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Dynamic Convolutional Neural Networks
as Efficient Pre-Trained Audio Models

Florian Schmid , Khaled Koutini , and Gerhard Widmer

Abstract—The introduction of large-scale audio datasets, such
as AudioSet, paved the way for Transformers to conquer the audio
domain and replace CNNs as the state-of-the-art neural network
architecture for many tasks. Audio Spectrogram Transformers are
excellent at exploiting large datasets, creating powerful pre-trained
models that surpass CNNs when fine-tuned on downstream tasks.
However, current popular Audio Spectrogram Transformers are
demanding in terms of computational complexity compared to
CNNs. Recently, we have shown that, by employing Transformer-
to-CNN Knowledge Distillation, efficient CNNs can catch up with
and even outperform Transformers on large datasets. In this work,
we extend this line of research and increase the capacity of efficient
CNNs by introducing dynamic CNN blocks constructed of dynamic
convolutions, a dynamic ReLU activation function, and Coordi-
nate Attention. We show that these dynamic CNNs outperform
traditional efficient CNNs, such as MobileNets, in terms of the
performance–complexity trade-off at the task of audio tagging on
the large-scale AudioSet. Our experiments further indicate that the
proposed dynamic CNNs achieve competitive performance with
Transformer-based models for end-to-end fine-tuning on down-
stream tasks while being much more computationally efficient.

Index Terms—Dynamic convolutional neural networks,
dynamic convolution, dynamic ReLU, coordinate attention,
audio spectrogram transformer, audio classification, pre-trained
audio models, knowledge distillation.

I. INTRODUCTION

PRE-TRAINED deep neural networks have emerged as a
pivotal paradigm in the field of machine learning over

the last few years. Leveraging transfer learning techniques,
pre-trained models can significantly enhance the performance on
downstream tasks, in particular, when the training data is insuffi-
cient to learn an end-to-end model from scratch. Such models are
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typically pre-trained in a supervised or self-supervised fashion
on large datasets, such as ImageNet [1] in the vision domain or
AudioSet [2] in the audio domain. While convolutional neural
networks (CNNs) have been the method of choice during the
past years to create pre-trained models in both the audio and
vision domains, Transformers [3] recently surpassed them due
to their ability to scale up and exploit large datasets [4], [5].
With superior performance on the large pre-training datasets,
Transformers then overtook CNNs also on many downstream
tasks with smaller datasets. However, Transformers are com-
putationally costly in training and inference, as the attention
operation scales quadratically with respect to the processed se-
quence length. For this reason, CNNs maintain their dominance
on resource-constrained platforms, such as mobile devices.

Recently, it has been shown in the audio domain that efficient
CNNs can achieve competitive performance with Transformer-
based models on large-scale datasets when trained using Knowl-
edge Distillation (KD) [6], [7], [8] from a Transformer ensemble.
Concretely, Schmid et al. [9] train MobileNetV3s (MNs) [10]
on AudioSet using offline KD from an ensemble consisting of 9
different Patchout FaSt Spectrogram Transformer (PaSST) [11]
models. The resulting efficient pre-trained MNs have been
shown to extract high-quality general-purpose audio embed-
dings that can generalize to downstream tasks in various audio
domains such as music, speech, and environmental sounds [12].
Compared to Transformers, the quality of extracted audio em-
beddings is comparable, while the computational cost of in-
ference is much lower. Although the MNs achieve excellent
performance on AudioSet [9] and serve as high-quality audio
embedding extractors [12], they remain to be tested in end-to-end
fine-tuning, in which a pre-trained model is directly fine-tuned
on a downstream task.

In this work, we extend this line of research and construct
computationally efficient pre-trained audio models using dy-
namic CNN components. The term dynamic component refers to
a function, e.g., a layer in a neural network, that is input-adaptive.
That is, the function’s parameters change based on the input
that is processed. Specifically, we propose dynamic MobileNets
(DyMNs), obtained by integrating dynamic convolutions [13],
dynamic ReLU [14], and Coordinate Attention [15] into residual
inverted bottleneck blocks [16].

The motivation for integrating dynamic components into MNs
is driven by (1) the desire to increase the performance of efficient
models without substantially increasing their computational
complexity, (2) the success of the highly dynamic self-attention
operation in Transformer-based models [3], and (3) the fact that
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Squeeze-and-Excitation (SE) [17], the only dynamic component
in MNs, has been shown to be an important building block for
MNs [9]. Regarding (1), instead of scaling CNNs by network
width and depth, which increases the computational complexity
substantially, a variety of lightweight dynamic components such
as convolutions [13], [18], dynamic non-linearities [14], [19],
and attention mechanisms [15], [17], [20], [21], [22], [23], [24]
have been proposed. These dynamic components have been
shown to improve the performance while only marginally adding
to the computational complexity in terms of consumed multiply-
accumulate operations (MACs) at inference time. Concerning
(2), self-attention, a highly dynamic operation that adapts its
weights based on input data, is an integral part of the successful
Transformer architecture [3]. With the integration of dynamic
components, we also allow CNNs to perform input-adaptive
operations, such as focusing on the relevant information in
spectrograms or dynamically constructing convolutional kernels
best suited for a particular ambient noise level. Regarding (3),
an ablation study conducted in [9] revealed that SE [17], a com-
ponent that dynamically computes channel attention weights
based on input data, is an integral part of MNs to achieve high
performance on AudioSet [2].

