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Harmonic Model
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Abstract—Harmonic models have to be both precise and fast
in order to represent the speech signal adequately and be able to
process large amount of data in a reasonable amount of time. For
these purposes, the full-band adaptive harmonic model (aHM)
used by the adaptive iterative refinement (AIR) algorithm has
been proposed in order to accurately model the perceived char-
acteristics of a speech signal. Even though aHM-AIR is precise,
it lacks the computational efficiency that would make its use
convenient for large databases. The least squares (LS) solution
used in the original aHM-AIR accounts for most of the computa-
tional load. In a previous paper, we suggested a peak picking (PP)
approach as a substitution to the LS solution. In order to integrate
the adaptivity scheme of aHM in the PP approach, an adaptive
discrete Fourier transform (aDFT), whose frequency basis can
fully follow the variations of the curve, was also proposed. In
this paper, we complete the previous publication by evaluating the
above methods for the whole analysis process of a speech signal.
Evaluations have shown an average time reduction by four times
using PP and aDFT compared to the LS solution. Additionally,
based on formal listening tests, when using PP and aDFT, the
quality of the re-synthesis is preserved compared to the original
LS-based approach.

Index Terms—Fundamental frequency, harmonic model, peak
picking (PP), speech analysis/synthesis, voice model.

I. INTRODUCTION

H ARMONIC models (HM) aim to represent the speech
signal with a set of parameters such as frequencies, am-

plitudes and phases. These models can be used for speech mod-
eling [1], speech coding and synthesis [2], [3], voice transfor-
mation [4], speech enhancement [5] for hearing aids [6]. The pa-
rameters computed can be used to build higher-level represen-
tations [7] (e.g. spectral envelopes) or to estimate glottal source
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characteristics [8]. For this purpose, the accuracy of the param-
eters is a key issue. Furthermore, a representation that can pro-
duce sounds with sufficient perceived quality is of high impor-
tance for applications in synthesis, which need robust and pre-
cise estimates of . There are plenty of real-time applications
that need this high-quality synthesis, such as text-to-speech ap-
plications, analysis and synthesis techniques for quiet environ-
ments, etc. Additionally, speech signal analysis for voice pro-
duction studies require a precision, that is higher than what can
be perceived. Finally, even for offline computations, researchers
need to test multiple ideas and parameters, various methods and
large databases in a convenient time frame, hence, computation-
ally efficient algorithms are preferred.
Harmonic models are initially designed for representation of

the deterministic part of the speech. In order to model the non-
deterministic part of speech, these models, usually, either em-
ploy a random component [9] or represent the voiced speech
spectrum by using multiple bands [10], [11]. Alternatively, sim-
pler models have also been suggested in which the spectrum is
split into two bands separated by the so-called maximum voiced
frequency [12]. The lower and higher bands are used for the de-
terministic and the non-deterministic components, respectively.
A reliable estimation of the voicing frequency limit is critical for
all multi-band models, in order to avoid artifacts and provide a
sufficient perceived quality of the synthesized sound. However,
the need of a frequency limit is questionable. From the point
of view of the voice production, there is no reason to abruptly
low-pass the deterministic component of the voice, since the
voiced source is made of glottal pulses that are fundamentally
wideband signals whose amplitude spectrum is known to de-
crease smoothly [13], [14]. For this reason a full-band model
called the adaptive Harmonic Model (aHM) has been suggested
which estimates frequency components up to Nyquist [15]. A
detailed explanation of aHM can be found in Section II.
In voiced segments, the speech signal is usually assumed to be

stationary in a small analysis window ( pitch periods). This
hypothesis is fairly acceptable at low frequencies, because the
variations of the fundamental frequency, , of the glottal source
are negligible compared to the stationary basis of the usual fre-
quency analysis tools (e.g. DFT). However, the variations of
are proportional to the harmonic number. The non-stationarity
of the voiced signal is, therefore, highly increased as frequen-
cies increase, making the validity of the stationarity hypothesis
questionable for mid and high frequencies up to Nyquist. To al-
leviate this issue of modeling non-stationarities, the Fan Chirp
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Transform (FChT), which uses a chirp related frequency basis
(i.e. linear frequency trajectories) adapted to the input signal,
has been suggested in [16]. For sinusoidal models, the adaptive
Quasi-Harmonic Model (aQHM), a quasi-harmonic represen-
tation of the speech spectrum that does not rely on a chirp fre-
quency basis, has also been suggested in [17]. Instead of limiting
the frequency tracks to linear time evolution, as in FChT, aQHM
relies on a more flexible frequency model. The frequency basis
is adapted to the curve estimated from the speech signal.
Thus, the adapted frequency basis can follow any non-linear
variations of the frequency basis of the underlying signal. How-
ever, a proper estimation of the sinusoidal parameters can be
obtained only if the input components of the frequency basis
built from the curve are in a reasonable interval around the
actual frequencies. Therefore, tracking the harmonic structure
up to Nyquist can be easily compromised since any error on the

curve is multiplied by the harmonic number.
In [15], a strict harmonic model using adaptivity and full-

