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Models for Robust Speaker Verification in Noise
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Abstract—Recent speaker recognition/verification systems gen-
erally utilize an utterance dependent fixed dimensional vector as
features to Bayesian classifiers. These vectors, known as i-Vec-
tors, are lower dimensional representations of Gaussian Mixture
Model (GMM) mean super-vectors adapted from a Universal
Background Model (UBM) using speech utterance features,
and extracted utilizing a Factor Analysis (FA) framework. This
method is based on the assumption that the speaker dependent
information resides in a lower dimensional sub-space. In this
study, we utilize a mixture of Acoustic Factor Analyzers (AFA) to
model the acoustic features instead of a GMM-UBM. Following
our previously proposed AFA technique (“Acoustic factor analysis
for robust speaker verification,” by Hasan and Hansen, IEEE
Trans. Audio, Speech, Lang. Process., vol. 21, no. 4, April 2013),
this model is based on the assumption that the speaker relevant
information lies in a lower dimensional subspace in the multi-di-
mensional feature space localized by the mixture components.
Unlike our previous method, here we train the AFA-UBM model
directly from the data using an Expectation-Maximization (EM)
algorithm. This method shows improved robustness to noise as
the nuisance dimensions are removed in each EM iteration. Two
variants of the AFA model are considered utilizing an isotropic
and diagonal covariance residual term. The method is integrated
within a standard i-Vector system where the hidden variables of
the model, termed as acoustic factors, are utilized as the input
for total variability modeling. Experimental results obtained on
the 2012 National Institute of Standards and Technology (NIST)
Speaker Recognition Evaluation (SRE) core-extended trials indi-
cate the effectiveness of the proposed strategy in both clean and
noisy conditions.

Index Terms—Acoustic factor analysis, mixture of factor ana-
lyzers, speaker verification.

I. INTRODUCTION

O NE of the most challenging problems facing the speaker
recognition research is environmental noise. Among

other extrinsic degradations affecting speech system per-
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formance, transmission channel mismatch [1], [2], handset
variability [3], reverberation [8], and non-stationarity environ-
ments [9] reflect core sources of distortion/mismatch. There
are also intrinsic sources of mismatch including, physical
task stress induced variability [4], low vocal effort/whispered
speech [10], [11], Lombard effect [12], spontaneity of speech,
etc. Speaker recognition research efforts have been largely
driven by the SRE efforts organized by NIST [13]. During the
more recent evaluations, transmission channel and microphone
variability have been given emphasis, leading to the most
recent evaluation task in 2012 where additive noise and mixed
duration test utterances were introduced [13].
The issue of channel variability has been thoroughly studied

over the last few years [2], [5] leading to several breakthroughs
in this area. Various compensation strategies have been pro-
posed in the past to reduce unwanted variability between
training and test utterances, while retaining the speaker identity
information. To address issues related to noisy and channel
degraded conditions, most effective techniques operate on
the utterance models, including GMM super-vectors [14] and
various factor analysis schemes built in this domain [2], [15],
as well as i-Vectors with Probabilistic Linear Discriminant
Analysis (PLDA) based classifiers along with various pre-pro-
cessing techniques [16]–[18]. Robust feature development
[19]–[21], enhancement [22]–[24], effective front-end compen-
sation methods [25]–[27] and score domain techniques have
also been considered [3], [28] for mismatch compensation.
Many techniques have evolved and are being replaced by
new variants over the last decade, but for short-term spectrum
based systems, a GMM has almost always been used as the
background model.
Since the advent of i-Vectors, the most effective and conve-

nient way of dealing with mismatched conditions has been to
include degraded data similar to test utterances in the PLDA
training. Such utterances can also be included during the UBM
and i-Vector extractor training.We have observed this during the
recent NIST SRE 2012, where additive noise and mixed dura-
tion utterances were introduced in test conditions. One straight-
forward solution is to add noisy and mixed duration data into the
PLDA training phase [29], [30]. Even though PLDA is a linear
model, it seems to be quite effective for additive noise, con-
voluational channel and duration variability. This work, how-
ever, is motivated by the presumption that improved solutions
to noise robustness can lie in earlier stages of the system, es-
pecially where the degraded features are being modeled for the
first time.
In our recent studies [7], [31], we proposed a factor analysis

scheme for front-end features that operates on different mix-
tures of the UBM, termed Acoustic Factor Analysis (AFA). The
principal motivation of the approach was the assumption that

