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Abstract—This paper addresses the determined blind source
separation problem and proposes a new effective method unifying
independent vector analysis (IVA) and nonnegative matrix factor-
ization (NMF). IVA is a state-of-the-art technique that utilizes the
statistical independence between sources in a mixture signal, and
an efficient optimization scheme has been proposed for IVA. How-
ever, since the source model in IVA is based on a spherical multi-
variate distribution, IVA cannot utilize specific spectral structures
such as the harmonic structures of pitched instrumental sounds. To
solve this problem, we introduce NMF decomposition as the source
model in IVA to capture the spectral structures. The formulation
of the proposed method is derived from conventional multichannel
NMF (MNMF), which reveals the relationship between MNMF and
IVA. The proposed method can be optimized by the update rules
of IVA and single-channel NMF. Experimental results show the ef-
ficacy of the proposed method compared with IVA and MNMF in
terms of separation accuracy and convergence speed.

Index Terms—Blind source separation, determined, indepen-
dent vector analysis, nonnegative matrix factorization.

I. INTRODUCTION

B LIND source separation (BSS) is a technique for sepa-
rating specific sources from a recorded sound without any

information about the recording environment, mixing system, or
source locations. In a determined or overdetermined situation
(number of microphones ≥ number of sources), independent
component analysis (ICA) [1] is the method most commonly
used to solve the BSS problem, and many ICA-based tech-
niques have been proposed [2]–[6]. On the other hand, for an
underdetermined situation (number of microphones < number
of sources) including monaural recording, nonnegative matrix
factorization (NMF) [7], [8] has received much attention [9],
[10]. BSS is generally used to solve speech separation prob-
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lems, but recently the use of BSS for music signals has also
become an active research area [11].

As a means of solving the permutation problem [12]–[15]
(grouping the components of the same source signal over fre-
quency bins) in frequency domain ICA (FDICA), independent
vector analysis (IVA) [16]–[18] has been proposed. Recently, a
fast and stable optimization scheme based on the auxiliary func-
tion technique has been proposed for FDICA [19] and IVA [20].
Such ICA-based methods assume independence between the
sources to estimate a demixing matrix. In addition, IVA gener-
ally assumes a spherical multivariate distribution (e.g., spherical
Laplace distribution) as the source model to ensure higher-order
correlations between frequency bins in each source. This source
model does not include any specific information on the spectral
structures of sources, meaning that it can be generally used for
various types of sound. However, some sources have specific
spectral structures such as the harmonic structure of instrumen-
tal sounds or music tones. Therefore, the introduction of a better
source model has the potential to improve the source separation
performance.

In NMF-based methods, NMF decomposes the given spec-
trogram into several spectral bases and temporal activations,
which must be clustered in every source to achieve source sepa-
ration. One effective way of achieving this is to utilize a sample
sound of the target signal [21]–[23]. However, such supervision
cannot be utilized in BSS. To solve this problem, multichan-
nel NMF (MNMF) has been proposed [24]–[30]. In particular,
MNMF methods [27]–[30] treat convolutive mixtures similarly
to FDICA and IVA and estimate a mixing system for the sources,
which is utilized for the clustering of bases. In these MNMFs, the
spatial covariance [31], [32], which is the covariance matrix of a
zero-mean multivariate Gaussian distribution, has been utilized
to model the mixing conditions of the recording environment.
In [27], an MNMF method with rank-1 spatial covariance for
each source was first proposed (hereafter referred to as Ozerov’s
MNMF), where the rank-1 constraint of the covariance matrix
corresponds to the assumption of instantaneous mixtures in the
frequency domain. Ozerov’s MNMF also includes a full-rank
spatial covariance that models an additive noise component.
The mixing matrix, NMF variables, and noise component are
simultaneously estimated by update rules based on expectation-
maximization (EM) and multiplicative update (MU) algorithms.
As a new method of modeling for more reverberant mixture sig-
nals, MNMF with a full-rank spatial covariance [32] for each
source has been proposed [28], [30]. In particular, the MNMF in
[30] (hereafter referred to as Sawada’s MNMF) can be consid-
ered as a natural extension of simple NMF because Hermitian
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positive semi-definiteness is utilized as a multichannel counter-
part of nonnegativity, and new MU update rules are derived in
a generic form. However, it was reported that the algorithms
[27]–[30] are sensitive to the initial values in source separation
tasks.

In this paper, we only focus on the determined BSS problem,
and propose a new effective method unifying IVA and NMF.
The proposed method exploits NMF decomposition to capture
the spectral structures of each source as the source model in
IVA. Intriguingly, the formulation of the proposed method can
be derived from Sawada’s MNMF by introducing a rank-1 spa-
tial covariance for each source. This fact reveals the relation-
ship between MNMF and IVA. Also, the proposed method can
be optimized by the fast and stable update rules of IVA and
conventional single-channel NMF. Experimental results show
the efficacy of the proposed method compared with IVA and
conventional MNMFs in terms of separation performance and
convergence speed.

The rest of this paper is organized as follows. In Section II,
conventional IVA and MNMFs are described. In Section III,
we propose a new method unifying IVA and NMF and derive
its update rules based on the auxiliary function technique. In
Section IV, we discuss the inherent difference between the con-
ventional and proposed methods on the basis of a simple exper-
iment using artificial sources. In Section V, the efficacy of the
proposed method is confirmed from the results of BSS experi-
ments using speech and music signals. Following a discussion
on the results of the experiments, we present our conclusions
in Section VI. Note that this paper is partially based on an in-
ternational conference paper [33] written by the authors. The
contribution of this paper is that we provide a new analysis of
the proposed method and report enhanced experiments carried
out under various conditions.

II. CONVENTIONAL METHODS

A. Formulation

Let the numbers of sources and microphones (channels) be N
and M , respectively. The multichannel source and the observed
and separated signals in each time-frequency slot are described
as

sij = (sij,1 · · · sij,N )t , (1)

xij = (xij,1 · · ·xij,M )t , (2)

yij = (yij,1 · · · yij,N )t , (3)

where i=1, . . . , I; j =1, . . . , J ; n=1, . . . , N ; and
m=1, . . . ,M are the integral indexes of the frequency
bins, time frames, sources, and channels, respectively, t denotes
the vector transpose, and all the entries of these vectors are
complex values. When the window size in a short-time Fourier
transform (STFT) is sufficiently long compared with the
impulse responses between sources and microphones, we can
approximately represent the observed signal as

xij = Aisij , (4)

where Ai =(ai,1 . . . ai,N ) is an M×N mixing matrix and
ai,n is the steering vector for each source. For the case of
an overdetermined signal (M >N ), a standard approach is to

Fig. 1. Conceptual model of IVA (N =M =2).

apply principal component analysis (PCA) in advance to reduce
the dimension of xij so that M =N . If the mixing matrix Ai

is invertible and M =N , we can define the demixing matrix
W i =(wi,1 . . . wi,M )h as the inverse of the mixing matrix,
and the separated signal can be represented as

yij = W ixij , (5)

where h denotes the Hermitian transpose.