band representation, referred to as the adaptive HarmonicModel
(aHM), was presented. The aHM is a full-band model which
uses the adaptive scheme of the adaptive Quasi-Harmonic
Model (aQHM) in order to represent a speech signal. Also, an
iterative algorithm, called Adaptive Iterative Refinement (AIR),
has been proposed in regard to the potential error in leading
to erroneous localization of sinusoidal components. The AIR
algorithm begins with the lower frequency components, where
the error of is considered to be small, and iteratively increases
the number of harmonics considered up to theNyquist frequency
by successive refinement of the curve at each iteration step.
The Least Squares (LS) solution was used for the computation
of the sinusoidal parameters of the harmonic model. However,
even though aHM-AIR allows for a robust estimation of the
harmonic components, the computational load of the LS solution
does not allow processing of large databases in a reasonable
amount of time, which is a serious drawback. This issue was
addressed in [18], by replacing the LS solution with a Peak
Picking (PP) approach [19]. In order to integrate the adaptivity
scheme of the aHM to the PP approach, the adaptive Discrete
Fourier Transform (aDFT)was also proposed in [18]. In contrast
to the constant basis of the DFT, the frequency basis of the aDFT
is fully adapted to the input curve of the signal, as the aHM
basis is adapted to the signal. In [18], we used this approach
for the refinement of the curve. In the present article, this
approach is, also, used in order to estimate the sinusoidal param-
eters used for the synthesis. Consequently, this article expands
the research done in [15] and presents a detailed study on the
reduction of the computational load of aHM-AIR, by proposing
and evaluating several approaches for performing this task for
both aforementioned steps of the analysis process, using either
aDFT or FChT and PP in the previously proposed aHMapproach
[18]. We carried a new evaluation procedure in order to assess
the accuracy of the model parameters, using synthetic signals in
order to properly evaluate the advantage of these parameters be-
fore building higher-levelmodels (e.g. spectral envelope). Then,
the Signal-to-Reconstruction Error Ratio (SRER) is computed
for both voiced and unvoiced segments. Finally, the results of a
listening test and the Perceptual Evaluation of Speech Quality
(PESQ) are presented.

In the rest of the paper, Section II describes the necessary
mathematical background for aHM, Section III presents the
adaptive Discrete Fourier Transform and Section IV then pro-
vides all of the technical details of the AIR algorithm for aHM
with the Peak Picking approach replacing the LS solution. The
evaluation follows in Section V with the necessary discussions
and conclusions in Section VI.

II. ADAPTIVE HARMONIC MODEL (AHM)
The main difference between the Harmonic Model (HM)

and the adaptive Harmonic Model (aHM) is that the first uses
random noise components (i.e. HNM [9]) or multiple bands in
order to represent the non-deterministic part of speech while
aHM is a full-band model that uses the adaptive scheme of
aQHM. Given the speech waveform , it is first assumed that
the values of its fundamental frequency curve are known
a priori, though a potential error on this curve is taken into
consideration in this work. Then, the following aHM model of

is used in a single window of 3 pitch periods:

(1)

where is a complex function of time representing both the
amplitude and the instantaneous phase of the th harmonic and

is a real function defined by the integral of :

(2)

where the time reference is the center of the window,
and is the sampling frequency. According to the adaptive
scheme proposed in [20], and are obtained by linear
and spline interpolation of anchor values and estimated at
specific instants , respectively. The estimation of these anchor
values is described in the rest of the current section. Therefore,
aHM will provide estimates of these parameters, which are suf-
ficient for the complete representation of the speech signal. A
sequence on anchor time instants, is created during the aHM
analysis using the provided curve. These anchors derive
from:

(3)

where . Even in the unvoiced segments, where the esti-
mated does not hold a particular meaning, its value is used to
generate these time instants. However, the number of anchors
has to be properly chosen, since too many anchors may overfit
the signal and represent variations that are not related to a de-
terministic component in voiced segments. A behavior like that
has no true meaning for statistical modeling and may even cause
the voice characteristics to be difficult to control in voice trans-
formation. On the other hand, underfitting the signal with too
few anchors should also be avoided. For speech, it can safely be
assumed that the frequency modulation is related to a change of
pulse duration and not to any modulation inside a single pulse.
Hence, one anchor per period should suffice and in this article,
a pitch synchronous analysis in which the distance between an-
chors respects an input curve, is assumed.
For the aHM parameter estimation with the presence of po-

tential errors in the curve, the frequency correction mecha-
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nism of aQHM is used [20]. Within a single window, this model
is similar to:

(4)

where is still defined by Eq. (2) and , are complex
values that are constant in the window, in contrast to in
Eq. (1). To estimate and the following squared error is
minimized by discrete sampling between the windowed speech
segment and its model

(5)

where is the number of samples in the analysis window.
Moreover, the model parameters are estimated via the LS so-
lution, given the samples of the input signal in a vector :

(6)

where is the diagonal matrix containing the window values
in the diagonal, is the input signal vector and is
the adapted frequency basis, which have elements given by

(7)
(8)

III. ADAPTIVE DISCRETE FOURIER TRANSFORM (ADFT)
In order to increase the computational speed, the replacement

of the LS solution (Eq. (6)) with a Peak Picking approach was
suggested in [18], in order to estimate the above aHM parame-
ters in a more efficient way.
The core of this faster approach lies in the adaptive Dis-

crete Fourier Transform (aDFT) [18]. In order to properly de-
scribe the aDFT and emphasize the importance of adaptivity for
the AIR algorithm, a comparison between the DFT, FChT and
aDFT is first presented in this section. In Fig. 1, the frequency
basis for the three transformations mentioned above for a single
analysis window and the respective spectrogram, are made vis-
ible. The results obtained by these three methods for a longer
time period are depicted in Fig. 2.
In order to compare all three transforms, we need to start with

the frequency basis of the DFT. For a windowed signal of
length , the DFT is defined as

(9)

where represents the DFT length, (first
row of Fig. 1). In the DFT, there is the assumption of stationarity
in the analyzed signal, since the frequency basis used to
compute the DFT is constant inside the analysis window:

(10)

with time derivative:

(11)

Fig. 1. Three different transforms and their respective frequency bases for a
single analysis window. First row depicts the spectrogram and frequency basis
of the central frame of DFT, second row of FChT and third row of aDFT.

However, in speech signals, this assumption of stationarity is
valid only when the variations of the fundamental frequency,
, are negligible compared to the stationary basis of the DFT.

