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Blind Spectral Weighting for Robust Speaker
Identification under Reverberation Mismatch
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Abstract—Room reverberation poses various deleterious effects
on performance of automatic speech systems. Speaker identi-
fication (SID) performance, in particular, degrades rapidly as
reverberation time increases. Reverberation causes two forms of
spectro-temporal distortions on speech signals: i) self-masking
which is due to early reflections and ii) overlap-masking which is
due to late reverberation. Overlap-masking effect of reverberation
has been shown to have a greater adverse impact on performance
of speech systems. Motivated by this fact, this study proposes a
blind spectral weighting (BSW) technique for suppressing the re-
verberation overlap-masking effect on SID systems. The technique
is blind in the sense that prior knowledge of neither the anechoic
signal nor the room impulse response is required. Performance of
the proposed technique is evaluated on speaker verification tasks
under simulated and actual reverberant mismatched conditions.
Evaluations are conducted in the context of the conventional
GMM-UBM as well as the state-of-the-art i-vector based systems.
The GMM-UBM experiments are performed using speech mate-
rial from a new data corpus well suited for speaker verification
experiments under actual reverberant mismatched conditions,
entitled MultiRoom8. The i-vector experiments are carried out
with microphone (interview and phonecall) data from the NIST
SRE 2010 extended evaluation set which are digitally convolved
with three different measured room impulse responses extracted
from the Aachen impulse response (AIR) database. Experimental
results prove that incorporating the proposed blind technique
into the standard MFCC feature extraction framework yields
significant improvement in SID performance under reverberation
mismatch.

Index Terms—Mismatch conditions, NIST SRE, overlap-
masking effect, reverberation, speaker verification.

I. INTRODUCTION

ECENT advancements in DSP technology have enabled

integration of automatic speech systems into a variety of
electronic/mobile components of an individual’s daily life. Nev-
ertheless, providing robustness to these systems still remains a
challenge because of the variety of acoustic mismatch scenarios
that may occur between training and test conditions due to back-
ground noise, room reverberation, communication channel, ac-
cent, language, emotions, vocal effort, etc.
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Specifically, performance of automatic speaker identification
(SID) systems severely degrades in the presence of room rever-
beration [1], [2]. Reverberation poses various detrimental ef-
fects on spectro-temporal characteristics of speech signals, most
notably including temporal smearing, filling dips and gaps in
the temporal envelope, increasing the prominence of low-fre-
quency energy, and flattening formant transitions [3]. These ef-
fects in turn mask higher frequencies in the speech spectrum and
blur spectral details, both of which are useful acoustic cues for
speaker identification.

Several compensation techniques for alleviating the adverse
impact of room reverberation on SID performance have been re-
ported in the literature, most of which were first developed for
automatic speech recognition (ASR) or speech enhancement.
The techniques have been applied at different stages of SID sys-
tems, i.e., front-end (signal and feature) [4]-[6], modeling [7],
[8], and scoring stages [5], [7].

At the signal level, multichannel (e.g., microphone arrays)
speech processing techniques have been employed to provide
robustness to SID systems in reverberant and/or noisy condi-
tions [4], [9]. However, this is not applicable in cases where
only a single-channel signal (e.g., telephone) or prerecorded
mono speech data is available. Long-term log-spectral subtrac-
tion (LTLSS) [10] is a single-channel homomorphic filtering
method that works in a similar manner as cepstral mean sub-
traction (CMS) [11], except that it is applied at the signal level
over a relatively long analysis window (typically longer than
1 second). The use of a long-term analysis window imposes
the need for signal reconstruction before feature extraction. A
more recent signal level technique to address reverberation is
based on non-negative matrix factorization (NMF) [12]. The
NMF based approach, which also requires signal reconstruc-
tion, is more sophisticated when compared to LTLSS and has
been widely adopted for source separation tasks. In a more re-
cent attempt [6], a method based on inversion of the modula-
tion transfer function was proposed for spectral enhancement
of reverberant speech. The method was shown to result in im-
proved speaker recognition performance on artificially reverber-
ated speech.

At the feature level, despite its simplicity, CMS [11] has
been shown to be helpful, but only for small reverberation
times (a.k.a. Tgp!) where the length of analysis windows is
comparable to that of the room impulse response (RIR) [2].
Relative spectral (RASTA) processing [13], [14], which is a
modulation filtering technique in the log-spectral domain, has
also been shown to be successful in removing the short-term

T4 is defined as the time period required for the signal power to decay by
60-dB after the sound source is switched off.
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effects of linear channel distortion on the speech signal. In
[5], it was assumed that reverberation can be modeled as
additive noise, and a spectral subtraction method was adopted
to suppress the reverberation before applying CMS. A feature
warping method was also applied and a significant SID accu-
racy improvement was obtained over their baseline system.
As an alternative feature level solution, several studies have
introduced reverberant-robust acoustic feature parameters with
varying SID improvement levels compared to the baseline
mel-frequency cepstral coefficients (MFCC). In particular, fea-
ture parameters obtained from subband Hilbert envelopes have
shown promise for SID tasks under reverberant mismatched
conditions [15]-[17].

At the model level, assuming that there is access to RIRs
and that a rough estimate of T, can be calculated, reverbera-
tion classification and acoustic model matching based on rever-
berant background model (RBM) have been successfully em-
ployed [7], [18]. Furthermore, in a recent study [8], multi-style
training of probabilistic linear discriminant analysis (PLDA)
models was adopted to bring reverberation robustness to an
i-vector based speaker recognition system.

Finally, at the scoring level, similar to methods used for
channel mismatch conditions, in [5] and [7] a combination of
different normalization strategies were used to remove possible
biases in the calculated likelihoods.

In this study, the focus is on robust front-end solutions for im-
proved SID under reverberant mismatched conditions. Specifi-
cally, we formulate a blind spectral weighting (BSW) technique
for mitigating the destructive reverberation effects on SID per-
formance. The weights are computed using a parametric gain
function which is based on a priori signal-to-interference ratio
(SIR) estimate. A smoothed and shifted version of the rever-
berant power spectrum is used as an approximation for the late
reverberation spectral variance. The technique is entirely blind,
meaning that prior knowledge of neither the anechoic signal nor
the RIR is required.