B. Independent Vector Analysis

IVA [16]–[18] is a multivariate extension of FDICA and
can solve the permutation problem [12]–[14]. These ICA-based
methods including IVA can only be applied to the determined
situation (M =N ) with rank-1 spatial model because they esti-
mate demixing matrix W i . For simplicity, in this section, let M
be equal to N . In IVA, we assume multivariate vector variable
yj,m and source sj,m that consists of all frequency bins for time
frame j and source m as

yj,m = (y1j,m . . . yI j,m )t , (6)

sj,m = (s1j,m . . . sI j,m )t . (7)

Also, a super-Gaussian spherical multivariate distribution is as-
sumed as the source prior p(sj,m ). In the literature [16]–[18],
the following spherical Laplace distribution is often used:

p(sj,m ) = ρ exp

⎛
⎝−
√√√√∑

i

∣∣∣∣
sij,m

rj,m

∣∣∣∣
2
⎞
⎠ , (8)

where ρ is a normalization term and rj,m is the uniform variance
over the frequency bins, which corresponds to the power spec-
trum of each source (source model). Such spherical symmetry of
the source prior ensures a higher-order correlation between fre-
quency bins. Fig. 1 shows the conceptual model of IVA. IVA can
be used to estimate the demixing matrix W i by assuming both
independence between the vectors x1 and x2 and a higher-order
correlation between the frequency bins in each vector.

The cost function of IVA is defined as follows:

QIVA(W i) =
∑
m

1
J

∑
j

G(yj,m ) −
∑

i

log |det W i |, (9)

where J is the number of time frames and G(yj,m ) is a contrast
function. When yj,m has the distribution p(yj,m ), the contrast
function G(yj,m ) is given as − log p(yj,m ). If we assume that
the source components have the spherical Laplace distribution
(8), G(yj,m )=‖yj,m‖2 can be used, where ‖ · ‖2 denotes the
L2 norm. For the minimization of (9), fast and stable update
rules (hereafter referred to as iterative projection: IP) based on
the auxiliary function technique have been proposed [20].



1628 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 9, SEPTEMBER 2016

Fig. 2. Decomposition model of simple NMF (L=2).

For speech signal separation, IVA can achieve better sepa-
ration performance than FDICA [16]. However, since only the
higher-order correlation defined in (8) is utilized as the source
model, IVA cannot treat the specific harmonic structures of each
source and lacks flexibility. For this reason, IVA is not suitable
for sources that have characteristic (specific) spectral structures,
such as instrumental sounds or music signals.

C. Nonnegative Matrix Factorization

NMF is a type of sparse representation algorithm that de-
composes a nonnegative matrix into two nonnegative matrices
as

D ≈ TV , (10)

where D(∈ RI×J
≥0 ) is a nonnegative data matrix, which is the

power spectrogram used when applying NMF to an acoustic
signal, T (∈ RI×L

≥0 ) is a basis matrix, which includes bases (fre-
quently appearing spectral patterns in D) as column vectors,
and V (∈ RL×J

≥0 ) is an activation matrix, which involves time-
varying gains of each basis in T as row vectors. Also, L is
the number of bases. Fig. 2 depicts the decomposition model of
NMF, where the number of bases L equals two. In this figure, the
basis matrix includes two types of spectral pattern as the bases
to represent the observed matrix using time-varying gains in the
activation matrix. In the decomposition of NMF, the variables
T and V are optimized by minimizing the cost function. In this
paper, we only focus on the following Itakura-Saito-divergence-
based cost function [34]:

QNMF =
∑
i,j

(
dij∑
l tilvlj

+ log
∑

l

tilvlj

)
, (11)

where constant terms are omitted, l=1, . . . , L is the integral
index of the spectral bases, and dij , til , and vlj are the nonneg-
ative entries of D, T , and V , respectively. The MU rules for T
and V that minimize (11) are given by [34]

til ← til

√√√√
∑

j dij vlj (
∑

l ′ til ′vl ′j )
−2

∑
j vlj (
∑

l ′ til ′vl ′j )
−1 , (12)

vlj ← vlj

√∑
i dij til (

∑
l ′ til ′vl ′j )

−2

∑
i til (
∑

l ′ til ′vl ′j )
−1 . (13)

The source separation problem using NMF can be considered
as how to cluster the decomposed bases into specific sources,
and in the blind situation, it is still a very difficult problem.
However, if the observed signal is obtained in a multichannel
format, we can use information between channels (differences
between gains and phases) for the clustering of the spectral
bases. For this reason, the multichannel extension of NMF has
been proposed as described in the next section.

D. Existing Works Related to Multichannel Extensions of NMF

There have been several multichannel extensions of NMF
[27]–[30] and related methods [31], [32]. In these methods, the
probability distribution of multichannel STFT coefficients xij is
modeled by a phase-invariant multivariate zero-mean Gaussian
distribution with a time-frequency variant covariance matrix as
follows:

p(xij ) =
1

|πR
(x)
ij |

exp
(
−xh

ijR
(x)
ij

−1
xij

)
, (14)

where R
(x)
ij is called the spatial covariance of the observed

multichannel signal. Existing MNMFs and their related works
can be characterized in terms of two features: the spatial model
R

(x)
ij and the modeling of source spectrograms.
Table I summarizes the models of the spatial covariance and

the power spectrograms in the existing methods. The models
proposed in [31], [32] have the most general representations.
These methods decompose the spatial covariance R

(x)
ij into the

power spectrogram rij,n and the time-invariant spatial covari-

ance R
(s)
i,n for each source, where R

(s)
i,n represents the spatial

position and the spatial spread of the nth source. Several types
of R

(s)
i,n have been investigated including rank-1 and full-rank

matrices. Ozerov’s MNMF [27] was the first method to model
the power spectrogram rij,n using NMF decomposition, namely,
rij,n =

∑
l til,n vlj,n . In this method, the sourcewise spatial co-

variance R
(s)
i,n is constrained by a rank-1 matrix, and an additive

noise component bij is also assumed. The update rules of the
variables based on both EM and MU algorithms have been de-
rived. In the EM algorithm, an annealing technique for the noise
component bij has been proposed because the spatial covari-

ance for noise R
(b)
i is necessary for the stable optimization of

Ai . Ozerov’s MNMF was extended to a full-rank spatial model
in [28]. Also, a more flexible source model with a partitioning
function znk , which clusters the bases into each source, was
introduced in [29]. As another optimization scheme, an MU
algorithm based on an auxiliary function technique has been
proposed as Sawada’s MNMF [30]. It also employs the full-
rank R

(s)
i,n and the flexible source model with znk and NMF

variables.
Since our proposed method, which will be described in the

next section, is based on Sawada’s MNMF, we here explain its
formulation in detail. In Sawada’s MNMF, the observed signal
is represented as

Xij = xijx
h
ij , (15)

where Xij is a Hermitian positive definite matrix of size M×M ,
which indicates the instantaneous covariance of the observed
signal at the ij time-frequency slot. Therefore, the entire mul-
tichannel signal X can be considered as a fourth-order tensor,
which has an M×M matrix as each element of the I×J ma-
trix (see right-hand side of Fig. 3). The diagonal elements of
Xij represent real-valued nonnegative powers observed using
each microphone, and the nondiagonal elements represent the
complex-valued correlations between the microphones. The de-
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TABLE I
MODELS OF MIXING SYSTEM, SPATIAL COVARIANCE, POWER SPECTROGRAM, AND THEIR OPTIMIZATION IN EACH METHOD

Literature Mixing system Spatial covariance Power spectrogram Optimization

Ozerov and R
(x)
i j =

∑
n , l ti l , n vl j , n R

(s)
i , n +R

(b)
i Rank-1 matrix R

(s)
i , n and NMF w/o EM and MU for Ai ,

Févotte [27] (xi j = Ai si j +bi j ) diagonal matrix R
(b)
i partitioning function R

(b)
i , T n , and V n

Arberet R
(x)
i j =

∑
n , l ti l , n vl j , n R

(s)
i , n +R

(b)
i Full-rank matrix R

(s)
i , n and NMF w/o EM for R

(s)
i , n ,

et al. [28] diagonal matrix R
(b)
i partitioning function R

(b)
i , T n , and V n

Duong R
(x)
i j =

∑
n ri j , n Ri , n Several types of R

(s)
i , n including ri j , n EM for R

(s)
i , n

et al. [32] rank-1 and full-rank matrices (w/o NMF)