Moreover, the variations of the harmonics are proportional
to those of multiplied by the harmonic number. Hence,
as frequencies increase so does the non-stationarity of the
voiced signal, making the validity of the stationarity hypothesis
questionable for mid and high frequencies. The first row of
Fig. 2 presents the DFT spectrogram. One can see that the
frequency content is highly blurred around 2.5 kHz.
To alleviate this issue, the Fan Chirp Transform (FChT) has

been proposed in [16]. In this method, a chirp related frequency
basis (i.e. linear frequency trajectories) is used, with its slope
adjusted to the average slope of the curve in the analysis
window. For a windowed signal of length , the FChT
is defined as

(12)

where also stands for the FChT length, ,
denotes the complex conjugate and is the frequency

basis of the FChT defined as

(13)

where rules the time dependence of the frequency basis
exponent

(14)
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Fig. 2. Spectrograms produced by DFT, FChT and aDFT depicted in the first,
second and third row, respectively.

whose time derivative is:

(15)

where the parameter is the chirp rate of the slope (second
row of Fig. 1). It can be observed that with the linearly adapted
frequency basis of FChT, the harmonics become clearer com-
pared to the ones produced by the DFT. In the second row of
Fig. 2, one can notice that even around 2.5 kHz the harmonics
can be easily traced, especially compared to the results of the
DFT spectrogram shown in the first row. Hence, there is a reg-
ularity in the frequency content even in mid/high frequencies

when the FChT is used, which was not visible by using the DFT.
Still, even though the FChT basis adapts to the frequency mod-
ulations better than the DFT, the frequency basis is constrained
to linear trajectories only.
In [18], in order to better follow the non-linear variations of
, the adaptive Discrete Fourier Transform (aDFT), based on

the adaptivity scheme of aQHM [17] and aHM [15], was pro-
posed. The frequency basis used for the aDFT follows com-
pletely the curve variations. Since the tracking of real sinu-
soids needs only the positive frequencies, the following repre-
sentation is limited to the positive part of the aDFT. For a win-
dowed signal of length , the aDFT of the positive fre-
quencies, is defined as

(16)

where , also, refers to the aDFT length, and
is the “fundamental phase” of the frequency basis, whose

values are obtained from the discrete sampling of the continuous
real function, , defined by the normalized integral of the
fundamental frequency :

(17)

where the time reference is the center of the window and
denotes the sampling frequency. In (17), normalizes

the frequency basis so that in the center of the window, where
, it corresponds to that of the DFT as shown through the

time derivative:

(18)

According to the adaptivity scheme, is obtained by linear
interpolation of the anchor values at specific instants . The
third row of Fig. 1, shows an example of the results of aDFT and
its respective frequency basis of the central frame. It can be no-
ticed that the frequency basis of aDFT compared to the other two
methods is fully adapted on the variations of the curve, hence,
it can produce more accurate time-frequency representation.
As mentioned above, in the second row of Fig. 2 the har-

monics around 2.5 kHz can be more easily traced compared to
the ones in the first row. This creates a regularity in the fre-
quency content even in mid/high frequencies when FChT is
used. In the third row of Fig. 2, where the aDFT is used, this
regularity can be noticed even more in mid/high frequencies.
In Fig. 2 some discontinuities can be observed, especially in

the first and second row, between time instants. However, aHM
always forces harmonicity, as it is a purely harmonic model,
even if there is none in the signal. Thus, possible discontinuities
are always smoothed during the synthesis. Additionally, when
there is an erroneous curve as an input, if the error is less
than an octave, the spectrogram should be correct because the
frequency basis is normalized by the central in aDFT.

IV. PARAMETER ESTIMATION METHOD

In this section, the method for estimating the aHM parame-
ters up to Nyquist is described, namely the Adaptive Iterative
Refinement (AIR) algorithm which uses the proposed Peak
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TABLE I
METHODS USED FOR BOTH STEPS OF THE ANALYSIS PROCESS

Picking (PP) approach on the adaptive Discrete Fourier Trans-
form (aDFT) [18]. The global structure of the original AIR
algorithm has been already described in [15] and is basically
kept the same. In general, the AIR algorithm is used to re-
fine the incorrect localization of sinusoidal components due to
the potential error in , in order to allow a robust estimation
of harmonic components up to the Nyquist frequency. In the
present article, three different estimation methods (based on
LS, FChT, aDFT) were used for the AIR algorithm and the
refinement of the curve. These three methods were, then,
used in the last analysis step for the estimation of the final sinu-
soidal parameters used during the re-synthesis process. In the
rest of this paper, the analysis process will be separated in the
two aforementioned steps and, for clarity purposes, they will
be referred to as the Refinement of step and the Final Sinu-
soidal Parameters Estimation step. Combining these methods
(LS, FChT, aDFT) for the two different steps of the analysis
process results in the five methods of Table I that will be later
on discussed in the Evaluation Section V, one of them having
the desired results for both the computational load and the
re-synthesis quality.
The AIR algorithm is used for the Refinement of step of the

analysis process. The basic idea of this algorithm is to begin by
modeling the lower harmonics, where the error in the mea-
surements can easily be corrected. Then, a refinement of the
trajectory is evaluated based on the refinements of the values
for each frame and the harmonic order of the model is iteratively
increased until the Nyquist frequency is reached. In the original
version of the AIR algorithm [15], the refinement of the tra-
jectory was computed by using the Least Squares (LS) solution,
while in this paper, instead of the LS solution a Peak Picking
approach is used. Every other aspect of the AIR algorithm was
kept the same. A full description of the AIR algorithm and a
more detailed explanation of the methods used follows.
During analysis, a parametrization of the speech signal at time

instants takes place, as mentioned in Section II. Using a rough
estimate of the input curve, a sequence of instants is first
created, with distance of one pitch period between each of them.
A Blackman window of 3 local pitch periods is then applied to
the speech signal centered around each , with the aDFT length
( ) being defined as twice this window’s length in order to
make the main lobes appear in the aDFT. Consequently, voices
with high pitch (e.g. female voices) will need a smaller aDFT
length than voices with low pitch (e.g. male voices).

