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Abstract—Acoustic echo cancellation (AEC) and suppression
(AES) are widely researched topics. However, only few papers
about hybrid or deep acoustic echo control provide a solid compara-
tive analysis of their methods as it was common with classical signal
processing approaches. There can be distinct differences in the
behaviour of an AEC/AES model which cannot be fully represented
by a single metric or test condition, especially when comparing
classical signal processing and machine-learned approaches. These
characteristics include convergence behaviour, reliability under
varying speech levels or far-end signal types, as well as robustness
to adverse conditions such as harsh nonlinearities, room impulse
response switches or continuous changes, or delayed echo. A first
contribution of this article is to present an extended set of test
conditions and metrics that yields a proper characterization of an
AEC/AES model and provides researchers with a useful toolbox to
benchmark their systems. Second, we evaluate multiple AEC/AES
models, each representing a classical, machine-learned, or hybrid
paradigm, in various test conditions. We provide an analysis and
new insights into their strengths and weaknesses and identify lim-
itations of common metrics in some cases. Our entire toolbox of
evaluation metrics and testing conditions is available on GitHub1.

Index Terms—Acoustic echo control, filter convergence, machine
learning, performance analysis.

I. INTRODUCTION

IN TODAY’S world, speech communication via smart-
phones, personal computers, and other electronic devices

is omnipresent. One important aspect hereby is acoustic echo
control: If one of the devices in a communication system is a
hands-free device or in any other way allows its loudspeaker
signal to be picked up by its microphone, the speaker on the
other end would hear their own voice as an echo. As this would
degrade the perceived quality of the conversation, acoustic
echo cancellation (AEC) or suppression (AES) systems, jointly
referred to as echo control (EC) systems, aim at removing
the echo with as few degradation of the near-end signal as
possible.
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For decades, classical methods based on adaptive filters have
been successfully used for AEC. The most common approaches
are the normalized least means square (NLMS) filter [1], [2], [3],
[4] and the frequency-domain Kalman filter (FDKF) [5], which
have been adapted and extended in many different ways over the
past years [6], [7], [8], [9].

Recently, there has also been a great number of approaches
employing deep neural networks (DNNs), either as a fully
learned EC [10], [11], [12], [13], [14], as a residual (deep) echo
suppression postfilter after a linear AEC [8], [15], [16], or as a hy-
brid approach combining parts of classical approaches with deep
learning components [9], [17]. The most prominent recently
published work is likely Microsoft’s DeepVQE model [14],
performing AES, noise suppression, and speech dereverberation
in a single network, thereby presenting a solution to challenging
tasks that previously required a multi-stage network for good
near-end speech preservation [11], [12]. In our work, however,
we focus on distinct approaches for echo control to solely
enable convergence and performance analysis of the classic and
DNN-based EC methods.

The capabilities and behavior of classical approaches are
usually well documented, with metrics such as echo return loss
enhancement (ERLE) [18] and system distance [4] plotted over
time, allowing a detailed analysis of characteristics such as
convergence and reconvergence time. Note that recently, tools
for (classical) residual echo suppression have been released [19].
Although the evaluation of DNN-based approaches also allows
to plot ERLE over time, its reporting is often limited to mean
metric scores, which are sufficient to prove a method’s good
performance under the given conditions, but rarely can provide
enough information to achieve a deeper understanding of the
DNN’s temporal behavior. Beyond that, however, there are many
more useful metrics that are worth to remember.

The contribution of our work is not any algorithmic novelty,
but in the first place, it is a comprehensive analysis of methods
representing a wide range of EC paradigms: classical, hybrid,
and deep EC. Rather than focusing on a comparison of sophisti-
cated state-of-the-art models, our approach to in-depth analysis
of EC systems is demonstrated on representative models with
highly diverse methodology and behavior. We create a set of
test conditions along with metrics, which analyzes each aspect
of an EC system’s performance in detail, whereby all metrics
are also applicable to DNN or hybrid approaches. Among the
test conditions, we also propose the rarely reported continuously
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changing room impulse response condition. As a further exam-
ple, two systems might show similar mean echo suppression
scores, but differ in convergence time or sensitivity to speech
and noise levels. Choosing the right metrics and test conditions,
we show how to gain a better distinction between the exhibited
behavior of different methods that might not be detectable in
simpler evaluation setups. Last but not least, our synoptic view
onto the three paradigms allows a deeper understanding of their
pros and cons.

The article is structured as follows: In Section II, we define
the task of acoustic echo control and our tested EC methods.
Section III defines datasets, the DNN training process, and
evaluation metrics. In Section IV, we present our proposed
test conditions and discuss the performance of the evaluated
methods. Section V provides conclusions.

II. ACOUSTIC ECHO CONTROL (EC) FRAMEWORK

A. Framework Overview and Notations

The task of echo control systems is depicted in Fig. 1. We
differentiate two categories: Acoustic echo cancellation (AEC)
describes the estimation and subtraction of an echo signal, while
acoustic echo suppression (AES) models a gradual attenuation
of parts of the signal containing echo via an estimated mask,
typically in the frequency domain. As a far-end (FE) speaker
talks, the reference signal x(n) is transmitted to the near-end
(NE) and played from a loudspeaker. This loudspeaker might
also show nonlinear characteristics which lead to a distorted
emitted signalx′(n) = fNL(x(n)). The loudspeaker signal prop-
agates in the NE room and is picked up at the microphone as
echo d(n) = h(n) ∗ x′(n), with h(n) being the room impulse
response (RIR) and ∗ being the convolution operator. The mi-
crophone signal y(n) = s(n) + d(n) + n(n) also contains the
near-end speech signal s(n) and background noisen(n). In some
cases, the system might introduce delay between the reference
signal and its corresponding echo signal, e.g., when using a
wireless loudspeaker. Such delay, if not compensated, can cause
major issues for EC approaches—in classical and hybrid meth-
ods due to the limited filter length, but also in deep AEC models
if the training data does not contain conditions with delay.

