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Analyzing the Robustness of Vision &
Language Models

Alexander Shirnin , Nikita Andreev , Sofia Potapova , and Ekaterina Artemova

Abstract—We present an approach to evaluate the robustness of
pre-trained vision and language (V&L) models to noise in input
data. Given a source image/text, we perturb it using standard com-
puter vision (CV) / natural language processing (NLP) techniques
and feed it to a V&L model. To track performance changes, we
explore the problem of visual questions answering (VQA). Overall,
we utilize 5 image and 9 text perturbation techniques and probe
three Transformer-based V&L models followed by a broad analysis
of their behavior and a detailed comparison. We discovered several
key findings regarding the performance of the models in relation
to the impact of various perturbations. These discrepancies in
performance can be attributed to differences in their architectures
and learning objectives. Last, but not least, we perform an empirical
study to assess whether the attention mechanism of V&L Trans-
formers learns to align modalities. We hypothesize, that attention
weights for related objects and words, should be on average higher
than for random object/word pairs. However, our study shows that,
unlike is believed for machine translation models, V&L models do
not learn alignment at all or exhibit less evidence to do so. This may
support the intuition that V&L Transformers overfit to either of
the modalities.

Index Terms—Visual question answering, robustness, black-box
interpretation, attention mechanism, spurious correlations.

I. INTRODUCTION

MULTIMODAL machine learning is a novel research field
that seeks to design models that can process data from

heterogeneous sources. Developing a single interface for vision
and language (V&L) has gained wide attention both from aca-
demic and industrial communities. During the last few years,
multiple V&L models have been proposed, motivated by best
practices in computer vision (CV) and natural language process-
ing (NLP). All of these models adopt the pre-training paradigm,
which is de facto a standard in modern NLP, and are built upon
Transformer architecture [1]. However, more efforts have been
put into understanding NLP Transformers’ inner workings rather
than into the introspection of V&L counterparts.

Recent studies have developed a novel research paradigm,
addressed as BERTology [2], which seeks an understanding of
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how pre-trained language models work. A scope of approaches
has been proposed to explore how Transformers encode lin-
guistic properties [3], whether Transformers are capable of
generalizing to unseen domains and are robust to noises in input
data [4], what the functional roles of the attention heads are [5],
and how attention heads align source and target languages in
machine translation [6]. In this paper, we built upon BERTology
principles and aimed to get a better understanding of how V&L
models work.

Since the inception of deep convolutional networks [7], nu-
merous extensions and enhancements have been developed.
These networks have become a widespread solution to various
computer vision problems due to their efficacy and quality.
Resnet [8] and VGGNet [9] are examples of backbones that
extract crucial information from images and produce embed-
dings, which can then be used for a variety of tasks including
multimodal models. Recent research has demonstrated the fea-
sibility of using transformer-based computer vision models such
as ViT [10], SWIN [11], and their derivatives. Nonetheless, this
area is still gaining traction and, despite their strengths, such
models have more parameters and require more data for training.

Although significant progress has been made in tasks involv-
ing a single modality, it is important to recognize that real-world
problems often require the integration of multiple modalities,
such as vision and text. Common V&L tasks encompass a
wide range of applications, including image captioning [12],
VQA [13], visual dialog [14], image-text matching [15], and
audiovisual facial analysis [16], [17]. These tasks involve the
joint understanding of visual and textual information, facilitating
the development of multimodal models that can effectively
bridge the gap between images and language. Some of them
use open-set vocabulary, which hinders numerical techniques
for interpretations. Thus we stick to the tasks with closed-set
vocabularies. In particular, the VQA problem is usually formal-
ized as a classification problem and is estimated with accuracy.
Since the VQA problem is representative and easily evaluated,
we choose it to explore V&L models’ robustness. The input to
the VQA model is an image and a text question. The task in
general is to predict the answer to the question. To formalize the
problem as a classification task, the output layer of the model
selects one answer from a predefined vocabulary of possible
answers.

Every year, new approaches appear and new state-of-the-art
results are established, but these models often have a rather
strong bias towards the data they work with (e.g. images of
a certain kind and resolution, style and vocabulary in a test),
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and if one tries to slightly change the input data (e.g. lower
the resolution of an image, change some pixels, rephrase or
misspell a question) the model starts to respond incorrectly
and its overall quality becomes noticeably worse [18]. This
happens to them because they only encounter a certain type
of data during pre-training, and in the evaluation phase when
data from a shifted distribution is used, their performance de-
creases. The assessment of VQA performance using accuracy
as the evaluation metric enables a quantitative evaluation of
the robustness exhibited by V&L models. Robustness refers to
the models’ ability to maintain stable and accurate predictions
when faced with variations in input data mentioned previously.
By examining how these changes affect their accuracy on the
VQA task, we can draw insights into the underlying factors that
contribute to robustness or vulnerability in multimodal learning
systems.