The AIR algorithm works first for each time instant sepa-
rately, estimating the value of the at that time instant, namely
the , where the original estimate of the curve is provided by
the SWIPEP [21] algorithm. At the end of each iteration, the
curve is updated by all the refined values. The algorithm begins
at a low harmonic level, , for each time instant, meaning
that only harmonics up to the 8th one will be taken into account
for the refinement of the curve during the first iteration. For
each iteration, the corrected is estimated for each time instant
from the Peak Picking on the aDFT computed from the seg-

ment created around that time instant. For the computation of ,
the harmonic peaks, , computed by PP, where corresponds
to the harmonic number, are taken into account. More specifi-
cally, the value of derives from the median of those harmonic
peaks, divided by each peak’s harmonic number. It was assumed
that some peaks are representing noisy components. Thus, some
peaks might be unreliable and the median value is an efficient
way to discard outliers in the computation of the mean.

(19)

At the end of each iteration, all values are replaced by the new
. Before the next iteration begins, is updated for each time

instant , as in the original AIR algorithm [15]. Eventually, this
process is repeated for all frames until the Nyquist frequency
is reached for all of them. Algorithm 1 describes this analysis
procedure:

Algorithm 1 AIR for aHM using Peak Picking

Create a sequence of time instants according to
Initiate each
Initiate each
while such as

for each for which
Create a segment of 3 periods around
Compute the aDFT of the segment
Pick the harmonic peaks up to from aDFT
Compute
if

Compute
Update

end if
end for
Set

end while

In Algorithm 1, is the correction of estimated in each
iteration (i.e. ) and is the aDFT length of
frame . The updated value of has as upper limit the Nyquist
frequency.
A brief comparison with the previous version of aHM-AIR

[15] can clarify the ways in which this new version (i.e. Algo-
rithm 1) should be more computationally efficient. Originally, in
the algorithm proposed in [15], in every iteration for each time
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anchor , where the frequency still hadn’t reach the Nyquist fre-
quency, the LS solution was used for the minimization of Eq. (5)
in order to compute the and parameters of aQHM (i.e.
Eq. (6)). On the other hand, in this article, with the substitution
of the LS solution with a Peak Picking method, this computa-
tionally heavy estimation becomes unnecessary. In Algorithm 1,
instead of computing the aHM parameters in each iteration, the

refinement for each time instant , namely , is computed
via Peak Picking in an aDFT transform and Eq. (19). This sub-
stitution reduces the computational load, making the new ver-
sion of the AIR algorithm more efficient timewise, as shown in
Section V-A.
Taking into account that the main reason behind the replace-

ment of the LS solution with Peak Picking and aDFT approach
is to improve the computational load of the aHM-AIR method
while preserving the quality of the re-synthesis, a few more
modifications were made. The following subsection, IV-A,
presents all these modifications used during the aHM-AIR to
reduce the computational load, describes a faster version of the
process, using a limited-aDFT method and explains how the
use of this function affects our proposed Peak Picking scheme.
Furthermore, a more detailed description of our proposed Peak
Picking scheme and the techniques used for the unvoiced
segments follows in IV-B and IV-C, respectively.

A. Reduction of Computational Load Using Limited-aDFT
When the aHM-AIR method begins, the harmonic level is

set for each time instant , at a low count. For the next itera-
tions, this level is always limited until the Nyquist frequency is
reached. The core of the limited-aDFT idea is that only the part
of the aDFT containing the necessary harmonics needs to be cal-
culated. Hence, the computation of any bins above the current
harmonic level can be avoided. This optimization cannot be
done using the LS solution, because the corrections computed
from aQHM are not meaningful when not applied for the full
band, up to the Nyquist frequency.
Another improvement regarding the method’s complexity is

based on the fact that the values refined in each iteration,
eventually converge. It can be noted that the frequency basis re-
mains almost the same for the low frequencies, as the harmonic
level, , increases. Hence, the aDFT in low frequencies is very
similar between iterations and the correction of the frequency
basis for lower frequencies becomes more and more negligible.
Thus, it can be assumed that below a specific extent of correc-
tion for each , the peaks estimated during the previous itera-
tion would remain almost the same in the lower frequencies, so
they can be maintained for all following iterations. In order to
implement this idea in the proposed method, a threshold, , in
the frequency bins of the aDFT, needs to be decided upon. The
use of following relation is suggested:

(20)

where is the frequency at the time instant , is the aDFT
length for frame , is the correction of computed from
the previous iteration (i.e. ). A tolerance factor
of 10% of the value (i.e. ) was chosen, which
provided an important reduction of the computational time

Fig. 3. Illustration of how the limited-aDFT idea works through iterations.
Each part of the aDFT is computed in a different iteration, marked at the bottom
of the figure.

without altering drastically the results. This tolerance factor of
10% roughly means that 10% of the previously computed lower
peaks, depending on the correction made during this step,
can be kept the same in the next aDFT. Hence, it is assumed
that refining the new values of these lower peaks in the next
iteration will have a negligible influence in the computation of
the new value.
Utilizing , the bins of the aDFT below this threshold would

be kept the same for the following iterations, thus, the aDFT is
only computed for the rest of the bins and still only until the
upper harmonic limit . Hence, can be considered as the
lower harmonic limit for the aDFT computation. Fig. 3 shows
an example of what the aDFT for a single window looks like in
the third iteration. It can be observed that the lower bins of the
aDFT were obtained during the two previous iterations. Each
time there was an upper limit and a lower limit consid-
ered during the computations. Hence, only the part of aDFT con-
taining harmonics between these two limits was estimated.
It becomes apparent that, by using the limited-aDFT, thus,

keeping part of the aDFT intact from iteration to iteration, the
harmonic peaks inside that part, also, remain the same. This
has an interesting affect on the PP approach. The Peak Picking
method can adapt to keep the harmonic peaks obtained from the
frequency bins below the threshold and only compute the peaks
in the rest of the frequencies. Later on, both the peaks from the
previous iterations and the ones obtained in the current one are
used for the computation of , that will replace at the end of
each iteration.