Without any alteration of y(n), this would mean that the FE
speaker would receive their own voice as echo, which can be
very irritating and significantly lowers the perceived quality of
the conversation [20]. The task of AES therefore is to suppress
d(n), while the task of AEC is to estimate d(n) and to subtract
the estimate according to e(n)=y(n)−d̂(n). By definition, this
means that we explicitly exclude the task of noise suppression
and models employing it alongside EC—be it in the form of a
postfilter or as a joint training target—from the scope of this
article. Typically, for an EC system, the only available signals
are x(n) and y(n).

B. Echo Control (EC) Methods Under Test

Evaluating a large number of different approaches would
clutter our tables and figures. Therefore, we analyze five hand-
picked EC methods, each being representative for a broad class

Fig. 1. Generalized overview of our EC framework.

of approaches, including classical adaptive filters, machine-
learned deep neural networks (DNNs), and hybrid models.
These methods were neither chosen to necessarily represent
current state of the art nor to answer the question of whether
classical or learned EC is supreme, but rather as greatly dif-
ferent approaches to the given task. This diversity allows us to
demonstrate the differences in behaviour observable through our
extensive evaluation setup. In line with this idea and to keep our
study easier to follow, we opted to not include any auxiliary
functions, e.g., double-talk detectors or long-term delay estima-
tion algorithms, even though they might be common in practical
applications, especially when using classical algorithms.

The first approach will be a basic normalized least means
square (NLMS) filter after [3], as it has been widely used in AEC.
Variations of this method are still frequently deployed in modern
systems and subject to research [7], [8]. A further description of
the specific model used here is given in Appendix A.

A more sophisticated AEC approach is the frequency-domain
Kalman filter (FDKF) [5], [21]. This system is designed for high
preservation of NE speech at the trade-off of a less aggressive
echo cancellation. A detailed description of our implementation
is given in Appendix B.

Recently, several approaches to AEC have substituted parts of
classical systems with deep neural networks (DNNs). One such
approach is the so-called Neural Kalman Filtering (NKF) [9],
which replaces the filter update routine of the FDKF with a
lightweight DNN. Details can be found in Appendix C.

A second approach to such a hybrid EC scheme is the
DeepAdaptive [22] model. Similar to NKF, it utilizes a DNN
to estimate the step size of a classical AEC’s filter update
algorithm, but also further enhances performance by modelling
nonlinearities of the echo path before the actual echo prediction
algorithm. Details can be found in Appendix D.

As deep AES model in this work, we use the convolutional
grouped GRU network with 16 layers (CGGN16) [13]. The
model is a variation of the convolutional recurrent network
archetype and operates in the frequency domain. A detailed
description of the network architecture can be found in [13].
All DNN-based methods have been trained from scratch for
this work as described in Section III-B, with window and
DFT length K = 512 and frame shift R = 128. With this, all
methods evaluated in this article use the same (per-tap) filter size
and window length (cf. Appendices A–D). Note that due to NKF
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and DeepAdaptive being multi-tap filters, the CGGN16’s in-
herent potential to model infinitely long time dependencies (due
to recurrent layers), and the differences in overlap-add/overlap-
save usage between the frequency-domain approaches, the
effective filter length varies. This means that some models are
by design more capable of modelling longer RIRs or delays.

III. EVALUATION FRAMEWORK

A. Training and Evaluation Datasets

While delivering an ideal training environment for our neural
networks (i.e., one that lets them perform well in all possible
evaluation conditions) is not a focus of this article, a careful
choice of training and evaluation datasets is still paramount.
Especially, the evaluation data should be distinct from training
conditions to avoid misleading results due to overfitting on seen
patterns. To ensure a fair evaluation between all methods, we
choose disjoint speakers, background noises, nonlinear distor-
tions, and RIRs for all our dataset splits, as discussed in detail
below.

The training datasetDtrain for the methods employing a neural
network uses speakers from the publicly available CSTR-VCTK
corpus [23] to generate NE and FE utterances. Each speaker
can appear as NE or FE to discourage the trained model from
overfitting to speakers. To generate the echo signal, first a scaled
error function (SEF) [24], [25], defined as

x′(n) = fSEF(x(n)) =

∫ x(n)

0

exp

(
z2

2β2

)
dz, (1)

is applied to the FE reference signal x(n), with β randomly cho-
sen from {0.5, 1, 10, 999}. This simulates nonlinear distortions
caused by the loudspeaker. The resulting distorted signal x′(n)
is convolved with a room impulse response h(n) (RIR). For
the training data, RIRs are modelled as white Gaussian noise
modulated with an exponential decay [26] so that a reverber-
ation time (RT60) randomly sampled from a continous range
of [50, 600] ms is achieved. The signal-to-echo ratio (SER) of
each audio file is randomly sampled from a continuous range
of [−12.4, 22.4] dB. For background noise, we use random
cuts from the publicly available DEMAND [27] and QUT-
NOISE [28] databases at a signal-to-noise ratio (SNR) in the
range of [−2.4, 32.4] dB, with a 10% chance of a file to be
noise-free. We generate 8, 500 files each of 10 s length. Between
training epochs, the speech, noise, and echo components ofDtrain

are reshuffled with new SER and SNR values. A separate small
control split Dcon of 1, 000 files is generated along the lines
of the training data generation (no reshuffling, however), that
exclusively serves for learning rate control and early stopping
during training.

For preliminary evaluations of all EC methods, we use a
development dataset Ddev of 200 files per condition. Speak-
ers are drawn from a speaker subset of the publicly available
CSTR-VCTK corpus disjoint to the training speakers. Nonlinear
distortions are again simulated via (1), but with distinct β values
sampled from {0.2, 0.4, 1.5, 12, 999}. Modulated noise is again
used for RIR generation with the same parameter setup as in
Dtrain, but different random seeding. SER values are sampled
from discrete values in {−10,−5, . . ., 20} dB. Noise is cut from

the publicly available ETSI noise database [29]. The SNR is
chosen from {0, 5, . . ., 30} dB.

The test dataset Dtest for all EC methods is created from
speakers of the publicly available and widely used TIMIT
speech corpus [30]. To be distinct from the previously described
datasets, we use the arctan nonlinearity function [31], [32],
defined as

x′(n) = farctan(x(n)) =
arctan (α · x(n))

α
, (2)

to simulate loudspeaker nonlinearities in this dataset, with
α = 10−4. Our test dataset Dtest uses real-world RIRs from the
Aachen Impulse Response Database [33], which are modified
to exclude initial delay. Note that initial delay is introduced for
a specific experiment only. Noise is cut from the remaining
ETSI files of environments so far unseen both in training and
in validation. The SER is chosen from {−9,−6, . . ., 9} dB,
the SNR from {5, 8, . . ., 20} dB. We generate 200 files per
condition.