Ozerov R
(x)
i j =

∑
k (
∑

n R
(s)
i , n zn k )ti k vk j +R

(b)
i Rank-1 matrix R

(s)
i , n and NMF with EM and MU for Ai ,

et al. [29] (xi j = Ai si j +bi j ) diagonal matrix R
(b)
i partitioning function R

(b)
i , Z, T , and V

Sawada R
(x)
i j =

∑
k (
∑

n R
(s)
i , n zn k )ti k vk j Full-rank matrix R

(s)
i , n NMF with MU for R

(s)
i , n ,

et al. [30] partitioning function Z, T , and V

Kitamura R
(x)
i j =

∑
k (
∑

n R
(s)
i , n zn k )ti k vk j Rank-1 matrix R

(s)
i , n NMF with IP for W = A−1 and

et al. [33] (xi j = Ai si j ) partitioning function MU for Z, T , and V

Fig. 3. Decomposition model of Sawada’s MNMF (I =6, J =10, M =N =
2, and K =3).

composition model of Sawada’s MNMF is expressed as

Xij ≈ X̂ij =
∑

k

(∑
n

R
(s)
i,n znk

)
tik vkj , (16)

where k=1, . . . , K is the integral index of the bases and R
(s)
i,n is

an M×M Hermitian positive definite matrix, which comprises
the spatial covariance for each frequency i and source n. In
addition, znk (∈R[0,1]) is a latent variable (partitioning function)
that indicates whether the kth basis belongs to the nth source
(znk =1) or not (znk =0) and satisfies

∑
n znk =1; tik and vkj

are the nonnegative elements of the basis matrix T (∈RI×K
≥0 ) and

activation matrix V (∈RK×J
≥0 ), respectively.

Fig. 3 shows the decomposition model of Sawada’s MNMF.
This method decomposes the observed signal into T and V
and simultaneously optimizes the spatial covariances for each
source R

(s)
i,n . Then, the sources are separated by associating

these variables T and V with R(s) by using a partitioning
function Z(∈RN×K

≥0 ).
The cost function based on Itakura–Saito divergence is de-

fined as [30]

QMNMF =
∑
i,j

[
tr
(

Xij X̂
−1
ij

)
+ log det X̂ij

]
, (17)

where constant terms are omitted. Note that this cost function
coincides with that of Ozerov’s MNMF, which is a criterion of
maximum log-likelihood. MU update rules based on the auxil-
iary function technique to minimize (17) were derived in [30].

In Sawada’s MNMF, the spatial covariance matrix R
(s)
i,n is es-

timated as a full-rank matrix. This means that Sawada’s MNMF

has the capability to separate sources even if the mixing sys-
tem cannot be represented as a rank-1 spatial model given by
(4). However, Sawada’s MNMF requires many iterations for
optimization, and the separation performance strongly depends
on the initial values of R

(s)
i,n and the NMF variables. This is

because a large number of variables should be optimized and
because there is no constraint for optimizing the full-rank spatial
covariances.

III. PROPOSED METHOD

A. Motivation and Strategy

The separation performance of IVA is degraded for music
signals because the source model defined from the multivariate
distribution is not flexible. When we use a spherical multivari-
ate distribution, IVA assumes that all the frequency bins have
the same activations (time-varying gains). In contrast, MNMF
can capture specific harmonic structures of the sources because
it utilizes NMF decomposition to represent a power spectro-
gram rij,n . However, the optimization of the full-rank spatial

covariance R
(s)
i,n is a difficult problem, and Sawada’s MNMF

lacks robustness. Ozerov’s MNMF also suffers from sensitivity
to the initial values even though it employs the rank-1 spatial
covariance for each source.

In this paper, we derive a new and efficient algorithm by
considering the determined situation (M =N ). and the linear
time-invariant mixing system (rank-1 spatial model) described
by (4), which is similar to IVA. This is a special case of ex-
isting models. For example, our model is identical to Ozerov’s
MNMF in the determined situation when the noise component
is zero and is identical to Sawada’s MNMF in the determined
situation when all the source covariance matrices are rank-1.
However, the derived optimization algorithm is considerably
different. In Ozerov’s MNMF, the noise component bij is in-
herently necessary for optimization because the EM algorithm
does not work (the update rule becomes Ai ←Ai) when bij =0,
which was clearly addressed by the authors [27]. In contrast, in
our approach, thanks to the assumption of the invertibility of
Ai , we can transform the spatial optimization in MNMF into
an estimation of the demixing matrix W i . Therefore, the pro-
posed method employs a flexible source model as in MNMF and
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rapidly estimates the demixing matrix W i in a stable manner as
in auxiliary-function-based IVA (AuxIVA) [20]. Hereafter, the
proposed method is referred to as determined rank-1 MNMF.
Note that the proposed method cannot be applied to the under-
determined BSS problem because the mixing matrix Ai must
be invertible in this approach.

Similarly to standard ICA or IVA, the proposed method is
applicable for the overdetermined case (M >N ) with dimen-
sionality reduction using PCA. The authors have also proposed
another method [35] for the overdetermined case when M is
sufficiently larger than N such as when M =2N or 3N .

B. Derivation of Cost Function

If we assume that the mixing system is represented by the
mixing matrix Ai =(ai,1 . . . ai,N ) appearing in (4), the spatial

covariance for each source R
(s)
i,n can be modeled by a rank-1

matrix that is a product of the steering vector ai,n as follows
[27], [32]:

R
(s)
i,n = ai,nah

i,n . (18)

To introduce the rank-1 spatial model into Sawada’s MNMF, we
substitute (18) into (16) and reformulate X̂ij using the mixing
matrix Ai as follows:

X̂ij =
∑

k

(∑
n

ai,nah
i,n znk

)
tik vkj

=
∑

n

ai,nah
i,n

∑
k

znk tik vkj

= AiDijA
h
i , (19)

where

Dij =

⎛
⎜⎜⎜⎜⎝

dij,1 0 · · · 0

0 dij,2
. . .

...
...

. . .
. . . 0

0 · · · 0 dij,N

⎞
⎟⎟⎟⎟⎠

, (20)

dij,n =
∑

k

znk tik vkj . (21)

By substituting (19) into the cost function of Sawada’s MNMF
(17), we obtain

Q =
∑
i,j

[
tr
(

xijx
h
ij

(
Ah

i

)−1
D−1

ij A−1
i

)
+ log det AiDijA

h
i

]
.

(22)

In the determined situation (we let M equal N for simplicity),
the demixing matrix W i exists and we can transform the vari-
ables, i.e., the observed signal xij and the mixing matrix Ai ,
to the separated signal yij =W ixij and the demixing matrix

W i =A−1
i , respectively, as follows:

Q =
∑
i,j

[
tr
(
W−1

i yijy
h
ij

(
W h

i

)−1
W h

i D−1
ij W i

)

+ log (detAi) (det Dij )
(
det Ah

i

)]

=
∑
i,j

[
tr
(
W iW

−1
i yijy

h
ij

(
W h

i

)−1
W h

i D−1
ij

)

+ 2 log |det Ai | + log det Dij ]

=
∑
i,j

[
tr
(
yijy

h
ij D−1

ij

)
− 2 log |det W i | +

∑
m

log dij,m

]

=
∑
i,j

[∑
m

|yij,m |2∑
k zmk tik vkj

− 2 log |det W i |

+
∑
m

log
∑

k

zmk tik vkj

]
, (23)

where yij,m =wh
i,m xij . In conventional MNMFs, the separated

signal is obtained by clustering the source model TV into spe-
cific sources using the spatial covariance R(s) and partitioning
function Z. The proposed method estimates the demixing ma-
trix W i to obtain the separated signal yij , where we approx-
imately decompose |yij,m |2 into zmk , tik , and vkj as model
spectrograms rij,m for the sources in each iteration.