Our study aims to investigate the robustness of three V&L
models with diverse architectures through the implementation
of three practical tests. These tests include black-box attacks on
texts and images [19], spurious correlation analyses for texts,
and alignment investigations in attention maps. Our approach
is comprehensive in terms of the diversity of model types and
involves a thorough comparison of the models, including the
impact of different architectures on the results. The main con-
tributions of this paper are:
� We introduce three diagnostic tests based on the principles

of the black box, to investigate the underlying mechanisms
of attention and assess V&L models’ robustness.

� We evaluate the proposed diagnostic tests on three V&L
pre-trained models with different architecture types.

� We examine cross-modality alignment in diverse model
architectures, revealing variations in attention maps and
optimal alignment.

The rest of the paper is structured as follows. Section II gives
a comprehensive review of the related works. In Section III, we
present the experimental setup and a set of reference models used
for comparison. Section IV describes, according to the black box
technique, how perturbed input affects the performance of the
models. In Section V, we discover spurious correlations [20] be-
tween artifacts in input data and target predictions. In Section VI,
we identify connections among input modalities during the
internal robustness evaluation. Limitations and the experimental
results are discussed in Sections VII and VIII. Finally, Section IX
concludes with future work directions.

II. RELATED WORK

A. Vision-Language Tasks and Models

1) Main Tasks and Challenges: As language models have
evolved and become more universal, there have been more and
more attempts to combine models from different modalities to
solve various multimodal problems. The most popular modal-
ities are textual data as well as images, and the most common
tasks for them can be divided into 4 categories [21]:
� Generation: Image Captioning (IC), Text-to-Image Gen-

eration.

� Understanding: Visual Question Answering (VQA) [13],
Visual Dialog (VisDial) [14], Visual Reasoning (VR) [22],
Visual Entailment (VE) [23]

� Retrieval: Image-text Retrieval (IR)/Text-image Retrieval
(TR)

� Grounding: Phrase Grounding (PG) [24], Reference Ex-
pression Comprehension (RE) [25]

Our research focuses on the Visual Question Answering
(VQA) task, which requires models to extract information from
two input modalities in order to answer natural language ques-
tions.

2) Models: The initial attempts to create multimodal models
involved combining Recurrent Neural Networks (RNN) [26]
and Convolutional Neural Networks (CNN) (more precise,
LSTM [27] and VGGNet [9]) and some more complicated
fusions like MCB [28]. The introduction of Transformer [1] led
to a significant advancement in these models, as transformer-like
models were utilized as encoders for textual data [29], [30], [31],
[32], [33], [34], [35]. The development of CLIP [36] further
enhanced this field, demonstrating the creation of a universal
model with extensive pre-training that could be utilized for
various multimodal tasks.

There are several primary types of model architectures for
VQA. These include single stream models [29], [31], [32],
[34], [37], which utilize a single large encoder, and dual stream
models [33], [38], [39], which use different encoders for each
modality. Additionally, these models may differ in their tar-
get task type, either discriminative or generative, though both
approaches can effectively solve the VQA task. The task is
approached as a classification problem; in the latter, it is tackled
as a generation task.

B. Attention Mechanism in V&l Models

Attention mechanisms have arguably become the most in-
dispensable module in vision [40], [41], [42], language [1],
[43], [44] and acoustic models [45]. The attention mechanism
in transformers is a natural gateway to understanding models, as
the heatmaps of attention can be used to highlight salient image
regions [46], [47] or text tokens [48], [49], [50], [51].

Multimodal models are more comprehensive for research and
understanding. One of the challenges where attention mecha-
nisms could be used is to identify alignment between modalities
- cross-modal connections and interactions between elements of
multiple modalities. For example, when analyzing the speech
and gestures of a human subject, how can we align specific
gestures with spoken words? Attention mechanisms have been
used as an intermediate (often latent) step enabling better perfor-
mance and capturing both joint undirected (the connections of
different modalities are symmetric in either direction) [31], [52],
[53] and cross-modal directed (asymmetric connections) [33],
[54], [55], [56] alignments.

Another challenge for multimodal models is understanding
how model decisions are formed. While exploring soft and hard
attention mechanisms in V&L image captioning generation, [42]
showed that attention is a simple yet effective mechanism for a
neural network to “focus” on salient features of the input. Given
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an input state, attention allows the model to dynamically learn
weights to indicate the importance of different parts of the input
feature.

Since then, attention maps have been a popular choice
for intermediate concepts since they are, to a certain extent,
human-interpretable, while retaining differentiability. Several
approaches have focused on building interpretable components
for unimodal importance through soft [57] and hard [58] at-
tention mechanisms, or designing individual modules that are
each parametrized by attention operations [59]. In real-life ap-
plications, visualizing attention maps helps users conduct error
analysis and debug V&L models [60].

C. Diagnostics of V&l Models

Comparative analysis of V&L models has gained significant
research interest due to the abundance of available models
and their learning capabilities. To evaluate the visio-linguistic
compositional reasoning of V&L models, a novel dataset,
Winoground was introduced [61]. Winoground comprises sen-
tence pairs that vary by a single word and two images, each
image corresponding to either the correct or an incorrect sen-
tence. The task involves selecting the image that matches the
correct sentence, or vice versa. Performance is assessed by the
accuracy with which a model can accomplish this task. The
authors’ findings suggest that state-of-the-art V&L transformers
and RNN-based models struggle with compositional reasoning,
rarely outperforming random chance. Similarly, there are known
limitations on efficient use of language structure for visual refer-
ring expression recognition [62] reported, where the difference
in performance of ViLBERT [33] and MattNet [63] between
diagnostic sets ranges up to 15%.