2329-9290 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



382 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

acoustic features reside in a lower dimensional subspace, sim-
ilar to the assumption made on the GMM super-vectors. The
technique operates on the first order Baum-Welch statistics in
each mixture with a transformation matrix, effectively reducing
the feature dimension within the model. Integrated within an
i-Vector system, this method led way towards a two-stage factor
analysis scheme for speaker recognition. We also showed the
similarity of the AFA technique between signal sub-space based
speech enhancement schemes [7].
In this study, we take the AFA concept further by completely

replacing the traditional UBM with a Mixture of Factor Ana-
lyzers (MFA) model and propose an i-Vector extraction strategy
that utilizes the first order statistics of the hidden variables (i.e.,
the acoustic factors), instead of the acoustic features. In our past
studies [7], [32], we derived an AFA model from a full-covari-
ance UBM which utilized an isotropic residual term, making
it equivalent to a Probabilistic Principal Component Analyzer
(PPCA) [33] model. The method was interpreted as a transfor-
mation of acoustic features in different mixture components,
which in effect would also transform the UBM.
In our experiments during the NIST SRE 2012 evaluation,

we observed that extracting the AFA model parameters from
the full-covariance UBM would degrade system performance
in noisy conditions. Our UBM dataset was clean, which led us
to believe that the sub-spaces learned from the eigen-decompo-
sition of the full-covariances is not as useful in the separation
of the signal from the noisy sub-space. Later, we added noisy
data into the UBM, but that by itself was not sufficient for the
method to be effective. Next, we hypothesize that this could be
due to the full-covariance model training which considered the
full feature space in each iteration, leading to a mixture model
which is already affected by the noisy directions. This implies
that the noisy directions in each mixture should have been re-
moved in each iteration.
Motivated by these observations made during the NIST SRE

2012 preparation, in this study we propose to utilize a mixture
of AFAmodel in place of a UBM to develop an i-Vector system.
We consider the scenarios where the model residual is isotropic
and uncorrelated (diagonal covariance), leading to a mixture of
PPCA model [33] and MFA model [34], respectively. These
models are iteratively trained using an EM algorithm. The ad-
vantage of using these models when training a UBM with noisy
data is that they only consider the dominant directions of the
feature space in each mixture, providing more robustness to the
noisy test data. However, as will be demonstrated shortly, signif-
icant improvement can be obtained through the method if only
the posterior statistics of the hidden variables are utilized for
the i-Vector extraction. This confirms the original motivation of
the earlier AFAmethod presented in [7], that speaker dependent
information resides within the first few dominant directions in
the feature space. It maybe noted that this observation was pre-
viously revealed for model adaptation for speech recognition
[35].
The organization of this paper is as follows. In Section II, we

describe the Acoustic Factor Analysis method in generic way,
leading to its variations due to assumptions made on the residual
term. We also describe here how the proposed method is inte-
grated within an i-Vector system and provide some insightful in-
terpretation of the model. Section III describes the various com-

Fig. 1. Probabilistic graphical model of a Mixture of Factor Analyzer (MFA)
model for acoustic features. The box on the right denotes a ‘plate’ representing
a dataset of independent observations of acoustic features . Here, are
the hidden variables, or acoustic factors, and indicate the responsible mixture
component in the model. The box on the left represent the parameters of the
-th model component out of a total of mixtures.

ponents of the baseline speaker verification system and corpora
utilization. In Section IV. experimental results are presented and
finally, Section V concludes the study.

II. ACOUSTIC FACTOR ANALYSIS

In this section, we describe the proposed model of acoustic
features, discuss its formulation and EM-training steps and ap-
plication in an i-Vector based speaker verification system.

A. Formulation

Let represent the acoustic feature vectors and
denote the collection of development data.

