
2654 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

DiffProsody: Diffusion-Based Latent Prosody
Generation for Expressive Speech Synthesis With
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Abstract—Expressive text-to-speech systems have undergone
significant advancements owing to prosody modeling, but con-
ventional methods can still be improved. Traditional approaches
have relied on the autoregressive method to predict the quantized
prosody vector; however, it suffers from the issues of long-term de-
pendency and slow inference. This study proposes a novel approach
called DiffProsody in which expressive speech is synthesized using a
diffusion-based latent prosody generator and prosody conditional
adversarial training. Our findings confirm the effectiveness of our
prosody generator in generating a prosody vector. Furthermore,
our prosody conditional discriminator significantly improves the
quality of the generated speech by accurately emulating prosody.
We use denoising diffusion generative adversarial networks to im-
prove the prosody generation speed. Consequently, DiffProsody is
capable of generating prosody 16 times faster than the conventional
diffusion model. The superior performance of our proposed method
has been demonstrated via experiments.

Index Terms—Text-to-speech, speech synthesis, denoising
diffusion model, prosody modeling, generative adversarial
networks.

I. INTRODUCTION

R ECENT advancements in neural text-to-speech (TTS)
models have significantly enhanced the naturalness of

synthetic speech. In several studies [1], [2], [3], [4], [5], [6],
[7], prosody modeling has been leveraged to synthesize speech
that closely resembles human expression. Prosody, which en-
compasses various speech properties, such as pitch, energy,
and duration, plays a crucial role in the synthesis of expressive
speech.
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In some studies [8], [9], reference encoders have been used
to extract prosody vectors for prosody modeling. A global style
token (GST) [10] is an unsupervised style modeling method that
uses learnable tokens to model and control various styles. Meta-
StyleSpeech [11] proposes the application of style vectors ex-
tracted using a reference encoder through a style-adaptive layer
norm. Progressive variational autoencoder TTS [12] presents a
method for gradual style adaptation. A zero-shot method for
speech synthesis that comprises the use of a normalization ar-
chitecture, speaker encoder, and feedforward transformer-based
architecture [13] was proposed. This is a common way to transfer
styles if there exists reference audio of the desired style.

Recently, methods for inferring prosody from text in the
absence of reference audio have been developed [14], [15].
FastPitch [16], for instance, synthesizes speech under text and
fundamental frequency conditions. FastSpeech 2 [3] aims to
generate natural, human-like speech by using extracted prosody
features, such as pitch, energy, and duration, through an external
tool and introduce a variance adaptor module that predicts these
features. To focus on generating high-quality prosody, [17] pro-
posed a diffusion-based prosody predictor. Some studies [18],
[19] have proposed hierarchical models through the design of
prosody features at both coarse and fine-grained levels. However,
the separate modeling of prosodic features may yield unnatural
results owing to their inherent correlation [20].

Some studies have predicted a unified prosody vector, thus
enhancing the representation of prosody, given the interdepen-
dence of prosody features. Text-predicted GST [21] is a method
for modeling prosody without reference audio by predicting the
weight of the style token from the input text. [22] proposed a
method for paragraph-based prosody modeling by introducing a
paragraph encoder. Gaussian-mixture-model-based phone-level
prosody modelling [23] is a method for sampling reference
prosody from Gaussian components. [24] proposed a method
for modeling prosody using style, perception, and frame-level
reconstruction loss. There are also studies in which prosody
is modeled using pre-trained language models [25], [26], [27],
[28]. ProsoSpeech [20] models prosody with vector quantization
(VQ) using large amounts of data and predicts the index of the
codebook using an autoregressive (AR) prosody predictor.

Using an AR model is a common way to model prosody [20],
[29]. However, these models face challenges such as repetition,
skipping, or error accumulation. To overcome these difficulties,
we explore diffusion models for prosody modeling. Diffusion
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models have gained remarkable recognition for their ability to
handle complex distributions and produce high-quality, diverse
results. They have produced impressive results in areas such
as text-to-image generation [30], speech synthesis [31], and
text generation [32], demonstrating their versatility and effec-
tiveness. A notable advancement in the field is the method of
diffusion in latent space proposed in [33], which opens up new
possibilities for generative models.

Building on this momentum, we present DiffProsody, a novel
approach that exploits the generative capabilities of a diffusion
model to model latent prosody. DiffProsody is designed to
produce more expressive and natural-sounding speech by using a
diffusion-based latent prosody generator (DLPG). This method
not only exploits the sophisticated mechanics of diffusion mod-
els, but also integrates prosody conditional adversarial training.
This combination aims to improve the quality of speech syn-
thesis by addressing the need for more dynamic and expressive
speech.

The primary contributions of this work are as follows:
� We propose a diffusion-based latent prosody modeling

method that can generate high-quality latent prosody rep-
resentations, thereby enhancing the expressiveness of syn-
thetic speech. Furthermore, we adopted denoising diffusion
generative adversarial networks (DDGANs) to reduce the
number of timesteps, resulting in speeds that were 2.48×
and 16× faster than those of the AR model and denoising
diffusion probabilistic model (DDPM) [34], respectively.

� We propose prosody conditional adversarial training to
ensure an accurate reflection of prosody using the TTS
module. A significant improvement in smoothness, at-
tributable to vector quantization, was observed in the gen-
erated speech.

� Objective and subjective evaluations demonstrated that the
proposed method outperforms comparative models.

The implementation1 of proposed method and audio samples2

for various datasets, such as VCTK3 and LibriTTS [35], are
available online.