The speech material for validation and test has to be further
preprocessed, considering the test conditions far-end single-talk
(STFE), near-end single-talk (STNE), and double-talk (DT).
To support a fair comparison between models, the evaluated
sections of each condition (8 s long) are preceded by a few
seconds of audio to allow for convergence. In case of DT, this
entails first an STFE and then an STNE section before the actual
DT section follows. For evaluation of STFE and STNE, only one
preceding section also of STFE and STNE is used, respectively.
Each preceding section is of 8 s to 12 s length and does not
contribute to evaluation metrics.

B. DNN Training Process

All DNN-based models in this work have been trained from
scratch to ensure fairness in comparison. The training is con-
ducted on Dtrain (cf. III-A) using the Adam optimizer [34] in
its standard configuration and a logarithmic MSE loss function
defined as

J logMSE = 10·log
(∑

n∈N
(e(n)− s(n)− n(n))2

)
, (3)

computed over the entire time sequence (n ∈ N ⊂ N0). The
batch size is set to 16 with a backpropagation-through-time
(BPTT) unrolling sequence length of 200 frames. The initial
learning rate (LR) is set to 10−4, which is halved after 4 epochs
without loss improvement on the control split Dcon. The training
is stopped after 100 epochs, if the loss on Dcon does not improve
for 10 consecutive epochs, or if the LR drops below 10−5.
Between epochs, the microphone signal components s(n), d(n),
and n(n) of Dtrain are reshuffled with new SER and SNR values
to generate more diversified training data.

All models are trained in PyTorch2 [35], using a GTX
1080 Ti GPU. Training runs are implemented in a deter-
ministic fashion to avoid performance variations, e.g., from
inconsistent data randomization or non-deterministic CUDA
operations.
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C. Evaluation Metrics

The DT, STFE, and STNE sections in Ddev and Dtest are
evaluated independently on their own subset of metrics. For eval-
uation of echo cancellation effectiveness, we use the AECMOS
metrics DT Echo (abbreviated DT E) and ST Echo (ST E) [36],
describing the suppression of echo during double-talk and (far-
end) single-talk, respectively. The NE speech preservation is
measured through the Perceptual Evaluation of Speech Quality
(PESQ) metric [37] and the AECMOS metrics DT Other (DT O)
and ST Other (ST O), describing non-echo-related degradations
in DT and STNE, respectively.

For a more precise evaluation, especially in the DT condition,
we also employ the black-box component metrics PESQBB and
ERLEBB according to ITU-T Recommendations P.1100 [38]
and P.1110 [39], with more details in [40], [41]. The black-box
components are derived from the enhanced signal e(n) by cal-
culating a frequency-domain gain G�(k

′) between microphone
and enhanced signal as

G�(k
′) = min

[ |E�(k
′)|

|Y�(k′)| , 1
]
· e

jφE�
(k′)

ejφY�
(k′) , (4)

which can then be applied to individual signal components of
the microphone signal such as S̃�(k

′) = G�(k
′) · S�(k

′), with �
being the frame index and k′ being the frequency bin index. The
domain transformation for the black-box approach always uses
a Blackman window with DFT size K ′ = 512 and frame shift
R′ = 64 to obtain its frequency-domain signals [40]. As such,
the black-box approach is independent from the employed EC
model, as any enhanced signal can be mapped to a spectral gain
factor in identical fashion. The only requirement is the availabil-
ity of the separate signal components of the microphone, as it is
generally the case for synthetic datasets. The resulting compo-
nents e(n) = s̃(n) + d̃(n) + ñ(n) allow us to disentangle the
evaluation of NE speech preservation and echo suppression.
Here, PESQBB = PESQ(s(n), s̃(n)) yields the speech compo-
nent quality of the enhanced signal. The black-box variant of the
echo return loss enhancement (ERLEBB) after [18] is defined as

ERLEBB(n) = 10 · log10

(
(g(n) ∗ d(n))2
(g(n) ∗ d̃(n))2

)
, (5)

for which a first-order IIR smoothing filter with impulse re-
sponse g(n) = αn and coefficient α = 0.99 is applied to the
signals d(n) and d̃(n). The operator ∗ denotes convolution. The
final ERLEBB is computed as mean over the entire evaluated
sequence.1 Black-box metrics can be advantageously employed
also for double-talk conditions, where standard PESQ and ERLE
are of limited usefulness.

Another metric to aid in evaluation of DT scenarios is the
log-spectral distance (LSD) metric [42] defined as

LSD� =

√√√√ 1

|K′′|
∑

k′′∈K′′

[
10 log10

(
|S�(k′′)|2
|Ŝ�(k′′)|2

)]2
, (6)

1The software for the metrics PESQBB, ERLEBB, and further previously un-
published measures is available at https://github.com/ifnspaml/EC-Evaluation-
Toolbox.

calculated over all frequency bins k′′ ∈ K′′. Similar to the black-
box approach, the LSD metric uses independent DFT parameters
K ′′ = 512 and R′′ = 256. The final LSD results are calculated
by averaging over all frames � of a file that contain near-end
speech. This metric, much like standard PESQ, reports overall
quality (both NE speech preservation and echo suppression
effectiveness affect the score), but is a straightforward distance
metric. As such, it is less prone to performance differences
getting masked by noise, but in return is less descriptive on the
perceptual impact of residual echo and NE speech degradation.
The respective black-box version LSDBB replaces S�(k

′′) with
S̃�(k

′′) for a result more focused on the disentangled speech
component. To keep the tables more readable, LSD is only
reported from Table III on.

Note that the score limit of all metrics (referenced as oracle in
the following sections) is dependent on various test set character-
istics. For example, perfect echo cancellation on Dtest only leads
to a DT PESQ score of 2.70 points since the background noise
is not suppressed. In the same condition, the black-box speech
component metric PESQBB reaches a score of 3.96, which better
reflects the non-distorted speech component.