C. Relationship Between IVA and MNMF

The first and second terms in the cost function (23) are equiv-
alent to the IVA cost function (9) except for the contrast func-
tion G(·), and the first and third terms in (23) are equivalent to a
single-channel NMF cost function (11). Therefore, the proposed
cost function is a superposition of those of IVA and NMF. This
fact reveals the relationship between IVA and MNMF, namely,
MNMF with a rank-1 spatial model, which assumes a linear
time-invariant mixing system in the time-frequency domain, is
essentially equivalent to IVA with a flexible source model using
NMF decomposition. Therefore, the proposed determined rank-
1 MNMF given by (23) can be considered as an intermediate
model between IVA and MNMF with the full-rank spatial model
in terms of the model flexibility. From the IVA side, we intro-
duced the source model using NMF with K bases to capture the
specific spectral patterns, and from the MNMF side, a rank-1
spatial model was introduced to transform the variable Ai into
W i and to make the optimization more efficient. However, the
source priors of IVA and the proposed method are different. IVA
generally assumes the spherical Laplace distribution, which has
the same variance for all frequency bins, as the source prior by
setting G(yj,m ) = ‖yj,m‖2 in (9). The proposed method us-
ing (23) assumes independent complex Gaussian distributions
in each time-frequency slot [34], similarly to conventional MN-
MFs. This issue will be discussed in Section IV.

The original cost function (23) is defined as the Itakura-Saito
divergence between observation Xij and estimation X̂ij . Intrigu-
ingly, the proposed method utilizes the independence between
sources to separate them because the IVA cost function appears.
This is because minimizing the Itakura-Saito divergence im-
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plicitly leads to the independence between sources, namely, we
implicitly assume independent complex Gaussian distributions
for each time and frequency slot, which model the mutually
independent sources [34].

D. Update Rules

1) Spatial Model: For the optimization of ICA or IVA, up-
date rules based on the auxiliary function technique have been
proposed [19], [20], and it has been reported that these update
rules are faster and more stable than those for a conventional up-
date scheme (e.g., natural gradient method) and that the step size
parameter can be omitted in each iteration. In particular, when
the contrast function is G= |yij,m |2/rij,m (rij,m is the variance
of the complex Gaussian distribution), the optimization of W i

in (23) becomes equivalent to that in auxiliary-function-based
IVA [20]. For this reason, the update rules of W i can easily be
derived as follows:

Vi,m =
1
J

∑
j

1
rij,m

xijx
h
ij , (24)

wi,m ← (W iVi,m )−1 em , (25)

wi,m ← wi,m

(
wh

i,m Vi,m wi,m

)− 1
2 , (26)

where rij,m is the estimated variance of each source (model
spectrogram for mth source [34]), and em denotes the unit
vector with the mth element equal to unity. After the update of
W i , the separated signal yij should be updated as

yij,m ← wh
i,m xij . (27)

Note that the derivation of the update rules for W i based on the
auxiliary function technique is out of the scope in the contribu-
tion of this paper.

2) Source Model: Here, we propose two types of update rule
for the source models, which are related to the presence of zmk .
If we eliminate the partitioning function zmk in (23), the cost
function (23) can be rewritten as follows:

Qmod =
∑
i,j

[∑
m

|yij,m |2∑
l til,m vlj,m

− 2 log |det W i |

+
∑
m

log
∑

l

til,m vlj,m

]
, (28)

where til,m and vlj,m are the sourcewise bases and acti-
vations, respectively, and we assume that zmk ∈{0, 1} and
all the sources are modeled by the same number of bases
L (namely, L×M =K). In this formulation, the differen-
tials ∂Qmod/∂til,m and ∂Qmod/∂vlj,m become identical to
∂QNMF/∂til and ∂QNMF/∂vlj , respectively. Therefore, for the
modified cost function (28), the update rules of til,m and vlj,m

are the same as those of simple NMF (12) and (13), i.e.,

til,m ← til,m

√√√√
∑

j |yij,m |2vlj,m (
∑

l ′ til ′,m vl ′j,m )−2

∑
j vlj,m (

∑
l ′ til ′,m vl ′j,m )−1 , (29)

vlj,m ← vlj,m

√∑
i |yij,m |2til,m (

∑
l ′ til ′,m vl ′j,m )−2

∑
i til,m (

∑
l ′ til ′,m vl ′j,m )−1 . (30)

Also, the estimated source model (the variance of the complex
Gaussian distribution) is represented as

rij,m =
∑

l

til,m vlj,m . (31)

Alternatively, if we employ a continuous-valued zmk to clus-
ter K bases into M specific sources, we can derive the update
rules of zmk , tik , and vkj by minimizing (23) by the auxiliary
function technique. Here, we design an upper bound function
of (23) as the auxiliary function. The first term in (23) is a
convex function for the variables. Applying Jensen’s inequal-
ity to this term with an auxiliary variable αijk ≥0 that satisfies∑

k αijk =1, we have

1∑
k zmk tik vkj

≤
∑

k

α2
ijk

zmk tik vkj
. (32)

Also, the third term in (23) is a concave function, and we can
apply the tangent line inequality to this term with an auxiliary
variable βij ≥0 as

log
∑

k

zmk tik vkj ≤ 1
βij

(∑
k

zmk tik vkj − βij

)
+ log βij .

(33)

The equality of (32) and (33) holds if and only if the auxiliary
variables are set as follows:

αijk =
zmk tik vkj∑
k ′ zmk ′tik ′vk ′j

, (34)

βij =
∑

k

zmk tik vkj . (35)

Using these upper bounds, we can design the auxiliary function
of (23) as

Q ≤ Q+ =
∑
i,j

⎡
⎣∑

m,k

|yij,m |2α2
ijk

zmk tik vkj
− 2 log |det W i |

+
1

βij

(∑
k

zmk tik vkj − βij

)
+ log βij

]
.

(36)

The update rules for Q+ with respect to each variable are de-
termined by setting the gradient to zero. From ∂Q+/∂zmk =0,
we obtain

∑
i,j

[
−
|yij,m |2α2

ijk

z2
mktik vkj

+
1

βij
tik vkj

]
= 0. (37)
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By transposing the first term in (37) to the right-hand side and
multiplying both sides by z2

mk , we have

z2
mk

∑
i,j

1
βij

tik vkj =
∑
i,j

|yij,m |2α2
ijk

tik vkj
. (38)

Finally, the MU rule of zmk can be derived by substituting (34)
and (35) into (38) as follows:

zmk ← zmk

√√√√
∑

i,j |yij,m |2tik vkj (
∑

k ′ zmk ′tik ′vk ′j )
−2

∑
i,j tik vkj (

∑
k ′ zmk ′tik ′vk ′j )

−1 ,

(39)

where we calculate zmk ←zmk/
∑

m ′ zm ′k to ensure
∑

m zmk =
1 at each iteration. Similarly to (39), the update rules of tik and
vkj are obtained as

tik ← tik

√√√√
∑

j,m |yij,m |2zmkvkj (
∑

k ′ zmk ′tik ′vk ′j )
−2

∑
j,m zmkvkj (

∑
k ′ zmk ′tik ′vk ′j )

−1 ,

(40)

vkj ← vkj

√√√√
∑

i,m |yij,m |2zmk tik (
∑

k ′ zmk ′tik ′vk ′j )
−2

∑
i,m zmk tik (

∑
k ′ zmk ′tik ′vk ′j )

−1 ,

(41)

and the estimated source model is represented as

rij,m =
∑

k

zmk tik vkj . (42)

3) Normalization: We can estimate all the variables that
minimize (23) by iterating (24)–(27) and (29)–(31) or (39)–(42)
alternately. Note that a scale ambiguity exists between W i and
rij,m because both of them can determine the scale. Therefore,
the estimated variance rij,m has a risk of diverging. To avoid
this problem, we normalize W i and rij,m at each iteration as
follows:

λm =
√

1
IJ

∑
i,j

|yij,m |2 , (43)

wi,m ← wi,m λ−1
m , (44)

yij,m ← yij,m λ−1
m , (45)

rij,m ← rij,m λ−2
m . (46)

Note that these normalizations never change the value of the
cost function (23). The signal scale can be restored by applying
a back-projection technique [13] after the optimization.