II. RELATED WORKS

A. Non-Autoregressive Text-to-Speech

Traditional TTS models function autoregressively. This im-
plies that the spectrogram generates one frame at a time, with
each frame conditioned on the preceding frames. Despite the
high-quality speech that this approach can produce, it has a
drawback in terms of speed owing to the sequential nature of
the generation process. To address this issue, non-autoregressive
TTS (NAR-TTS) models have been proposed as an alterna-
tive for parallel generation. These models have the advan-
tage of simultaneously generating the entire spectrogram, thus
resulting in a significant acceleration of the speech synthesis.
FastSpeech [2] and FastSpeech 2 [3] serve as examples of NAR-
TTS models that can synthesize speech at a much faster rate than

1[Online]. Available: https://github.com/hsoh0306/DiffProsody
2[Online]. Available: https://prml-lab-speech-team.github.io/demo/

DiffProsody/
3[Online]. Available: https://datashare.ed.ac.uk/handle/10283/2651

their AR counterparts while maintaining a comparable level of
quality. For parallel generation, these models require phoneme-
level durations. FastSpeech uses an AR teacher model to obtain
durations through knowledge distillation. The phoneme-level
input is scaled to the frame-level using a length regulator,
and a transformer-based network [36] is used to generate the
entire utterance at once. FastSpeech 2 addresses some of the
disadvantages of FastSpeech by extracting the phoneme duration
from forced alignment as the training target instead of relying
on the attention map of the AR teacher model and introducing
more variation information in speech as conditional inputs. In
contrast to these models that use an external aligner, [31], [37],
[38], [39] are parallel TTS models that use an internal aligner to
model duration. These parallel-generation models exhibit faster
and more robust generation than the AR models. In this study, we
adopted a transformer-based NAR model with a simple structure
to focus on prosody modeling.

B. Generative Adversarial Networks

Generative adversarial networks (GANs) [40] are genera-
tive models in which generative and discriminative networks
compete against each other. The objective of the generative
network is to create samples that closely resemble the true
data distribution, whereas the discriminative network strives
to differentiate between the data sampled from the true and
generated distributions.

These two networks play a minimax game with the following
value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[log (D(x))]

+ Ez∼pz(z)[log (1−D(G(z)))], (1)

whereG represents the generative network, andD represents the
discriminative network. The training process involves minimiz-
ingD(1−G(z)) to recognizeD as real forG, and maximizing
log(D(x)) forD to learn the likelihood of real data. The condi-
tional generation model was obtained by introducing condition
c into both G and D. In this study, we incorporated adversarial
training conditions into prosody features to generate expressive
speech.

C. Denoising Diffusion Models

The denoising diffusion model is a generative model that
gradually collapses data into noise and generates data from
noise. The processes of collapsing and denoising data are called
the forward and reverse processes, respectively. The forward
process gradually collapses data x0 into noise over the T -step,
with a predefined variance schedule βt.

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). The reverse

process is defined as follows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt). (3)

https://github.com/hsoh0306/DiffProsody
https://prml-lab-speech-team.github.io/demo/DiffProsody/
https://prml-lab-speech-team.github.io/demo/DiffProsody/
https://datashare.ed.ac.uk/handle/10283/2651
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The reverse process is driven by a denoising model parameter-
ized by θ. The denoising model was optimized for a variational
bound on the negative log-likelihood.

E [− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)
]

= Eq

[
− log p(xT )−

∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
:= L. (4)

In the DDPM [34], the denoising distribution pθ(xt−1|xt)
is assumed to comprise a Gaussian distribution. Moreover, it
has been demonstrated that the diffusion model can generate a
diverse range of complex distributions, provided that a sufficient
number of iterations are performed. Proceeding with only a small
step at a time is possible by setting the denoising distribution to a
Gaussian distribution, which implies that a considerable number
of timesteps are required. DDGAN [41] was proposed by mod-
eling the denoising distribution with a non-Gaussian multimodal
distribution to reduce the sampling step. It predicts x0 with the
generatorGθ, which models the implicit distribution, in contrast
to the denoising network of the DDPM, which predicts noise. In
the DDGAN, the conditional probability pθ(xt−1|xt) is defined
as follows:

pθ(xt−1|xt) :=

∫
pθ(x0|xt)q(xt−1|xt,x0)dx0

=

∫
p(z)q(xt−1|xt,x0 = Gθ(xt, z, t))dz, (5)

where pθ(xt−1|xt) represents the implicit distribution imposed
by the generator Gθ(x, z, t), which outputs x0 given xt and
the latent variable z ∼ p(z) := N (z; 0, I). In the DDGAN, the
denoising distribution pθ(xt−1|xt) is modeled as a complex
multimodal distribution, in contrast to the unimodal distribution
in the DDPM. Sampling x0 with small timesteps is possible
by leveraging the complicated pθ(xt−1|xt). We introduced this
model to reduce the sampling timesteps while maintaining its
ability to generate diffusion models.

D. Prosody Modeling

Although the pronunciation capabilities of TTS models have
seen significant advancements, they still fail to replicate the natu-
ralness inherent in human speech. Various studies have proposed
methods for prosody modeling to address this limitation. One
such method is the reference-based approach [8], [9], [10], [11],
[42], which is a type of expressive speech synthesis that extracts
styles from the reference audio. This approach is particularly
beneficial for style transfers, but can result in unnatural results
when the text and reference audio do not align well. However,
there are methods that directly model prosody properties such as
pitch, energy, and duration [3], [16], [43], [44]. These methods
offer the advantages of explainability and controllability because
they directly use and model prosody features. In the context of
ProsoSpeech [20], the authors argue that prosodic features are
interdependent and that modeling them separately can result in
unnatural outcomes. To address this, they proposed the modeling
of prosody as a latent prosody vector (LPV) and introduced an

AR prosody predictor to obtain the LPV. In this study, we adopt
a similar latent vector approach to model prosody. The use of
pre-trained language models was also suggested [25], [26], [27],
[28]. These models comprise the use of models that have been
pre-trained on large datasets, such as BERT [45] or GPT-3 [46].