IV. EVALUATION AND DISCUSSION

The following subsections now present our extensive com-
parative evaluation study in various conditions. The goal is to
analyze as many aspects of the EC task as possible and to
gain detailed insights into the strengths and limitations of the
various presented EC models. In Section IV-A, we start with
a performance evaluation of all the models in all three condi-
tions DT, STFE, and STNE. Next, in Sections IV-B and IV-C,
the convergence and reconvergence behaviour of the systems
is investigated. Section IV-D investigates the reconvergence
performance under a continuously changing RIR. Lastly, in
Sections IV-E, IV-F, and IV-G, we analyze the robustness to-
wards various aspects, namely nonlinearities, varying SER and
SNR levels, and delay.

A. Comparative Evaluation of Methods

In this subsection, we start with a comparative performance
evaluation in DT, STFE, and STNE. The results are given in
Tables I (Ddev) and II (Dtest). As a reference, the scores for
the unprocessed microphone signal y(n) and perfectly removed
echo (oracle) y(n)− d(n) = s(n) + n(n) are given as well.

We can observe a very similar behaviour of our models on
Ddev and Dtest, with some rare exceptions such as the general-
ization capabilities of the approaches containing DNNs, where
the CGGN16 shows much better PESQBB and DT O scores on
the test set, while DeepAdaptive shows lower PESQ scores.
For STNE, all models show excellent pass-through of echo-free
signals. The slightly increased ST O and PESQ for CGGN16 and
DeepAdaptive can be explained by a light noise suppression,
which also causes the PESQBB to report scores below the ideal
value of 4.64 due to imperfect separation of the black-box
components. The CGGN16 model removes the echo almost
completely (ERLEBB) at the cost of some near-end (NE) speech
quality degradation in DT (PESQBB), with some aggressive
over-suppression observed on Ddev. In contrast, FDKF shows

https://github.com/ifnspaml/EC-Evaluation-Toolbox
https://github.com/ifnspaml/EC-Evaluation-Toolbox
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TABLE I
PERFORMANCE ON THE DEV SET Ddev USING SYNTHETIC RIRS. ERLEBB IN (dB)

TABLE II
PERFORMANCE ON THE TEST SET Dtest USING REAL-WORLD RIRS. ERLEBB IN (dB)

great preservation of NE speech at the cost of less aggressive
echo suppression, while the NKF model shows a performance
in-between those two extremes. Please note that FDKF’s higher-
than-oracle score for DT PESQBB is due to the fact that less
echo suppression allows for a higher maximum score of this
metric. Generally, CGGN16 scores higher than the other models
in most categories on Ddev. On Dtest, the DeepAdaptive
model yields the highest echo suppression, but at the cost of
more degraded NE speech quality, as seen in PESQ and PESQBB.
On the contrary, the DT O score is quite high, which can be
attributed to the high echo suppression and its side-effect of
also partly removing disturbing background noise—we found
this especially noticeable with babble noise. The simple NLMS
performs worst, showing mediocre echo cancellation paired with
significant NE speech degradation.

We conclude: First, in a simple evaluation, the classical
FDKF preserves near-end speech best, while the CGGN16 and
DeepAdaptive methods are most effective at suppressing
the echo. Second, the STNE condition does not very much
differentiate the methods.

B. Convergence Behavior for Various Far-End Excitations

An important characteristic of EC algorithms is the con-
vergence behavior. Classical approaches are known to require
varying amounts of convergence time to reach their steady state
performance on a time-invariant RIR. Hybrid models such as
the NKF have been shown to improve on convergence time [9],
while the convergence behavior of fully learned EC methods has
only occasionally been reported.

Firstly, we analyze the performance of the models under two
different FE excitations in terms of their mean metric scores.
Apart from the previously described excitation by FE speech
(Dtest), the models are also evaluated with white Gaussian
noise (WGN) as FE excitation (DWGN

test ). The performance of
the models on these two datasets is reported in the upper and
lower segment of Table III, respectively. We see that for DWGN

test ,
compared to the already discussed condition of speech FE exci-
tation, NKF surpasses CGGN16 in terms of echo suppression
(ERLEBB) at the cost of even more NE degradation in DT
(PESQBB). Note that ERLEBB for the NKF is also higher than
the oracle score for the DT condition, which is another clear
sign of over-aggressive suppression. CGGN16 maintains a high
echo suppression performance and even improves its NE speech
preservation, likely due to the easier distinction between speech
and noise-like echo. The evaluated classical methods improve in
their echo cancellation, as it is easier for them to converge on a
spectrally white excitation. Interestingly, the DeepAdaptive
model seems to greatly struggle with WGN FE excitation and
only displays weak echo suppression. Further inspection of the
audio revealed an incoherent suppression of different frequency
areas, whereas other models tend to suppress the spectrally
white signal more evenly. We attribute this behavior to the
sole use of fully connected layers in DeepAdaptive, which
requires a more broader range of training material to achieve
good generalization on various FE excitations.

We also observe that the AECMOS metrics do not seem to
be suited for evaluation of the WGN FE excitation condition, as
proven by the too high scores of DT E and ST E for unprocessed
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TABLE III
PERFORMANCE FOR SPEECH (Dtest, UPPER TABLE SEGMENT) AND WHITE GAUSSIAN NOISE (Dtest

WGN, LOWER TABLE SEGMENT) AS FE EXCITATION. ERLEBB
AND LSD IN (dB)

Fig. 2. Convergence behavior of the observed approaches during the first
2 seconds of the FE speech excitation test set Dtest for DT (top) and STFE
condition (bottom). Values represent the mean over the dataset. Dotted lines
indicate performance of initially already converged models, solid lines indicate
performance starting from a zero state.

audio and the too low score of DT O for the echo-free oracle ex-
periment. Moreover, the noise-like FE echo and its residual seem
to have a higher impact on overall PESQ scores in DT as well.