Performance of the proposed technique in mitigating the
adverse reverberation impact on SID is evaluated through
speaker verification experiments under simulated and actual re-
verberant mismatched scenarios. Evaluations are conducted in
the context of the conventional GMM-UBM [19] as well as the
state-of-the-art i-vector [20] based systems. The GMM-UBM
experiments are performed using seven distinct actual rever-
berant mismatched scenarios from the MultiRoom8 corpus
made available by AFRL. The i-vector experiments are carried
out with microphone data (interview and phone call) from
the NIST SRE 2010 extended evaluation set which are digi-
tally convolved with three different measured RIRs, with Tg
ranging from 0.48 s to 1.15 s, extracted from Aachen impulse
response (AIR) database [21], [22]. We employ the proposed
spectral weighting solution as a pre-processing step in the
standard MFCC feature extraction framework, and evaluate
its effectiveness in suppressing the late reverberation effect on
SID. For the sake of comparison, we also perform the same
experiments with RASTA [13], two other blind reverberation
compensation strategies, namely LTLSS, [10], and Gammatone
subband based NMF [12], and the recently introduced mean
Hilbert envelope coefficients (MHEC) feature [16].

K N
o ¥
é dSM E
J 3

r(n)

3
a

3

Fig. 1. Direct and reflected sound signal components. dss denotes the
source-to-microphone distance.
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Fig.2. Measured room impulse response fora 5.0 X 6.4 x 2.9m? office room
with Tgg = 0.48 s.

II. ROOM REVERBERATION

A. Background

In a reverberant enclosure, sound waves arrive at the receiver
(e.g., ears or microphone) via a direct path, and via multiple
paths and directions after reflecting off walls and objects
defining the acoustic enclosure. This is illustrated in Fig. 1
where the sound source s(n) is captured at the microphone
as a delayed sum of the direct sound and its reflections from
the wall. The reflections arriving within 50-80 ms after the
direct sound are called early reflections, which tend to build
up to a level louder than the direct sound and cause an internal
smearing effect known as the “self-masking effect”. Echoes
reaching the receiver after early reflections are called late
reflections, which tend to smear the direct sound over time
and mask succeeding sounds. This phenomenon is commonly
referred to as the “overlap-masking effect”, and has been shown
to be the primary cause of degraded speech identification per-
formance for both human and machine listeners [23]-[26]. The
overlap-masking effect can also mask/obscure spectral details
and acoustic cues essential for automatic SID, resulting in a
major drop in performance [1], [5], [16].

Room reverberation can be completely characterized through
the RIR with which it is possible to compute the reverberation
time, Tgg, and the direct-to-reverberant ratio (DRR), both of
which are important parameters for understanding the reverber-
ation effects on speech. An example RIR is shown in Fig. 2 for
a5.0 x 6.4 x 2.9m3 office room with Tgo = 0.48 s. The sharp
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Fig. 3. Sample spectrograms for the sentence “she had your dark suit in greasy wash water all year”, in anechoic quiet condition (left), and under reverberant

condition with 750 = (.48 s (right).

spike at the beginning represents the direct sound power, while
the decaying portion of the i(n) determines how long the at-
tenuated reflections persist over time after the sound source is
switched off.

As noted earlier, reverberation has various destructive effects
on spectro-temporal characteristics of speech signals. These ef-
fects are demonstrated in Fig. 3 in which sample spectrograms
are shown for the TIMIT sentence “she had your dark suit in
greasy wash water all year”, in anechoic (left) and reverberant
conditions (right). Both self and overlap-masking effects of
reverberation are evident in this figure. The self-masking effect
blurs spectral details of individual phonemes and results in
flattened formant transitions, while the overlap-masking effect
smears the high energy phonemes (e.g., vowels) over time and
fills envelope gaps which in turn increases the prominence of
low-frequency energy in the speech spectrum. Taken together,
these effects pose a deleterious impact on performance of auto-
matic SID systems, especially under mismatched conditions.

B. Mathematical Model of Reverberation

In order to develop objective solutions for compensating the
reverberation effects on performance of SID, it is imperative to
mathematically model reverberation. As discussed earlier, in a
reverberant environment, the speech signal received at the mi-
crophone is a delayed sum of a direct sound and its reflections
from walls and objects in the acoustic enclosure; hence rever-
beration can be modeled as the convolution of the RIR with the
speech signal,

L

r(n) =

i
—

s(n = J)h(j) = s(n) « h(n), (1)

N
I
=)

where r(n) and s(n) are the reverberant and anechoic signals,
respectively, and ~(n) is the RIR. The RIR, A(n), can be parti-
tioned into two components as,

0, n <0
hin) =g he(n), 0<n < mn. ®)
he(n), ne<n<L

where L is the length of &(n), and 7, is a time window threshold
chosen such that h.(n) consists of the direct path signal and a
few early reflections, while h¢(n) consists of all the late reflec-
tions. The time threshold n. is commonly set to a value within

50-80 ms range?. Late reflections that smear the speech spectra
and reduce signal quality, are characterized by 7. These have
a long-term effect on speech signals and therefore cannot be
effectively compensated for using conventional cepstral mean
subtraction (CMS) within the short-term speech analysis frame-
work [2]. On the other hand, early reflections that cause col-
oration distortion are characterized by the DRR which is depen-
dent on the distance between the sound source and microphone.
Taking (2) into account, (1) can be rewritten as,

n.—1 L—-1
r(n) =Y sln—ihe(i)+ D s(n—h(i). (3)
=0 j=n.

- o o

re(n) re(n)

where 7.(n) and r¢(n) are referred to as the early and late
reverberant speech components, respectively. Our objective is
to blindly suppress the late reverberant speech using spectral
weighting to improve SID performance in reverberation. This
is discussed in the next section.

ITII. BLIND SPECTRAL WEIGHTING (BSW) ALGORITHM

As discussed earlier, from a signal processing perspective, re-
verberation can be considered a convolutive/channel distortion.
Nevertheless, in the seminal work of [24] it has been shown that
the overlap-masking effect can be modeled as an uncorrelated
additive interference. Hence, it can be compensated via spec-
tral subtraction, given that an estimate of the late reverberation
spectral variance is available. This has inspired several single
and multichannel approaches that have considered spectral sub-
traction for blind late reverberation suppression [9], [28]-[30].
Because a rough estimate of the reverberation time is required
to compute the late reverberation spectral variance, performance
of these approaches are highly dependent on the accuracy of the
Tso estimation.

