any part of our system.

C. Estimating Misperceptions From Electrocortical Responses

The misperception G2P described in Section III-B was es-
timated using a combination of mismatched and determinis-
tic transcripts of non-target languages. However, with a small
amount of transcribed data in the utterance language, it is possi-
ble to estimate the misperception G2P using electrocortical mea-
surements of non-native speech perception. In this approach,
the misperception G2P is decomposed into two separate trans-
ducers, a misperception transducer p(|¢), and an annotation-
language G2P p(A|y)):

p(r|¢) ~ Z p(A|Y)p(1)]9) 3)

where ¢ is a phone string in the utterance language, v is a phone
string in the annotation language, and X is an orthographic string
in the annotation language. p(1|¢)) is an inverted G2P in the
annotation language, e.g., trained on the CMU dictionary of
American English pronunciations [28]. p(1|¢) is the mismatch
transducer, specifying the probability that a phone string ¢ in the
utterance language will be mis-heard as the annotation-language
phone string .

In principle, the mismatch transducer could be computed
empirically from a phone confusion matrix, if experimental
data on phone confusions were available for all phones in
the target language, and those data were based on responses
from a listener with the same language background as the
crowd worker transcribers. These goals are hard to meet. An
alternative is to use distinctive feature representations (origi-
nally proposed to characterize the perceptual and phonological
natural classes of phonemes [22]) to predict misperceptions
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based on differences between the distinctive feature values
of annotation- and utterance-language phones. Given the
assumption that every distinctive feature shared by phones ¢
and 7 independently increases their confusion probability, their
confusion probability can be expressed as

p(¥]9) o<exp< Zwk ¢, w) )

where wy, (¢, 1)) is smaller if ¢ and 1) share the k" distinctive
feature. The assumption of independence is a simplifying as-
sumption, given that many distinctive features have overlapping
acoustic correlates. For example, the frequencies of the rwo
lowest resonances of the vocal tract (the primary cues for vowel
identity) are determined by articulatory gestures of the lips, jaw
and tongue that are commonly represented by three or more dis-
tinctive features (e.g., height, backness, rounding, and advanced
tongue root). Moreover, the weights wy, will probably also de-
pend on properties of the speaker and listener (language, dialect,
and idiolect), but data to train such a rich model do not exist.

However, a reasonable approximate model can be learned by
assuming that wy depend only on information about the listener,
which can be incorporated via measurements of electrocortical
activity. In particular, the weights w;, of the distinctive fea-
tures can be set based on similarity of electrocortical responses
(measured using EEG) as determined by a classifier trained to
compute distinctive feature representations from electrocorti-
cal responses to the listener’s native language phones. Thus,
suppose a listener first hears phones ¢ = ¢ in the native lan-
guage, EEG response signals y are recorded, and a bank of
binary classifiers g; (y) are trained to label the distinctive fea-
tures fi (@) [9]. Second, the same listener hears phones ¢ # 1)
in a new language, and EEG response signals y are recorded;
then the contributions in Eq. (4) can be estimated as

wi (¢, ) = —InPr{gi(y) = fi(0)} Q)

IV. ALGORITHMS FOR TRAINING ASR USING PROBABILISTIC
TRANSCRIPTION

An ASR is a parameterized pmf, 7 (x, s|¢, 0), specifying the
dependence of acoustic features, x, and senones, s, on the phone
transcript ¢ and the parameter vector #, where the notation 7(-)
denotes a pmf dependent on ASR parameters. Assume a hidden
Markov model (HMM), therefore

HHTl-St|st 1»¢ 0)m (xfISf,G)

(=1t=1

m(z, 59, 0)

A. Maximum Likelihood Training

Consider two observation-conditional sequence distributions
(s, dlx,0) and (s, p|x,d"), with parameter vectors 6 and ¢’
respectively. The cross-entropy between these distributions is:

H(0)6") == n(s,¢la,0) Inn(s,gl,0')  (6)
5,0
=L(0)-Q(0,0) (7)

where the data log likelihood, £ (0'), and the expectation max-
imization (EM) quality function, @Q (6, 6") [8], are

L)
Q6.0

=Inm(z|0) €))
= Zw(s,cﬂx,e) In7(x,s,d|0) 9)

S,

Cross-entropy is bounded (H (6(|6") > H (6]|6)), therefore
L (0/) - L (9) > Q (379/) - Q (97 0)

Given any initial parameter vector 6,,, the EM algorithm finds
0, +1 = argmaxy Q(6,,0'), thereby maximizing the minimum
increment in £(f). For GMM-HMMs, the quality function
Q (0, 0) is concave and can be analytically maximized; for NN-
HMMs it is non-concave, but can be maximized using gradient
ascent [2].