B. The Proposed Peak Picking Scheme

In this section a detailed explanation of our proposed Peak
Picking scheme follows. Algorithm 2 describes our Peak
Picking scheme and the conditions used to determine whether
a peak obtained by the aDFT representation can be considered
harmonic or not, and which harmonic count it corresponds
to. Hence, which aDFT peaks will be taken into account in
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the refinement of the fundamental frequency of a window
(Eq. (19)).

Algorithm 2 Peak Picking for an analysis window

Find all peaks
for each harmonic count

Search for closest peak to
if (peak’s distance from

Dismiss
else if peak is previously identified as harmonic

Dismiss and find second closest peak to
if (peak’s distance from

Dismiss
else if peak is previously identified as harmonic

Dismiss
else

Identify peak as harmonic of count :
end if

else
Identify peak as harmonic of count :

end if
end for

Theharmonic peaks are defined as integermultiples of the fun-
damental frequency of a window , , with the harmonic order
( ). In order to determine which of the aDFT

peaks have to be considered in the computation, theminimum
distance between each harmonic peak and the peaks measured
in the aDFT is computed, thus, finding the closest peak to that
harmonic peak similarly to [22]. However since not all frames
have a strict harmonic structure (e.g. high frequencies, unvoiced
frames, etc.), in order for Peak Picking to find the better fitted
harmonic structure of the window, a few more restrictions were
placed for the harmonic identification, as shown in Algorithm
2. At the end of the proposed Peak Picking scheme a set of har-
monics, , is produced for each analysis window. This set of
harmonics is, then, used in the estimation of the refinement of
the fundamental frequency of each window following Eq. (19).
In future works, this part of the method could be improved by
using peak classification criteria as suggested in [23].
The results of this method produce a resynthesis that has al-

most identical perceived quality compared to the one given by
the LS solution for the Refinement of step, but its robust-
ness is based on the assumption that the input curve is fairly
correct. That is not the case when there is a substantial amount
of noise in the curve. More precisely, in the first iteration the
harmonic base derives from the input curve which, as men-
tioned above, could have some noise. During the first iteration
of the PP method only the first harmonic ( ) is obtained,
namely . Based on the input frequency basis, PP will look for

around the frequency value . Then, in the following it-
eration, PP will search for the second harmonic around the
frequency value and so forth. Consequently, at the end of
PP all the harmonics collected will be almost multiples of the

frequency basis, , hence its error will be carried in all the fol-
lowing estimations, too, which may lead to skipping harmonics
and wrongly recognizing others. In order to solve this problem
and make the method more robust, instead of computing the re-
finement, , at the end of the PP method, is evaluated when-
ever a new harmonic peak is identified, following (Eq. (19)).
After the first couple of harmonic peaks are identified, the value
used for the first harmonic base changes (i.e. me-
dian( )). Additionally, with every new harmonic peak iden-
tified by our proposed Peak Picking scheme, the harmonic base
is recomputed. Hence, the influence of noise in the value
lessens through iterations, resulting to a more precise estima-
tion of the rest of the harmonics, and finally, of the fundamental
frequency of the window. This is based on the fact that not all
harmonics are an exact multiple of the harmonic base, hence
with each recomputation of the harmonic base its value will con-
verge to the actual one. However, as a drawback, the algorithm
becomes a little slower but the results become more robust.

C. Unvoiced Segments
In unvoiced segments, no harmonic structure exists, hence

using a harmonic model in those parts becomes questionable.
However, as it has been shown in [15], it is possible to use
aHM for both voiced and unvoiced segments, thus providing
a uniform representation across time which does not need any
voicing decision. Nevertheless, often, while using the suggested
PP approach in unvoiced segments, either substantial deviations
from the input curve occurred or the value computed for an
unvoiced segment ended up not converging. This is caused by
the lack of harmonic structure in addition to the low harmonic
level used during the first steps (e.g. for the first iterating
step), which prevent convergence of the values. However, it
was observed that using a higher harmonic level this was not the
case, even for unvoiced segments.
The original estimate of the curve for the unvoiced frames

is provided by the SWIPEP [21] algorithm, as it was the case
with the voiced frames. Ideally, while dealing with unvoiced
frames, an estimator should favour low frequencies, so that there
is enough frequency resolution for representing the noise. In this
paper, the estimator considers a higher harmonic count than the
original in the unvoiced frames, thus, it doesn’t favour
the lower frequencies, but it tries to fit the most harmonic struc-
ture it can find closer to the initial curve values. We suggest
to discard values with any substantial deviations from the
previous values of each time instant . Additionally, when a
value is discarded, a forced increase of the harmonic level, be-
fore the next iteration, is used. In the current implementation, a
deviation threshold of 8% from is used to decide whether or
not each will be discarded. It was observed, after experimen-
tation, that any value that surpassed the 8% threshold either
ended up converging in a extremely erroneous value or did not
converge at all. In the case of a discard, the forced increase of the
harmonic level takes place according to the following equation:

(21)

This allows to force the harmonic level for the next iteration
high enough that even the unvoiced frames will have enough
pseudo-harmonic peaks to converge towards a stable value.
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Fig. 4. Line styles for all methods shown in Fig. 5, Fig. 6 and Table I. The first
term in all line styles denotes the method used for the Refinement of step and
the second one denotes the method used for the Final Sinusoidal Parameters
Estimation step.