In this study, following the uncorrelated and additive assump-
tion for late reverberation, we introduce a spectral weighting
technique to mitigate the reverberation overlap-masking effect
on automatic SID performance. The weights are computed
using a parametric gain function which is based on the a priori

2This choice of time boundary between early and late reflections is motivated
by the temporal integration property observed with human auditory system in
reverberant sound fields [27]. Due to this property, early reflections arriving
within the first 50 ms time period after the direct sound are not perceived as
separate sounds. Note, however, that this time threshold is dependent on char-
acteristics of the source signal as well. For instance, the time threshold, n.., for
slowly varying music is set to 80 ms (as opposed to 50 ms for speech).
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Fig. 4. Block diagram of the proposed spectral weighting technique for sup-
pression of the late reverberation.

signal-to-interference ratio (SIR) estimate. A smoothed and
shifted version of the reverberant power spectrum is used as
an approximation for the late reverberation spectral variance.
The technique is entirely blind, meaning that prior knowledge
of neither the anechoic signal nor the RIR is required.

A. Problem Formulation

A block diagram of the proposed spectral weighting solution
for late-reverberation suppression is depicted in Fig. 4. The late
reverberant speech is suppressed in the short-time Fourier trans-
form (STFT) domain by applying spectral weights as,

RF(m) = Gi(m) - Ri(m), 4)

with mm and k being the time frame and frequency-bin indices,
respectively. The spectral weights are computed using a para-
metric gain function defined as,

8
£k (m) ) 7 5)

Getm = (gt

where £ (m) denotes the a priori SIR, and « and § are some
constant parameters. The a priori SIR is defined as,

Eu(m) = T (©)

where ¥ (m) = E[|R¥(m)[?] and A¥, (m) = E[|R}(m)|?] de-
note spectral variances of the early and late speech components,
respectively, both of which are to be estimated.

It is common practice to recursively estimate £z (vn) via the
decision-directed method [31] as,

- RE(m) — 17

Er(m) =7 |Ae(—)| + (1 = n) max[yx(m) — 1,0], (7)
Ak (m—1)

where (0 < 1 < 1) is a smoothing constant that controls the

trade-off between interference reduction ang transient distortion

introduced into the signal. The first term %, represents
¢

the estimate of &, () from the previous time frame, while the
second term max[vyx(m) — 1,0], is the maximum likelihood
(ML) estimator for &5 (m) and solely dependent on the current

frame. The parameter ;. (1) is called the a posteriori SIR and
is defined as,

Bl|Rs(m)")

)\k (8)

vi(m) =

The two SIRs are related via v (m) = & (m)+ 1. The recursive
relationship in (7) provides smoothness in the estimate of & (1)
which consequently helps suppress the musical noise distortion.
In practice, to further reduce distortions introduced by the spec-
tral weighting, the gain function G.(m) is lower bounded by a
constant gain floor G5 as,

Gi(m) = max [Gy(m), Gy]. )

The motivation behind employing a gain function in the form
of (5), is twofold. First, the parametric Wiener filtering [32] has
been successfully applied to a similar problem in the context of
noisy speech enhancement3. In addition, it can be easily shown
that common speech enhancement algorithms such as spectral
subtraction and maximum-likelihood methods, are special cases
of the parametric Wiener filtering [35]. Second, the two param-
eters « and [ provide more degrees of freedom and control over
the late reverberation suppression and speech distortion reduc-
tion. It has been shown in [36] that the excessive speech distor-
tion introduced by speech enhancement algorithms, which typi-
cally occurs due to inappropriate selection of noise suppression
parameters, can result in severe performance degradation for au-
tomatic SID systems.

It is worthwhile remarking here that although the parametric
Wiener filtering is adopted in this study to suppress the late
reverberation, the non-stationary “reverberation noise” cannot
be compensated for using traditional speech enhancement tech-
niques that estimate the noise power spectrum from the initial si-
lence and update it during gaps and silence regions within words
and sentences. Late reverberation suppression requires a dif-
ferent treatment that involves estimation of the spectral variance
of late reverberation, which is addressed in the next section.

B. Late Reverberation Power Estimation

In order to estimate the two SIRs, i.e., yx(m) and & (m),
an estimate of the late reverberation spectral variance must be
available. In [24], a simple statistical model for the RIR was
considered and an estimator for )\ff/ (m) was derived. The es-
timator is dependent on Tgg, which can be estimated directly
from reverberant data, albeit at the cost of a more complex al-
gorithm. This approach was further investigated in [28] and [29]
to accommodate for estimation and reduction of additive noise.
In addition, an ML approach for 7§, estimation was proposed
in [29].

Here, an alternative approach for estimation of late reverbera-
tion spectral variance is taken which obviates the need for direct
Tso estimation. Considering the smearing effects of the late re-
verberation on speech, the power spectrum of the late speech
component can be assumed to be a smoothed and shifted ver-
sion of the reverberant speech power spectrum. It has also been

3While stability issues can occur in this solution [32], constrained iterative
speech enhancement with intra- and extra- frame constraints have proven to be
effective for noise reduction and front-end enhancement for ASR [33], [34].
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proved mathematically in [24] that such assumption is valid.
The spectral variance of the late speech component is thus ex-
pressed as [37],

3\,]:’4(777,) = pw(m — p) * |Rp(m)|? (10)
where the symbol * denotes convolution in the time domain,
w(m) is a smoothing function, and p o n. is the time threshold
between early and late components of the RIR. As noted ear-
lier, 1, is commonly set to a value within 50-80 ms, and is in-
dependent of reverberation characteristics. The parameter p is
a scaling factor that specifies the relative strength of the late
speech component.

Since RIRs have a decaying exponential shape (see Fig. 2),
a right skewed smoothing function with a long tail would be
a reasonable choice for w{m). Therefore, as in [37], Rayleigh
distribution function is adopted,

m < —b

0,
w(m) = { "Z—J_rb exp (M) , m>—b (1)

252

where b o n. determines the overall spread of the smoothing
function, and is set in accordance with the time threshold be-
tween early and late components of the RIR.

IV. EXPERIMENTS

Performance of the proposed blind spectral weighting tech-
nique for suppression of late reverberation is evaluated in the
context of speaker verification tasks with GMM-UBM [19] and
i-vector based [20] SID systems. We report equal error rates
(EER) as performance measures. The proposed technique is in-
tegrated into the MFCC feature extraction framework as a pre-
processing stage, and performance is compared to that of the
baseline system with no pre-processing. Performance compar-
ison is also made with RASTA [13] along with two other blind
reverberation suppression techniques, namely LTLSS [10], and
Gammatone subband based NMF [12], as well as the MHEC
front-end [16].