Using a standard factor analysis model [36], [37], the feature
vector can be represented by,

(1)

Here, is a factor loading matrix that represents
bases spanning the sub-space corresponding to the important
variability in the feature space, and is the mean vector.
Following our terminology in [7], [31], [32], we denote the la-
tent variable vector or latent factors , as acoustic
factors, which is of dimension . The remaining variability
in the data is modeled by the noise component .
In this model, the feature vectors are normally distributed such
that, .
Naturally, acoustic features extracted from speech data con-

taining many different channel/noise variations are better mod-
eled using clusters in the feature space. Thus, we utilize a mix-
ture of AFA models [7] similar to a traditional GMM-UBM. In
this case, the probability density function of is given by,

(2)

where is the weight corresponding to the -th mixture com-
ponent, is the total number of mixtures, and

. Here, the model covariance matrix for each com-
ponent is given by,

(3)
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Fig. 2. Scatter plot of synthetic 2D Gaussian data with four clusters and trained mixture models. Means are shown as blue points while ellipses depict the covari-
ance matrices. (a) Diagonal covariance GMM, (b) full covariance GMM, (c) Mixture of PPCA model showing the principal directions in each mixture.

Fig. 1 shows a probabilistic graphical model of this mixture
model. In our previous studies [7], [31], [32], we assumed to
be isotropic, that is where denotes the average
noise power, and the AFA model parameters were derived from
a full-covariance GMM-UBM. In this study, we obtain Max-
imum-Likelihood (ML) formulations of the mixture of AFA
model assuming to be isotropic and diagonal. This model,
trained similar to a GMM, essentially replaces the UBM model
of the speaker verification system and leads to a new method for
extracting i-Vectors.
The learning behavior of these models is illustrated in Fig. 2.

Synthetic 2-dimensional Gaussian data points distributed in
four clusters are used for this example. The diagonal-covariance
GMM, full-covariance GMM and a mixture of PPCA model
are used with four mixtures, and the mean and covariances of
the models are shown in Figs. 2(a-c) as points and ellipsoids,
respectively. As expected, the diagonal model is insensitive to
the dominant direction of the data, while the full covariance
model is able to take this into account. The PPCA model with

finds the dominant direction of the data and considers the
other direction as noise. The covariance shown here in Fig. 2(c)
corresponds to the model covariance . In the proposed
approach, we only consider data variation in the dominant
direction as detected by the model.

B. Isotropic Residual Noise

In this scenario, we assume that the noise covariancematrix in
each mixture is isotropic. This leads to the standard
PPCA model as derived in [33]. The EM algorithm procedure
for a mixture of PPCA model is as follows. In the first step,
the following parameters are computed given the initial or old
parameter estimates :

(4)

(5)

and (6)

(7)

Here, and are the new estimates for the weights and mean
vectors, respectively. Next, the new values, and can be
obtained by:

and (8)

(9)

where . The posterior covariance matrix
of the distribution is given by . The poste-
rior distribution of the acoustic factors for the -th mixture is
given by:

(10)

The updated model covariance is obtained using (3). Using the
updated parameters, (4)–(7) are utilized in the next iteration. We
denote this model by: .

C. Diagonal Covariance Residual Noise

Here, we assume that is diagonal. In this case, the domi-
nant directions represented by the factor loading matrix are
no longer the principal components. This, essentially becomes
a standard Mixture of Factor Analyzers (MFA) [34], [37] model
applied to acoustic features. Similar to the PPCA case, the up-
date equations for the diagonal covariance AFA model can be
obtained through maximization of the complete data likelihood
function. A two step EM strategy similar to [33] is followed in
order to obtain compact update equations as in (8) and (9). De-
tails of this derivation are provided in Appendix A. The new
values of and are obtained through equations (4)-(7) as
before. Update equations for and are as follows:

and

(11)

diag (12)

where

(13)
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The diag operation in (12) retains only the diagonal elements
of the matrix. In this case, the posterior distribution of the
acoustic factors for the -th mixture is given by:

(14)
As before, the updated model covariance is obtained using (3)
and (4)–(7) are utilized in the next iteration with new parame-
ters. We denote this variant of the model as: .