III. DIFFPROSODY

The proposed method, called DiffProsody, aims to enhance
speech synthesis by incorporating a diffusion-based latent
prosody generator (DLPG) and prosody conditional adversarial
training. The overall structure and process of DiffProsody are
presented in Fig. 1. In the first stage, we trained a TTS module
and a prosody encoder using a text sequence and a reference
Mel-spectrogram as inputs. The prosody conditional discrimi-
nator evaluates the prosody vector from the prosody encoder and
the Mel-spectrogram from the TTS module to provide feedback
on their quality. In the second stage, we train a DLPG to sample
a prosody vector that corresponds to the input text and speaker.
During inference, the TTS module synthesizes speech without
relying on a reference Mel-spectrogram. Instead, it uses the
output of a DLPG. This facilitates the generation of expressive
speech that accurately reflects the desired prosody.

A. Text-to-Speech Module

The TTS module is designed to transform text into Mel-
spectrograms using speaker and prosody vectors as conditions.
The overall structure of the model is presented in Fig. 1(a). The
TTS module comprises a text encoder and a decoder. The text
encoder processes the text at both the phoneme and word levels,
as illustrated in Fig. 1(c). The input text, denoted as xtxt, is
converted into a text hidden representationhtxt, by the phoneme
encoder Ep and word encoder Ew. The Ep takes the phoneme-
level text xph and theEw takes as input the word-level text xwd.
Thehtxt is then obtained as the element-wise sum of the outputs
of Ep(xph) and Ew(xwd) expanded to the phoneme-level.

htxt = Ep(xph) + expand(Ew(xwd)), (6)

where expand is an operation that repeats the word-level fea-
tures to the phoneme-level. Obtaining the quantized prosody
vector zpros involves using htxt and speaker hidden repre-
sentation hspk as inputs for the prosody module. In addition,
hspk is acquired using a pre-trained speaker encoder. We use
Resemblyzer,4 an open-source model trained with generalized
end-to-end loss (GE2E) [47], to extract hspk.

During the first stage of training, a prosody encoder is em-
ployed, which receives the target Mel-spectrogram. In the infer-
ence, z′pros is obtained by inputting htxt and hspk into a DLPG,
and this is performed without a reference Mel-spectrogram.
Finally, the information related to the text, speaker, and prosody
is combined by expanding the latent vectors htxt, hspk, and
zpros to the phoneme-level and then performing an element-wise
summation.

htotal = htxt + hspk + zpros. (7)

4[Online]. Available: https://github.com/resemble-ai/Resemblyzer

https://github.com/resemble-ai/Resemblyzer
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Fig. 1. Framework of DiffProsody. (a) Overall architecture including TTS and prosody modeling with prosody conditional adversarial training; (b) Prosody
modeling by vector quantization with prosody encoder and diffusion-based latent prosody generator; (c) Text encoder that models text at the phoneme-level and
word-level; (d) Prosody encoder that models the word-level target prosody; (e) Prosody conditional discriminator for adversarial training. DP represents a duration
predictor, and LR represents a length regulator. In the first stage, the TTS and prosody encoder are trained jointly, and in the second stage, a diffusion-based latent
prosody generator (DLPG) is trained using the output of the pre-trained prosody encoder as a target. In inference, the TTS module synthesizes speech conditioned
on the prosody vector generated by DLPG.

The phoneme duration is modeled using the duration predictor
DP . The goal of the DP is to predict the phoneme duration at
the frame-level based on the input variable htotal.

dur′ = DP (htotal), (8)

where dur′ represents the predicted phoneme duration. In ad-
dition, there is a length regulator LR that expands the input
variable to the frame-level using the phoneme duration. The
ground-truth duration dur is used for training, and the predicted
duration dur′ is used for inference. The expanded htotal is
then transformed to Mel-spectrogram y′ by Mel-spectrogram
decoder Dmel.

y′ = Dmel(LR(htotal, dur)). (9)

For TTS modeling, we use two types of losses: the mean square
error (MSE) and structural similarity index (SSIM) loss [48].
These losses aid in accurately modeling the TTS. For the dura-
tion modeling, we use the MSE loss.

Lrec = LMSE(y,y
′) + LSSIM (y,y′). (10)

Ldur = LMSE(dur, dur
′). (11)

B. Prosody Module

Fig. 1(b) presents the prosody module, which includes a
prosody encoder Epros that derives a prosody vector from a
reference Mel-spectrogram, a DLPG that produces a prosody
vector using text and speaker hidden states, and a codebook
Z = {zk}Kk=1 ∈ RK×dz , where K represents the size of the
codebook and dz is the dimension of the codes. During the train-
ing ofEpros, instead of a full-band Mel-spectrogram, we used a
low-frequency band Mel-spectrogram to alleviate disentangle-
ment, as in the case of ProsoSpeech [20]. Fig. 1(d) presents the
structure ofEpros, which comprises two 1D convolutional stacks
and a word-level pooling layer. htxt is scaled to frame-level

according to the ground-truth phoneme-duration, and hspk is
also scaled to frame-level. The first convolution stack processes
the data at the frame-level. It then performs word-level pooling
to obtain semantic features. The features are fed into the second
convolution stack to get hpros. The frame-level expanded htxt
and hspk are used as conditions in the convolution stack, and
the second convolution stack is conditioned after word-level
pooling. To extract the target prosody, Epros uses the lowest N
bins of the target Mel-spectrogram y[0:N ], along with the htxt

and hspk, as its inputs. The output of this process is a prosody
vector, hpros ∈ RL×dz , where L is the word-level length of the
input text.

hpros = Epros(y[0:N ],htxt,hspk). (12)

During the inference stage, the prosody vector h′
pros is obtained

using the prosody generator trained in the second stage.

h′
pros = DLPG(htxt,hspk). (13)

The DLPG process is described in Section III-D. To obtain
the discrete prosody token sequence zpros ∈ RL×dz , the vector
quantization layer Z maps each prosody vector hi

pros ∈ Rdz to
the nearest element of the codebook entry zk ∈ Rdz .

zipros = arg min
zk∈Z

||hi
pros − zk||2 for i = 1 to L, (14)

where zipros is i-th element of zpros. In the first stage, the TTS
module is trained jointly with the codebook Z and prosody
encoder Epros.