For GMM-UBM experiments, speech material from the
MultiRoom8 corpus are utilized. The MultiRoomS8 database,
which is made available by AFRL, was designed to capture
multi-session audio impacted by environmental contamination,
i.e., background noise and room reverberation. It contains 1) a
development set with a total of 100 speech recordings which are
used to train background models, 2) 7 different enrollment-test
conditions representing a range of distinct reverberant and
noisy mismatched scenarios, and 3) an enrollment-test condi-
tion involving different communication channels which is not
considered in this study. All recordings are sampled at 8 kHz.
Four different rooms were used for data collection including:
small, medium, large, and a conference room. The rooms are
labeled as Sm, Med, Lg, and Enroll, respectively. Except for the
conference room where recordings were collected using only
close-talking microphones (CTM), for each environment, 6 uni-
and omni-directional microphones located at a range of distinct
distances from the speaker were used for speech capture.
Each session was recorded at least 1 week from the previous
session for each speaker. In an interview-like scenario, a total
of 52 speakers were recorded, although not every speaker is

TABLE I
PROPERTIES OF THE ROOM/MICROPHONE SETUPS IN THE MULTIROOM8
CORPUS. d 5, DENOTES THE SOURCE-TO-MICROPHONE DISTANCE

| Room/Mic | Dim. (m?) | dsas (m) | Tgo (s) | DRR (dB) |

Sm3 1.6 0.45 -2.31
Sm4 53 % 36 3.3 0.55 -3.95
Sm5 0.9 0.35 -1.95
Smé6 1.8 xt xt

Med3 113 % 3.6 2.9 0.50 -2.80
Med5 0.9 0.30 -0.90
Lg4 146 % 12.9 8.1 1.10 -6.00
Lg5 0.9 0.40 -0.82
Enroll xt <03 ~0 inf

t Information not provided for this setup.

present for every room/microphone configuration. The average
length of the recordings is approximately 3 minutes. Here,
a 1024-mixture UBM is built on the development set, and
individual speaker models are adapted from the UBM using
maximum a posteriori (MAP) estimation [19] with a relevance
factor of 19.0. Table I summarizes room/microphone con-
figurations used to design the seven different enrollment-test
conditions available in the MultiRoom8 corpus. The reverber-
ation times, T§q, are computed using the well-known method
proposed by Schroeder [38]. As evident from the table, among
different room/microphone configurations, speech recordings
captured via microphone number 4 in the large room should
be impacted the most by the overlap-masking effect of rever-
beration. Therefore, it is expected that speaker verification on
trials involving Lg4 should be more challenging compared with
other conditions.

For i-vector based speaker verification experiments, mi-
crophone speech data (interview and phone call) from the
NIST SRE 2010 extended evaluation set are used (only male
speakers are considered in this study), which corresponds to
core evaluation conditions 1, 2, and 4 (CC-1, CC-2, and CC-4).
These three evaluation conditions share the same 1,108 inter-
view models, however, the test conditions are different. CC-1
comprises 1,108 interview test segments recorded using the
same microphone types as the models with 346,857 impostor
trials and 1,978 target trials. CC-2 consists of 3,328 interview
test segments captured via different microphone types com-
pared to the models with 1,215,586 impostor trials and 6,932
target trials. CC-4 comprises 440 conversational telephone
test segments recorded over room microphone channels, with
364,308 impostor trials and 1,886 target trials. To simulate
different reverberant conditions, measured RIR samples ex-
tracted from the AIR database are digitally convolved with the
test material. Three RIRs with distinct source-to-microphone
distances (dgas) and with Ty ranging from 0.48 s to 1.15 s are
used. The RIRs were measured in office and lecture rooms as
well as an stairway. Further information concerning the RIRs
is summarized in Table II. To learn the i-vector extractor [20],
a gender dependent 1024-mixture UBM with diagonal covari-
ance matrices is first trained using a total of 9,676 5-minute
conversational telephone recordings (English only) from 951
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TABLE 11
PROPERTIES OF THE RIRS EXTRACTED FROM THE AIR DATABASE FOR
EXPERIMENTS. d 5 3r DENOTES THE SOURCE-TO-MICROPHONE DISTANCE

Room Type]  Dim. (m?)  |dsa (m)]Tgo (s)DRR (dB)|
Office 50x64x29 | 30 |048] -0.89
Lecture 10.8 x 10.9 x 3.15] 10.2 0.83 -5.62
Stairway | 5.2 x 7.0 x X' 30 | L.15| -6.03

t Information not provided for this setup.

male speakers. The data is selected from the NIST SRE 2004,
2005, 2006, as well as the Switchboard 2 (Phase IIT) and Switch-
board Cellular (Part 1 and 2) corpora. These data corpora are
available through Linguistic Data Consortium (LDC) [39] or by
participating in the SRE evaluations (e.g., see [40]). The zeroth
and first order Baum-Welch statistics are then computed for each
recording and used to learn a 400-dimensional total variability
subspace. After extracting 400-dimensional i-vectors, we use
linear discriminant analysis (LDA) to reduce the dimensionality
to 200. The dimensionality reduced i-vectors are then mean and
length normalized. For scoring, a Gaussian probabilistic LDA
(PLDA) model with full covariance residual noise term [41],
[42] is learned using the i-vectors extracted from the UBM set
as well as from microphone data found in NIST SRE 2005 and
2006 data releases. The Eigenvoice matrix in the PLDA model
is full-rank with 200 columns. Note that all the models (i.e., the
UBM, i-vector extractor, and PLDA) are trained only with the
original non-reverberated data.