D. i-Vector Extraction

Conventionally, the i-Vectors are extracted using the zero
and first order statistics calculated from the features with re-
spect to the UBM model. Next, as we replace the UBM model
with the AFA model (isotropic/diagonal), it is still possible
to proceed as before by computing the statistics in the tradi-
tional way considering the model as a GMM with parameters

. In this case, the model covariance ma-
trices are restricted depending on the type of model used
(isotropic/diagonal). As an alternative, we propose to model
the acoustic factors for each of the mixtures as input to the
next stage of the factor analyzer (i.e., the i-Vector extractor).
This is motivated by the assumption that the variation in the
acoustic factors contain the most important speaker dependent
information. In this approach, we essentially develop a two
stage factor analysis scheme for speaker verification, where the
second stage (i-Vector extractor) utilizes the posterior mean
and covariance matrices of the hidden variables (acoustic
factors) of the first modeling stage. Later in Section IV-A, we
experimentally show that modeling the acoustic factors in this
way provides superior performance.
The proposed strategy is somewhat similar to the Deep Mix-

ture of Factor Analyzers (DMFA) approach [36], where the later
stage of factor analyzer uses the posterior mean of the latent
factors obtained from the earlier stage as features. However, in
the current scenario, the second stage of the factor analyzer is
trained at the utterance level, whereas the first stage is trained
at the frame level.
Proceeding with the above method, for an utterance , the

zero order statistics are extracted as:

(15)

which follows the conventional approach [5]. Here, is ex-
tracted as in (4) utilizing model parameters . Conventionally,
the first order statistics are extracted as:

(16)

Using the proposed model, the first order statistics are extracted
as:

(17)

where for the isotropic model and
for the diagonal model (using appropriate

definitions of in each case). Also, represents the
centralized first order statistics computed using the model
parameters .
The remaining procedure for the i-Vector extractor/total vari-

ability matrix training follows the exact same principles as out-
lined in [7]. However, when the acoustic factors are used as
features for the i-Vector extractor, the mean and covariance for
the UBM parameter is set to ( ), following the original defi-
nition of the term.

E. Model Interpretation

In order to gain further insight towards understanding the
mechanisms of the proposed method, we aim to compare the
super-covariance matrices (covariance matrices obtained from
GMMmean super-vectors) in an i-Vector system using the con-
ventional approach and the proposed AFA integrated approach.
This will illustrate the effect of using the acoustic factors as fea-
tures in the total variability model.
Using the total variability model, for a randomly chosen ut-

terance , the GMM super-vector can be represented by,

(18)

where is the speaker independent mean super-
vector (i.e., concatenated UBMmean vectors ), is an
rectangular matrix ( ) of low rank whose columns

span the so called total variability space [5], and is
a standard normal random vector, known as the total factors.
The posterior mean vector of given an utterance data is con-
sidered as an i-Vector. In this model, the covariance matrix of

is given by, . Since, it is known that i-Vectors
are effective lower dimensional representations of the GMM
super-vectors, we are interested in observing this approximate
super-covariance matrix for specific mixture components. The
training data and algorithms used for the UBM and matrix is
provided in Section III-D and III-E, respectively. A full-covari-
ance GMM-UBM is used in this analysis.
In Fig. 3(a) the estimated super-covariance matrix for the first

mixture is shown. In other words, this is the first sub-matrix of
including components from the upper left corner. From

Fig. 3(a), we observe the following: (i) the covariance matrix in
this part and the covariance of the UBM in Fig. 3(c), are not the
same, and thus a factor analysis model in these two domains are
not equivalent [7]; (ii) a strong peak is observed near the compo-
nent (20,20) of the matrix (this pattern is observed in other mix-
ture blocks of the matrix as well). This indicates that strong
correlations are present in specific feature components of the
GMM super-vectors, , collected over a large number of ut-
terances.
When an AFA model (isotropic noise with ) is uti-

lized and the acoustic factors are the inputs to the total vari-
ability model, the partial super-covariance matrix is shown in
Fig. 3(b). Interestingly, this matrix does not contain any dom-
inant peaks as observed in Fig. 3(a). This further justifies the
inclusion of the first stage factor analyzer which takes into ac-
count the correlation among feature coefficients (independent of
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Fig. 3. Partial super-covariance matrices and a UBM covariance matrix obtained from a GMM and AFA model. The super-covariance is estimated using the total
variability matrix . (a) Partial super-covariance matrix of mixture-1 for a full covariance GMM-UBM. (b) Partial super-covariance matrix of mixture-1 for an

UBM model ( ). (c) The full-covariance matrix of the GMM-UBM obtained from mixture-1.

the utterance) and provides a de-correlated input (acoustic fac-
tors) to the second stage. These two stages are thus complimen-
tary in nature, and can be expected to provide superior results.