As for the now included LSD and LSDBB metrics, we largely
see a correlation with our PESQBB metric for speech FE ex-
citation. The main outlier is the NLMS model, which scores
comparatively well even though the performance is clearly more
degraded than, e.g., with the CGGN16 model, as found from

Fig. 3. Convergence behavior of the observed approaches during the first
2 seconds of the FE WGN excitation test set DWGN

test for DT (top) and STFE
condition (bottom). Values represent the mean over the dataset. Dotted lines
indicate performance of initially already converged models, solid lines indicate
performance starting from a zero state.

informal listening tests and supported by all other metrics. We
attribute this to the fact that theNLMS is the only model to operate
directly in the time domain, avoiding a potential impact of the
DFT/IDFT and OLA algorithms on LSD. For WGN excitation,
we found the reported LSD scores to be less informative and to
only weakly correlate with subjective listening impressions.



SEIDEL et al.: CONVERGENCE AND PERFORMANCE ANALYSIS OF CLASSICAL, HYBRID, AND DEEP ACOUSTIC ECHO CONTROL 2863

Fig. 4. Reconvergence behavior of the observed approaches on the modified
test set Dswitch

test for DT (top) and STFE condition (bottom). The RIR is abruptly
switched after 4 seconds (indicated by dashed line). As the RIR for t = 4s. . .8s
is the same as in Dtest, the performance of this section can be directly compared
to the steady state of Fig. 2. Colored circle markers on the right-hand side mark
the Fig. 2 converged start performance after 8 s.Values represent means over the
dataset.

We conclude: For white Gaussian far-end excitation, the
DNN approach (CGGN16) shows the highest robustness, while
DeepAdaptive shows severe issues due to the use of fully
connected layers. AECMOS and LSD metrics, however, are less
suitable for this test condition.

The convergence behavior of the models is evaluated in DT
and STFE conditions by comparing the performance between
the converged states (using the preceding audio sections as
described in Section III-A; in case of the WGN FE excitation
experiment, the preceding audio sections contain FE WGN audio
as well) and the zero state (running the models only on the
evaluated audio section). Once both graphs align, the model
has reached its steady state. The convergence behavior of our
models in DT and STFE is depicted in Fig. 2 for FE speech
excitation and in Fig. 3 for FE WGN excitation.

We see that the convergence time of the NLMS filter (red) is
the longest, followed by DeepAdaptive (cyan) and FDKF
(magenta). For FE speech excitation, CGGN16 (green) and
NKF (blue) show either almost immediate convergence or a
tendency towards starting out with very aggressive suppression.
The observed better steady-state performance of the hybrid NKF
method over the purely algorithmic FDKF—with both sharing
parts of the same core structure—likely stems from multiple
factors: the use of overlap-add in NKF, its multi-tap filter, and
potentially better robustness against background noise. Interest-
ingly, CGGN16 seems more prone to over-suppression when

Fig. 5. Reconvergence/tracking behavior of the observed approaches with
continuously changing RIR test set DWGN,dyn

test for the STFE WGN con-
dition, starting from converged state. Values represent means over the dataset.
Dotted lines indicate performance of models on the initial time-invariant RIR,
solid lines indicate performance on the here investigated time-variant RIR (0-4 s),
while after 4 s the RIR is frozen.

no NE speech needs to be preserved (STFE condition). For
WGN FE excitation, we see mostly identical behaviour, with
generally faster convergence times. Again, DeepAdaptive
displays issues in dealing with WGN FE excitation.

We conclude: Compared to classical approaches, the neural
network-based methods show often faster convergence for both
speech and white Gaussian far-end excitation.

C. Reconvergence Behavior: RIR Switch

Apart from the initial convergence behavior, another impor-
tant factor of AEC systems is the reconvergence behavior. This
describes the system’s ability to adapt towards a new RIR from
an already converged state.

To analyze the models’ reconvergence behavior, we modify
our test set towards abrupt RIR switches after 4 s of audio.
Fig. 4 displays the resulting performance of our models on this
modified test set Dswitch

test . We see that FDKF requires longest to
reconverge, while a drop in ERLEBB at the RIR switch seems
almost unnoticeable forCGGN16.DeepAdaptive,NLMS, and
NKF show small drops in performance, which are almost masked
by the natural fluctuations in the curves. NLMS, however, takes
longer to reconverge. When comparing the final performance to
the one achieved on Dtest (circles at 8 s), we can see that the
models return to about the same steady-state performance after
reconvergence.

We conclude: While all models return to their steady-state
performance after an RIR change, DNN-based methods show
fastest reconvergence.

D. Reconvergence Behavior: Continuously Changing RIR

While reconvergence towards a completely new RIR might
happen once in a while, it is far more common that small
fluctuations of the RIR occur continuously over time, e.g.,
due to movement of objects or speakers in the room. Simpler
setups with an abrupt RIR change as in Section IV-C, while
insightful in their own respect, might not fully inform about a
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TABLE IV
PERFORMANCE FOR VARIOUS LOUDSPEAKER NONLINEARITIES ERLE AND LSD IN (DB)

model’s behaviour under such conditions. Therefore, it is crucial
to include an experiment with highly dynamic RIR conditions
in one’s test suite for a comprehensive analysis. We evaluate
the models’ behaviour in such a condition for the new dataset
DWGN,dyn

test . This dataset uses a single, constantly changing RIR
hdyn(n), which was recorded as described by Jung et al. [31], see
also Jung’s contribution to ITU-T P. 1130 [43]. The changing
RIR is simulated by rotating a reflective plate at a speed of
ω ≈ 360◦/4 s placed in the recording environment. For more
details on the RIR data of this condition, the reader is referred
to Appendix E. A total of 60 audio files were generated for
DWGN,dyn

test , using WGN as FE excitation.2

Fig. 5 presents the performance of our models on DWGN,dyn
test .

The models start from a converged state on the initial RIR,
followed by 4 s of audio with continuously changing RIR (equals
roughly one full rotation of the reflective plate) before it is frozen
again at t = 4 s. To better analyze the effects of a time-variant
RIR on the reconvergence behaviour (solid lines), the figure also
contains graphs for a condition with time-invariant RIR (dotted
lines), generated from the final state of hdyn(n) at t = 4 s.

We can see that several methods are greatly affected by the
continuous RIR change, with an initial ERLE drop by 15 to
20 dB. Particularly FDKF struggles to achieve any meaningful
echo cancellation during this experiment, only slowly recovering
after the RIR is frozen again. NLMS and NKF show a similar
oscillating pattern as observed by Jung [31], with slightly better
performance at the 180◦ (∼1.8 s) and 360◦ (∼3.7 s) marks,
where the RIR resembles the original one. After the RIR freeze,
both models quickly return to their steady-state performance.