IV. EXPERIMENTAL ANALYSIS OF DETERMINED

RANK-1 MNMF

In this section, we discuss the inherent difference between
conventional ICA-based methods (IVA and FDICA) and deter-
mined rank-1 MNMF. In addition, we evaluate them via BSS
experiments using artificial sources and show that determined
rank-1 MNMF possesses better flexibility than IVA and FDICA
for both the source and spatial models.

Fig. 4. Illustration of source models (model spectrograms) for one source
in (a) IVA and (b) determined rank-1 MNMF, where grayscale of each time-
frequency slot indicates value of variance and s̃ denotes only real or imaginary
part of complex-valued component s. In IVA, multivariate spherical prior is
assumed so that components with higher-order dependence are modeled as one
source, and this method can be interpreted as NMF with only one spectral basis.
In contrast, determined rank-1 MNMF can express more complex spectrogram
using NMF with arbitrary number of spectral bases.

A. Difference Between Assumption in Source Model

In IVA, we generally introduce a spherical multivariate distri-
bution to ensure the higher-order correlation between frequency
bins, namely, it is assumed that all the frequency bins have the
same activations (time-varying gains) as shown in Fig. 4(a). This
is because the variances of all frequency bins are the same. This
simple and nonflexible source model in IVA can be interpreted
as a specific NMF that has only one frequency-uniform (flat)
basis for each source. Therefore, the number of bases in the IVA
model spectrogram always becomes one (see the spectrogram
in Fig. 4(a)).

On the other hand, conventional MNMF and proposed deter-
mined rank-1 MNMF assume independent complex Gaussian
distributions for each time-frequency slot [34], and their cost
functions (17) and (23) are based on a log-determinant diver-
gence, which is a matrix version of Itakura-Saito divergence.
Therefore, the estimated variances rij,m can explicitly express
a model spectrogram via NMF decomposition with an arbitrary
number of bases (see the spectrogram in Fig. 4(b)). For this
reason, the source model in determined rank-1 MNMF is more
flexible than that in IVA. In addition, IVA can be thought of as a
special case of determined rank-1 MNMF. If we set the number
of bases for each source to one, both methods are essentially
equivalent except for the prior distributions.

For conventional FDICA, its source model depends on how
the permutation problem is solved, and two well-known tech-
niques for solving the permutation problem have been proposed.
One technique is to utilize the correlation between frequency
bins [13], which is an essentially equivalent approach to IVA.
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Fig. 5. Artificial source that consists of R bases.

The other well-known permutation solver is to estimate and
utilize the direction of arrival (D.O.A.) of each source [12].
Hereafter, we refer to the combined method of FDICA and this
permutation solver as FDICA+DOA. FDICA+DOA uses the es-
timated steering vectors (estimated spatial model), and there is
no explicit source model except for non-Gaussianity in the time
series for each frequency bin.

B. Difference Between Assumption in Spatial Model

In IVA and determined rank-1 MNMF, there is no explicit
assumption in the spatial model (mixing system). Both methods
only use the statistical independence between source models
(model spectrograms) and the observed multichannel mixtures
to estimate the demixing matrix.

In contrast, FDICA+DOA directly uses the difference be-
tween the estimated spatial conditions for each source to solve
the permutation problem. Therefore, the separation performance
of FDICA+DOA is sensitive to the spatial setup of the sources;
if the positions of the sources become close or the reverbera-
tion becomes strong, the error of the permutation solver may
increase. In summary, FDICA+DOA is severely affected by the
spatial conditions rather than source modeling, whereas IVA
and determined rank-1 MNMF are not.

C. Experimental Validation

We validate the difference between both the source and spa-
tial models among IVA, FDICA+DOA, and determined rank-1
MNMF. In this validation, for simplicity, the numbers of sources
and microphones are set to two, namely, N =M =2.

1) Design of Artificial Spectrograms With R Bases: From
the difference between the source models of IVA and deter-
mined rank-1 MNMF, we can expect that the number of bases
in the power spectrogram will affect the separation performance
for IVA. If the power spectrogram of each source consists of only
one basis, both IVA and determined rank-1 MNMF can sepa-
rate the sources with high accuracy. However, if the sources
have more complicated power spectrograms, the source model
in IVA cannot represent them in principle, and the separation
performance may decrease.

To investigate this issue, in this experiment, we produce ar-
tificial sources whose power spectrograms can be represented
by R bases. Fig. 5 shows the power spectrogram that we pro-
duced. To simulate a nonnegative sparse spectrogram, we gen-
erate nonnegative random values fir and grj that obey inde-
pendent and identically distributed (i.i.d.) gamma distributions,
where r=1, . . . , R is the integral index of the basis in matrices
F and G. The power spectrogram is a product of F and G and

TABLE II
ESTIMATED VALUES OF SHAPE PARAMETER κ SO THAT KURTOSIS OF FG IS

ADJUSTED TO 50 FOR EACH R

Number of bases R Shape parameter κ

1 0.83809
2 0.54962
3 0.43450
4 0.36929
5 0.32617
6 0.29504
7 0.27124
8 0.25231

its size is I×J . The gamma distribution can be represented as

Gamma(χ|κ, θ) = χκ−1 e−χ/θ

Γ(κ)θκ
, (47)

where χ is a random variable, and κ and θ are shape and scale pa-
rameters, respectively. After producing the power spectrogram
FG, we add random phases that obey a uniform distribution in
the range [0, 2π] to FG, and the produced complex spectrogram
(FG with random phases) is used as an artificial source whose
power spectrogram has R bases. Therefore, in this procedure,
we simulate the variances of complex Gaussian distributions
[34] with an outer product of variables that obey i.i.d. gamma
distributions and their linear combination.

In this artificial source, it is important to set κ to an appro-
priate value. For example, when we set κ to a constant value
regardless of R, the random values in the power spectrogram
FG become close to a Gaussian distribution. This is because the
kurtosis of the element

∑R
r=1 fir grj in FG converges to three

by the central limit theorem when R increases. For this reason,
the separation accuracy of ICA-based methods decreases as R
increases. To avoid this influence, we adjust the shape parame-
ter κ for each value of R so that the kurtosis of FG is always
the same value regardless of R. Such a κ can be derived using
the moment-cumulant transform [36] (see Appendix). The fol-
lowing equation gives the shape parameter κ used to adjust the
kurtosis of FG:

ζ(κ,R)
ξ(κ,R)

− kurt = 0, (48)

where kurt is the intended value for the kurtosis of FG and

ζ(κ,R) = 84κ3 + 174κ2 + 132κ + 36

+ R
(
52κ4 + 60κ3 + 19κ2)

+ R2 (12κ5 + 6κ4)+ R3κ6 , (49)

ξ(κ,R) = R
(
4κ4 + 4κ3 + κ2)+ R2 (4κ5 + 2κ4)

+ R3κ6 . (50)

Since no closed-form solution exists that satisfies (48), we cal-
culate the optimal κ by a greedy search. Table II shows the
estimated shape parameter values when kurt=50. We exper-
imentally confirmed that the kurtosis of the produced power
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Fig. 6. Artificial DOA with Gaussian distributions.