The probability 7 (z, s, ¢|f) is computed by composing the
following three weighted FSTs:

(10)

H:s" —s'/n(zb)s", ¢, 0) (1T)
C:s" — ¢ n(s']¢",0) (12)
PT:¢" — ¢'/p(¢") (13)

where the notation has the following meaning. The probabilistic
transcript, PT, is an FST that maps any phone string to itself.
This mapping is deterministic and reflexive, but comes with
a path cost determined by the transcription probability p(¢°),
as exemplified in Fig. 3. The context transducer, C', maps any
senone sequence s’ to a phone sequence ¢’ [33]. This mapping
is stochastic, and the path cost is determined by the HMM
transition weights

T

H 7T(Sf ‘Sf—l ’ ¢£a 0)

t=1

m(s'1¢,0) = (14)

The acoustic model, H, maps any senone sequence to itself.
This mapping is deterministic and reflexive, but comes with a
path cost determined by the acoustic modeling probability

T
= [[ n(ailsi,0)
t=1

The posterior probability 7 (s, ¢|z, 6) is computed by compos-
ing the FSTs, pushing toward the initial state (normalizing so
that probabilities sum to one), then finding the total cost of the
path through PUSH (H o C' o PT) with input string s and output
string ¢. The analytical maximum of @ (6, 6") can be computed
efficiently using the Baum-Welch algorithm, but experiments
reported in this paper did not do so, for reasons described in the
next subsection.

n(z|s', ¢",0) (15)

B. Segmental K-Means Training

The EM quality function, Q(6, "), has properties that make
it undesirable as an optimizer for L. Suppose, as often hap-
pens, that there is a poor phone sequence, ¢”, that is highly
unlikely given the correct parameter vector 6%, meaning that
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<big><nowiki>Kichwa Swahili G2P
kikubwa</nowiki> </big><nowiki>kichw: e—e
kidogo</nowiki>Picha Ukitaka ny—n Bigram phone

kutumia picha iliyopo katika —— language model

Wikipedia. Picha iko tayari katika ng—y (et 108 1)
Wikipedia commons. Hii ni jambo mb—mb
la kujaribu! Fungua makala katika nj—nd3

Fig. 5. Bigram phone language model is trained using Wikipedia text (left)
converted into phone strings using a zero-resource knowledge-based G2P
(center).

m(x, s, ¢P|60*) is very low. Suppose that the initial parame-
ter vector, 0, is less discriminative, so that m(x,s, ¢"|0) >
m(x, s, *|0"). Indeed, the best speech recognizer is a parame-
ter vector 0* that completely rules out poor transcripts, setting
m(x, s,¢P|0*) = 0; but in this case Q(0, 6*) = —oco. It is there-
fore not possible for the EM algorithm to start with parameters
0 that allow ¢”, and to find parameters #* that rule out ¢”. With
probabilistic transcription, this problem is quite common: if the
human transcribers fail to rule out ¢” (e.g., because the correct
and incorrect transcripts are perceptually indistinguishable in
the language of the transcribers), then the EM algorithm will
also never learn to rule out ¢”.

EM’s inability to learn zero-valued probabilities can be ame-
liorated by using the segmental K-means algorithm [23], which
bounds L(#') as L(6') > R(6,6):

R(97 0/) = lnw(x, s (9), ¢*(0)‘0/)
s°(0), 07 (0) = argsﬁax (s, |z, 0)

(16)
a7

Given an initial parameter vector 6, therefore, it is possible to
find a new parameter vector " with higher likelihood by com-
puting its maximum-likelihood senone sequence and phone se-
quence s*(0), ¢*(0), and by maximizing 6’ with respect to s*(9)
and ¢*(0). Maximizing R(6, ') rather than Q(6,0’) is useful
for probabilistic transcription because it reduces the importance
of poor phonetic transcripts.

C. Using a Language Model During Training

During segmental K-means, it is advantageous to incorporate
as much information as possible about the utterance language.
Define G to be an FST regresenting the modeled phone bigram
probability 7(¢’|0) = [TV _, (¢, |#!, ,0). Training results
can be improved by using H o C' o PT o GG to compute segmen-
tal K-means.

By assumption, phone bigram information is not available
from speech: we assume that there is no transcribed speech
in the target language. A reasonable proxy, however, can be
constructed from text. Fig. 5 shows text data downloaded from
Wikipedia in Swahili, and a segment of a knowledge-based G2P
for the Swahili language. Because this phone bigram will also be
used in ASR testing, it is constructed using a knowledge-based
method that requires zero test-language training data: The G2P
is constructed by looking up “Swabhili alphabet” on Wikipedia,
downloading the resulting web page, and converting it by hand
into an unweighted finite state transducer [15]. By passing the
former through the latter, it is possible to generate synthetic
phone sequences in the target language.

a:a/0.8  bb/0.8 b:b/p(b]b)
0#2/02  aaj0.2 (b)
(a)
Fig. 6. Deletion edges in the probabilistic transcript (edges with the special

null-phone symbol, (), required special handling in order to use information
from a phone language model. As shown in (a), a new type of null symbol,
“#2”, was invented to represent the output for every PT edge with an () input.
Such edges were only allowed to match with state self-loops, newly added to
the language model (b) in order to consume such non-events in the transcript.
a,b: regular phone symbols, e: null-string, p(b|a): bigram probability, 5(a):
language model backoff.