III. SYSTEM DESCRIPTION

The experiments performed in this study are based on the
male trials of the NIST SRE 2012 evaluation. A standard
i-Vector system [5] with a Gaussian PLDA [18] similar to our
NIST SRE 2012 submission [29] is used as a baseline system.
Specific blocks of the baseline system implementation and
details of the proposed scheme are described below.

A. Voice Activity Detection

The VAD algorithm follows the method in [38], available
through the open-source Voicebox toolkit [39]. For interview
recordings, VAD is performed on both interviewee (A) and
interviewer (B) channels, and speech segments detected in
channel B are removed from channel A. Since channel B is
usually corrupted by a noise floor to mask the interviewee
speech, spectral subtraction [22] is always performed before
VAD on channel B. For channel A, first the Signal to Noise
Ratio (SNR) is estimated using a 2-mixture GMM trained
on segment energy. If the SNR is less than 18 dB, the audio
channel is enhanced using spectral subtraction [22] before
application of VAD. Here, the noise power was estimated using
the method outlined in [40].

B. Feature Extraction

We use 60 dimensional Mel-Frequency Cepstral Coefficients
(MFCC) features. At first, digital zeros are replaced by a uni-
formly distributed noise floor having a mean zero and ampli-
tude . A 24 channel Mel-spaced filterbank is used and
19 components are retained. The 60 dimensional features are
obtained by including log-energy, delta and acceleration co-
efficients using a 25 ms analysis window with 10 ms frame
shift. Finally, the features are processed through Cepstral Mean
and Variance Normalization (CMVN) utilizing a 3-sec sliding
window.

C. Noisy File Generation

Since our experiments are performed on the NIST SRE
2012 tasks, we artificially noised our development dataset.
We collected 10 HVAC noise files from [41] and generated 10

TABLE I
COMMON CONDITIONS IN NIST SRE 2012

TABLE II
UBM TRAINING LIST DESCRIPTION FOR NIST SRE 2012. NUMBER OF FILES
USED IN DIFFERENT CATEGORIES ARE PRESENTED FOR BOTH GENDERS

crowd noise files by summing 500–800 NIST SRE utterances
from both male and female speakers. The noise partitioning is
described in [29]. We employ our in-house tools to generate
the noisy files with a psophometric weighting (ITU-T Recom-
mendation O.41) method as suggested by NIST. The active
speech level is measured according to the ITU-T Recommen-
dation P.56. These noisy files are used for speaker enrollment,
hyper-parameter estimation, and PLDA training.

D. UBM and AFA Model Training

Gender dependent 1024-mixture UBMs with full-covariance
and the proposed AFA models are trained on telephone utter-
ances selected from the Switchboard-II Phase 2 and 3, Switch-
board Cellular Part 1 and 2, and the NIST SRE 2004–06 en-
rollment data. Noisy files containing HVAC and crowd noise,
and SRE 2012 enrollment speaker data are also included in the
UBM. The UBM utterances are approximately balanced across:
(i) clean vs. noisy, (ii) telephone vs. interview/microphone, and
(iii) known vs. unknown speakers. The number of utterances
used in UBM training from various data types is summarized in
Table II. We employed data sub-sampling for fast UBM training
[42], [43] to perform the experiments. For each 30 frames that
are skipped, 3 consecutive frames are selected, resulting in use
of only 10% of the original dataset. In this way, the correlation
among the successive frames are retained. For EM training, the
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TABLE III
COMPARISON OF SYSTEM PERFORMANCE WHEN THE PROPOSED MODELS ARE USED AS GMMS VS. AFAS FOR THE I-VECTOR SYSTEM.

RESULTS ARE SHOWN FOR FIVE NIST SRE 2012 COMMON CONDITIONS OF THE EXTENDED TRIALS (MALE)

initial four iterations per mixture are gradually increased to 15
for higher order mixtures.