Fig. 7. Separation results of (a) source 1 and (b) source 2 for various numbers
of bases.

spectrogram FG is always controlled to be approximately 50
using these shape parameters.

2) Design of Artificial Mixing Systems: For a mixing system,
we designed an artificial D.O.A. that consists of N =2 Gaussian
distributions, as shown in Fig. 6, where μn and σn are the mean
value (position of the source) and standard deviation of the nth
source, respectively. This modeling mimics an actual acoustical
phenomenon in which the D.O.A.s of wavefronts in different
frequencies i are randomly distributed owing to the room re-
verberation effect. We produced steering vectors ai,n that obey
the Gaussian distributions in Fig. 6 and prepared an artificial
mixing matrix Ai . Finally, we produced an artificial observed
signal xij with artificial sources and an artificial mixing system
using (4).

3) Experiment on Variational Artificial Spectrogram: In this
experiment, we assume the following conditions: I =J =257,
kurt=50, θ=1, μ1 =5π/12, μ2 =7π/12, σ2

1 =σ2
2 =0.05, and

the interelement spacing of microphones is set to 5.66 cm. Fig. 7
shows the improvement of the signal-to-distortion ratio (SDR)
[37] for various numbers of bases R, where SDR indicates the
total separation performance and the improvement in the SDR
is the increment from the SDR value of the observed signal. For
determined rank-1 MNMF, we use a simple formulation with-
out the partitioning function (the cost function (28) optimized by
(29) and (30)). Also, we evaluate three patterns, namely, the case
of L=1 (determined rank-1 MNMF with only one basis), the
case of a suitable number of spectral bases L=R (determined
rank-1 MNMF with R bases), and the case of a supervised source
model by setting T =F and V =G (determined rank-1 MNMF
with R supervised bases). The difference between IVA and de-

Fig. 8. Separation results of (a) source 1 and (b) source 2 for various angles.

termined rank-1 MNMF with only one basis is simply the type of
assumed distribution; IVA assumes the spherical Laplace distri-
bution and determined rank-1 MNMF assumes time-frequency-
independent Gaussian distributions. From Fig. 7, the separation
scores of IVA and determined rank-1 MNMF with only one
basis decrease when the number of bases of each source, R,
increases because they cannot capture the exact power spectro-
grams. In contrast, determined rank-1 MNMF with R bases can
maintain high SDR values because the power spectrogram of
each source can be represented by a model spectrogram using
R spectral bases in T . This clearly demonstrates the flexibility
of the source model in determined rank-1 MNMF.

4) Experiment on Variational Artificial Mixing Systems:
From the difference between the spatial models in FDICA+DOA
and determined rank-1 MNMF, we can expect that the mixing
system (spatial conditions of each source) will affect the sep-
aration performance for FDICA+DOA. If the source positions
are close or the variance of the D.O.A.s is large, a large er-
ror of D.O.A. clustering occurs in FDICA+DOA, resulting in
marked degradation of the separation. However, since IVA and
determined rank-1 MNMF do not use the explicit properties
of the mixing condition (spatial model), we can expect that
their separation performance will not strongly depend on the
source positions or the variance of the D.O.A.s. To investigate
this issue, in this experiment, we produce observed signals with
various mixing conditions and evaluate the separation perfor-
mance. We use the artificial sources described in Section IV-C1,
where the power spectrograms of these sources are generated
with kurt=50 and R=1. The mixing system is produced by
the artificial D.O.A. shown in Fig. 6 with various μ1 , μ2 , σ2

1 , and
σ2

2 . Note that the experiment in which σ2
1 and σ2

2 are changed
does not simulate a change in the reverberation time. It only
controls the variance of the D.O.A.s over the frequencies, and
the length of the impulse response does not change. Therefore,
even when using larger σ2

1 and σ2
2 , the rank-1 spatial model is

always valid in this simulation. For determined rank-1 MNMF,
the number of bases L is set to one, which is equal to R. The
other conditions are the same as those in Section IV-C1.

Fig. 8 shows the SDR results for various positions of the
sources (μ1 and μ2), where the horizontal axis indicates the
angle between the two sources, μ2−μ1 , and the variances are
fixed to σ2

1 =σ2
2 =0.05. Also, Fig. 9 shows the SDR results for

various variances (σ2
1 and σ2

2 ), where σ2
1 and σ2

2 are always set
to the same value and the positions of the sources are fixed to
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Fig. 9. Separation results of (a) source 1 and (b) source 2 for various variances.

Fig. 10. Recording condition of impulse responses (a) E2A and (b) JR2 for
two-source case.

μ1 =5π/12 and μ2 =7π/12. From these results, we can confirm
that the separation performance of FDICA+DOA is sensitive to
the mixing system. In particular, when the source positions be-
come close (around 0.0 on the horizontal axis in Fig. 8) or the
variance of the D.O.A.s. is large (around 0.20 on the horizontal
axis in Fig. 9), the permutation solver using the D.O.A. can-
not cluster the sources correctly, resulting in large permutation
errors. In contrast, IVA and determined rank-1 MNMF achieve
good performance regardless of the mixing system because these
methods do not have explicit spatial constraints. This shows the
flexibility of the spatial model in determined rank-1 MNMF.

V. EXPERIMENTS ON SPEECH AND MUSIC SEPARATION

A. Datasets

In this section, we confirm the efficacy of the proposed
method for separating mixture signals. In this experiment, we
investigated two cases: speech signal and music signal cases.
In the speech signal case, we used live recorded mixture sig-
nals obtained from an underdetermined BSS task in SiSEC2011
[38]. This dataset includes 12 mixture signals (dev1 and dev2
datasets) with female and male speech, where the reverberation
time is 130 ms/250 ms and the microphone spacing is 1 m/5 cm.
Details of the other conditions for this dataset can be found in
[38]. Note that since this dataset is for underdetermined BSS,
three sources (M =3) are provided as stereo recordings (N =2).
In this experiment, we used only the first and second speech
sources to make the task determined (M =N =2). In the music
signal case, the observed signals were produced by convoluting
the impulse response E2A or JR2, which was obtained from
the RWCP database [39], with each source. Fig. 10 shows the
recording conditions of impulse responses E2A and JR2. As the

TABLE III
MUSIC SOURCES FOR TWO-SOURCE CASE

ID Song name Source (1/2)

1 bearlin-roads acoustic_guit_main/vocals
2 another_dreamer-the_ones_we_love guitar/vocals
3 fort_minor-remember_the_name violins_synth/vocals
4 ultimate_nz_tour guitar/synth

TABLE IV
EXPERIMENTAL CONDITIONS

Sampling frequency 16 kHz
FFT length 256 ms in speech signal case and

512 ms in music signal case
Window shift length 128 ms in both speech and music signal cases
Initialization W i : identity matrix

NMF variables: uniform random values [0, 1]
Number of iterations 200

Fig. 11. Average SDR improvements for female speech (dev1) with 1 m
microphone spacing and 130 ms reverberation time: (a) first speaker and
(b) second speaker.

music sources, we used professionally produced music obtained
from a music separation task in SiSEC2011. The titles of the
music and the instruments used are shown in Table III.

B. Experimental Analysis of Optimal Number of Bases

In this section, we give an experimental analysis of the opti-
mal number of bases in determined rank-1 MNMF. Since NMF
decomposition is more suitable for music than speech because of
the stable pitch of instruments, we expect that the optimal num-
ber of bases will be different between them. For this reason,
we evaluated the separation performance of determined rank-1
MNMF named Proposed method w/o partitioning function (up-
dated using (24)–(27) and (29)–(31)) with various numbers of
bases for each source, where this method models all the sources
with the same fixed number of bases L. The experimental con-
ditions used are shown in Table IV. As the evaluation score, we
used the SDR improvement.