Composing PT o G is complicated by the presence of null
transitions in the PT. A null transition in the PT matches a
non-event in the language model, for which normal FST nota-
tion has no representation. In order to compose the PT with the
language model, therefore, it is necessary to introduce a spe-
cial type of “non-event” symbol, here denoted “#2”, into the
language model (Fig. 6). A language model “non-event” is a
transition that leaves any state, and returns to the same state (a
self-loop). Such self-loops, labeled with the special symbol “#2”
on both input and output language, are added to every state in G
(Fig. 6 (b)). The probabilistic transcript, then, is augmented with
the special symbol “#2” as the output-language symbol for every
null-input edge (input symbol is ¢! = ().

m

D. Maximum a Posteriori Adaptation

PT adaptation starts from a cross-lingual ASR, and adapts
its parameters to PTs in the target language. The Bayesian
framework for maximum a posteriori (MAP) estimation has
been widely applied to GMM and HMM parameter estima-
tion problems such as speaker adaptation [12]. Formally, for
an unseen target language, denote its acoustic observations
x = (x1,...,2L), and its acoustic model parameter set as 6,
then the MAP parameters are defined as:

Oiap = argmax 7(0|z) = argmax w(z|0)7(6) (18)
G G
where 7(60) is the product of conjugate prior distributions, cen-
tered at the parameters of a cross-lingual baseline ASR. In
a GMM-HMM, the acoustic model is computed by choos-
ing a Gaussian component, GY, whose mixture weight is
cjk = T g¢ (k|j), and whose mean vector and covariance
matrix are ftj;, and X;;. Maximum likelihood trains these pa-
rameters by computing v/ (5, k) = Tse at (U, k|2*, ), then accu-
mulating weighted average acoustic frames with weights given
by ~{(j,k). Segmental K-means quantizes mg: (jla',0) —
{0, 1} using forced alignment, then proceeds identically. MAP
adaptation assigns, to each parameter, a conjugate prior m(6)
with mode equal to 6 (the parameters of the cross-lingual base-
line), and with a confidence hyperparameter 7y, resulting in re-
estimation formulae that are linearly interpolated between the
baseline parameters # and the statistics of the adaptation data,
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for example:

/ TcCjk +Zé,t ’yf(jv k)

& = : = (19)
Zn (chjn + Z[,t Vi (], n))
E. Neural Networks
The NN acoustic model is 7y ¢ g (v]7, 0) o v (4),
o1 exp (w] he(v,wyp)
v (j) = (] ) (20)

07.7 Zk- exp (w]? ht (1)7 Wyh ))

whose parameters 0 = {c;,w;, w, } include the senone priors
¢;, the softmax weight vectors w;, and the parameters defining
the hidden nodes h; (v, w,, ). NNs are trained by using a GMM-
HMM to compute an initial senone posterior, g/ (j |z¢, 0), then
minimizing the cross-entropy between the estimated senone
posterior and the neural network output yf (), using gradient
descent in the direction

T P

mge (2", 0) )

Ve HE ) = 3 BTG G)
=1 yt(])

Preliminary experiments showed that forced alignment im-
proves the accuracy of NNs trained from probabilistic tran-
scripts: the best path through the PT, and the best alignment
of the resulting senones to the waveform, were both computed
using forced alignment. The resulting best senone string was
used to train a NN using Eq. (21).

2y

V. AUDIO DATA AND MISMATCHED CROWDSOURCING

Speech data were extracted from publicly available pod-
casts [43] hosted in 68 different languages. In order to generate
test corpora (in which it is possible to measure phone error rate),
advertisements were posted at the University of Illinois seeking
native speakers willing to transcribe speech in any of these 68
languages. Of the ten transcribers who responded, six people
were each able to complete one hour of speech transcription
(the other four dropped out). One additional language was tran-
scribed by workers recruited at I? R in Singapore, yielding a
total of seven languages with native transcripts suitable for test-
ing an ASR: Arabic (arb), Cantonese (yue), Dutch (nld), Hun-
garian (hun), Mandarin (cmn), Swabhili (swh) and Urdu (urd).
It is desirable to test the ideas in this paper with corpora larger
than one hour per language, but larger corpora involve problems
orthogonal to the purposes of this paper, e.g., the Babel corpora
contain telephone speech, and therefore contain far more acous-
tic background noise than the podcast corpora used in this paper.

The podcasts contain utterances interspersed with segments
of music and English. A GMM-based language identification
system was developed in order to isolate regions that corre-
spond mostly to the target language, which were then split into
5-second segments to enable easy labeling by the native tran-
scribers. Native transcribers were asked to omit any 5-second
clips that contained significant music, noise, English, or speech
from multiple speakers. Resulting transcripts covered 45 min-
utes of speech in Urdu and 1 hour of speech in the remaining six
languages. The orthographic transcripts for these clips were then
converted into phonemic transcripts using language-specific

TABLE I
LABEL PHONE ERROR RATE (LPER) OF PROBABILISTIC TRANSCRIPTS FOR
UNIVERSAL PHONE SET, TARGET-LANGUAGE PHONE SET,
TEXT-BASED PHONE BIGRAM

Method nld cmn urd arb hun swh
Universal set 87.4 88.86 9795 79.04 9287  88.56
Target set 78.12 87.4 87.81 66.39  84.78  59.83