E. i-Vector Extractor Training

For training the i-Vector extractor, the UBM training dataset
and additional SRE 2012 target speakers’ data are used (both
clean and noisy versions). This corresponds to our NIST
SRE 2012 system [29]. Here, 600-dimensional i-Vectors are
extracted using 5 EM iterations. The i-Vectors are first mean
normalized and then length normalized using radial Gaussian-
ization [18]. Linear Discriminant Analysis (LDA) projection
is performed to further reduce the i-Vector dimension to 150
before PLDA scoring.

F. PLDA Classifier

1) Model Training: In this work, we use a Gaussian PLDA
model with a full-covariance residual noise [18]. According to
this model, an dimensional i-Vector extracted from utter-
ance is expressed as:

(19)

Here, is the speaker independent mean vector, is
the low rank matrix representing the speaker dependent
basis functions or eigenvoices, is an
hidden variable, and is a random vector representing
the full covariance residual noise. The model parameter
was set to 150. The data used for i-Vector extractor training are
utilized to train this PLDA model. No short duration utterances
are included in PLDA training as was the case in [29].
2) Scoring: The i-Vectors obtained from each enrollment

speaker are first averaged so that one i-Vector per speaker is ob-
tained. The scoring is then performed as described in [44]. To
determine if i-Vectors and are obtained from the same
speaker or not, we evaluate the following likelihood ratio:

(20)

The obtained scores are transformed using a compound log-like-
lihood ratio (LLR) transformation as described in [45]. For this
purpose, we set the target prior and assume that
all speakers are equally likely. We note that, the compound LLR
is used only when individual system performances are reported.
For fusion of multiple systems, the compound LLR transforma-
tion is applied on the final fused scores.

IV. EXPERIMENTAL RESULTS

The experiments performed in this study are based on the
male portion of the NIST SRE 2012 core-extended trials. We
use the SRE 2012 detection cost functions (DCF): ,

[13], and the % Equal Error Rate
(EER) metric for evaluating the systems 1. We report the results
on the five common conditions of the NIST SRE 2012 extended
trials [13]. Definitions of these common conditions are provided
in Table I. Note that the clean conditions also contain transmis-
sion channel/microphone variability.

A. Effect of the Modeling Method

We are interested in analyzing system performance of an
AFA-UBM model when it is used as a GMM with the pa-
rameters . This means that the effect of the
AFA modeling will only be observed in the way the covariance
matrix is restricted in (3). The results of these experiments are
summarized in Table III. We note here that the full-covariance
GMM-UBM based system does not perform as well as the
diagonal GMM-UBM. The AFA-UBM models utilized as
GMMs (row 4-5 in Table III) are seen to perform close to
the full-covariance GMM-UBM. However, when the acoustic
factors are utilized for the i-Vector modeling (noted as the AFA
method in Table III) we observe a significant improvement in
system performance. This confirms our original motivation for
using the acoustic factors as inputs to the i-Vector extractor.

B. Variation of Acoustic Factor Dimension

In this experiment, we intend to observe the effect of
changing the acoustic factor dimension on overall system
performance. For both model types ( and

), we consider acoustic factor dimensions of:
, 48 and 54. These parameter values correspond to 70,80

and 90% of the original 60 dimensional features. The results
are provided in Tables IV–VIII obtained from both baseline
and proposed systems in the five NIST SRE 2012 common
conditions.
The results in Tables IV–VIII clearly demonstrate that, the

proposed technique utilizing an AFA-UBM instead of the con-
ventional GMM-UBM provides more robust speaker recogni-
tion performance across conditions including clean and noisy
test utterances. Except for condition-3 (i.e., the noisy interview

1It has been argued that the EER metric is not valid when known non-target
speakers are involved during test [45]. However, we still report this performance
metric as it is a widely known and understood measure in speaker verification.
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TABLE IV
PERFORMANCE COMPARISON BETWEEN BASELINE AND PROPOSED
SYSTEMS IN NIST SRE 2012 EXTENDED TRIALS CONDITION-1