Figs. 11 and 12 show the average SDR improvements and
their deviations in 10 trials with different various pseudorandom
seeds, where the speech signal (Fig. 11) is a female speech
from the dev1 dataset with 130 ms reverberation time and
1 m microphone spacing, and the music signal (Fig. 12) is
song ID4 with impulse response E2A. From these results, we
confirm that determined rank-1 MNMF cannot achieve a good
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Fig. 12. Average SDR improvements for song ID4 with impulse response
E2A: (a) guitar and (b) synth.

Fig. 13. Cumulative singular values of each source spectrogram in female
speech (dev1) and music (song ID4), where all sources have the same length.

separation performance for speech signals when the number of
bases is large. This is due to the structural complexity of the
speech spectrogram. Fig. 13 shows cumulative singular values
of each source spectrogram in the speech and music signals.
The speech sources require more than 50 bases to represent
the spectrogram while the music sources are saturated with 25
bases. Because of the time-varying pitch, it is difficult to capture
speech spectrograms using NMF decomposition. If determined
rank-1 MNMF fails to capture the correct spectrogram of each
speech in the optimization, the demixing matrix will be trapped
into a poor solution (local minimum). On the other hand, owing
to the low-rankness of music spectrograms, determined rank-1
MNMF gives a better performance for music separation even
if the number of bases increases.

C. Comparison of Separation Performance

1) Experimental Conditions: We compare the separation
performance of eight methods, namely, directional clustering
[40], IVA, Ozerov’s MNMF, Ozerov’s MNMF with random ini-
tialization, Sawada’s MNMF, Proposed method w/o partition-
ing function, Proposed method with partitioning function (up-
dated using (24)–(27) and (39)–(42)), and Sawada’s MNMF ini-
tialized by proposed method. Directional clustering is a simple
separation technique, which clusters all the STFT coefficients
into specific sources using both powers and phases. In this ex-
periment, we use k-means clustering in directional clustering,
which corresponds to a double-disjoint assumption, namely, we
assume that each time-frequency slot has only one source com-
ponent. In Ozerov’s MNMF, we used the experimental condi-
tions described in [27], as shown in Table V, where the mixing
matrices and the source models are initialized by estimation
using Soft-LOST [41] with the permutation solver [15]. Also,

TABLE V
EXPERIMENTAL CONDITIONS USED IN OZEROV’S MNMF

Sampling frequency 16 kHz
FFT length 128 ms
Window shift length 64 ms
Number of bases 10 bases for each speech source

and 4 bases for each music source
Initialization of Mixing matrices estimated by Soft-
mixing matrices LOST [41] and permutation solver [15]
Initialization of Pretrained bases and activations
source models using simple NMF based on Kullback-
(NMF variables) Leibler divergence with sources

estimated by Soft-LOST and [15]
Annealing for Annealing with noise
EM algorithm injection proposed in [27]
Number of iterations 500

Ozerov’s MNMF with random initialization has the same con-
ditions as Ozerov’s MNMF except for the initialization, namely,
the mixing matrices and the source models are initialized by
the identity matrix and the uniform random values [0, 1], re-
spectively. In the other methods, the experimental conditions
shown in Table IV were used. In Proposed method with parti-
tioning function, we only set the total number of bases, K, and
the sources are flexibly modeled with the optimal number of
bases using the partitioning function Z. Sawada’s MNMF ini-
tialized by proposed method has the same algorithm as Sawada’s
MNMF, but the initial values of the spatial covariance matrix
R

(s)
i,n are given by (18), where the steering vector ai,n is calcu-

lated from the inverse of the demixing matrix W i estimated by
Proposed method w/o partitioning function.

On the basis of the results in Section V-B, we set the number
of bases of each source to L=2 for the speech signals and L=
30 for the music signals in Proposed method w/o partitioning
function. In Proposed method with partitioning function and
Sawada’s MNMF, we set the total number of bases to K =2×N
for the speech signals and K =30×N for the music signals. The
number of bases used in Ozerov’s MNMF is shown in Table V.

2) Results: Figs. 14 and 15 show examples of results for
speech signals given by the average SDR improvements and
their deviations in 10 trials with different pseudorandom seeds.
Also, Figs. 16 and 17 show examples of results for music sig-
nals. The total average scores are shown in Tables VI and VII.
From these results, we confirm that directional clustering can-
not separate the sources because of the imperfect double-disjoint
assumption and the deviation of the D.O.A.s in reverberant en-
vironments. Also, IVA cannot achieve satisfactory separation
because the source model in IVA is not flexible as described in
Section IV-A. Ozerov’s MNMF outperforms IVA for the music
signals, but the separation performance for speech signals is in-
ferior to that of IVA. In addition, Ozerov’s MNMF with random
initialization cannot solve the BSS problem. This method must
be initialized by other methods to find a good solution. The
results of Sawada’s MNMF have large error bars, namely, this
method is also sensitive to initial values. However, for the mu-
sic signals, Sawada’s MNMF gives better performance than IVA
and Ozerov’s MNMF. The proposed methods achieve a high and
stable performance. For the speech signals, Proposed method
w/o partitioning function is preferable to Proposed method
with partitioning function. This might be due to the sensitiv-
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Fig. 14. Average SDR improvements for female speech (dev1) with 1 m
microphone spacing, where reverberation time is (a) 130 ms and (b) 250 ms.

Fig. 15. Average SDR improvements for male speech (dev1) with 1 m micro-
phone spacing, where reverberation time is (a) 130 ms and (b) 250 ms.

ity of the performance to the number of bases, as discussed in
Section V-B. In contrast, for the music signals, Proposed method
with partitioning function exhibits slightly higher performance
than Proposed method w/o partitioning function. This improve-
ment is achieved by modeling the sources with the optimal
number of bases using the partitioning function zmk . Fig. 18

Fig. 16. Average SDR improvements for music signal song ID3 with impulse
response (a) E2A and (b) JR2.

Fig. 17. Average SDR improvements for music signal song ID4 with impulse
response (a) E2A and (b) JR2.

shows an example of the convergence of the partitioning func-
tion z1k from k=1 to k=K in the music signal case. These
values indicate whether the kth basis contributes to only source
one (z1k =1) or only source two (z1k =0). We can confirm that
almost all the partitioning functions converge to one or zero and
that all the sources are effectively modeled with the optimal
number of bases.



1638 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 9, SEPTEMBER 2016

TABLE VI
AVERAGED SDR IMPROVEMENTS OVER VARIOUS SPEECH SIGNALS AND SOURCES WITH SAME RECORDING CONDITIONS IN TWO-SOURCE CASE

Recording conditions Directional Ozerov’s Ozerov’s MNMF Sawada’s Proposed method Proposed method Sawada’s MNMF
(rev. time and clustering IVA MNMF with random MNMF w/o partitioning with partitioning initialized by
mic. spacing) initialization function function proposed method

130 ms and 1 m 2.59 2.98 1.35 −2.11 0.68 11.91 4.88 6.36
130 ms and 5 cm −1.51 2.86 2.13 −0.22 1.13 8.97 3.48 5.60
250 ms and 1 m 0.14 2.03 0.49 −2.02 0.48 7.34 2.09 4.19
250 ms and 5 cm −1.56 2.43 0.91 −1.06 0.47 6.43 1.91 3.95

TABLE VII
AVERAGED SDR IMPROVEMENTS OVER VARIOUS MUSIC SIGNALS AND SOURCES WITH SAME IMPULSE RESPONSE IN TWO-SOURCE CASE

Impulse Directional Ozerov’s Ozerov’s MNMF Sawada’s Proposed method Proposed method Sawada’s MNMF
response clustering IVA MNMF with random MNMF w/o partitioning with partitioning initialized by

initialization function function proposed method

E2A −0.73 5.72 5.73 −2.70 10.32 12.29 12.29 14.41
JR2 −1.18 1.77 2.37 0.75 6.11 6.62 7.40 9.06

Fig. 18. Convergence of z1k from k =1 to k =K in music signal case.