TABLE II
AVERAGE TIME REDUCTION RATIOS FOR THE REFINEMENT OF STEP

TABLE III
AVERAGE TIME REDUCTION RATIOS FOR THE FINAL

SINUSOIDAL PARAMETERS ESTIMATION STEP

V. EVALUATION
For the following evaluations, three different implementa-

tions of aHM-AIR were taken into account, namely the AIR al-
gorithm can use either the LS solution [15], our proposed Peak
Picking approach using FChT or our proposed Peak Picking ap-
proach using aDFT, for the Refinement of step of the analysis
process. From this refined curve, the sinusoidal parameters
of the harmonic model are, then, evaluated in the last step of the
analysis process, namely the Final Sinusoidal Parameters Es-
timation step of analysis. For this step, all three methods men-
tioned above were, again, applied. This led to the comparison
of the 5 methods from Table I, depicted by the line styles of
Fig. 4 in the following evaluations.
All the evaluations, except for the parameter estimation error

evaluation, were applied on a small database of 32 utterances
(16 male and 16 female, originating from 16 different lan-
guages, between 2s and 4s length, with sampling frequency
varying between 16 kHz and 44 kHz). The different phonemes
and origins of these languages are assumed sufficient to provide
a voice variability for supporting the validity of the results. For
FChT, the chirp-factor for each time instant , was estimated
based on the slope factor of the linear interpolation of the two
neighboring values, and , around .

A. Computational Time
For each method, the running time has been measured for

each recording and the time reduction ratios, with respect to the
LS-based method (Table II and Table III), were averaged among
all sentences. Table II presents the ratios for the Refinement of

step of the analysis process. While, Table III displays the

ratios for the Final Sinusoidal Parameters Estimation step of
the analysis, where the parameters are estimated by all three
methods.
On Table II, it can be noticed that, on average, when using

FChT, aHM-AIR becomes 7.69 (i.e. )
times faster, while, with aDFT, it becomes 4 (i.e.

) times faster compared to the LS solution approach.
Among the used sentences, the maximum ratio of time improve-
ment observed was 21.67 for FChT and 7.67 for aDFT com-
pared to the LS solution. The reason why there is such a dif-
ference between the improvement caused between FChT and
aDFT is due to the fact that the frequency basis for FChT is less
flexible than for aDFT and the slope parameters of FChT con-
verge quicker than the actual values. On the one hand, the
aDFT keeps on changing as long as the values change. Thus,
if the values change from one iteration to the next, the fre-
quency basis of the aDFT will also be different, hence, the peak
picking will find different peaks and the next correction will
be proportional to these changes. On the other hand, for FChT,
even though the values can change between two refinement
iterations, the slope can be extremely similar, since many dif-
ferent sets of values have the exact same linear regression.
Thus, the FChTmay not change, and as a consequence the peaks
remain the same and the correction can be almost zero for the
next step. Thus, one can, indeed, expect a faster convergence
with FChT than with aDFT.
For theFinal Sinusoidal Parameters Estimation step, all three

methods were also used. By studying Table III it can be observed
that using the LS solution is faster than using either FChT or
aDFT in the Final Sinusoidal Parameters Estimation step. This
is mainly due to the fact that in this step of the analysis process,
both FChT and aDFT are computed for each frame up to the
maximum harmonic level (i.e. Nyquist), while during the Re-
finement of step of analysis only parts of them are computed
in each iteration, as discussed in Section IV-A. Moreover, the
final parameter estimation using LS is fairly faster than using
LS during the refinement iterations. Indeed, during the final esti-
mation there is no need for the correction factors obtained using
the aQHM model (Eq. (4)). Thus, computing only the aHM
terms makes the use of the LS solution more computationally
efficient than before. In conclusion, the approaches using trans-
forms are, according to our experiments, not faster than the LS
solution for the Final Sinusoidal Parameters Estimation step.
Table III shows that in this step, on average, LS is 2.10 times
faster than FChT and 3.27 times faster than aDFT.

B. Parameters Estimation Error
The purpose of studying the parameter estimation error is to

evaluate the precision of the estimated parameters in terms of a
sinusoidal representation, compared to aHM-AIR using the LS
solution. In the following tests, the estimated frequency, ampli-
tude and phase values are compared to ground truth values of
synthetic signals. A synthetic signal, which is as close as pos-
sible to a natural speech signal, is obtained by using a Liljen-
crants-Fant glottal model [13] to synthesize the glottal source.
To obtain a realistic vocal tract filter, a digital simulator is used
[24] that allows production of 13 different voiced phonemes, in-
cluding nasalized sounds.
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The synthetic signal is obtained as:

(22)

where is the spectrum of the Liljencrants-Fant model,
is the vocal tract filter representing a random phoneme

among the 13 covering the vocalic triangle, and follows
(2), except that, here, corresponds to the beginning of the
signal. The pulse shape of the glottal model is controlled by a
random parameter as in [13] and its period is
defined by .
The following test evaluates the robustness of the different

methods when the initial curve has errors which should
be alleviated by the AIR algorithm. In the following tests,
the original , in (22), is synthesized by using 5 anchors
per second with random values in [80;400] Hz. A zero-mean
Gaussian noise with various STandard-Deviation (STD) is,
then, added to this curve which results to the input curve to
the methods. In Fig. 5 and Fig. 6, the estimation error of the
sinusoidal parameters is plotted as a function of the STD of
this additive error. Using a sampling frequency of 44.1 kHz,
320 test samples of 500 ms duration each are generated. The
samples are analyzed at regular intervals of 5 ms and the
differences between the estimated parameters computed by
each method and the reference parameters are determined.
Fig. 5 and Fig. 6 show the mean and the STD (using a base-10
logarithmic scale) of the estimation error, in the first three and
the last three rows, respectively. The phase error was computed
by the wrapped difference between the unwrapped real and
estimated values of the phase for these synthetic signals. For
all figures, the same line style convention is followed, which
is shown in Fig. 4. In the line style names, the first method
mentioned denotes the method used for the Refinement of
and the second one is the method used for the Final Sinusoidal
Parameters Estimation step, as shown in Table I. The mean
and the STD values were computed through the median and
the interquartile range, respectively, to avoid the influence of
outliers.
Overall, it can be observed that the results produced by the