TABLE V
PERFORMANCE COMPARISON BETWEEN BASELINE AND PROPOSED
SYSTEMS IN NIST SRE 2012 EXTENDED TRIALS CONDITION-2

case), the proposed methods provide significantly superior per-
formance compared to the baseline system in all three perfor-
mance metrics. In general, relative improvements on the order
of 5–10% is obtained using the proposed methods. This im-
proved robustness in both clean and noisy conditions justify our
motivation for utilizing the ML-AFA models in place of con-
ventional GMM-UBMs, especially since the proposed models
attempt to remove the noise in an earlier stage of the system (i.e.,
within acoustic feature models rather than utterance models).
From the performance evaluations of Tables IV–VIII, it is ap-

parent that a single AFA model parameter (acoustic factor di-
mension ) or model type (isotropic or diagonal) does not al-
ways provide the best result in all conditions. This indicates that
an optimal selection of the parameter in each mixture can pro-
vide further benefits [46], [47]. In our previous work, we at-
tempted to derive an automatic selection of the parameter in
[31] using the AFA frame-work proposed in [7].

C. System Fusion and Calibration

In order to test if the proposed systems can provide com-
plementary information, we perform fusion of several systems
using a linear logistic regression method obtained from the
Bosaris toolkit [48]. An independent development test set is
utilized for training the calibration and fusion parameters. The
data-set referred to as the Eval-Test in [49] is used here as the
development test set. This data-set contains utterances from
the enrollment speakers so that target and known non-target
trials are present. Also, held out speaker data is included to
provide unknown non-target trials. Clean and noisy versions of

TABLE VI
PERFORMANCE COMPARISON BETWEEN BASELINE AND PROPOSED
SYSTEMS IN NIST SRE 2012 EXTENDED TRIALS CONDITION-3

TABLE VII
PERFORMANCE COMPARISON BETWEEN BASELINE AND PROPOSED
SYSTEMS IN NIST SRE 2012 EXTENDED TRIALS CONDITION-4

TABLE VIII
PERFORMANCE COMPARISON BETWEEN BASELINE AND PROPOSED
SYSTEMS IN NIST SRE 2012 EXTENDED TRIALS CONDITION-5

telephone, interview and microphone recordings are included
in this data-set (noise types are HVAC and crowd, following
SRE 2012 test data). For training fusion and calibration, we
used 15 iterations and an effective prior of 0.001. We select
the following systems for fusion: (1) Baseline with diagonal
covariance UBM, (2) Baseline with full-covariance UBM,
(3) and (4) . Three combinations
of these systems are used for fusion and the results are summa-
rized in Table IX.
From these results, we observe the complementary nature of

the proposed and baseline systems, yielding significant relative
improvements of about 20–25% over the baseline system
performance with respect to the primary cost metric .
For the metric , very similar improvements are
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TABLE IX
FUSION PERFORMANCE OF BASELINE AND PROPOSED SYSTEMS. ABSOLUTE AND % RELATIVE PERFORMANCE IS SHOWN FOR FUSION SYSTEMS

CLR indicates compound likelihood transformed scores.

TABLE X
COMPARISON OF SYSTEM PERFORMANCE BETWEEN ORIGINAL AFA AND ML-AFA BASED I-VECTOR SYSTEMS.
RESULTS ARE SHOWN FOR FIVE NIST SRE 2012 COMMON CONDITIONS OF THE EXTENDED TRIALS (MALE)

observed for all five conditions. Since the cost func-
tion is the most important metric for the NIST SRE 2012, the
results obtained are quite encouraging. Fusion of system 1–3
and 1,2,4, in general provided better results compared to fusing
all 4 systems. This indicates that the systems
and may not fuse well for conditions but can
provide significant improvement when individually fused with
the baseline systems. However, improvements obtained by
fusing all four systems are more uniform. For example, in
cc-3, relative improvements in from
and are 19.8% and 10.6%, respectively, while

yields 17.4%. Fusion of all four systems, always
improve the performance by at least 14%.