Nikolaus et al. [64] introduced a benchmark to evaluate the
comprehension of predicate-noun dependencies in a controlled
setup. The task requires identifying the correct sentence cor-
responding to an image, where two predicate-noun sentences
(a target and a distractor) differ only in either the noun or
the predicate. Performance is above chance for some models
(e.g., LXMERT [33] and UNITER [65]), while some models
such as ViLBERT [33] and CLIP [36] perform at chance level.
Hendricks et al. [66] proposed a new benchmark to probe models
for their understanding of verbs as well as subjects and objects,
finding that verbs were the most challenging while subjects
were easier than verbs. Similarly, Zhao et al. [67] introduced a
VL-CheckList benchmark, which examines seven V&L models
from three aspects: object, attribute, and relation. Their results
show that spatial relations are relatively more difficult to learn
than action verbs. Meanwhile, Parcalabescu et al. [68] evaluated
the abilities of V&L models on various linguistic phenomena,
including object recognition, object counting, and identification
of action participants and roles. Their study reveals that while
V&L models are proficient at recognizing named objects and
their presence in images, they face challenges when considering
language cues in visual contexts, particularly in establishing
interactions.

In video-language domain, Schiappa et al. [69] conducted
a thorough robustness analysis on five self-supervised video-
language models based on CNN and Transformer architectures:
MIL-NCE [70], VideoClip [71], COOT [72], UniVL [73], and
FIT [74]. Additionally, they introduced benchmark datasets
specifically tailored for perturbations in the context of text-to-
video retrieval. Key findings from the study reveal that models
exhibit greater robustness when subjected to perturbations in text
as opposed to video. Furthermore, pre-trained models demon-
strate higher robustness compared to those trained from scratch.
Interestingly, the analysis indicates that the models prioritize
attention toward scenes and objects over motion and action
aspects.

Our research differs from previous works as we employ a
diverse set of perturbations separately on both modalities (text
and images) for the VQA models without the need for addi-
tional model training. This approach allows us to analyze the
models’ responses to perturbations and gain insights into the
relative importance of each modality in their decision-making
process. Moreover, we go deeper into the models’ architecture
and suggest a numerical approach to measure cross-modality
alignment in the attention mechanism.

III. EXPERIMENTAL SETUP

A. Dataset

We use the validation part of COCO VQA v2.0 dataset [13],
which consists of 40504 input images, 214354 input text ques-
tions, assigned to each image, and text answers for each pair
(image, question).

The images are organized into 12 categories with 90 sub-
categories. Each image can be assigned to several categories
(average 6). Each image is equipped with at least 3 questions
and 5.4 questions on average.

Answers to the questions are divided into three categories:
“yes/no”: 80541 answers, “number”: 28134 answers, and
“other”: 105679 answers. The COCO VQA dataset defines a
question type with the first three words of questions.

Table I provides the dataset statistics. The top 10 most frequent
nouns are collected via the NLTK Python library [75], and the
top 10 most frequent named entities (NE) are extracted with
the Spacy toolkit [76], namely, with the en_core_web_sm
pipeline.

B. Models

We use three state-of-the-art V&L pre-trained models for
the experiments are: LXMERT [38], VisualBERT [31], OFA-
large [78]. These models follow different architecture designs,
namely, single and double Transformer streams. Table II shows
the differences between the models.

OFA model is installed from the official GitHub repository.1

LXMERT and VisualBERT are adopted from the Transformers
library [79]. Note, that the published VisualBERT version from
the huggingface library, is not fine-tuned on the MS COCO

1github.com/OFA-Sys/OFA

github.com/OFA-Sys/OFA
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TABLE I
COCO VQA VALIDATION SET STATISTICS

TABLE II
V&L MODELS INVOLVED IN THE STUDY DIFFER IN TERMS OF ARCHITECTURE, PRE-TRAINING TASKS AND OBJECTIVES

dataset and does not reproduce the results of baseline perfor-
mance.

C. Runtime

Calculations are run on GPU TESLA V100 32 GB. LXMERT
and VisualBERT take approximately 16 hours to predict an-
swers, while OFA takes approximately 6 hours since it supports
batching. Overall there were 42 runs according to the number of
perturbations used, 5 image and 9 question perturbations for each
of the three models. Models are used for unsupervised scoring
only, without fine-tuning or hyperparameters search. We launch
all experiments with a fixed random seed. Images and texts are
perturbed in advance.

IV. BLACK-BOX ANALYSIS

To test V&L model robustness we follow the black-box
paradigm, which simulates real-life cases when a user does
not know the model and has no access to training data. We
assume to only have access to input data and the ability to collect
predictions without having access to the model gradient, loss
value, or any internal part of the model. We feed the model
with inputs that are modified with controlled perturbations and
record which perturbations alter the model’s prediction. The
perturbation is considered successful if it changes the input
slightly, but dramatically changes the output and affects the
target metric.