2The code for generating dynamic RIRs with this method can be found at
https://github.com/ifnspaml/EC-Evaluation-Toolbox.

The DNN CGGN16 presents the best tracking capabilities, only
showing a performance drop after 2 s and even recovering
back to steady-state performance before the RIR freeze. With
all models returning to their initial steady-state performance
within 2 s after the RIR freeze and the NKF again reaching the
highest score, it becomes clear that the performance of a model
after convergence/reconvergence gives no information about a
model’s tracking capabilities. DeepAdaptive continues to
exhibit weak performance for WGN FE excitation, although
staying quite consistent for the time-variant RIR.

We conclude: The DNN method (CGGN16) shows great track-
ing behaviour under a continuously changing RIR. Robustness
against time-variant RIRs is not reflected by steady-state per-
formance (where the hybrid NKF shows the highest scores for
white Gaussian noise far-end excitation).

E. Nonlinearity Robustness

While classical methods of sufficient filter length are in theory
able to converge towards a close representation of the RIR
for an ideal system, the addition of loudspeaker nonlinearities
poses a problem. Since these methods (as well as the NKF)
estimate filter coefficients to be applied to the reference signal,
nonlinearities cannot be directly modelled, therefore hindering
the convergence process and putting a limit on the estimation
precision. Other models are by design (CGGN16) or through ex-
plicit distortion modelling (DeepAdaptive) more capable of
taking nonlinearities into account. However, their effectiveness
in doing so is not guaranteed on unseen types of nonlinearities.

In this experiment, we substitute the nonlinear function (2)
employed in our test set to analyze the effects on the different

https://github.com/ifnspaml/EC-Evaluation-Toolbox
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Fig. 6. Impact of SER level on the models’ performance in DT condition of
Dtest for SNR = 0 dB.

Fig. 7. Impact of SER level on the models’ performance in DT condition of
Dtest for SNR = 20 dB.

models. The test set Dlinear
test contains no loudspeaker nonlinear-

ities. The nonlinearities in the original Dtest can be considered
fairly mild, whileDsigmoid

test contains harsh loudspeaker distortions
modelled by the memoryless sigmoidal function [44]. The non-
linearities of Dtest and Dsigmoid

test are both disjoint from the ones
used in training.

Fig. 8. Impact of SNR level on the models’ performance in DT condition of
Dtest for SER = −10 dB.

Fig. 9. Impact of SNR level on the models’ performance in DT condition of
Dtest for SER = 10 dB.

In Table IV, we can see that the performance differences
between no nonlinearity (Dlinear

test ) and a mild nonlinearity (Dtest)
are quite small for all methods. The harsh nonlinearities in
Dsigmoid

test , however, result in a noticeable performance change
for all models. FDKF is again excellent for near-end speech
component preservation in DT (PESQBB), but at the price of
the lowest echo performance (ERLEBB, DT E) in the same
condition. The deep AES method CGGN16, on the other hand,
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performs strong w.r.t. ERLEBB, DT E, and ST E in almost all
cases, and also overall in PESQ during double talk.

With strong nonlinearity, NLMS performs well w.r.t. ERLEBB,
while both NLMS and NKF yield high ST E scores. This can
be attributed to the models’ characteristic of indiscriminately
suppressing major parts of all signal components during echo
activity, which can be seen in their poor NE speech preservation
in DT (PESQBB). Interestingly, CGGN16 seems to react with
the strongest drop in echo suppression on Dsigmoid

test , which is
likely due to the fact that such harsh nonlinearities have not been
part of the training material. DeepAdaptive, as the highest
scoring model in terms of echo suppression, also displays a
noticeable decrease in ERLEBB, while DT E and ST E remain
on a high level. It is also the only model to maintain a steady
LSD score. While this model also did not see harsh nonlinear-
ities in training, the designated nonlinearity modelling by its
DNN is likely the cause for this less pronounced performance
decrease.

We also observe that the ERLEBB and the DT E metric do not
deliver the same rank orders in any of the nonlinearity cases.
This is because of their diverging evaluation objective: ERLEBB

merely measures residual echo, but DT E reflects a subjective
impression about echo removal.

We conclude: Deep echo control models can obtain strongest
echo cancellation performance under nonlinearity strengths that
have been seen in training. The linearFDKF provides the highest
fidelity of the near-end speech component also in harsh nonlinear
conditions.

F. Impact of SER and SNR

Another important aspect of echo cancellation is the reliability
of a system under varying levels of echo and noise. Ideally, we
want an EC system to deliver a good performance independently
of SER and SNR within the operational range of the desired use
case, but in practice, high noise levels often complicate system
identification and loud echoes might result in leaking residual
echo.

We evaluate our models under varying combinations of SER
and SNR as shown in Figs. 6–9. Figs. 6 and 7 display the
performance of the models for different SER levels with fixed
SNR = 0 dB and SNR = 20 dB, respectively. Figs. 8 and 9,
on the other hand, display the performance of the models for
different SNR levels with fixed SER = −10 dB and SER =
10 dB, respectively. We also display the scores of the echo-free
oracle signal, which not only gives us a better frame of reference,
but also reveals the metrics’ upper limit dependencies regarding
audio levels.

We can see that oracle scores are very consistent across all
SER and SNR levels for DT Echo, while DT Other scoring is
highly dependent on noise levels in the microphone signal. This
is due to the fact that DT Other considers noise as degradation.
We also observe a tendency for AECMOS scores to cluster
more in low SNR conditions. The most likely cause is that for
strong noise components, the differences in performance of the
evaluated models are more difficult to distinguish for the under-
lying neural network of the AECMOS metric. For the black-box

metrics, we can see a high dependency of ERLEBB on both SER
and SNR, while PESQBB scoring is only significantly influenced
by echo levels. These dependencies are attributed to the fact that
the black-box component separation is not always perfect, e.g.,
in the case of overlapping speakers or between noise and highly
reverberated echo. Therefore, the removal of a stronger echo will
degrade the black-box (but not the actual) NE speech component
more, while (unsuppressed) strong noise makes residual echo
appear more severe in its black-box component.