Lvq = ||sg[hpros]− zpros||22 + β||hpros − sg[zpros]||22, (15)

where sg[·] denotes the stop-gradient operation. Moreover, we
employ an exponential moving average (EMA) [49] to enhance
the learning efficiency by applying it to codebook updates.
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Fig. 2. (a) Training a diffusion-based latent prosody generator. We adopt the design of DDGANs [41] to shorten the diffusion timestep. The generator Gθ takes
speaker hidden representation hspk and text hidden representation htxt, timestep t, and noisy data xt as input to generate x′

0, and the disriminator Dφ determines
which of x′

t−1 obtained by posterior sampling on x′
0 and xt−1 obtained by forward process on x0 is compatible with xt at t timestep; (b) The architecture of

diffusion-based prosody generator Gθ ; (c) The architecture of discriminator Dφ.

C. Prosody Conditional Adversarial Training

For our prosody adversarial training, we develop prosody
conditional discriminators (PCDs) that handle inputs of vary-
ing lengths. This design is inspired by multi-length window
discriminators [50]. The PCD structure is presented in Fig. 1
e. The PCD is designed to accept a Mel-spectrogram y and
a quantized prosody vector zpros as inputs, and its role is to
determine whether these input features are original or generated.
The PCD comprises two lightweight convolutional neural net-
works (CNNs) and fully connected layers. One of the CNNs is
designed to receive only the Mel-spectrogram, whereas the other
is designed to receive a combination of zpros and y. To match
the corresponding PCD, the length of each Mel-spectrogram
and the extended zpros are randomly clipped. For our objective
function, we adopt the least square GAN loss [51]:

LD =
∑
i

[E[(PCDi(y′, zpros))2]

+ E[(PCDi(y, zpros)− 1)2]], (16)

LG =
∑
i

E[(PCDi(y′, zpros)− 1)2], (17)

where LD denotes the training goal of the discriminators and
LG represents the feedback on the TTS module. The final object
LTTS of the TTS module is as follows:

LTTS = Lrec + Ldur + Lvq + λ1LG, (18)

where λ1 corresponds to the weight of the adversarial loss.

D. Diffusion-Based Latent Prosody Generator

We propose a new module called the DLPG, which lever-
ages the powerful generative capabilities of diffusion models.
In addition, we introduce a DDGAN framework [41], which

enables faster sampling by reducing the number of required
timesteps. Fig. 2(a) presents the training process for the DLPG.
During training, the DLPG aims to generate target hpros, which
is extracted from the prosody encoder trained in the first stage.
The DLPG is trained to produce h′

pros based on the hspk and
htxt. In the diffusion model, we set x0 as the target hpros. The
DLPG generator Gθ directly generates x′

0.

x′
0 = Gθ(xt, t,hspk,htxt), (19)

where t is timestep of diffusion process. To ensure adversarial
training,x′

t−1 is derived fromxt andx′
0 using posterior sampling

q(x′
t−1|xt,x

′
0). Subsequently, a time-dependent discriminator

Dφ determines the compatibility of xt−1 (obtained from the
forward processing ofx0) andx′

t−1 (generated through posterior
sampling of x′

0) with respect to t and xt, conditioned on hspk

andhtxt. The objective function ofGθ is then defined as follows:

Ladv
Gθ

=
∑
t≥1

E[(Dφ(x
′
t−1,xt, t,htxt,hspk)− 1)2], (20)

Lrec
Gθ

= LMAE(x0, x̂0), (21)

whereLadv
Gθ

corresponds to the adversarial loss, andLrec
Gθ

denotes
the reconstruction loss of Gθ. The total generator loss LGθ

is
expressed as follows:

LGθ
= Lrec

Gθ
+ λ2Ladv

Gθ
, (22)

where λ2 is the weight of adversarial loss LGθadv . The objective
function of the Dφ is as follows:

LDφ
=

∑
t≥1

[E[Dφ(x
′
t−1,xt, t,htxt,hspk)

2]

+ E[(Dφ(xt−1,xt, t,htxt,hspk)− 1)2]]. (23)

The DLPG leverages the DDGAN framework to achieve
stable and high-quality results in only a few timesteps. This
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process involves theGθ, which iteratively generates x′
0 T times

during the inference. We set xT to follow a normal distribution.
The h′

pros is obtained as the final x′
0 of the reverse process. The

final prosody vector zpros is then derived through the vector
quantization of h′

pros. Fig. 2(b) shows the architecture of Gθ,
which consists ofNGθ

non-causal Wavenet blocks, as described
in [52].Gθ receives t,xt,htxt, andhspk as input and predictsx0.
Fig. 2(c) representsDφ.Dφ takes xt, xt−1, t, htxt, and hspk as
input and outputs a value between 0 and 1, where a value closer
to 1 means that xt−1 is more likely to have been sampled from
the original x0.

E. Inference

Here is the step-by-step process of generating a Mel-
spectrogram using the trained TTS module and DLPG.

1) The htxt is extracted from the text encoder, and hspk is
extracted from the pre-trained speaker encoder.

2) The DLPG generates ah′
pros withhtxt andhspk as inputs.

3) h′
pros is mapped to a codebook, denoted as Z, in the VQ

layer to obtain the prosody vector, which is denoted as
zpros.

4) The decoder Dmel generates a Mel-spectrogram y′ using
htxt, hspk and zpros. This process involves the expansion
htxt, hspk, and zpros to the frame-level. The phoneme-
duration is predicted by the duration predictor.

5) The Mel-spectrogram y′ was converted to a raw waveform
using a pre-trained vocoder.