The black-box analysis is widely used to evaluate the ro-
bustness of vision and language models towards perturbed in-
puts [80], [81]. However, there is still room for exploring the
effect of black-box perturbations on multimodal models. To this

end, we conduct black-box analysis on text and image modalities
independently.

A. Images Perturbations

We use standard image perturbations from the Albumenta-
tions library [82]. The perturbations are selected as the smallest
subset of perturbations yet sufficient for a full study based on
related research projects. The main advantage of these pertur-
bations is a real-life relation, as they can easily appear in photos
and videos. For example, Random Snow or Sun Flare can easily
appear on photos that were taken on a smartphone. Moreover,
they are known to keep the image semantics pretty well.

Perturbations, applied to images are:
� Gaussian Blur adds smoothing and blur effect, which

makes the image less sharp and objects less visible;
� Grayscale converts color image to grayscale;
� Downscale reduces image resolution, making it fuzzy;
� Sun Flare covers a small fragment of the image with white

spot;
� Random Snow adds snow effect to the image;
We evaluate the experimental results with the following met-

rics for further analysis: Di for input, Acc and w2v for output
of the models:
� Di is the distance between images, which is computed as

the cosine similarity between embedding vectors of source
and perturbed images, obtained using a pre-trained ResNet-
50 model [8]. It shows how much the image has changed
during the perturbation and allows us to compare stronger
perturbations with weaker ones (lower Di means stronger
perturbation).
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TABLE III
BLACK-BOX ANALYSIS OF IMAGES IN THREE VQA MODELS

� Acc denotes accuracy, the target performance metric for
the VQA task.

� w2v stands for the cosine similarity between the model
outputs for source and perturbed input images. The output
of the VQA task is answer text, which can be presented as
a vector using word2vec representations [83]. This addi-
tional target performance metric illustrates how semantic
similarity changes between answers across perturbations
and models, thus in some cases it is more demonstrative
than accuracy.

Table III shows the experimental performance of LXMERT,
VisualBERT, and OFA on perturbed images. Although we expect
lower Acc and w2v for strong perturbations with higher D_i
values, there is no evidence of such correlation in either model.
On the contrary, the most significant decreases in models’ per-
formance are among weak perturbations with lower D_i values:
Gaussian Blur for VisualBERT, Downscale for LXMERT, and
Grayscale for OFA.
Downscale has the most noticeable effect on all models, while

Grayscale has a minor effect. Gaussian Blur significantly affects
VisualBERT, but has almost no effect on OFA and a small
effect on LXMERT. Also, VisualBERT is robust to strong per-
turbations (Sun Flare and Random Snow), while both OFA and
LXMERT drop in accuracy. Thus, three models are affected by
perturbations in three different ways, so that their performance
decreases/stays the same on various perturbations. The effect
of the perturbation is likely to be connected with the types of
augmentations that were used to pre-train each model.

B. Category-Wise Analysis

Gaussian Blur was chosen for categorical analysis as the
simplest but effective perturbation. Categories were obtained
from dataset labels of image categories. The experiment was
run only for LXMERT and OFA since VisualBERT performs
poorly and is not of interest for comparative analysis in this
case.

The results are summarized in Table IV. Across different
categories, there is considerable variation in the performance of
the models. Notably, there appears to be no correlation between
category-wise performance; higher rates in one category do
not necessarily lead to similar rates in another. However, upon
closer examination of the models’ behavior across categories,
two noteworthy cases emerge: “food” and “animals”.

TABLE IV
RESULTS BASED ON IMAGE CATEGORY USING Gaussian Blur PERTURBATION

The “food” category presents a particularly challenging task
for the models, resulting in a notable decrease in LXMERT
performance of up to 10%. This difficulty can be attributed to the
broad scope of the “food” category, encompassing a wide array
of diverse meals. Conversely, the “animals” category exhibits
a high degree of stability in model performance. This is likely
due to the distinct features possessed by animals, which remain
recognizable even in transformed images.

C. Questions Perturbations

Text perturbations are divided into symbol-, word-, and
sentence-level perturbations. Our selection of text perturba-
tion levels draws upon the methodology designed in NL Aug-
menter [84]. We use NLPAug2, NL Augmenter3 and back-
translation from an EasyNMT4 to craft perturbations.

Perturbations, applied to text questions are:
– Symbol-level:
� Keyboard swap swaps 2 random characters in a sentence;
� Insertion symbol randomly adds characters to a sentence,

making it longer and slightly less readable;
– Word-level:
� U.K. → USA converts sentences from British to American

English and vice-versa;
� Synonym substitution randomly replaces words with their

synonyms;
� Synonym insertion inserts synonyms of randomly selected

words;
� Slang (the slangificator from NL augmenter) replaces

nouns, adjectives, and adverbs of the original text with their
corresponding slang, using the subset of the “Dictionary of
English Slang & Colloquialisms”;

� Yoda modifies sentences to flip the clauses to sound like
Yoda Speaks. For example, “Much to learn, you still have”.