We conclude: All shown metrics depend either on SNR, on
SER, or on both. It is therefore crucial to mind the oracle
scores when comparing a model’s performance under different
echo/noise levels. High noise levels seem to partially mask
model differences in the AECMOS metrics.

For the investigated models, we can see that their charac-
teristics are very distinct. CGGN16 performs well in high SER
scenarios and mostly independently of the current SNR, but for
low SER we can see a tendency towards aggressive suppression
at the cost of degraded NE speech quality (see Figs. 6 and
7). As discussed before, low SNR masks this behaviour in the
AECMOS metrics. Again, FDKF shows relatively mild echo
cancellation (especially for low SER), but maintains a good NE
speech preservation across all SER and SNR conditions. For
NLMS and NKF, we can see an increasing gap to the ERLEBB

and DT Echo oracle scores with decreasing SER, while strong
noise for high SER levels seems to encourage overly aggressive
suppression (see Fig. 9). DeepAdaptive exhibits an interest-
ing behaviour, as the echo suppression seems more aggressive
in high SER scenarios. The significantly higher ERLEBB scores
than oracle hint at an over-suppression (see Figs. 6 and 7).

We conclude: All models show stronger echo leak for lower
SER levels.FDKF preserves the NE speech best in all conditions,
while the DNN model (CGGN16) gives the most consistent echo
suppression across most SER/SNR levels.

G. Delay Robustness

Depending on the deployed hardware and environment, sys-
tems can also experience delays between the reference signal and
the resulting echo. An example could be a wireless loudspeaker,
which introduces additional delay in the loudspeaker path, see
the optional delay in the dashed box in Fig. 1. This can be
problematic as it makes a precise system identification more
difficult or even impossible, especially for classical approaches
with a limited filter length.

Fig. 10 shows the effects of additional delay to Dtest for the
different models. We apply a fixed added delay between the
reference signalx(n) and the resulting echod(n) to all files of the
dataset, for multiple delay values. Note that, while it is common
to employ some sort of long-term delay estimation [45], [46],
[47], this experiment explicitly focuses on the raw performance
of the evaluated models without any prior delay compensation.
We see that almost all models loose a significant portion of
their performance for delays as low as 50 ms already. For the
classical models and NKF, this is to be expected, as their filter
lengths are much shorter. The DNN CGGN16 also cannot handle
higher delays due to the lack of respective training material.
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Fig. 10. Impact of additional initial delay between the reference input x(n)
and corresponding echo componentd(n) on the models’ performance, measured
on the DT condition of Dtest. None of the DNN-based models has seen delay
in training.

Fig. 11. Impact of additional initial delay between the reference input x(n)
and corresponding echo component d(n) on the performance of models trained
with delay-augmented data, measured on the DT condition of Dtest.

Interestingly, even though both NKF and NLMS loose most of
their echo cancellation capabilities, both models still show sig-
nificantly reduced NE speech quality (AECMOS and PESQBB)
when compared to the oracle. The DeepAdaptive model can
deal with delay to a certain extent due to its longer multi-tap
filter and shows a slower drop in echo suppression effectiveness
(even increasing in ERLEBB for minor added delay).

As a follow-up experiment, we test the hypothesis of a poten-
tial benefit in training data with delay augmentation. Therefore,
echo signals d(n) in the training dataset were delayed randomly
by up to 50 ms. The training of DeepAdaptive and CGGN16
was repeated under this condition. The NKF model was not
retrained, as its shorter receptive field already prevented the
integration of such long delays in training.

Fig. 11 shows the results for the retrained models in DT
AECMOS scores. It can be seen that the echo suppression
capabilities of the CGGN16 model is now less impacted by
the introduced delay, only starting to drop at the 50 ms mark.
Notably, the performance on undelayed test data is not majorly
impacted by the training augmentation. DeepAdaptive only
marginally deviates from its performance when trained without
delay augmentation (compare to Fig. 10).

We conclude: Delay robustness is dependent on filter
length / receptive field and—for some neural network-based
approaches—on the respective training material.

V. CONCLUSION

In this article, we provided a comparative analysis of classi-
cal, hybrid, and deep learning-based acoustic echo cancellation
(AEC) and suppression (AES) approaches, employing a broad
assortment of metrics and test conditions. We demonstrated
the benefits of our expansive evaluation by comparing five
AEC/AES methods as representatives for classical, machine-
learned, and hybrid approaches, in terms of their performance
regarding convergence behaviour, reliability under different
SER/SNR combinations or far-end signal types, as well as ro-
bustness to adverse conditions such as harsh nonlinearities, room
impulse response switches or continuous changes, or delayed
echo. We discussed limitations of the employed metrics in these
conditions. This increased scope of evaluation revealed clear dif-
ferences in the investigated models, which a simpler test condi-
tion would not have been able to detect. We observed a faster con-
vergence and better tracking capabilities in the neural-network
based model, while the traditional frequency-domain adaptive
Kalman filter remains unbeaten in its preservation of near-end
speech during double-talk. It was also shown that data-driven
models such as NKF, DeepAdaptive, and CGGN16, despite
their advantages over classical approaches in many conditions,
can still be vulnerable to conditions unaccounted for in their
training, such as harsh nonlinearities or highly delayed echo.

APPENDIX A
NLMS ALGORITHM

The normalized least means squares algorithm (NLMS, af-
ter [3]) in this article operates in the time domain and calculates
the RIR estimate ĥ(n) = [ĥ0(n), ĥ1(n), . . ., ĥN−1(n)]

T for a
filter length of N = 512 as

ĥ(n+ 1) = ĥ(n) +
μ · e∗(n)x(n)

||x(n)||2 , (7)

with x(n) = [x(n), x(n−1), . . ., x(n−N+1)]T , the step size
μ = 0.7, and the enhanced signal e(n) calculated as

e(n) = y(n)− ĥ
T
(n) · x(n). (8)

Note that ()T is the transpose and ()∗ is the conjugate complex
operator.
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Fig. 12. FDKF and NKF algorithms (differences in respective colors); Details
are shown in Figs. 13 and 14.

Fig. 13. System identification algorithm as being used in Fig. 12 for FDKF
and NKF with their respectively colored signals. The block “T” delays incoming
signals by one frame.