Phone bigram ~ 70.43  70.88  64.67 6529 6398 5045

dictionaries and G2P mappings. In order to make it possible
to transfer ASR from training languages (which have native
transcripts) to a test language (that has no native transcripts),
the phone set must be standardized across all languages; for this
purpose, the phone set was based on the international phonetic
alphabet (IPA; [21]). Similarly, in order to transfer ASR from
training languages to a test language, the training transcriptions
must be converted to phonemes using a grapheme-to-phoneme
transducer (G2P). G2Ps were therefore assumed to be available
in all training languages, but not in the test language. Since
these G2Ps are only used for training and not test languages, five
of them (Arabic, Dutch, Hungarian, Cantonese and Mandarin)
were trained using lexical resources, and only two (Urdu and
Swabhili) were constructed using the zero-resource knowledge-
based method described in Section IV-C. English words in each
transcript are identified and converted to phones with an English
G2P trained using CMUdict [28], then other words are converted
into phonetic transcripts using language-dependent dictionaries
and G2Ps. The Arabic dictionary is from the Qatari Arabic
Corpus [11], the Dutch dictionary is from CELEX v2 [1], the
Hungarian dictionary was provided by BUT [14], the Can-
tonese dictionary is from I?R, and the Mandarin dictionary
is from CALLHOME [6]. For each language, we chose a
random 40/10/10 minutes split into training, development and
evaluation sets.

Mismatched transcripts were collected from annotators on
Amazon Mechanical Turk. Each 5-sec speech segment was fur-
ther split into 4 non-overlapping segments to make the non-
native listening task easier. The crowdsourcing task was set
up as described in [25]; briefly, the segments were played to
annotators, who transcribed what they heard (typically in the
form of nonsense syllables) using English orthography. Each
segment was transcribed by 10 distinct annotators. More than
2500 annotators participated in these tasks, with roughly 30%
of them claiming to know only English (Spanish, French, Ger-
man, Japanese, Chinese were some of the other languages they
reported knowing).

The quality of a probabilistic transcript derived from mis-
matched crowdsourcing is significantly improved by using a
phone language model during the decoding process (p(¢) in
Eq. (2)). Phone language models for each target language were
computed from Wikipedia texts using the methods described in
Section IV-C. Label phone error rate (LPER) of the 1-best path
through the resulting PTs are shown in Table I, computed with
reference to a native transcript in each language. As shown, the
use of a phone language model, derived from Wikipedia text,
reduces LPER by about 10% absolute, in each language.
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Fig. 7. LPER plotted against entropy rate estimates of phone sequences in
three different languages.

LPER of the 1-best path does not accurately reflect the ex-
tent of information in the PTs that can be leveraged during
ASR adaptation. Consider, for example, the four Urdu phones
[p, p",p,b]. An attentive English-speaking transcriber must
choose between the two letters <p,b> in order to represent any
of these four phones. The misperception G2P therefore maps the
letters <p,b> into a distribution over the phones [p, p", p, b"].
There is no reason to expect that the maximizer of p(¢|1) is
correct, but there is good reason to expect the correct answer to
be a member of a short N-best list (N < 4 phones/grapheme).
A fuller picture is therefore obtained by pruning the PT to a
small number of paths, then searching for the most correct path
in the pruned PT. One useful metric is entropy per segment, de-
fined as H'(®) = — 2 >0 | 3 log, pge (u), e.g., a PT in
which every segment has two equally probable options would
measure H’(®) = 1. Fig. 7 shows the trend of LPER (for three
languages) obtained by pruning the PT at several different levels
of H'(®). LPER rates drop significantly across all languages
within 1 bit of entropy per phone, illustrating the extent of in-
formation captured by the PTs.

VI. EEG RECORDING AND ANALYSIS

To compute distinctive feature weights for the misperception
transducer shown in Egs. (4) and (5), cortical activity in re-
sponse to non-native phones was recorded by an EEG. Signals
were acquired using a BrainVision actiCHamp system with 64
channels and 1000 Hz sampling frequency. All procedures were
approved by the University of Washington Institutional Review
Board.

Auditory stimuli were consonant-vowel (CV) syllables rep-
resenting consonants of three languages: English, Dutch and
Hindi. The inclusion of only two non-English languages was
dictated by the relatively high number of repetitions needed
for good signal-to-noise ratio from averaged EEG recordings.
The choice of Dutch and Hindi was made based on language
phonological similarity, defined as the number of many-to-one
mappings (Nyr20 ) between the English phoneme inventory and
the non-English phoneme inventory. Many-to-one mappings are
expected to pose a problem for the non-native transcription task
being modeled by the misperception transducer, so to test the
contribution of EEG we chose languages that differed greatly
in this property. Using distinctive feature representations of the
phonemes in each inventory from the PHOIBLE database [34],
a many-to-one mapping was defined by finding, for each non-
English phoneme ¢, the English phoneme ¢*(¢) to which it

TABLE II
FREQUENCY OF MANY-TO-ONE MAPPINGS Njro0 BETWEEN OTHER
LANGUAGES’ PHONEME INVENTORIES AND THE INVENTORY OF ENGLISH.
LANGUAGES ARE REPRESENTED BY THEIR ISO 639-3 CODES