� Random Shuffle randomly rearranges words in text;
– Sentence-level:
� German (back translation) converts an English sentence

to German and back to English
We select realistic perturbations that occur during everyday

use. For instance,Random Shuffle andYodaperturbations might

2github.com/makcedward/nlpaug
3github.com/GEM-benchmark/NL-Augmenter
4github.com/UKPLab/EasyNMT

github.com/makcedward/nlpaug
github.com/GEM-benchmark/NL-Augmenter
github.com/UKPLab/EasyNMT
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TABLE V
RESULTS OF BLACK-BOX ANALYSIS ON VQA MODELS

imitate a non-English speaker whose native language allows
for the rearrangement of words in a sentence. Similarly to
image perturbations, we evaluate the experimental results with
Acc, w2v and Dq , i.e. distance between questions. Following
related work [85], we define the distance between questions
as the cosine distance between source and perturbed question
embeddings, obtained from the all-MiniLM-L6-v2 model
from the Sentence Transformers toolkit5 [86].

For the images an average embedding score was higher than
0.95, thus we left all samples from the validation set for black-
box analysis on the images. Whereas for some text perturbations
an average Dq was less than 0.7, it was necessary to filter
out the questions. Therefore we didn’t use questions that were
perturbed too much (Dq < 0.75) as well as questions that didn’t
change at all. For example, back translation might return the
source sentence or it might be impossible to replace words with
slang. Note, that only the remaining questions are used for the
calculation of Dq in the table V. In Table V the Usage % column
shows the percentage of used examples from the entire dataset.
As a measure of perturbation success rate, we used the ratio of
transformed questions. Slang appears to be the least successful
perturbation, as it changes only 11.8% of the data.

Table V shows the results of text perturbations on the models.
Judging by the drop in accuracy, character-level perturbations
are among the most efficient for models. However, these methods
also lead to the lowest similarity values between source and
perturbed questions. TheU.K. →USA perturbation keeps ques-
tions similarity at high scores (0.97) but manages to generate
out-of-domain questions, which confuses the LXMERT and
VisualBERT models. At the same time, OFA copes well with
this perturbation, and its accuracy is increased by around 2%.
Word order changes of the Yoda perturbation do not affect the
models much, leading to a slight drop in the performance of
all models. Another perturbation for changing word orders ran-
domly (Random Shuffle) decreases the performance of models
more significantly. However, we expect a larger performance
drop, as the shuffled questions have a new meaning, and the pre-
vious answers are likely to be incorrect. However, the question

5sbert.net

similarity remains high (0.9) even though a large sample of 97%
of the dataset is used. We might conclude that at the moment
sentence model almost ignores the word order and they do not
filter shuffled sentences.

D. Results

Overall, the models’ behavior is different, that is their perfor-
mance decreases/stays the same on various perturbations.

The LXMERT performance drops after perturbations by up
to 27% along with the w2v metric as the similarity between
the predictions (mean of 0.828) for intact and transformed
images changes significantly. The performance of VisualBERT
stays consistent after image perturbations and drops by about
10% after text perturbations. However, its performance is much
lower in comparison to LXMERT. Thus, the little fluctuations
in performance can be attributed either to the low quality of
the model or to the perturbations, but the predictions do not
change much, and hence the w2v values are high (above 0.9)
with a mean of 0.921. The performance of OFA also drops after
all perturbations, but the effect varies from the LXMERT one.
OFA maintains high relative similarity values at the level of
0.847 (mean value across perturbations) and higher and w2v
has almost the same changes as accuracy.

Next, we compare the mean δ between the baseline and model
accuracy after perturbations. It results in 9.9% for LXMERT,
2.4% for VisualBERT, and 6.8% for OFA for images. For text
perturbations, δ was 15.3%, 11.2%, and 8.3%, respectively, for
LXMERT, VisualBERT and OFA. This shows that our pertur-
bations are most effective for LXMERT.

We attribute the difference in models’ behavior to their archi-
tectures and learning objectives. LXMERT processes the input
modalities in parallel streams. If one of the streams is affected,
the performance of the whole model degrades. VisualBERT
performs low from scratch. In VisualBERT the modalities are
mixed, so that the model relies less on one modality. This leads
to insignificant changes in performance. OFA is pre-trained with
image masking, unlike LXMERT and VisualBERT, which were
trained on downstream tasks only. Thus, the performance of OFA
is more stable and less prone to perturbations in input data.

V. SPURIOUS CORRELATIONS IN QUESTIONS

Language models tend to over-rely on spurious correlations:
words, that indicate a certain class for a majority of samples
but do not always do so [20], [87]. For example, the sentiment
classification model may learn spurious correlations between
n-grams “Spielberg” and “New York Subway” as these co-occur
frequently with positive and negative classes in the training
data [88]. In line with these studies, we explore simplistic text
perturbations to reveal the spurious learned by VQA models.