IV. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental Setup

We conducted experiments using the VCTK dataset and Lib-
riTTS [35]. VCTK dataset is a multispeaker English dataset
consisting of audio clips of 44,200 sentences recorded by 109
speakers for approximately 400 sentences. A total of 2,180 audio
clips were randomly selected with 20 sentences per speaker,
which constituted the test set. Furthermore, 545 audio clips
randomly selected from five sentences per speaker were used
as the verification sets, and the remainder were used as the
training sets. For the LibriTTS dataset, which includes 110 hours
of audio from 1,151 speakers, we utilized the train-clean-100
and train-clean-360 subsets. We constructed our test and vali-
dation sets using 10 sentences each from 20 randomly selected
speakers, while the remainder of the dataset was allocated for
training. We sampled audio at 22,050 Hz and then transformed
it to an 80-bin Mel-spectrogram using an STFT with a window
length of 1,024 and hop size of 256. The text was converted into
phoneme sequences for text input using a grapheme-to-phoneme
tool.5 We extracted the phoneme duration using the Montreal
Forced Aligner [53] tool. Furthermore, we used the AdamW
optimizer [54] with β1 = 0.9 and β2 = 0.98. The learning rates
for the TTS and latent prosody generator training were set as
5× 10−4 and 2× 10−4, respectively. Throughout the training
process, the batch size used was 48. The TTS and prosody

5[Online]. Available: https://github.com/Kyubyong/g2p

encoder were updated in 160 k steps, and the latent prosody
generator was updated in 320 k steps. In the experiment, all the
audio was synthesized using the official implementation of the
HiFi-GAN6 [55] and a pre-trained model. We trained the TTS
module and prosody encoder for approximately 16 h and the
DLPG for 7 h using a single NVIDIA RTX A6000 GPU.

B. Implementation Details

The number of layers, hidden size, filter size, and kernel size
of the feed-forward transformer blocks of the phoneme encoder,
word encoder, and decoder were set as 4, 192, 384, and 5,
respectively. The extracted speaker embedding was projected
onto 192 dimensions, and the number of dimensions of the
prosody vector was 192. The structure of the prosody encoder
follows that of ProsoSpeech [20]. For VQ, we set the size of
codebook and dimension of code as 128 and 192, respectively.
and updated it using EMA with a decay rate of 0.998. The
codebook was initialized as the center of the k-means clustering
after 20 k steps of TTS training. The number of Mel-spectrogram
bins used in the prosody encoder N was set as 20. We set up
the PCD to receive different input sizes. Inspired by methods
[55], [56], [57] that take in multiple inputs. The PCD comprises
two 2D convolution stacks and three fully connected layers. The
convolution stacks in the PCD consist of three 2D convolutions:
LeakyReLU, BatchNorm, and a linear layer with a multilength
window size of [32, 64, 128]. The latent prosody generator
consists of 20 residual blocks with a hidden size of 384. The
prosody discriminator is configured with four convolution layers
and hidden dimensions of 384. We investigated λ1 and λ2

between 0.001 and 1.0 and set λ1 and λ2 as 0.01 and 0.05,
respectively. The number of timesteps used in the training and
inference was set as four.

C. Comparative Studies

We developed various prosody models for comparative ex-
periments, including our proposed model, models from previous
works, and an ablation study model. All the models produced an
80-bin Mel-spectrogram and synthesized speech using the same
vocoder.

1) Gt: Human-recorded audio.
2) GT (vocoded): Audio from ground truth Mel-spectrogram

converted to HiFi-GAN v1.
3) FastSpeech 2: This model synthesizes speech using ex-

plicit prosody features (pitch and energy).
4) Prosospeech: This method models a vector quantized la-

tent prosody vector and predicts the prosody vector using an
autoregressive predictor.

5) Diffprosody: The proposed method improves the TTS
module and prosody vector through a prosody conditional
discriminator, and then generates the prosody vector through
DLPG.

6) DiffProsody (Pitch & Energy): It is a modified version of
the proposed method to use explicit prosody attributes, where
DLPG directly predicts pitch and energy.

6[Online]. Available: https://github.com/jik876/hifi-gan

https://github.com/Kyubyong/g2p
https://github.com/jik876/hifi-gan


2660 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

7) DiffProsody (AR): It utilizes the same TTS module as the
proposed model, but instead of DLPG, it uses an autoregressive
predictor to predict the index of the codebook.

8) DiffProsody (DDPM): It utilizes the same TTS module as
the proposed model, but uses the DDPM framework instead of
the DDGAN framework.

9) DiffProsody (W/o PCD): This is a DiffProsody trained on
the TTS module without the assistance of prosody conditional
discriminator.

10) DiffProsody (W/o VQ): This is a DiffProsody trained
without a VQ layer on the prosody encoder.

11) DiffProsody N: This is a DiffProsody that uses the lowest
N Mel-bins as input to the prosody encoder.

We utilized an open-source implementation7 to train Fast-
Speech 2. For ProsoSpeech, we followed closely the hyperpa-
rameters described in the original paper and chose the model
variant that showed the best performance. All models used
in the comparison share the same text encoder and decoder
architecture. The primary distinction between ProsoSpeech and
DiffProsody (w/o PCD) lies in their respective methods of
generating the prosody vector. The main difference between
ProsoSpeech and DiffProsody (w/o PCD) is in the way they
generate prosody vectors. The former predicts the index of the
codebook with an autoregressive predictor, and the latter predicts
the prosody vector before the codebook and maps it to the
codebook.

D. Subjective Metrics

A subjective assessment is conducted to confirm the effective-
ness of the proposed method. To measure the level of naturalness,
we used the mean opinion score (MOS). For this evaluation, we
employed Amazon Mechanical Turk (MTurk), a crowdsourcing
service, to gather feedback from 20 native Americans. MOS was
assessed using a 5-point scale, and confidence intervals were
calculated at a 95% level. For the evaluation, 100 samples were
randomly selected from the test set.

E. Objective Metrics

For realizing an objective evaluation, we calculated the equal
error rate (EER) using a pre-trained speaker verification model8

[56]. We used the pre-trained wav2vec 2.0 [57] to the compute
character error rate (CER) and word error rate (WER).