To perform the spectral weighting, the reverberant signals are
transformed into the STFT domain using Hamming windowed
frames of 25 ms duration with a 10 ms skip rate. The a priori
SIR is estimated using the decision-directed approach (7) with
a smoothing factor = 0.6. The time threshold between early
and late components of the RIRs is set to 50 ms which, con-
sidering the 10 ms skip rate, corresponds to 5 frames. The pa-
rameters of the parametric gain function (5) are set according
to our preliminary experiments in [43], where closed-set SID
accuracy on a randomly selected subset of TIMIT corpus was
used as the criterion for parameter tuning. It was found that set-
ting « = 2 and § = 2.5, on average yields the best perfor-
mance across the various reverberant mismatched conditions
which were simulated with RIRs from the AIR database. The
gain floor parameter G; is fixed to 0.01 which is equivalent
to a maximum attenuation of —20 dB. In contrast to the find-
ings reported in [37], tuning the scaling factor u, that speci-
fies the relative strength of the late speech component, seems
to be very important for SID tasks. Here, 1 is set to 0.1, since
greater values for this parameter will result in speech distortion
that is intolerable for the SID system, which in turn can lead
to a great drop in performance [36]. MFCC features are then
extracted from the processed speech spectra. Out of 24 filter-
bank log-energies, the first 13 cepstral coefficients are retained
after applying the DCT (including cy), and the first and second
temporal cepstral derivatives are appended to form a 39-dimen-
sional feature vector for each frame. The MFCCs are also ex-
tracted from the unprocessed data to serve as the baseline. In
order to perform non-speech frame dropping, we use time labels
generated with an unsupervised speech activity detector called
Combo-SAD [44]. After dropping the non-speech frames, cep-

stral mean and variance normalization (CMVN) is applied to
remove the short-term linear channel effects.

V. RESULTS

Table III presents speaker verification results obtained from
the GMM-UBM experiments on different reverberant mis-
matched conditions available in the MultiRoom8 corpus. The
results are reported in terms of EER, with and without the pro-
posed blind spectral weighting algorithm as the pre-processing
stage for the MFCC feature extraction. In addition, speaker ver-
ification performances are shown with RASTA along with two
other blind reverberation suppression techniques. Also shown
in Table III (last column) are results obtained with the MHEC
front-end. Several observations can be made from the results
given in this table. First, speaker verification performance
degrades significantly when the mismatch between training (or
enrollment) and test conditions is large. For instance, as noted
earlier, the range of the reverberation time and the DRR in Lg4
is totally different from the other room/microphone conditions
in MultiRoom8 corpus. Therefore, speaker verification perfor-
mance on trials involving the recordings collected with Lg4
is inferior by far compared to the other setups. Furthermore,
as discussed earlier, as the reverberation time increases the
overlap-masking effect becomes the dominant cause of speech
distortion. The overlap-masking effect has been shown to be
the major source of performance degradation of speech system
under reverberant conditions [16], [24]. This constitutes another
reason for the high error rates seen on Lg4-MedS5 condition.
The same argument holds for Enroll-Sm4 and Enroll-Sm6
conditions where speakers are enrolled using anechoic speech
data collected with CTM in the Enroll room, while tests are
performed using reverberant speech recordings.

The second observation from Table III is that RASTA tech-
nique is not as effective in suppressing the reverberation effects
on speaker verification performance. It is well-established that
RASTA is useful in reducing the short-term linear channel ef-
fects (i.e., telephone and microphone channels) in the log-spec-
tral (or cepstral) domain. Nevertheless, it is clear from the re-
sults in the table that RASTA cannot effectively deal with the
long-term reverberation effects for speaker verification tasks.

Third, it is clear that incorporating BSW within the MFCC
feature extraction framework consistently results in significant
improvements in speaker verification performance. An average
absolute improvement of 3.56% is achieved over the base-
line system with MFCC features extracted from unprocessed
spectra.

Finally, to compare the performance of the proposed BSW
technique with other blind reverberation compensation strate-
gies, we perform the same speaker verification experiments
using MFCC features extracted from speech data pre-processed
with the LTLSS [10], and Gammatone subband NMF [12].
Additionally, experiments are conducted with acoustic features
extracted using the MHEC front-end. It is evident from the
results in Table III that the proposed technique consistently out-
performs the other strategies in suppressing the reverberation
effects on SID. The MHEC front-end provides significant
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TABLE III
PERFORMANCE OF BLIND REVERBERATION COMPENSATION FRONT-ENDS IN TERMS OF EER (%),
OBTAINED FROM SPEAKER VERIFICATION EXPERIMENTS ON MULTIROOM8 CORPUS

Enrollment-Test EER [%]
MFCC  MFCC-RASTA  MFCC-BSW  MFCC-LTLSS MFCC-NMF  MHEC

Lg5-Sm4 10.53 11.91 5.47 11.50 11.50 8.10

Sm4-Lg5 7.90 7.90 5.26 7.90 11.34 8.71

Enroll-Sm6 18.61 15.40 13.95 18.61 22.51 13.91

Enroll-Sm4 11.44 10.79 5.95 9.44 11.63 9.30

Med3-Sm3 10.50 10.32 7.69 12.82 10.26 8.17

Lg4-Med5 19.44 16.67 16.67 21.27 23.76 19.44

Med5-Sm5 6.61 6.98 5.13 10.26 7.69 6.14

Avg. 12.15 11.42 8.59 13.11 14.10 10.54
improvements over the baseline MFCCs, however, it cannot 107

9

achieve the same performance level obtained with the BSW
method. Note that the system performance with LTLSS and
NMF under reverberant conditions is even worse than the per-
formance with plain MFCCs. This is due to the fact that these
methods introduce a great amount of processing artifacts which
are intolerable for the SID system (this was confirmed through
informal listening experiments). In addition to the superior per-
formance, there is no need for signal reconstruction with the
proposed technique, as required with both the LTLSS and NMF
strategies.

Results for i-vector based speaker verification experiments
conducted with artificially reverberated microphone data (in-
terview and phone call) selected from the extended evaluation
sets in NIST SRE 2010 are displayed in Figs. 5 and 6. Verifi-
cation results for the three different room setups (i.e., office,
lecture, and stairway) are shown in Fig. 5 in terms of EER. In
general, the same trend in results is observed with the i-vector
experiments compared to the GMM-UBM experiments. As the
reverberation time increases and the overlap-masking effect
becomes more dominant, the verification performance of the
baseline system degrades more rapidly. For instance, the EER
for the baseline system increases from 4% to 7%, which is an
absolute performance degradation of 3%. The results shown
here indicate that, in line with the findings in psychoacoustic
studies (e.g., see [[23], [26]) and when compared to the
self-masking effect, the overlap-masking effect has a greater
impact on performance of SID systems. Suppressing this effect
can thus alleviate its adverse impact on the performance. Here,
BSW technique consistently provides significant gains in per-
formance, especially for rooms with larger reverberation times
(i.e., lecture and stairway). The MHEC front-end also provides
gains in performance over the baseline system, although the
gains are not as significant as those obtained with the proposed
method. However, unlike the behavior observed with the
GMM-UBM experiments, both RASTA and LTLSS methods
only result in degraded performance, while the Gammatone
subband based NMF yields moderate performance improve-
ments. The variation in the behavior of these front-ends can
be due to the change in the speaker verification paradigm,
that is i-vector versus GMM-UBM framework. It was recently
shown that [45] improvements/degradations due to front-end

q =

S

o

L
B MFCC-RASTA
B MFCC-BSW
MFCC-LTLSS

m MFCC-NMF

Office
(T60 = 0.48 s)