We test the VQA model’s sensitivity to word removal. Given
a question, we loop over all words and remove the words one by
one. At each step, we feed the perturbed question to the VQA
model. We record if the model’s output differs from the output
of the source question, the current word, its position, and its
morpho-syntactic features. Towards this, we apply the Stanza
part-of-speech (POS) tagger and dependency parser to label the

sbert.net


SHIRNIN et al.: ANALYZING THE ROBUSTNESS OF VISION & LANGUAGE MODELS 2757

Fig. 1. Analysis of spurious correlations. The decrease in accuracy according to the position (left), part-of-speech tags (middle), and dependency tags (right)
of removed words. The performance is the most affected when the words positioned towards the end of the sentence are removed. Models generally perform well
when functional words are removed. The performance of all models decreases the most when a coordinating conjunction (cc) is deleted from the questions. The
experiment showed that OFA is the most affected model, while VisualBERT is the most robust.

Fig. 2. Example of image (left), golden matrix (middle-left), LXMERT attention (middle-right) and VisualBERT attention (right). Here we can see the difference
in attention maps: LXMERT has more attention to key objects on [CLS] and [PAD] tokens whose weights differ from other tokens, while VisualBERT has many
uniform weights and more attention on the key object’s token.

words with their (i) Universal POS tags6 and (ii) tags of Universal
Dependency Relation7 to their dependents. For the sake of time,
we randomly select 500 sentences, to which all models produce
correct answers.

Removing words from input questions generally decreases
VQA performance by up to 20%. Fig. 1 shows the decrease
with respect to the position, the part of the speech tag, and
the dependency tag of the removed word. The left-hand side
plot shows, that the performance is the most affected when the
words positioned towards the end of the sentence are removed.
In this experiment OFA is the most affected, losing up to 40%
performance when the first word is removed from the question.
VisualBERT seems to be the most robust model, maintaining
performance above 80% in most cases.

We analyze the impact of removed word dependency tags on
models. LXMERT and VisualBERT are affected rather similarly.
For about half of the cases, the accuracy is not affected and
stays at about 1, in other cases for both models it went from

6universaldependencies.org/u/pos/
7universaldependencies.org/u/dep

TABLE VI
ALIGNMENT SCORES STATISTICS

1 to 0.6 on average, depending on the word’s dependency tag.
However, OFA’s accuracy in most cases is between 0.3 to 0.8
and less than 0.6 in half of cases. Finally, the performance of all
models decreases the most when a coordinating conjunction (cc)
is deleted from the questions. The middle part of Fig. 1 shows
the changes in the performance concerning the part-of-speech
tag of the removed word. The models cope well, when functional

universaldependencies.org/u/pos/
universaldependencies.org/u/dep
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words, such as a participle (part), auxiliary verb (aux), or deter-
miner (det) are removed. The only exception is a coordinating
conjunction.

VI. CROSS-MODALITY ALIGNMENT

Multiple recent works study the role of the attention mecha-
nism in Transformer-based models. The attention mechanism in
machine translation models learns a shallow alignment between
source and target languages [44]. The attention heads in pre-
trained language models exhibit several well-defined patterns
such as attending to functional tokens (SEP) or next or previous
tokens [5]. Following this line of research, we hypothesize that
the attention of V&L models should learn to align semantically
close units, such as visual objects and corresponding words. We
seek to conduct an experimental evaluation of this hypothesis.

The attention matrix of LXMERT and VisualBERT models is
responsible for matching modalities. We seek to explore whether
the attention matrix learns to align visual objects (e.g. the image
patch of a cat) with the semantically close parts of questions
(words “cat”, “kitten”, “pet”, etc.). We compute the model’s
attention map by averaging the attention weights of different
head. The x-axis of the attention map corresponds to visual
objects, and they-axis — to question tokens. The names of visual
objects are obtained from the built-in Faster R-CNN [89]. We
would expect the (i, j) weight to be high (or close to unity) for
aligned visual objects and tokens, and lower otherwise because.
This is similar to a human’s attention when answering a question
using an image. For this purpose, we craft agoldenmatrix with
ideal elements (with attention only to the target objects) that aims
to emulate aligned vision objects and words.

For each question-image pair, we design a golden alignment
matrix in the following way. The rows of a matrix stand for the
question tokens, while the columns stand for the visual objects.
The (i, j) element is set to 1 if the cosine similarity score between
the token embeddings and the object name is greater than the
predefined threshold, which we set manually to take words with
high semantic similarity into account. Otherwise, it is 0. The
shape of the question-image pair attention map and a golden
matrix coincide allowing for element-wise comparison.

Next, we select the first non-zero vector from the golden
matrix (and name it golden vector, and it has golden index
in the matrix), as we suppose that it stands for the main object
in the image and we expect main attention on it, (again, like
the human focus). We compare this vector to 3 rows of the
original attention map: top, middle, and bottom. Finally,
we compute the alignment score using Algorithm 1.