Language Naroo Language Nyrso Language Naroo

spa 0.862 yue 1.280 cmn 1.531

por 1.152 jpn 1.333 amh 1.844

nld 1.182 vie 1.393 hun 1.857

deu 1.258 kor 1.429 hin 2.848
TABLE III

CONSONANT PHONES USED IN THE EEG EXPERIMENT REPRESENTED USING
IPA. VERTICAL ALIGNMENT OF CELLS SUGGESTS MANY-TO-ONE MAPPINGS
EXPECTED BASED ON DISTINCTIVE FEATURE VALUES

L1l

Consonants used in the EEG experiment ‘

eng|| p t k |[tf|v|0|z|m

nld || p t ¥ vl [z|m| n
hin[[p blt d ¢ dlk g| [v] [ [m[n]n
eng || p" th KMoyt fleff]1 |1
nld || p" th Ky f (]| R]
hin bl .Eh th qﬁ Cl_ﬁ Kb gﬁ

is most similar. The number of many-to-one collisions is then
defined as

> (1) =¥ (¢2)]

P1# b2

1
Ny2o = om (22)

where |Qy | is the size of the English phoneme inventory, and
[[] is the unit indicator function. The frequency of many-to-
one mappings is listed in Table II for several languages. Hindi
was chosen for having a large number of many-to-one map-
pings with English, while Dutch has relatively few. Note that,
although Hindi podcasts were not included in the training data
described in Section V, colloquial spoken Hindi and Urdu are
extremely similar phonologically [26], and considering that the
auditory stimuli for the EEG portion of this experiment are sim-
ple CV syllables, it is reasonable to consider Hindi and Urdu as
equivalent for the purpose of computing feature weights for the
misperception transducer.

To construct the auditory stimuli, two vowels and several
consonants were selected from the phoneme inventory of each
language (18 consonants for English, 17 for Dutch, and 19 for
Hindi). Consonants were chosen to emphasize differences in the
many-to-one relationships between English-Dutch and English-
Hindi, while maintaining roughly equal numbers of consonants
for each language. The consonants chosen for each language are
given in Table III; the vowels chosen were the same for all three
languages (/a/ and /e/).

Two native speakers of each language (one male and one
female) were recorded (44100 Hz sampling frequency, 16 bit
depth) speaking multiple repetitions of the set of CV syllables
for their language. Three tokens of each unique syllable were
excised from the raw recordings, downsampled to 24414 Hz
(for compatibility with the presentation hardware, Tucker Davis
Technologies RP2.1), and RMS normalized. Recorded syllables
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Fig. 8. Classifiers were trained to observe EEG signals, and to classify the
distinctive features of the phone being heard. Equal error rates are shown for
English (the language used in training; train and test data did not overlap),
Dutch, and Hindi. Dashed line shows chance = 50%.

had an average duration of 400 ms, and were presented via
headphones to one monolingual American English listener. The
stimuli were presented in 9 blocks of 15 minutes per block,
for a total of 135 minutes. Syllables were presented in random
order with an inter-stimulus interval of 350 ms. Twenty-one
repetitions of each syllable were presented, for a grand total of
9072 syllable presentations.

EEG recordings were divided into 500 ms epochs. The
epoched data were coded with a subset of distinctive features that
minimally defined the phoneme contrasts of the English conso-
nants. Where more than one choice of features was sufficient
to define those contrasts, preference was given to features that
reflect differences in temporal as opposed to spectral features
of the consonants, due to the high fidelity of EEG at reflect-
ing temporal envelope properties of speech [9]. The final set
of features chosen was: continuant, sonorant, delayed release,
voicing, aspiration, labial, coronal, and dorsal.

Epoched and feature-coded EEG data for the English syllables
only were used to train a support vector machine classifier for
each distinctive feature. The classifiers were then used (without
re-training) to classify the EEG responses to the Dutch and
Hindi syllables. Fig. 8 shows equal error rates of these classifiers
when applied to the three languages. EER of the classifier when
applied to English phones is comparable to those reported in [9],
the only prior work to attempt a recognition of speech phonemes
from EEG of the listener.

Eq. (4) defines a log-linear model of p(1)|¢), the probabil-
ity that a non-English phoneme ¢ will be perceived as En-
glish phoneme 1. Denote by py (1|¢) the model of Eq. (4)
with uniform binary weights for all distinctive features. De-
note by prrc (¥|¢) the same model, but with weights wy, de-
rived from EEG measurements (Eq. (5)). Fig. 9 shows these
two confusion matrices: py (¢|¢) on the left, pprc (1|¢) on
the right. The entropy of the binary weighting, py (¥|¢), is
too low: when a Dutch phoneme ¢ has a nearest-neighbor
1" (¢) in English, then few other phonemes are considered
to be possible confusions. pppe(1|¢) has a very different
problem: since distinctive feature classifiers have been trained
for only a small set of distinctive features, there are large
groups of phonemes whose confusion probabilities can not
be distinguished (giving the figure its block-matrix structure).
The faults of both models can be ameliorated by averaging
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Fig. 9. Phone confusion probabilities between English and Dutch phones

using models in which the negative log probability is proportional to unweighted
or weighted distance between the corresponding distinctive feature vectors. Left:
unweighted. Right: feature weights equal negative log confusion probability of
EEG signal classifiers.

them in some way, e.g., by computing the linear interpolation
pr(016) = (1 — @)pu (¥16) + api i (1]9) for some constant
0<a<l.