For the prosodic evaluation, we computed the average dif-
ferences in utterance duration (DDUR) [58], [59], pitch error
(RMSEf0 ) (in cents), periodicity error (RMSEperiod) and F1
score of the voiced/unvoiced classification (F1v/uv). We used
torchcrepe9 to extract the pitch and periodicity features for
evaluation. In addition, we measured the Kullback–Leibler (KL)
divergence of log f0 and log energy to compare the distributions
of the prosody features in the generated audio. Finally, we
calculated the real-time factor (RTF) to compare the generation
speeds.

7[Online]. Available: https://github.com/NATSpeech/NATSpeech
8[Online]. Available: https://github.com/clovaai/voxceleb_trainer
9[Online]. Available: https://github.com/maxrmorrison/torchcrepe

1) Average Differences in the Utterance Duration (DDUR):
We obtained DDUR by calculating the mean absolute error of
the difference in the duration of each utterance.

DDUR =
1

N

N∑
i=1

|duri − dur′i|, (24)

where duri denotes the duration of the i-th GT utterance and
dur′i denotes the duration of the i-th generated utterance.

2) Pitch Error: To measure the pitch error RMSEf0 , we
aligned the pitches extracted in hertz with dynamic time warping
(DTW) [60] and calculated the root mean square (RMSE) in
cents, defined as 1200 log2(y/ŷ) for pitch of the GT speech y
and pitch of the generated speech ŷ. We measured the portion
wherein both the GT speech and generated speech were voiced.

RMSEf0 =

√√√√ 1

T

T∑
i=1

(1200 log2(yi/y
′
i))

2. (25)

3) Periodicity Error: We measured the periodicity error
RMSEperiod by root mean square between the periodicities ψ
aligned with the DTW.

RMSEperiod =

√√√√ 1

T

T∑
i=1

(ψi − ψ′
i)

2, (26)

where ψi means the i-th periodicity value.
4) F1 Score of voiced/unvoiced: We obtained

voiced/unvoiced flags from the aligned pitches using DTW and
calculated the F1 score (F1v/uv) between them. We defined a
match between the GT voiced flag u and generated voiced flag
u′ as a true positive (TP), a match between the GT unvoiced
flag uv and generated voiced flag v′ as a false positive (FP), and
a match between the GT voiced flag v and generated unvoiced
flag uv′ as a false negative (FN).

TP =

n∑
i

[vi = v′i], (27)

FP =
n∑
i

[uvi = v′i], (28)

FN =

n∑
i

[vi = uv′i], (29)

where n is the length of the sequence, and [ai = bi] is a function
that returns 1 if the i-th element has the same value, and 0
otherwise. The precision and recall are defined as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
. (30)

We then calculated the F1 score as follows:

F1v/uv =
2

recall−1 + precision−1
. (31)

5) KL Divergence of Log f0 / Log Energy: We also measured
the KL divergence to analyze the pitch and energy distribution.
We first extracted the pitch and energy in log-scale. We then
binned the entire range into 100 bins and applied a kernel density

https://github.com/NATSpeech/NATSpeech
https://github.com/clovaai/voxceleb_trainer
https://github.com/maxrmorrison/torchcrepe
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TABLE I
OBJECTIVE AND SUBJECTIVE EVALUATION OF PREVIOUS METHODS ON THE VCTK DATASET

TABLE II
OBJECTIVE AND SUBJECTIVE EVALUATION OF PREVIOUS METHODS ON THE LIBRITTS DATASET

estimation [57] to each bin to calculate the KL divergence for
a smoothed distribution. The KL divergence for feature x is
defined as follows:

KLDx =
1

N

N∑
i=1

(KLD(KDE(xi),KDE(x′i)), (32)

where N is the number of bins, xi is the probability in the i-th
bin of the distribution of x,KDE is the kernel density estimator
function, and KLD is the KL divergence calculation.

F. Evaluation Results

Table I lists the MOS results and objective evaluations.
The results demonstrate that the proposed model DiffProsody
surpasses the other models in terms of both subjective and
objective metrics. The p-values for paired-t tests between Diff-
Prosody and FastSpeech2 and DiffProsody and ProsoSpeech on
the VCTK dataset are 1.2× 10−15 and 0.03, respectively, and on
the LibriTTS dataset they are 0.01 and 3.6× 10−9, respectively.
Thus, we can observe a significant difference (p-value < 0.05)
between the proposed method and the comparison methods.
DiffProsodys outperformed the other models in DDUR, EER,
RMSEf0 , RMSEperiod, and F1v/uv on the VCTK dataset. On
the LibriTTS dataset, DiffProsody performed best for DDUR,
EER, and RMSEf0 , while FastSpeech 2 performed best for
RMSEperiod and F1v/uv . We found that ProsoSpeech performed
poorly on the LibriTTS dataset. We hypothesize that this is due
to the fact that LibriTTS has longer sentences than VCTK, which
leads to more failure cases in the AR model. We conducted all
of our experiments on a single GPU and it seems that more
resources are needed to optimize the model. Our model also
showed the ability to synthesize speech with more accurate
pronunciation, as it had lower WER and CER across all datasets.

Fig. 3 presents the Mel-spectrogram and pitch contour of
speech from each model. The red box in the figure indicates that
the DiffProsody model was more similar to the GT. To further
evaluate the prosody of the generated speech, we examined pitch
and energy distributions.

Fig. 4 presents the histogram distribution for log f0 (pitch),
and Fig. 5 presents the histogram distribution for log energy.

Fig. 3. Comparison of the visualized spectrogram and pitch contour. The red
box indicates that the proposed model is more similar to the GT.

Fig. 4. Histogram visualization of log f0, where the blue bars represent the GT
distribution and orange bars represent the generated distribution. The distribution
of the proposed model overlaps to a greater extent with the GT distribution than
the other comparison models.