We sample 100 random image-question pairs from the COCO
VQA validation part. These 100 image-question pairs can be
categorized into: (i) True Positive + True Negative (those, to
which the model produces correct answer), (ii) False Positive
+ False Negative (those, to which the model fails to produce
correct answers), (iii) all question (combination of (i) and (ii)).
Table VI shows the results by category in an aggregated way

Table VI shows that the top and bottom ([CLS] and [PAD]
are the special rows) rows for LXMERT are equivalent and
have much higher scores than those of a regular row. The most

Algorithm 1: Alignment Score Calculation.
Input: att_row is an attention row which score we want
to obtain, golden is a golden row, n is the length of the
vector

Output: res is the alignment score (float)
1: function alignment_scoreatt_row, golden, n
2: res := 0
3: for i=1,...,n do
4: if golden[i] != 0 then
5: res += att_row[i]
6: end if
7: end for
8: return res

9: end funtion

important weights of target objects are encoded in the special
rows. The VisualBERT model does not perform well and its
attention matrix is quite sparse. Thus low alignment scores and
high standard deviation values can be attributed to attention map
scarcity.

Overall, we can not confirm that there is an obvious alignment
between visual objects and question tokens. One of the possible
directions of the future work would be to evaluate in a head-wise
fashion.

Lastly, to address the lack of alignment, the next-generation
V&L models, such as UNITER [29], have been trained to enforce
visual object-to-word alignment using additional pre-training
tasks, resulting in a significant performance boost due to the
learned inter-modality alignment.

VII. LIMITATIONS

a) The choice of the downstream task: We employ Visual
Question Answering (VQA) as a downstream task to assess the
robustness of the Vision and Language (V&L) model. VQA
stands out as one of the most extensively researched tasks,
offering multiple advantages. It serves both as a well-studied
benchmark and as a task designed as a cloze-ended prediction.
Unlike VQA, tasks like image captioning and text-to-image
generation yield free-form outputs, making them challenging
to evaluate formally with performance metrics.

b) Black-box setup: We focus mostly on black-box analysis,
which requires prior domain knowledge of model vulnerabilities
to be effective. This approach entails studying the behavior and
responses of a model without access to its inner workings or
parameters, relying solely on input-output interactions. Other
commonly used approaches to evaluate model robustness, such
as adversarial attacks, search for counterfactuals, or probing
tasks, assume access to models’ representation, prediction prob-
abilities, and gradients, and are out of the scope of black-box
setting.

c) The choice of perturbations: Our choice of perturbations is
inherently constrained: we opt for a small number of perturba-
tions inspired by real-life use cases, but it is not computationally
feasible to account for an extensive set of perturbations. Each
inference run takes around 30–40 hours on our GPU.
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d) Ungrammatical questions: The perturbed question may
become ungrammatical. Removing one word from the question
may change the meaning of questions and lead to incorrect
answers as well. As a result, we may rely on ill-formed questions.
It might require additional human evaluation to judge how
grammatical and natural perturbed questions are. However, this
is out of the scope of the current study.

e) Distance between texts: There is no universally agreed-
upon method for measuring distances between images or texts.
Although we use one of the best practices for measuring the
distance between questions (Sentence Transformers), it has its
limitations. Random shuffling of words does not change the
distance significantly, despite potentially affecting the meaning.

VIII. DISCUSSION

a) Difference between modalities: As we generate out-of-
domain data to test the models, we assume that the models
would not consistently provide accurate responses to perturbed
questions. Simultaneously, the decrease in quality is more pro-
nounced in response to text perturbations compared to image
perturbations. We assume that it is because perturbed images do
not lead to a considerable failure of object recognition, thereby
leading to only a minor reduction in performance. Furthermore,
manual exploration of the perturbed data indicates that changes
made to the text are of greater significance than those made to
the images.

b) Spurious correlations: Analysis of spurious correlations
shows that there is no overfitting on surface forms or words
of particular parts of speech. The exception is a coordinating
conjunction. However, a reduction in the quality of results
stemming from the removal of coordinating conjunctions may
be reasonable, as their absence could lead to a change in the
intended meaning of the question and consequently, the appro-
priate answer. In other cases, there is some decrease in accuracy,
but there is no clear correlation between it and the word being
removed. We hypothesize that the utilization of two modalities,
namely images and text, in the models accounts for the absence
of overfitting in the textual modality.

Our studies on cross-modality alignment show that with dif-
ferent architectures attention maps can vary as well as optimal
alignment. Moreover, different models connect modalities in
different ways (depending on encoders, architectures, training
procedures, etc.). Therefore, the common structure is not possi-
ble in this case. However, in general, some alignment still can
be found in special cases.

c) Cross-modality alignment: Our research involves choosing
two subsets of perturbations to compute performance metrics
concerning how effectively models perform real-world tasks.
Although users typically fine-tune or modify a model’s parame-
ters to fit specific distributions when employing it with real data,
our work remains valuable because it sheds light on whether
such models require extra customization before being deployed
on real-world datasets or can function optimally out of the box.

d) Model reliability: We strongly believe that the quality of
data plays a crucial role in V&L models’ applicability within
practical contexts. Unfortunately, several factors contribute to

diminished data quality in real-world circumstances. Conse-
quently, we consider it necessary to examine and tailor V&L
models not only using standard benchmarks but also with arti-
ficial data customized for real-life scenarios and vulnerabilities
specific to target domains.

e) Model interpretability: To build trust in the deployment
of V&L models, there is a need for increased transparency and
explainability. Researchers and developers should strive to make
these models interpretable, allowing users to understand the
decision-making processes and potential limitations. The golden
matrix approach proposed in the paper or similar approaches
could be used to measure the relevance of modalities.

f) Adversarial defenses: Our findings underscore the im-
portance of developing effective adversarial defense strategies,
particularly in the current landscape dominated by LLMs and
widespread API-level deployments. As the models are suscep-
tible to various perturbations, investing in defense mechanisms
becomes imperative to enhance the resilience of V&L models
against potential attacks.