In order to evaluate the effectiveness of the EEG-induced mis-
perception transducer we looked at the LPER of mismatched
crowdsourcing for Dutch when performed using 1) a multi-
lingual misperception model p(1|¢) (the machine translation
model described in Section III-B), 2) feature-based mispercep-
tion transducer computed using binary weighting, py (¢|), or
3) EEG-induced transducer combined with the feature-based
transducer, p;(1)|¢). Both method (2) and method (3) required
the use of a G2P in order to compute p(A|¢)): the Dutch G2P was
estimated using the CELEX database, while the Hindi G2P was
estimated using the zero-resource knowledge-based method de-
scribed in Section IV-C. The constant o = 0.29 was chosen as
the average of the values selected by all folds in a leave-one-out
cross-validation. LPER of the multilingual model was 70.43%
(as shown in Table I), of the feature-based model, 69.44%, and
of the EEG-interpolated model, 68.61%.

VII. AUTOMATIC SPEECH RECOGNITION

ASR was trained in four target languages in topline, baseline,
and experimental conditions. Training methods are detailed in
Section VII-A. Results are desribed in Section VII-B.

A. ASR Methods

Automatic speech recognition (ASR) systems were trained
in four languages (hun = Hungarian, cmn = Mandarin, swa
= Swahili, yue = Cantonese), using three different types of
transcription. First, a topline MONOLINGUAL system was trained
in each language using speech transcribed by a native speaker
of that language. Second, a baseline CL (cross-lingual) system
was trained using data from other languages, and tested in the
target language. Third, the experimental PT-ADAPT system was
created by adapting the cross-lingual system to probabilistic
transcriptions in the target language. The MONOLINGAL topline
system is trained using native transcripts, and converted to the
phone set of the test language using the G2Ps described in
Section V. These resoures were not available to the CL or PT-
ADAPT systems, which were not permitted to use any natively
transcribed training data in the test language.
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Audio data, native transcripts, and probabilistic transcripts
are as described in Section V. The MONOLINGUAL topline sys-
tem was trained using 40 minutes of training data, then stream
weights and insertion penalties were calculated using 10 min-
utes of development test data. Monolingual systems were trained
using a maximum likelihood (ML) criterion using the 40 minute
in-language training set: GMM parameters were initialized us-
ing amonophone system trained on the same 40 minutes, NN pa-
rameters were initialized using a restricted Boltzmann machine
trained on five hours of unlabeled audio in the same language.
The CL baseline systems were each trained using 40 minutes
of training data in languages other than the test language. CL
systems were trained using ML, maximum mutual information
(MMI), minimum phone error rate (MPE), and state-based min-
imum Bayes risk (sMBR, [13]) training criteria. The PT-ADAPT
system was initialized using the CL system (ML training), then
adapted to the target language using PTs based on mismatched
crowdsourcing (these transcripts are described in detail in Sec-
tion V). Probabilistic transcripts based on EEG were not used to
adapt ASR, because it is not yet possible to use EEG to generate
probabilistic transcripts on a scale sufficient for ASR adaptation.

All systems were trained using the Kaldi [36] toolkit. Acous-
tic features consisted of MFCC (13 features), stacked +3 frames
(13 x 7 = 91 features), reduced to 40 dimensions using LDA
followed by fMLLR. GMM-HMM systems directly observed
this 40-dimensional vector; NN-HMM systems computed fM-
LLR + d + dd stacked +5 frames (40 x 3 x 11 = 1320 fea-
tures/frame). All systems used tied triphone acoustic models,
based on a decision tree with 1200 leaves. Each GMM-HMM
used a library of 8000 Gaussians, shared among the 1200 leaves.
Each NN-HMM used six hidden layers with logistic nonlin-
earities, and with 1024 nodes per hidden layer, followed by a
softmax output layer with 1200 nodes.

The PT-ADAPT system was adapted using MAP adaptation
(Section IV-D) co mputed over weighted finite state transducers
in Kaldi [36]. In order to efficiently carry out the required op-
erations on the cascade H o C o PT o (G, the cascade for PT
includes an additional wFST restricting the number of consecu-
tive deletions of phones and insertions of letters (to a maximum
of 3). MAP adaptation for the acoustic model was carried out
for a number of iterations (12 for yue & cmn, 14 for hun & swh,
with a re-alignment stage in iteration 10).

B. ASR Results

Tables IV and V present phone error rates (PERs) for four
different languages. The first column shows the phone error rate
(PER) of monolingual topline systems: evaluation test results are
followed by development test results in parentheses. The column
titled CL lists cross-lingual baseline error rates. The column
labeled ST lists the PERs of self-trained ASR systems. The
column headed PT-ADAPT in Table IV lists PERs from CL ASR
systems that have been adapted to PTs derived from mismatched
crowdsourcing. Phone error rates are reported instead of word
error rates because, in order to compute a word error rate, it
is necessary to have either native transcriptions in the target
language (thereby permitting the training of a grapheme-based

recognizer) or a pronunciation lexicon in the target language.
These resources are used by the monolingual topline, but not by
any of the baseline or experimental systems.