Lecture
(T60 = 0.83 s)
Test condition

Stairway
(T60 = 1.15s)

Fig. 5. Performance comparison of different blind reverberation suppression
techniques on artificially reverberated microphone data (interview and phone
call) from NIST SRE 2010. Results are given in terms of EER for three different
test conditions corresponding to reverberation times Ts¢ =0.48,0.83,and 1.15s.

processing in the GMM-UBM paradigm may not necessarily
translate into improvements/degradations in the i-vector par-
adigm and vice versa. This variation in behavior can also be
attributed to the artificial nature of the task compared to the re-
alistic scenarios in the MultiRoom8 corpus. More specifically,
in the artificial scenario (i.e., SRE-2010 task) clean speech
signal is digitally convolved with the RIR, while in the realistic
scenario (i.e., MultiRoom8) speech signal is recorded using
far-filed microphones and thus contains a perceivable level of
background noise (e.g., AC noise). Therefore, the NMF based
technique, which essentially represents a filtering operation
formulated using a least-squares error criterion and is based on
the convolutive assumption for the interference, performs as
expected only on the artificial task. Nevertheless, the proposed
BSW technique is the only reverberation suppression method
that performs consistently well across the two paradigms.

Fig. 6 presents the results from the same i-vector based ex-
periments for the extended core conditions 1, 2, and 4 in NIST
SRE 2010. The results are averaged across the three reverberant
conditions (i.e., office, lecture, and stairway) for each test con-
dition. The highest EERs are seen for CC-2, followed by CC-4
and CC-1. This is expected because, in addition to reverbera-
tion mismatch, there is also a microphone mismatch in CC-2.
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Fig. 6. Performance comparison of different blind reverberation suppression
techniques on artificially reverberated microphone (interview and phone call)
data from NIST SRE 2010. Results are given in terms of EER for extended core
conditions (CC) 1, 2, and 4, averaged across the three reverberant conditions.

The general performance trends remain the same for all the
front-ends across the three core evaluation conditions consid-
ered, and the BSW technique consistently yields the highest
boosts in the performance.

VI. CONCLUSION

Reverberation overlap-masking effect causes severe perfor-
mance degradations for both human and machine listeners.
In this study we proposed a blind spectral weighting (BSW)
technique for alleviating the impact of late reverberation on
performance of SID systems. The technique is blind in the
sense that prior knowledge of neither the anechoic signal nor
the room impulse response is required. In addition, the late
reverberation spectral variance was estimated without the direct
need for Ty estimation. It was confirmed that incorporating
the proposed BSW technique as a pre-processing stage in
the MFCC feature extraction framework results in significant
improvements in automatic SID performance under simulated
(NIST SRE 2010) and actual (MultiRoom8) reverberant mis-
matched conditions. The performance improvements were
shown to be consistent across various evaluation conditions in
both GMM-UBM and i-vector speaker verification paradigms.
Performance comparisons were made with RASTA along
with two other blind reverberation suppression techniques,
namely LTLSS and Gammatone subband based NMF. It was
shown that the BSW technique consistently outperformed the
other methods in improving speaker verification performance
under reverberation mismatch. We believe that this technique
can potentially benefit other automatic speech applications,
such as automatic speech recognition (ASR), under the same
mismatched conditions.

REFERENCES

[1] P. Castellano, S. Sridharan, and D. Cole, “Speaker recognition in re-
verberant enclosures,” in Proc. IEEE ICASSP, Atlanta, GA, USA, May
1996, vol. T, pp. 117-120.

[2] Y.Panand A. Waibel, “The effects of room acoustics on MFCC speech
parameter,” in Proc. ICSLP, Beijing, China, Oct. 2000, pp. 129-132.

[3] P. Assmann and A. Summerfield, “The perception of speech under
adverse conditions,” in Speech Processing in the Auditory System, S.
Greenberg, W. Ainsworth, A. Popper, and R. Fay, Eds. New York,
NY, USA: Springer-Verlag, 2004, pp. 231-308.

[4] J. Gonzalez-Rodriguez, J. Ortega-Garcia, C. Martin, and L. Hernandez,
“Increasing robustness in GMM speaker recognition systems for noisy
and reverberant speech with low complexity microphone arrays,” in
Proc. ICSLP, Philadelphia, PA, USA, Oct. 1996, pp. 1333-1336.

[5] Q.Jin, T.Schultz, and A. Waibel, “Far-field speaker recognition,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 15, no. 7, pp. 2023-2032,
Sep. 2007.

[6] B.J.Borgstrom and A. McCree, “The linear prediction inverse modula-
tion transfer function (LP-IMTF) filter for spectral enhancement, with
applications to speaker recognition,” in Proc. IEEE ICASSP, Kyoto,
Japan, Mar. 2012, pp. 4065-4068.

[7] 1. Peer, B. Rafaely, and Y. Zeigel, “Reverberation matching for speaker
recognition,” in Proc. IEEE ICASSP, Las Vegas, NV, USA, Apr. 2008,
pp. 4829-4832.

[8] D. Garcia-Romero, X. Zhou, and C. Y. Espy-Wilson, “Multicondition
training of gaussian PLDA models in i-vector space for noise and rever-
beration robust speaker recognition,” in Proc. IEEE ICASSP, Kyoto,
Japan, Mar. 2012, pp. 4257-4260.

[9] L. Wang, K. Odani, and A. Kai, “Dereverberation and denoising based
on generalized spectral subtraction by multi-channel LMS algorithm
using a small-scale microphone array,” EURASIP J. Adv. Signal
Process., vol. 2012, no. 1, pp. 1-11, 2012.

[10] D. Gelbart and N. Morgan, “Double the trouble: Handling noise and re-
verberation in far-field automatic speech recognition,” in Proc. ICSLP,
Denver, CO, USA, Sep. 2002, pp. 2185-2188.

[11] B. Atal, “Effectiveness of linear prediction characteristics of the speech
wave for automatic speaker identification and verification,” J. Acoust.
Soc. Am., vol. 55, pp. 1304-1312, Jun. 1974.