five different methods used in Fig. 5 and Fig. 6 are, in some
cases, very similar. Thus, arises the question of whether or not
the difference between the different systems is significant. In
order to better understand their difference, the 95% confidence
intervals were computed for each method for both mean and
STD, prior to the parameter estimation error. The intervals
were computed by using 464,870 and 2,073,504 samples for
frequencies below 4 kHz and above 4 kHz, respectively. The
width of these intervals was approximately 0.1 Hz, 0.01 dB
and 0.003 rad for the mean error of frequencies, amplitudes
and phases, and 0.0015 Hz, 0.0015 dB and 0.0015 rad (base-10
logarithmic scale) for the STD error, respectively. Additionally,
in most cases, there was no overlap between the different
methods and even when there was, it occurred for intervals of a
very small width. From all the above we can conclude that the
difference between the curves shown in Fig. 5 and Fig. 6 are
relevant.
1) Refinement of : Full Adaptivity vs. Linear Adaptivity

(LS-LS vs. aDFT-LS vs. FChT-LS) : In Fig. 5, the results of

Fig. 5. Error of sinusoidal parameters with respect to a potential error on the
curve provided to the analysis methods, comparing full adaptivity with linear

adaptivity during the refinement steps.

the parameter estimation error for aHM-AIR, when the LS so-
lution is replaced by a Peak Picking method in the Refinement
of , are shown. These values are obtained by the Final Sinu-
soidal Parameters Estimation performed by the LS solution. In
the last three rows, the differences between the three methods
can be observed more clearly. In the frequency error, row four,
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Fig. 6. Error of sinusoidal parameters with respect to a potential error on the
curve provided to the analysis methods, comparing LS solution with Peak

Picking in the last analysis step.

it can be observed that for the lower additive noise LS-LS has
a smaller STD than the other two methods and as the noise in-
creases LS-LS becomes indistinguishable from FChT-LS until
18 Hz of additive noise STD is reached. FChT-LS begins with
the same STD as aDFT-LS but, as the additive noise increases,
its results are similar to the ones produced by LS-LS, while

aDFT-LS has a slightly higher STD than the other two methods,
below 18 Hz STD of noise. However, still for the same row, for
the higher values of additive noise (above 18 Hz STD), LS-LS
and aDFT-LS have a smaller STD than FChT-LS. Finally, in
the amplitude and phase errors, rows five and six respectively,
it can be observed that FChT-LS has better results for the lower
values of noise, while the results of aDFT-LS and LS-LS be-
come better than those of FChT-LS as the noise increases. These
two methods, aDFT-LS and LS-LS, have very similar results
to each other. The behavior of FChT-LS in the higher values
of the additive error can be contributed to its linear frequency
basis. The more additive noise there is in the input curve,
the harder it becomes for FChT-LS to find linear trajectories
that can follow the adaptations of the values. On the other
hand, this is not the case for LS-LS and aDFT-LS that are fully
adaptive.
2) Final Sinusoidal Parameters Estimation: LS Solution vs.

Peak Picking (aDFT-aDFT vs. aDFT-LS vs. FChT-FChT vs.
FChT-LS): The results shown in Fig. 6 can be studied in order to
better understand the influence of the method used in the Final
Sinusoidal Parameters Estimation step of the analysis process.
For this test, either aDFT or FChT was used for the Refine-
ment of step, while all three methods (LS, aDFT, FChT)
were combined with them, as shown in Table I, for the Final
Sinusoidal Parameters Estimation step. It can be observed that,
when using a Peak Picking method in the Final Sinusoidal Pa-
rameters Estimation step instead of the LS solution, the results
of the parameter estimation are not always the best. In the first
row, displaying the frequency mean error, it can be noticed that,
in high frequencies, both aDFT-aDFT and FChT-FChT present
an erroneous behavior, especially the latter with a mean error
over 20 Hz in most of the cases. Another great deviation for
FChT-FChT from the results of the rest of the methods can be
observed in the phase error in third row. There, both in low
and high frequencies, FChT-FChT demonstrates a highly erro-
neous behavior, having the highest error estimated in all four
methods. In concern to the STD of the parameters estimation
error, aDFT-aDFT has either almost the same or better results
than aDFT-LS, while FChT-FChT experiences some further dif-
ficulties. Namely, in the fourth row, the STD of the frequency
error is almost the same for aDFT-aDFT and aDFT-LS while
FChT-FChT has the worst results out of all four of them. In
the fifth row, the amplitude error of aDFT-aDFT is the smallest
one. Finally, in the last row, the phase error of aDFT-aDFT is
the smallest out of all four methods in low frequencies and al-
most the same as aDFT-LS in higher frequencies. The good re-
sults produced by aDFT-aDFT are due to the PP which always
catches the summit of the peaks, whereas LS can miss the peaks
leading to higher amplitude and phase errors.

C. Signal-to-Reconstruction Error Ratio (SRER)
The segmental Signal-to-Reconstruction Error Ratio (SRER)

between the recorded utterances and their models was computed
using equation 23 in order to evaluate the global reconstruction
accuracy of the suggested methods. The SRER between an orig-
inal signal and its reconstruction can be written as

(23)
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Fig. 7. Estimation of the full-band SRER distributions for voiced and unvoiced
frames.