The monolingual ASR is trained using only 40 minutes of
audio and transcript data per language, but performs reason-
ably well (31.58% average PER, NN-HMM). The cross-lingual
ASRs, however, perform poorly. Using a text-based phone bi-
gram (denoted TEXT) gives significant improvement over a
cross-language phone bigram (denoted CL), but significantly
underperforms a system that has seen the test language during
training. This is true even if the system has seen closely related
languages during training: the Cantonese cross-lingual system
has seen Mandarin during training, and the Mandarin system
has seen Cantonese during training, but neither system is able
to generalize well from its six training languages to its test
language. Three different types of discriminative training were
tested. MMI performs consistently worse than MPE and sMBR,
and is therefore not listed in Table I'V. Averaged across all lan-
guages and systems shown in Table IV, the development-test
PERs of ML, MPE, and sMBR training are 73.43%, 73.04%,
and 72.98% respectively; differences are not statistically signif-
icant, therefore only the ML system was tested on evaluation
test data.

Evaluation test PER of each experimental system (columns
ST and PT-ADAPT, 20 systems) was compared to evaluation
test PER of the corresponding CL system (ML training, TEXT
LM) using the MAPSSWE test of the sc_stats tool [35].
Each neural net PT-ADAPT system was also compared to the
corresponding ST system (4 comparisons). There are there-
fore 24 independent statistical comparisons in Tables IV and V;
the study-corrected significance level is 0.05/24 = 0.002.

Self-training was only performed using NN systems; no self-
training of GMMs was performed, because previous studies [17]
reported it to be less effective. The Swahili ST system was
judged significantly better than CL at a level of p = 0.002 (de-
noted *); the Cantonese, Mandarin and Hungarian ST systems
were not significantly better than CL at this level.

The relative reductions in PER of the PT-ADAPT system com-
pared to both CL and ST baselines were all statistically signif-
icant at p < 0.001 (denoted **). This suggests that adaptation
with PTs is providing more information than that obtained by
model self-training alone.

PT-adapt GMM-HMM systems were trained using four differ-
ent training criteria: ML, MMI, MPE and sMBR. MMI training
consistently underperformed MPE and sMBR, and is therefore
not shown. MPE training of PT-ADAPT systems improves their
PER by a little more than 1% on average, comparable to the
improvement provided to CL baseline systems.

PER improvements for Swahili are larger than for the other
three languages. We conjecture this may be due to the relatively
good mapping between Swahili’s phone inventory and that of
English. For example: all Swahili vowel qualities are also found
in English, and the Swabhili phonemes that would be unfamiliar
to an English speaker (prenasalized stops, palatal consonants)
have representations in English orthography that are fairly nat-
ural (“mb”, “nd”, etc. for prenasalized stops; “tya”, “chya”,
“nya”, etc. for palatals). In contrast: Mandarin, Cantonese, and
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TABLE IV
PHONE ERROR RATE OF GMM-HMMS: EVALUATION TEST (DEVELOPMENT TEST). AM = ACOUSTIC MODEL, LM = LANGUAGE MODEL, ML = MAXIMUM
LIKELIHOOD, SMBR = STATE-BASED MINIMUM BAYES RISK. MAPSSWE W/RESPECT TO CL: ** DENOTES p < 0.001

AM Monolingual Cross-Lingual (CL) CL + PT adaptation (PT-ADAPT)

LM Transcript CL Text Text

Training ML ML MPE sMBR ML MPE sMBR ML MPE sMBR

yue 3277 (34.61)  79.64 (79.83)  (79.49)  (79.48)  68.40(68.35)  (68.02)  (66.94)  57.20%* (56.57)  56.33%*(55.70)  55.97** (55.51)

hun 39.58 (39.77)  77.13(77.85)  (78.67)  (78.89)  68.62(66.90)  (67.09)  (67.41)  56.98%* (57.26)  57.05%* (56.95)  57.05%* (57.18)

cmn 32.21(26.92)  83.28(82.12)  (81.60)  (81.76)  71.30(68.66)  (66.35)  (66.02)  58.21%*(57.85)  55.17%* (54.49)  55.07** (54.94)

swh 3533 (46.51) 8299 (81.86)  (81.80)  (82.32)  63.04(64.73)  (63.48)  (62.99)  44.31%* (48.88)  42.80%* (46.77)  43.61%* (46.55)
TABLE V

PER OF NN-HMMS: EVALUATION TEST (DEVELOPMENT TEST). ML = MAXIMUM LIKELIHOOD, MPE = MINIMUM PHONE ERROR, SMBR = STATE-LEVEL
MINIMUM BAYES RisK. MAPSSWE W/RESPECT TO CL. AM W/ TEXT-BASED LM: * MEANS p < 0.002, NS = NOT SIGNIFICANT.
** DENOTES A SCORE LOWER THAN BOTH CL AND ST AT p < 0.001