[12] K. Kumar, R. Singh, B. Raj, and R. Stern, “Gammatone sub-band
magnitude-domain dereverberation for ASR,” in Proc. IEEE ICASSP,
Prague, Czech Republic, May 2011, pp. 4604—-4607.

[13] H. Hermansky, “RASTA processing of speech,” IEEE Trans. Speech
Audio Process., vol. 2, no. 5, pp. 578-589, Oct. 1994.

[14] B. E. D. Kingsbury and N. Morgan, “Recognizing reverberant speech
with RASTA-PLP,” in Proc. IEEE ICASSP, Munich, Germany, Apr.
1997, pp. 1259-1262.

[15] T. H. Falk and W.-Y. Chan, “Modulation spectral features for robust
far-field speaker identification,” IEEE Trans. Audio Speech Lang.
Process., vol. 18, no. 1, pp. 90-100, Jan. 2010.

[16] S. O. Sadjadi and J. H. L. Hansen, “Hilbert envelope based features
for robust speaker identification under reverberant mismatched condi-
tions,” in Proc. IEEE ICASSP, Prague, Czech Republic, May 2011, pp.
5448-5451.

[17] S. Ganapathy, J. Pelecanos, and M. Omar, “Feature normalization for
speaker verification in room reverberation,” in Proc. IEEE ICASSP,
Prague, Czech Republic, May 2011, pp. 4836—4839.

[18] J. Gammal and R. Goubran, “Combating reverberation in speaker veri-
fication,” in Proc. IEEE Conf. Instrum. Meas. Technol., IMTC 05, May
2005, pp. 687-690.

[19] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Digital Signal Process., vol.
10, pp. 1941, Jan. 2000.

[20] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” [EEE Trans.
Audio Speech Lang. Process., vol. 19, no. 4, pp. 788—798, May 2011.

[21] M. Jeub, M. Schifer, and P. Vary, “A binaural room impulse response
database for the evaluation of dereverberation algorithms,” in Proc.
IEEE DSP, Santorini, Greece, Jul. 2009, pp. 1-5.

[22] M. Jeub, M. Schifer, H. Kriiger, C. Nelke, C. Beaugeant, and P. Vary,
“Do we need dereverberation for hand-held telephony?,” in Proc. Int.
Congress Acoust., ICA, Sydney, Australia, Aug. 2010, pp. 1-7.

[23] A. K. Nabelek, T. R. Letowski, and F. M. Tucker, “Reverberant
overlap- and self-masking in consonant identification,” J. Acoust. Soc.
Am., vol. 86, pp. 1259-1265, Oct. 1989.

[24] K. Lebart, J. Boucher, and P. Denbigh, “A new method based on spec-
tral subtraction for speech dereverberation,” Acta Acustica, vol. 87, pp.
359-366, 2001.

[25] O. Hazrati, J. Lee, and P. C. Loizou, “Blind binary masking for rever-
beration suppression in cochlear implants,” J. Acoust. Soc. Am., vol.
133, no. 3, pp. 1607-1614, Mar. 2013.

[26] O. Hazrati, S. O. Sadjadi, P. C. Loizou, and J. H. L. Hansen, “Simul-
taneous suppression of noise and reverberation in cochlear implants
using a ratio masking strategy,” J. Acoust. Soc. Am., vol. 134, no. 5,
pp. 3759-3765, Nov. 2013.



SADJADI AND HANSEN: BSW FOR ROBUST SID UNDER REVERBERATION MISMATCH 945

[27] H. Gozler and M. Kleinschmidt, “Importance of early and late reflec-
tions for automatic speech recognition in reverberant environments,” in
Proc. Elektronische Sprachsignalverarbeitung, Karlsruhe, Germany,
Sep. 2003, pp. 1-8.

[28] E. A. Habets, “Multi-channel speech dereverberation based on a statis-
tical model of late reverberation,” in Proc. IEEE ICASSP, Philadelphia,
PA, USA, Mar. 2005, vol. 4, pp. 173-176.

[29] H. Lollmann and P. Vary, “A blind speech enhancement algorithm
for the suppression of late reverberation and noise,” in Proc. [EEE
ICASSP, Taipei, Taiwan, Apr. 2009, pp. 3989-3992.

[30] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, “Suppression
of late reverberation effect on speech signal using long-term multiple-
step linear prediction,” IEEE Trans. Audio Speech Lang. Process., vol.
17, no. 4, pp. 534-545, May 2009.

[31] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator,” [EEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp.
1109-1121, Dec. 1984.

[32] J. Lim and A. V. Oppenheim, “Enhancement and bandwidth com-
pression of noisy speech,” in Proc. IEEE, Dec. 1979, vol. 67, pp.
1586-12-1604.

[33] J. H. L. Hansen and M. A. Clements, “Constrained iterative speech en-
hancement with application to speech recognition,” IEEE Trans. Signal
Process., vol. 39, no. 4, pp. 795-805, Apr. 1991.

[34] J.H.L.Hansenand L. M. Arslan, “Markov model-based phoneme class
partitioning for improved constrained iterative speech enhancement,”
IEEE Trans. Speech Audio Process., vol. 3, no. 1, pp. 98-104, Jan.
1995.

[35] P. C. Loziou, Speech Enhancement: Theory and Practice, 2nd Ed.
ed. Boca Raton, FL, USA: CRC, 2013, ch. 6.

[36] S. O. Sadjadi and J. H. L. Hansen, “Assessment of single-channel
speech enhancement techniques for speaker identification under
mismatched conditions,” in Proc. INTERSPEECH, Makuhari, Japan,
Sep. 2010, pp. 2138-2141.

[37] M. Wu and D. Wang, “A two-stage algorithm for one-microphone
reverberant speech enhancement,” IEEE Trans. Audio Speech Lang.
Process., vol. 14, no. 4, pp. 774784, May 2006.

[38] M. R. Schroeder, “New method of measuring reverberation time,” J.
Acoust. Soc. Am., vol. 37, no. 3, pp. 409—412, 1965.

[39] C. Cieri, L. Corson, D. Graff, and K. Walker, “Resources for new re-
search directions in speaker recognition: The mixer 3,4 and 5 corpora,”
in Proc. INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 950-953.

[40] “The NIST year 2010speaker recognition evaluation plan,” 2010, [On-
line]. Available: http://www.itl.nist.gov/iad/mig/tests/sre/2010/

[41] S. Prince and J. Elder, “Probabilistic linear discriminant analysis for
inferences about identity,” in Proc. IEEE Int. Conf. Comput. Vis., ICCV
’07, Rio de Janeiro, Brazil, Oct. 2007, pp. 1-8.