where denotes the standard deviation of a signal . It
can also be observed that the results of SRER are converted
into decibel (dB). The higher the result of the above equation
the better similarity has to the original signal .
A sliding window of 10 ms with 50% overlap was used. In

order to evaluate both the impact of the AIR algorithm, which
refines the fundamental frequency, and the best method to com-
pute the final sinusoidal parameters used for the synthesis, all
five previously mentioned methods are compared. The SRER
was computed using the full-band of the recordings and its dis-
tribution of the voiced and unvoiced segments is shown on the
top and bottom plots of Fig. 7, respectively. The sole 32 sen-
tences were sufficient to obtainmore than 10,000 values for each
distribution.
It can be observed that the distributions of all three methods

using the LS solution in the Final Sinusoidal Parameters Esti-
mation step are very similar to each other for voiced segments.
This means that the reconstruction quality is not degraded by
the refinement method and, as was shown in Section V-A,
the computation load has a considerable decrease with Peak
Picking on aDFT. On the other hand, both FChT-FChT and

aDFT-aDFT present some issues with both voiced and un-
voiced frames which can be explained by the higher frequency
errors when not using the LS solution. It is interesting to notice
the behavior of FChT-LS in the unvoiced segments, where a
smaller SRER is observed compared to the other two methods
using LS in the Final Sinusoidal Parameters Estimation step.
This is due to the fact that the frequency basis in FChT is con-
strained to linear trajectories and does not have the flexibility
of the fully adaptive basis of aDFT.

D. Perceived Quality: Listening Test and PESQ

In this part of the evaluations, the perceived quality of the re-
constructed signals using the five methods was evaluated sub-
jectively and objectively, using listening tests and the PESQ
method [25] respectively.
1) Subjective Perceptual Evaluation: The purpose of this

listening test is to evaluate the methods which are used for
both steps of the analysis process (i.e. Refinement of and
Final Sinusoidal Parameters Estimation). In order to do so,
the same 32 utterances of 16 different languages as in 5.2 were
used. Listeners were asked to evaluate the quality of sound
files compared to an original recording using a web interface.
Among the six files they had to rate, five of them were syn-
thesized with LS-LS, aDFT-aDFT, aDFT-LS, FChT-FChT
and FChT-LS, while the sixth file was the original recording,
which was added to the comparison set in order to check
the consistency of the answers. In this test, each listener was
asked to grade only 3 languages randomly selected from the
16 languages. Each language was represented by one male and
one female voice, hence, each listener evaluated the resynthesis
of 6 recordings the 6 different methods . The following
grading scale of quality was used: (5)Excellent,(4)Good,
(3)Fair, (2)Poor and (1)Bad. In order to optimize the results of
the listening test, the listeners were asked what device they used
to listen to the signals, and only the answers from listeners who
used headphones or earphones were kept. Moreover, answers by
listeners who did not rate the original recordings systematically
between 4 and 5 were discarded, considering that they did not
understand the instructions or they were not focused enough.
After all the above answers were discarded, 24 remained. Since
the sounds to evaluate were selected randomly, the number of
occurrences of each sound was not uniform. In order to remove
any possible bias, the mean and confidence intervals of the
results were normalized according to the number of occurrence
of each sound. Fig. 8 shows the results of this listening test.
According to Fig. 8, it can be noticed that only three methods

have a global score under 4, aDFT-aDFT, FChT-FChT and
FChT-LS. This is caused by the fact that all three methods
cannot adapt adequately enough to the unvoiced parts of a
signal, as shown in Fig. 7, hence creating artifacts in the
resynthesis. On the other hand, aDFT-LS and LS-LS have very
similar overall scores, very close to the results of the Original
signal.
2) Objective Perceptual Evaluation of Speech Quality Using

PESQ: It is expected that, since the results of SRER for the
LS-LS and aDFT-LS methods are very similar, an objective
measure of perception would give the same results. In order
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Fig. 8. Quality evaluation of the resynthesis quality by 24 listeners using 32
utterances of 16 different languages, with 95% confidence intervals.

TABLE IV
PESQ SCORES ASSESSING THE OVERALL QUALITY OF THE RE-SYNTHESIZED

SIGNALS OF THE METHODS COMPARED TO THE ORIGINAL SIGNAL

to verify this, the PESQ method [25] is used to assess the per-
ceived quality of the reconstructed signals compared to the orig-
inals. Table IV presents the PESQ scores for the five methods of
Table I, using the same database as in the previous tests. Due to
the fact that the sampling frequency for the signals in the data-
base varied from 16 kHz to 44 kHz, a re-sampling of all signals
to 16 kHz was performed in order for the PESQ measurement
to be used. The results show that the LS solution has the best
PESQ score with aDFT-LS being a close second. On the other
hand, FChT-LS and FChT-FChT have the worst results of them
all, with aDFT-aDFT being a little better than them, as is ex-
pected from the SRER and listening test results.

VI. CONCLUSIONS
Taking advantage of the good perceived quality provided by

aHM-AIR, a Peak Picking approach was suggested in a pre-
vious publication to replace the LS solution for the refine-
ment, in order to reduce the computational time of the AIR al-
gorithm. In this article we extend the previous proposal with
a comprehensive study of the behavior of our suggested Peak
Picking approach for the whole analysis process of a speech
signal. Two different transforms were used for Peak Picking,
namely FChT and aDFT. Evaluations have shown that by per-
forming this substitution, the computational load of the AIR al-
gorithm decreases, in average, by a factor of 7.69 and 4, for

FChT and aDFT respectively. Moreover, using synthetic sig-
nals, the accuracy and precision of the parameter estimation of
all versions of aHM-AIR was evaluated showing that the results
of aDFT-LS are almost as robust as those of the original method,
LS-LS, while all other methods experienced problems. Also, a
listening test was carried out in order to assess the subjective
perceived quality provided by the suggested analysis/synthesis
procedure. According to this listening test, the resynthesis of
aHM-AIR using Peak Picking and aDFT for the refinement
and LS for the final sinusoidal estimation (aDFT-LS), has glob-
ally the same high quality as aHM-AIR using the LS solution,
which is also confirmed by an objective measurement. There-
fore, a Peak Picking approach can indeed replace the original
LS solution approach of aHM-AIR, while reducing the compu-
tational load by four times and preserving the high quality.
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