In both the figures, the blue bars represent the distribution of
the GT features, and the orange bars represent the distribution
of the generated features. The results indicate that the proposed
model aligns more closely with the GT distribution than the other
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Fig. 5. Histogram visualization of log energy, where the blue bars represent
the GT distribution and orange bars represent the generated distribution. The
proposed model’s distribution has a greater overlap with the GT distribution
compared to the other models being compared.

TABLE III
KL DIVERGENCE OF LOG F0 AND ENERGY

models. Table III lists the KL divergence values for comparison.
ProsoSpeech exhibited a better performance in f0 than Fast-
Speech 2, but not in the case of energy. However, DiffProsody
outperformed the comparison model in terms of f0 and energy.

G. Latent Prosody Generation Method

In Table IV, DiffProsody (AR) is a model comprising the use
of an AR prosody predictor. DiffProsody (DDPM) is a model
comprising the use of DDPM (100 timesteps). DiffProsody is
a model comprising the use of DDGAN (four timesteps). The
AR predictor has the same structure as the prosody predictor
in ProsoSpeech, but it does not use context encoders, and the
denoising network in the DDPM has the same structure as
generator gθ in the DDGAN. We also conducted a 7-point
comparative mean opinion score (CMOS) evaluation to compare
the latent prosody generation methods and measured the RTF to
compare the generation speeds. DDGAN achieved +0.172 and
−0.015 CMOS compared with AR and DDPM, respectively.
The objective metrics showed that the DDPM and DDGAN
outperformed the AR. The DDGAN achieved results nearly
identical to those of the DDPM for all the metrics. The experi-
mental results showed that the diffusion models performed better
than the AR models, as reported in [61]. Furthermore, DDGAN
can generate high-quality prosody vectors such as DDPM in
only four timesteps. According to the RTF results, the DDGAN
produces a 2.7× and 16× faster prosody than the AR and DDPM,
respectively.

Fig. 6 presents the traces of the WER, CER, and EER results
for the speech generated by the DLPG with the prosody vector
generated by each denoising iteration. The red and blue lines
represent the results obtained using the DDPM and DDGAN,
respectively. We observed that the DDGAN has a larger error rate
than the DDPM in the early stages and that the midpoint and final
stages of each model have almost the same value. This implies
that the DDGAN compresses the timesteps of the DDPM by
modeling the denoising process as a multimodal non-Gaussian
distribution.

Fig. 7 shows the objective evaluation results for DDPM and
DDGAN trained over different time steps: [4, 8, 16, 32, 64, 100].
It was observed that DDPM showed suboptimal performance

Fig. 6. Comparison of objective evaluation results based on diffusion timesteps
when using the DDPM and DDGAN framework in DLPG. The blue line is the
result for the DDGAN and the red line is the result for the DDPM.

at lower timesteps. In contrast, DDGAN showed consistent
robustness across the range of timesteps.

H. Prosody Conditional Adversarial Training

We conducted CMOS to assess the effectiveness of PCD.
The CMOS values were used to measure the degree of PCD
preference in comparison with the reference model. Our evalua-
tion involved the analysis of three different models: DiffProsody
using PCD and a diffusion-based model, DiffProsody without
PCD (referred to as DiffProsody (w/o PCD)) using a diffusion-
based model, and ProsoSpeech using an AR prosody predictor
without PCD. The results presented in Table V clearly indicate
that models comprising the use of the PCD are preferred over
those trained without the PCD. Furthermore, by comparing the
CMOS results of DiffProsody (w/o PCD) and ProsoSpeech, we
can infer that the diffusion-based method is preferable to the
method employed by ProsoSpeech. To provide a more com-
prehensive analysis, we also incorporated the objective metrics
for DiffProsody (w/o PCD) in Table IV. These objective metric
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TABLE IV
OBJECTIVE AND SUBJECTIVE EVALUATIONS OF ABLATION STUDY MODELS

Fig. 7. Comparison of objective evaluation results of DDPM and DDGAN
trained with [4,8,16,32,64,100] timesteps. The blue line is the result for the
DDGAN and the red line is the result for the DDPM.

TABLE V
CMOS RESULTS FOR PROSODY CONDITIONAL DISCRIMINATOR

TABLE VI
OBJECTIVE EVALUATION BASED ON THE NUMBER OF MEL-BINS

results demonstrate that DiffProsody outperformed DiffProsody
(w/o PCD) in all aspects. However, DiffProsody (w/o PCD) still
received a better objective evaluation than ProsoSpeech. We also
compared DiffProsody(AR) to ProsoSpeech and found that Diff-
Prosody(AR) consistently performed better in most objective
evaluations. This shows that PCD contributes to performance
improvements, given that we used the same AR predictor. These
findings validate that both PCD and DLPG significantly improve
the model performance.

I. Prosody Encoder Evaluation

In this section, the effectiveness of the prosody encoder is
evaluated. We focus on two main aspects: the impact of the
number of Mel-bins used in the reference Mel-spectrogram and
the role of the vector quantization layer. Detailed results of these
evaluations are presented in the following subsections.

1) Impact of the Number of Mel-Bins: We conducted an
experiment to compare the performance of DiffProsody when
trained using various numbers of Mel-bins. The results, includ-
ing the EER, CER, and WER scores, are presented in Table VI.
We examined the performance of 10, 20, 30, 40, 60, and 80
(full-band) Mel-bins. The findings indicated that as the number
of bins exceeded 20 (baseline), the EER tended to increase,
while no significant difference was observed in terms of the
CER and WER. It should be noted that the model with 10 bins
outperformed the baseline (20 bins) in terms of the WER but
yielded higher EER results. As the number of Mel-bins used for
the training was increased, the results of the Mel-spectrogram
progressively smoothened and eventually collapsed. This phe-
nomenon occurs because the large amount of information in the
reference forces the model to reconstruct the Mel-spectrogram
by leveraging the prosody vectors. Through this experiment,
we found that, as N increases, linguistic information becomes
increasingly entangled. Consequently, it is reasonable to employ
20 Mel-bins as the input to the prosody encoder for realizing
effective prosody modeling.
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Fig. 8. Visualization of a Mel-spectrogram trace synthesized with latent
generation for each diffusion timestep. (a) DiffProsody (w/o VQ) trained with-
out vector quantization in prosody encoder; (b) DiffProsody. (a) shows that,
in contrast (b), the early stages of diffusion produce a completely collapsed
Mel-spectrogram. This is caused by the inclusion of linguistic information in
the prosody vector.