[42] D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Proc. INTER-
SPEECH, Florence, Italy, Sep. 2011, pp. 249-252.

[43] S. O. Sadjadi and J. H. L. Hansen, “Blind reverberation mitigation for
robust speaker identification,” in Proc. IEEE ICASSP, Kyoto, Japan,
Mar. 2012, pp. 4225-4228.

[44] S.O.SadjadiandJ. H. L. Hansen, “Unsupervised speech activity detec-
tion using voicing measures and perceptual spectral flux,” IEEE Signal
Process. Lett., vol. 20, no. 3, pp. 197-200, Mar. 2013.

[45] K. W. Godin, S. O. Sadjadi, and J. H. L. Hansen, “Impact of noise
reduction and spectrum estimation on noise robust speaker identi-
fication,” in Proc. INTERSPEECH, Lyon, France, Aug. 2013, pp.
3656-3660.

Seyed Omid Sadjadi received the Ph.D. degree
in Electrical Engineering from The University of
Texas at Dallas in 2014, and M.S.E.E. and B.S.E.E.
degrees from Amirkabir University of Technology
(Tehran Polytechnic) in 2008 and 2005, respectively.
Currently, he is a Research Staff Member at IBM
T. J. Watson Research Center, Yorktown Heights,
NY. From 2008 to 2013, he was a graduate research
assistant with the Center for Robust Speech Systems
(CRSS) at The University of Texas at Dallas, when
this research was conducted. His research has been
primarily focused on the development of robust front-end processing tech-
niques for speech applications under adverse mismatched conditions. He was a

recipient of the IBM Research Travel Grant at IEEE ICASSP-2013, Vancouver,
BC, for the paper describing speaker ID systems submitted from CRSS to
the NIST SRE 2012. A member of IEEE and ISCA, he has been a reviewer
for IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING,
IEEE SIGNAL PROCESSING LETTERS, IEEE TRANSACTIONS ON FORENSICS AND
INFORMATION SECURITY, and IEEE TRANSACTIONS ON MULTIMEDIA. He has
authored/coauthored around 30 papers in the field of speech processing and
language technology. In the summer of 2013, he developed the MSR Identity
Toolbox for speaker recognition while he was a Research Intern at Microsoft,
Mountain View, CA.

John H. L. Hansen (S’81-M’82-SM’93-F’07)
received the Ph.D. and M.S. degrees in Electrical
Engineering from Georgia Institute of Technology,
Atlanta, Georgia, in 1988 and 1983, and B.S.E.E.
degree from Rutgers University, College of Engi-
neering, New Brunswick, N.J. in 1982. He joined
University of Texas at Dallas (UTD), Erik Jonsson
School of Engineering and Computer Science in the
fall of 2005, where he served as Department Head
of Electrical Engineering from (2005-2012), and
presently serves as Associate Dean for Research
for the Erik Jonsson School of Engineering and Computer Science. He also
holds the Distinguished University Chair in Telecommunications Engineering.
He also holds a joint appointment as Professor in the School of Behavioral
and Brain Sciences (Speech & Hearing). At UTD, he established the Center
for Robust Speech Systems (CRSS) which is part of the Human Language
Technology Research Institute. Previously, he served as Department Chairman
and Professor in the Dept. of Speech, Language and Hearing Sciences (SLHS),
and Professor in the Dept. of Electrical & Computer Engineering, at University
of Colorado Boulder (1998-2005), where he co-founded the Center for Spoken
Language Research. In 1988, he established the Robust Speech Processing
Laboratory (RSPL) and continues to direct research activities in CRSS at
UTD. In 2007, he was named IEEE Fellow for contributions in Robust Speech
Recognition in Stress and Noise, and is currently serving as Member of the
IEEE Signal Processing Society Speech Technical Committee (2005-08;
2010-13; elected and served as TC Chair in 2011-2012, presently serving
as Past-TC Chair in 2013), and Educational Technical Committee (2005-08;
2008-10). Previously, he has served as Technical Advisor to U.S. Delegate for
NATO (IST/TG-01), IEEE Signal Processing Society Distinguished Lecturer
(2005/06), Associate Editor for IEEE TRANSACTIONS ON SPEECH AND AUDIO
PROCESSING (1992-99), Associate Editor for IEEE SIGNAL PROCESSING
LETTERS (1998-2000), Editorial Board Member for the /[EEE Signal Pro-
cessing Magazine (2001-03). He has also served as guest editor of the Oct.
1994 special issue on Robust Speech Recognition forlEEE TRANSACTIONS ON
SPEECH AND AUDIO PROCESSING. He has served on the Speech Communica-
tions Technical Committee for the Acoustical Society of America (2000-03),
and is serving as a member of the ISCA (Inter. Speech Communications
Association) Advisory Council. In 2010, he was recognized as ISCA Fellow,
for contributions on research for speech signals under adverse conditions. His
research interests span the areas of digital speech processing, analysis and mod-
eling of speech and speaker traits, speech enhancement, feature estimation in
noise, robust speech recognition with emphasis on spoken document retrieval,
and in-vehicle interactive systems for hands-free human-computer interaction.
He has supervised 66 (33 Ph.D., 33 MS/MA) thesis candidates, was recipient
of The 2005 University of Colorado Teacher Recognition Award as voted on by
the student body, author/co-author of 505 journal and conference papers and 11
textbooks in the field of speech processing and language technology, coauthor
of the textbook Discrete-Time Processing of Speech Signals, (IEEE Press,
2000), co-editor of DSP for In-Vehicle and Mobile Systems (Springer, 2004),
Advances for In-Vehicle and Mobile Systems: Challenges for International
Standards (Springer, 2006), In-Vehicle Corpus and Signal Processing for Driver
Behavior (Springer, 2008), and lead author of the report The Impact of Speech
Under Stress on Military Speech Technology, (NATO RTO-TR-10, 2000).
He also organized and served as General Chair for ICSLP/Interspeech-2002:
International Conference on Spoken Language Processing, Sept. 16-20, 2002;
Co-Organizer and Technical Program Chair for IEEE ICASSP-2010, Dallas,
TX, and Co-Chair and Organizer for IEEE SLT-2014: Spoken Language
Technology Workshop, Lake Tahoe, NV.