APPENDIX B
FREQUENCY-DOMAIN KALMAN FILTER

The frequency-domain Kalman filter (FDKF, after [5], [21])
used in this article is implemented in diagonalized form (all
matrices have only entries on their diagonal axes and can be
considered vectors). The overall structure is shown in Fig. 12
(magenta-colored options). The input signals Y�(k) and X�(k)
are computed by rectangular windowing of the microphone
signal y(n) and reference signal x(n) with window (and in
consequence filter) length K = 512 and frame shift R = 128,
and applying a K-point DFT to each frame. Its system identifi-
cation block is depicted in Fig. 13 and can be broken down into
two main modules: The filter-state update and the Kalman gain
estimation. To update the filter state, first the current error signal
E�(k) has to be computed as

E�(k) = Y�(k)−A
R

K
Ĥ�−1(k)X�(k), (9)

with the state transition factor A = 0.998. Then, the Kalman
gain K�(k) is calculated from the step size μ�(k) through

K�(k) = μ�(k)X
∗
� (k) (10)

μ�(k) =
R

K
P+
� (k) ·

(
R

K

[|X�(k)|2P+
� (k)

]
+ΨS

� (k)

)−1

,

(11)

whereby the process noise covariance is computed as

ΨS
� (k) = (1− β)

(
|E�(k)|2 + R

K
|X�(k)|2P+

� (k)

)

+ βΨS
�−1(k), (12)

with smoothing factor β = 0.5. The state error covariance
P+
� (k) is computed as

P+
� (k) = A2P�(k) + λΨ	

� (k)

Fig. 14. NKF Kalman gain estimation block after [9]. The values in paren-
theses indicate the number of units per fully connected (FC) or GRU layer based
on the filter-tap count L.

P�+1(k) = P+
� (k)

(
1− R

K
K�(k)X�(k)

)
, (13)

with the estimation error covariance

Ψ	
� (k) =

(
P�(k) + |Ĥ�−1(k)|2

)
· (1−A2). (14)

With the Kalman gain K�(k) calculated for the current step by
(10), the filter state Ĥ�(k) can be updated through

Ĥ�(k) = AĤ�−1(k) +K�(k)E�(k). (15)

The enhanced signalE�(k), again according to Fig. 12, is finally
calculated as

E�(k) = Y�(k)− R

K
Ĥ�(k)X�(k), (16)

which is transformed back into the time domain via K-point
IDFT and overlap-save.

APPENDIX C
NEURAL KALMAN FILTERING (NKF)

The Neural Kalman Filtering (NKF, after [9]) approach
lends the overall structure from the FDKF in Figs. 12
and 13 (blue-colored options), but replaces the Kalman
gain estimation algorithm for a multi-tap filter Ĥ�,k =

[Ĥ�(k), Ĥ�−1(k), . . ., Ĥ�−L+1(k)]
T with a DNN as shown in

Fig. 14. Following the original implementation [9], L = 4 filter
taps are predicted for window/DFT length K = 512, frame shift
R = 128, and (contrary to the original FDKF) a square-root
Hann windowing function. The effective filter length between all
filter-taps accumulates to M = K + (L− 1) ·R = 896. Note
that the same DNN is applied to each frequency bin individually,
but including context from L−1 past frames. The error signal
E�(k) is calculated as

E�(k) = Y�(k)− Ĥ
T

�−1,kX�,k. (17)

The filter state Ĥ�,k is updated through

Ĥ�,k = AĤ�−1,k +K�,kE�(k), (18)

withA = 1, and then used to calculate the enhanced signalE�(k)
as

E�(k) = Y�(k)− Ĥ
T

�,kX�,k. (19)

If the magnitude of all entries in the reference signal X�,k =
[X�(k), X�−1(k), . . ., X�−L+1(k)]

T is below 10−5 for all k,
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Fig. 15. Car setup for dynamic RIR generation [31], with hands-free micro-
phone at rear-view mirror position and four loudspeakers. Changes in the RIR
are simulated by rotating a reflecting surface on the passenger seat along the
azimuth angle Φ.

no update is calculated and no echo is compensated (E�(k) =
Y�(k)). Finally, the enhanced signal is subject to another square-
root Hann window and transformed back into the time-domain
via K-point IDFT and overlap-add (contrary to the FDKF im-
plementation).

APPENDIX D
DEEPADAPTIVE

Similar to the NKF approach, the DeepAdaptive
model [22] augments a traditional frequency-domain acoustic
echo canceller in its filter state update rule:

Ĥ�+1(k) = Ĥ�(k) +
μ�(k)

X∗
� (k)X�(k)

E�(k)X�(k), (20)

with the complex conjugate operator ∗. This update rule can
be seen as the frequency-domain equivalent to (7). A DNN
consisting of four LSTM layers with 300 units each and a
full-connected output layer is employed instead of the classi-
cal step size μ�(k) calculation. Furthermore, the same DNN
is also used (via a second fully connected output layer) to
estimate a spectral magnitude mask M�(k), which is applied
to the microphone signal to extract the nonlinearly distorted
reference signal X ′

�(k). This is used as substitute for X�(k) in
(20), thereby ideally reducing the task complexity back to a
linear system identification problem. Analogous to the previous
models, we choose the window/DFT length K = 512 and frame
shift R = 128, while following the original authors in using
L = 10 filter taps. Note that the resulting extended effective
filter length M = 1664 does give the model an advantage over
the other classical and hybrid models in terms of longer RIRs
and delay, but might also result in longer convergence times.

APPENDIX E
DYNAMIC IMPULSE RESPONSE RECORDING

The setup for generating a dynamic RIR (as sketched in
Fig. 15) follows the description of Jung et al. [31], which is
also reflected in ITU-T P.1110 [39] and P.1130 [43].

The RIR is measured in a Volkswagen Touran car equipped
with a hands-free microphone at the rear-view mirror position
and four loudspeakers placed around the driver seat. A perfect
sweep excitation signal [48] is played back from all loudspeakers

simultaneously at high volume to achieve a good SNR at the
microphone. A rotating piece of plywood is placed on the
co-driver’s seat to enforce changes in the RIR, being manually
rotated at a speed of ω ≈ 360◦/4 s. The driver’s seat is occupied
during the measurement.
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