2) Vector Quantization Layer Analysis: Fig. 8 presents a
Mel-spectrogram trace synthesized using the prosody vector
generated for each diffusion step of the DLPG. We compared
two versions of DiffProsody: one trained without the vector
quantization layer (Fig. 8(a); defined as DiffProsody (w/o VQ))
and the other trained with the vector quantization layer (Fig.
8(b); defined as DiffProsody). In the case of DiffProsody (w/o
VQ), the early steps exhibited a completely distorted Mel-
spectrogram, but there was a significant recovery in the middle
steps. Conversely, the initial step of DiffProsody exhibits a
smoothed but slightly distorted Mel-spectrogram that gradually
returns to its original state over the subsequent steps. This
phenomenon is also related to prosody disentangling, and we
confirmed that the prosody disentangling failed in DiffProsody
(w/o VQ). This experiment demonstrated that vector quantiza-
tion plays a crucial role in effective prosody disentangling. The
last row of Table IV presents the objective evaluation results for
DiffProsody (w/o VQ). DiffProsody (w/o VQ) performed worse
for all the objective measurements. These results provide an
objective assessment of how the failure to properly disentangle
prosody affects the overall performance of the system.

V. CONCLUSION

In this study, a novel technique called DiffProsody is pro-
posed, the aims of which is to synthesize high-quality expressive
speech. Through prosody conditional adversarial training, we
observed significant improvements in speech quality with a
more pronounced display of expressive prosody. In addition, our
DLPG successfully generated expressive prosody. Our proposed
method outperformed comparative models in terms of producing
accurate and expressive prosody, as evidenced by the prosody
evaluation metrics. Moreover, our method demonstrated supe-
rior accuracy in pronunciation, as indicated by the CER and
WER evaluations. The KL divergence and histogram analysis
further support the claim that DiffProsody yields a more accurate
prosody distribution than the other models. Furthermore, we
successfully reduced the sampling speed while maintaining the
expected performance by introducing DDGAN.

Despite these advances, we recognize certain challenges. Vec-
tor quantization is key for separating different elements in our
model, but it can sometimes reduce the model’s effectiveness. To
tackle this, we are considering the use of advanced techniques
like residual vector quantizers [62], [63], [64]. We also realize
that there are some challenges in simulating natural speech
patterns, or prosody, using only TTS data. A possible approach
could be to use a language model pre-trained on a larger dataset,
such as HuBERT [65], which could significantly improve the
naturalness and expressiveness of the speech we synthesize. In
the future, we improve our method by adding the ability to more
precisely control emotional tones in speech [66].

REFERENCES

[1] J. Shen et al., “Natural TTS synthesis by conditioning wavenet on Mel
spectrogram predictions,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2018, pp. 4779–4783.

[2] Y. Ren et al., “FastSpeech: Fast, robust and controllable text to speech,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, vol. 32.

[3] Y. Ren et al., “FastSpeech 2: Fast and high-quality end-to-end text to
speech,” in Proc. Int. Conf. Learn. Representations, 2021.

[4] Y. Wang et al., “Tacotron: Towards end-to-end speech synthesis,” in Proc.
Interspeech, 2017, pp. 4006–4010.

[5] Y. Ren, J. Liu, and Z. Zhao, “PortaSpeech: Portable and high-quality
generative text-to-speech,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 13963–13974.

[6] J. Liu, C. Li, Y. Ren, F. Chen, and Z. Zhao, “DiffSinger: Singing voice
synthesis via shallow diffusion mechanism,” in Proc. AAAI Conf. Artif.
Intell., 2022, vol. 36, no. 10, pp. 11020–11028.

[7] S.-H. Lee, H.-R. Noh, W.-J. Nam, and S.-W. Lee, “Duration controllable
voice conversion via phoneme-based information bottleneck,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 30, pp. 1173–1183, 2022.

[8] R. Skerry-Ryan et al., “Towards end-to-end prosody transfer for expressive
speech synthesis with Tacotron,” in Proc. 35th Int. Conf. Mach. Learn.,
2018, vol. 80, pp. 4693–4702.

[9] G. Xu, W. Song, Z. Zhang, C. Zhang, X. He, and B. Zhou, “Improving
prosody modelling with cross-utterance bert embeddings for end-to-end
speech synthesis,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Pro-
cess., 2021, pp. 6079–6083.

[10] Y. Wang et al., “Style tokens: Unsupervised style modeling, control and
transfer in end-to-end speech synthesis,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, vol. 80, pp. 5180–5189.

[11] D. Min, D. B. Lee, E. Yang, and S. J. Hwang, “Meta-StyleSpeech : Multi-
speaker adaptive text-to-speech generation,” in Proc. 38th Int. Conf. Mach.
Learn., 2021, vol. 139, pp. 7748–7759.

[12] J.-H. Lee, S.-H. Lee, J.-H. Kim, and S.-W. Lee, “PVAE-TTS: Adaptive
text-to-speech via progressive style adaptation,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2022, pp. 6312–6316.

[13] N. Kumar, A. Narang, and B. Lall, “Zero-shot normalization driven multi-
speaker text to speech synthesis,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 30, pp. 1679–1693, 2022.

[14] S. Seshadri, T. Raitio, D. Castellani, and J. Li, “Emphasis control for
parallel neural TTS,” in Proc. Interspeech 2022, pp. 3378–3382.

[15] H. Bae and Y.-S. Joo, “Enhancement of pitch controllability using timbre-
preserving pitch augmentation in FastPitch,” in Proc. Interspeech, 2022,
pp. 6–10.
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