D. Comparison Between Original AFA and ML-AFA

As the final experiment, in this section, we compare the orig-
inal AFA approach presented in [7] and the proposed ML-AFA
strategy within the current i-Vector system framework. In [7],
only an isotropic residual noise was considered in the model
formulation. Thus, we use the - model as the UBM
in this comparison. The original AFAmethod is implemented as
described in [7], deriving its parameters from a full-covariance
UBM. The acoustic factor dimensions and 48 are con-
sidered, and %EER and performance metrics are
used for this experiment. The results are summarized Table X.
From these results, we observe that the ML-AFA strategy

clearly outperforms the original AFA approach in all conditions.
The performance difference is quite significant in conditions 2,
4 and 5. However, it must be noted that the AFA model in [7]

was trained using only channel degraded data, whereas in this
experiment, both channel degraded and noisy data is used. As
discussed in the introduction, when the AFA parameters are ex-
tracted from a full-covariance UBMmodel trained on such data,
the transforms estimated as in [7] do not provide improved re-
sults. On the other hand, when the iterative EM strategy is used
to learn the AFA parameters, as in ML-AFA, the resulting sys-
tems provide improved robustness in both channel degraded and
noisy test conditions.

V. CONCLUSIONS

In this work, we have developed the acoustic factor analysis
frame-work towards a generative mixture model as an alterna-
tive to a conventional GMM based UBM for speaker verifi-
cation. The proposed modeling scheme was designed to itera-
tively learn a limited number of dominant feature sub-spaces
in different mixture components using clean and noisy training
data. Two variations of the proposed model were investigated,
one with an isotropic and the other with a diagonal covariance
residual noise assumption. The method was integrated within an
i-Vector system frame-work where the hidden variables of the
proposed model (i.e., acoustic factors), were used as input for
total variability modeling. The interpretation and implication
of the proposed method was discussed and analyzed. Extensive
experiments were performed on both clean and noisy test con-
ditions from the NIST SRE 2012 extended trials. The proposed
methods were found to be superior in multiple noisy conditions
in SRE 2012, providing a significant gain in performance when
fusion of multiple systems were considered.
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APPENDIX

A. EM Algorithm for Diagonal Covariance AFA

Given the mixture of AFAmodel, or more generally, the mix-
ture of factor analyzers model in (1), first we obtain the posterior
probability density functions (PDFs) of given the latent vari-
ables . Here, we assume only one mixture component at this
stage.

The model covariance matrix is given by, .
Thus, the data model is given by,

(21)

Now, the posterior probability of the hidden variables is:

(22)

where

(23)

It can be shown that, .
Thus, from (22) we observe that is the posterior covari-
ance of , providing its Gaussian PDF:

(24)

Thus, the first and second order moment of given is given
by:

(25)

(26)

For a mixture of AFA model, these moments will have dif-
ferent values in each mixture component. We denote them as

and , respectively. For a mixture of factor an-
alyzers, the expected complete-data log likelihood plus the La-
grangian multiplier is given by,

(27)

We note that the last term in the equation with the Lagrangian
multiplier is required to constrain the sum of the mixture
weights to be equal to unity. Differentiation of (27) with
respect to and , setting to zero, and solving the equations
provide the new value of the model parameter given by,

(28)

Next, maximizing (27) with respect to , we obtain,

(29)

Maximizing for we obtain its update equation,

(30)

Finally, differentiating (27) with respect to and setting to
zero gives the update equation for as,

(31)

These solutions are very similar to what was obtained in the
PPCA case, except for the noise covariance term , which is
now considered to be a diagonal matrix for optimization2.
As the M-step update equations of and (i.e. Eqs. (30)

and (31)), are coupled, we proceed in the same way as in [33].
First, we ignore the latent variables and maximize the like-
lihood function for and . This gives us the update equa-
tions (5) and (6) as in the isotropic noise case. Next, to update

and , we only seek to increase the likelihood function
instead of maximizing it, which is in principal similar to the
Generalized ExpectationMaximization (GEM)method. The pa-
rameters and are assumed to be fixed. Also, the statistics

and are obtained from the estimated parameters
in the first step using equations (25) and (26) for each mixture.
In this case, the parameters , and are also considered
mixture dependent. Now, when the maximization is carried out
assuming these parameters as pre-computed constants, we ob-
tain a new set of simplified update equations for and ,
given by:

(32)

(33)

Here, the operation retains only the diagonal elements
of the matrix that it operates on. The value of is obtained
from (7).

2The approaches presented in [37] and [34] could also be followed in this
procedure. However, we chose to utilize the methods in [33] for the EM formu-
lation to obtain a set of compact M-step equations.
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