The deviations of the proposed methods are smaller than those
of Ozerov’s and Sawada’s MNMFs, which is particularly evident
in Proposed method w/o partitioning function. This is because
the optimization of the demixing matrix using the IVA update
rules results in a stable separation performance. In fact, we ex-
perimentally confirmed that the initialization using Soft-LOST
[41] and the permutation solver [15], which was employed in
Ozerov’s MNMF, did not improve the separation performance
of Proposed method w/o partitioning function. This fact means
that the proposed method is robust against the initial values.
For music signals with impulse response JR2 (Figs. 16(b) and
17(b)), the SDRs of the proposed methods are markedly de-
graded compared with those with impulse response E2A be-
cause the reverberation time is longer than impulse response
E2A and is close to the length of the window function in the
STFT. Even if Sawada’s MNMF has the potential to model such
a mixing system by employing a full-rank spatial model, it is
a very difficult problem to find the optimal R

(s)
i,n . However,

Sawada’s MNMF initialized by proposed method can achieve
high and very stable separation performance even with impulse
response JR2. This means that the demixing matrix estimated by
the proposed methods can be a good initial value of the spatial
model R

(s)
i,n in order to find the full-rank spatial covariance.

Fig. 19 shows an example of the SDR convergence for each
method in music signal case. Both IVA and the proposed meth-
ods show much faster convergence than Sawada’s MNMF. Also,
the numbers of required iterations in Sawada’s MNMF is greatly
reduced by the initialization of the rank-1 spatial covariance.

Fig. 19. SDR convergence for music signal song ID4 with impulse response
E2A: (a) guitar and (b) synth.

This result shows the difficulty of optimizing the full-rank spa-
tial covariance R

(s)
i,n .

D. Experiments on Three-Source Case With Music Signals

We also conducted an experiment involving three sources and
three microphones (M =N =3) with music signals. Similarly
to the music dataset described in Section V-A, we produced the
observed signals using the same songs and the three instruments
shown in Table VIII with the impulse responses shown in Fig. 20.
The experimental conditions are those in Table IV, where we
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TABLE VIII
MUSIC SOURCES FOR THREE-SOURCE CASE

ID Song name Source (1/2/3)

1 bearlin-roads acoustic_guit_main/bass/vocals
2 another_dreamer-the_ones_we_love drums/guitar/vocals
3 fort_minor-remember_the_name drums/violins_synth/vocals
4 ultimate_nz_tour guitar/synth/vocals

Fig. 20. Recording condition of impulse responses (a) E2A and (b) JR2 for
three-source case.

Fig. 21. Average SDR improvements for music signal song ID4 in three-
source case with impulse response (a) E2A and (b) JR2.

here omit the results of directional clustering, Ozerov’s MNMF,
and Ozerov’s MNMF with random initialization.

Fig. 21 shows examples of results, and Table IX shows the
total average scores in the three-source case. Similarly to the
previous results, the proposed method achieves better and more
stable performance than Sawada’s MNMF, and the spatial model
estimated by the proposed method provides an efficient initial-
ization for Sawada’s MNMF. Table X shows the actual compu-
tational time for each method in the three-source case, where
the calculations were performed using MATLAB 8.3 (64-bit)

TABLE IX
AVERAGED SDR IMPROVEMENTS OVER VARIOUS MUSIC SIGNALS AND

SOURCES WITH SAME IMPULSE RESPONSE IN THREE-SOURCE CASE

Impulse Sawada’s Proposed method Proposed method Sawada’s MNMF
response IVA MNMF w/o partitioning with partitioning initialized by

function function proposed method

E2A 3.86 7.77 8.03 6.18 9.44
JR2 2.81 4.44 5.03 4.11 7.00

TABLE X
COMPUTATIONAL TIMES (S) FOR SEPARATION OF SONG ID1 WITH IMPULSE

RESPONSE E2A IN THREE-SOURCE CASE

IVA Sawada’s Proposed method w/o Proposed method with
MNMF partitioning function partitioning function

91.6 4498.4 121.0 173.4

with an Intel Core i7-4790 (3.60 GHz) CPU. The computational
times of the proposed methods are less than twice that of IVA.
Sawada’s MNMF requires a longer computational time because
the eigenvalue decomposition of a 2M×2M matrix is required
for each update iteration of R

(s)
i,n . From these results, the pro-

posed methods are advantageous in terms of the convergence
speed and computational cost while maintaining comparable
separation performance with Sawada’s MNMF.

VI. CONCLUSION

This paper proposes a new determined BSS technique that
estimates a spatial model using IVA and a source model by low-
rank decomposition using NMF. Also, the relationship between
conventional MNMF and IVA is revealed: the proposed method
is equivalent to Sawada’s MNMF employing rank-1 modeling
of the spatial covariance matrix, and IVA can be thought of as
a special case of the proposed method, namely, the proposed
method can be thought of as IVA with increased flexibility of
the model. The proposed method can be optimized using the
fast update rules of IVA and single-channel NMF based on
the auxiliary function technique. The experimental results show
that the proposed method achieves faster convergence and better
results than the conventional BSS techniques.

APPENDIX

DERIVATION OF SHAPE PARAMETER FOR ARTIFICIAL RANDOM

SPECTROGRAM WITH CONSTANT KURTOSIS

To produce an artificial random spectrogram FG with con-
stant kurtosis, we derive the optimal shape parameter κ for each
value of R. Hereafter, we denote an I×J matrix whose ele-
ments are fir grj as F rGr , namely, FG=

∑
r F rGr . Also, we

denote a pth-order moment and pth-order cumulant of F rGr as
μpr and cpr and those of FG as μ′

p and c′p , respectively. When
R increases beyond one, the matrix FG becomes a linear com-
bination expressed as

∑R
r=1 F rGr . Therefore, the kurtosis of

FG can be derived via the moment-cumulant transform [36].
Since fir and grj are generated from i.i.d. gamma distributions,
μpr is equal to the product of pth-order moments of F r and Gr
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as follows:

μpr = θ2p

p−1∏
q=0

(κ + q)2 . (51)

By the moment-cumulant transform, cpr from p=1 to p=4 can
be represented as

c1r = μ1r , (52)

c2r = μ2r − μ2
1r , (53)

c3r = μ3r − 3μ1rμ2r + 2μ3
1r , (54)

c4r = μ4r − 4μ1rμ3r − 3μ2
2r + 12μ2

1rμ2r − 6μ4
1r . (55)

Since a cumulant satisfies additivity for the variables, the cumu-
lant of FG is easily derived as follows:

c′p =
R∑

r=1

cpr = Rcpr . (56)

The moments of FG for p=2 and p=4 are given by the
moment-cumulant transform as

μ′
2 = c′2 + c′

2
1 , (57)

μ′
4 = c′4 + 3c′

2
2 + 4c′1c

′
3 + 6c′

2
1c

′
2 + c′

4
1 . (58)

Finally, the kurtosis of FG can be derived as

kurtosis(FG) = μ′
4/μ′2

2 = ζ(κ,R)/ξ(κ,R). (59)

Therefore, by solving (48), we can obtain the shape parameter
κ so that the kurtosis of FG has the same value (kurt) for any
value of R.
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