IX. CONCLUSION AND FUTURE WORK

In this work, we evaluated the robustness of recent multimodal
Vision and Language (V&L) transformers to various basic yet
effective text and image perturbations, applied to the task of Vi-
sual Questions Answering (VQA). We conducted a comparative
analysis of VQA models with various architecture types to deter-
mine any potential vulnerabilities. The decrease in performance
was more pronounced in response to text perturbations com-
pared to image perturbations. Furthermore, we delved deeper
into the models’ inner workings and explored the alignment
in attention maps. To this end, we proposed an algorithm for
measuring modalities alignment. Additionally, we investigated
spurious correlations in textual data. Our findings indicate that
there is no evidence of significant overfitting regarding words
belonging to various parts of speech, except for coordinating
conjunctions.

In our future work, we plan to further investigate model
robustness on other V&L generation and retrieval tasks. Such
tasks might not have a tractable performance metric. Thus, we
are going to adopt suitable metrics to evaluate the robustness
of the model in such cases. Another direction of our research
is to explore whether V&L models are prone to ethical biases.
Since V&L models are integrated into various applications and
systems, it is critical to ensure that they do not discriminate
against certain societal groups or expose ethical issues.

Finally, we plan to compare the results of our diagnostic tests
with other existing methods, focusing on how V&L models
perform under adversarial attacks, handle counterfactuals, and
analyze the performance of models’ hidden representations in
probing tasks. This would entail developing novel attacking
methods and probing suites that incorporate both modalities
or adopting efforts from the Computer Vision and Natural
Language Processing communities. These comparisons will
inform the future enhancement of V&L models and aid machine
learning practitioners in deploying safer and more trustworthy
models.
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APPENDIX

TABLE VII
TEXT TRANSFORMATIONS, QUESTIONS ARE SAMPLED FROM THE VALIDATION

SET

A. Alignment Rows

As for selected rows for the LXMERT model we use [CLS],
golden index, and penultimate [PAD] rows for comparison.
For VisualBERT we use[CLS],golden index, and[SEP]
rows.

B. Alignment Score Example

The alignment score for each row is defined as the sum of the
elementsxj of the row, which index has a non-zero element in the
golden vector golden vector[i] �= 0, or in the matrix form
att_row[golden > 0]).sum(). For example, if the golden
row is [0, 1/2, 0, 1/2, 0] and the attention map row is [0, 1/3, 1/3,
1/3, 0], the resulting score is 2/3.

C. Golden Matrix Example

Suppose we have such normalized attention matrix for ques-
tion Where is the beer?:

beer table bottle floor
[CLS]
where
is
the
beer
?

[SEP]
[PAD]
[PAD]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.08 0.02 0.4
0 0.33 0.33 0.34
0.4 0.3 0.15 0.15
0.6 0.2 0.2 0
0.7 0.05 0.2 0.05
0.8 0.2 0 0
0.25 0.25 0.25 0.25
0.5 0.08 0.02 0.4
0.3 0.3 0.3 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We compute tokens and objects embeddings (simple word
embeddings) cosine similarity (for each token-object pair) and

get golden matrix (again, we normalize each row):

beer table bottle floor

[CLS]

where

is

the

beer

?

[SEP]

[PAD]

[PAD]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.5 0 0.5 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, we take first non-zero row in our golden matrix (for the
beer token) [0.5, 0, 0.5, 0] (we call it golden row) and the same
row in the original matrix + rows for [CLS] and penultimate
[PAD]:

beer table bottle floor
[CLS]
beer
[PAD]

⎡
⎣

0.5 0.08 0.02 0.4
0.7 0.05 0.2 0.05
0.5 0.08 0.02 0.4

⎤
⎦

After, for each non-zero position in golden row (first and third
in our case) we sum values in the above matrix, so:
� for [CLS] we have 0.5 + 0.02 = 0.52
� for beer we have 0.7 + 0.2 = 0.9
� for [PAD] we have 0.5 + 0.02 = 0.52
And now we have our alignment metric scores 0.9, 0.52, 0.52.
For VisualBERT we adapt our algorithm as it has a different at-

tention architecture, so we use columns instead of rows, [SEP]
token instead of [PAD] and we compute only cross-modal
(token to object) scores (token to token scores are not taken
into account).

Fig. 3. Gaussian Blur before (left) and after (right).

Fig. 4. Random Snow: before (left) and after (right).
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Fig. 5. Downscale before (left) and after (right).

Fig. 6. Grayscale before (left) and after (right).

Fig. 7. Sun Flare before (left) and after (right).
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