AM Monolingual Cross-Lingual (CL) Self-training (ST) CL + PT adaptation (PT-ADAPT)
LM Transcript CL Text Text Text

Training ML ML MPE sMBR ML MPE sMBR ML ML

yue 27.67 (28.88)  78.62(77.58)  (77.86)  (77.92)  66.59 (65.28)  (65.76)  (65.76) 63.79ns (62.46) 53.64** (53.80)

hun 35.87 (36.58) 7598 (76.44)  (77.56)  (77.61)  66.43 (66.58)  (65.52)  (65.67) 63.53ns (63.50) 56.70%* (58.45)

cmn 27.80(23.96)  81.86(80.47)  (81.02)  (80.93)  65.77 (64.80)  (63.90)  (63.82) 64.90ns (64.00) 54.07*+* (53.13)

swh 3498 (41.47) 8230 (81.18)  (81.30)  (81.24)  65.30(65.04)  (63.78)  (63.99) 58.76% (59.81) 44.73%* (48.60)

Hungarian each have at least two vowel qualities not found in
English; Mandarin and Cantonese have many diphthongs not
found in English; and some of the consonant phonemes (e.g.,
Mandarin retroflexes) do not have representations in English
orthography that are obvious or straightforward.

VIII. DiSCUSSION

Models of human neural processing systems have often been
used to inspire improvements in machine-learning systems (for
a catalog of such approaches and a warning, see [4]). These
systems are often called neuromorphic, because the system
is engineered to mimic the behavior of human neural sys-
tems. In contrast to that approach, our incorporation of EEG
signals into ASR resonates with the Human Aided Comput-
ing approach used in computer vision [41], [49]. Together
with our EEG work presented here, this class of approach
represents a less explored direction for design of machine
learning systems, whereby recorded neural data (rather than
neuro-inspired models) are used as a source of prior informa-
tion to improve system performance. Therefore, our work here
suggests that, by thinking about the kinds of prior information
required by a machine learning system, engineers and neurosci-
entists can work together to design specific neuroscience experi-
ments that leverage human abilities and provide information that
can be directly integrated into the system to solve an engineering
problem.

NN-HMM outperforms the GMM-HMM in all baseline con-
ditions, but not always when adapted using PTs. Table V shows
that PT adaptation improves the NN-HMM, but the benefit to a

NN-HMM is not as great as the benefit to a GMM-HMM; for
this reason, the accuracy of the PT-adapted GMM-HMM catches
up to that of the NN-HMM. Preliminary analysis suggests that
the NN is more adversely affected than the GMM by label noise
in the PTs. A NN is trained to match the senone posterior prob-
abilities (s |x’, ', ) computed by a first-pass GMM-HMM.
Many papers have demonstrated that entropy in the senone pos-
teriors is detrimental to NN training. In PT adaptation, however,
entropy is unavoidable. Forced alignment is better than using
soft alignment, but is not sufficient to make PT adaptation of the
NN-HMM always better than that of the GMM-HMM. Table I
showed that PTs computed using a text-based phone bigram
language model only achieve LPER in the range 50.45-70.88%,
depending on the language. These high error rates are, perhaps,
incomprehensible to most speech technology experts, who are
accustomed to think of human transcriptions as having 0.0% er-
ror rate, but there is good reason for this: the transcribers don’t
speak the target language, so they find some of its phone pairs to
be perceptually indistinguishable. Future work will seek meth-
ods that can improve the robustness of NN training in the face
of label noise.

The primary conclusion of this article is economic. In most
of the languages of the world, it is impossible to recruit native
transcribers on any verified on-line labor market (e.g., crowd-
sourcing). Without on-line verification, native transcriptions can
only be acquired by in-person negotiation; in practice, this has
meant that native transcriptions are acquired only for languages
targeted by large government programs. Native transcription
(NT) permits one to train an ASR with PER of 31.58% (aver-
age, first column of Table V). Self-training (ST), by contrast,
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costs very little, and benefits little: average PER is 62.75%
(Table V). Probabilistic transcription (PT) is a point intermedi-
ate between NT and ST: average PER is 52.29%, cost is typically
$500 per ten transcribers per hour of audio. PT is therefore a
method within the budget of an individual researcher. We expect
that an individual researcher with access to a native population
will wish to combine NT (as many hours as she can convince
her informants to provide) with PT (on perhaps a much larger
scale); future research will study the best strategy for combining
these sources of information if both are available.

IX. CONCLUSION

When a language lacks transcribed speech, other types of in-
formation about the speech signal may be used to train ASR.
This paper proposes compiling the available information into a
probabilistic transcript: a pmf over possible phone transcripts
of each waveform. Three sources of information are discussed:
self-training, mismatched crowdsourcing, and EEG distribution
coding. Auxiliary information from EEG is used, together with
text-based phone language models, to improve the decoding of
transcripts from mismatched crowdsourcing. Self-trained ASR
outperforms cross-lingual ASR in one of the four test languages
(Swahili). ASR adapted using mismatched crowdsourcing out-
performs both cross-lingual ASR and self-training in all four of
the test languages.
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