We use the KD pre-training setup of [9] and show that
the proposed DyMNs achieve substantially higher pre-training
performance on AudioSet compared to conventional MNs. We
train MNs and DyMNs of different complexity levels on the
downstream tasks of polyphonic musical instrument recogni-
tion (OpenMic dataset [25]), environmental sound classification
(ESC50 dataset [26]), acoustic scene classification (TAU Urban
Acoustic Scenes 2020 challenge [27]), and sound event tagging
(FSD50K [28]). The results show that MNs and DyMNs can
attain or even surpass the performance of a single teacher model
PaSST [11] on many downstream tasks while being much more
computationally efficient. The proposed DyMNs outperform
MNs for most of the downstream tasks and complexity levels.

To summarize our contribution, we
� propose a dynamic CNN block by integrating dynamic

convolutions [13], dynamic ReLU [14], and Coordinate
Attention [15] into residual inverted bottleneck blocks [16];

� introduce a component that efficiently extracts a shared
context from a block input feature map to parametrize all
dynamic components in the block;

� show that the proposed DyMNs outperform traditional
MNs and other CNNs from the related work on AudioSet
and downstream tasks while being more computationally
efficient;

� show that DyMNs, while more computationally and pa-
rameter efficient, achieve competitive performance with
Audio Spectrogram Transformers on AudioSet and the
downstream tasks.

The remainder of this paper is structured as follows: The re-
lated work is reviewed in Section II, followed by the introduction
of the proposed dynamic model in Section III. The pre-training
setup and results are presented in Section IV-A; Section V
then shows the experiments and results on the downstream
tasks. A detailed systematic configuration study is performed
in Section VI, and the paper is concluded in Section VII.

II. RELATED WORK

In this section, the related work is covered. We start with
a general recap of efficient CNN architectures and popular
dynamic CNN components that were introduced to increase a
CNN’s computational efficiency. We then cover the literature
on pre-trained audio models to set the stage for introducing
our dynamic CNN, which serves as a computationally efficient,
pre-trained audio model.

A. Efficient CNN Architectures

Much effort has been invested in research on designing
efficient CNNs, such as the series of MobileNets [10], [16],
[29], EfficientNets [30], [31], or ShuffleNets [32], [33]. Mo-
bileNetV1 [29] substantially reduces the computational com-
plexity of conventional convolution layers by factorizing them
into a depthwise and a 1x1 pointwise convolution. On top of
this, MobileNetV2 [16] introduces inverted residual blocks with
linear bottlenecks, leading to better accuracy and computational
efficiency. MobileNetV3 [10] adds Squeeze-and-Excitation
(SE) [17] layers after the depthwise filters, upgrades activation
functions using swish non-linearity [34], and optimizes the
global network structure using platform-aware network archi-
tecture search [35]. EfficientNet [30] builds on the MobileNetV2
inverted residual block and introduces compound scaling laws
of depth, width, and input resolution. Similar to MobileNetV3,
EfficientNetV2 [31] performs a neural architecture search to
optimize parameter efficiency and training speed. Originally
introduced in the vision domain, MobileNets and EfficientNets
have been shown to provide a good performance–complexity
trade-off also in the audio domain [9], [36], [37], [38].

B. Dynamic CNN Components

While scaling CNNs by width and depth typically improves
performance, it significantly increases the model’s complexity.
In particular, the computational demand of a CNN scales with the
square of the model’s width. As an alternative strategy, a lot of
research has focused on using a fixed number of channels more
efficiently by introducing dynamic components to CNNs. While
some research on dynamic convolutions [13], [18], [39], [40],
[41] and dynamic non-linearities [14], [19] has been conducted,
the majority of work focuses on attention mechanisms [15], [17],
[20], [21], [22], [23], [24].

Dynamic Convolution: In contrast to standard convolution
layers, dynamic convolutions adapt the kernel weights based
on global context information extracted from an input. Early
approaches in the vision domain have explored generating the
kernels directly [42], [43], resulting in a substantial increase in
complexity as the number of parameters of convolution kernels
is large. A more lightweight approach is to predict coefficients to
linearly combine a fixed set of kernels. In this spirit, Condition-
ally Parameterized Convolutions for Efficient Inference (Cond-
Conv) [18] computes a linear mixture of K distinct trainable
kernel weights. As shown in (1), the input x is convolved withK
distinct kernels Wi, multiplied by weights αi, and then summed
up. Since convolution is a linear operation and distributes over
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addition, it suffices to perform a single convolution with the
dynamically aggregated kernel. The weights αi per kernel are
computed dynamically from the input using Global Average
Pooling (GAP), a trainable linear transformation, and a sigmoid
activation function.

α1(W1 ∗ x) + α2(W2 ∗ x) + · · ·+ αK(WK ∗ x)
= (α1W1 + α2W2 + · · ·+ αKWK) ∗ x (1)

Dynamic Convolution for Accelerating Convolutional Neural
Networks (DyNet) [41] proposes a similar dynamic convolu-
tion mechanism, motivated from the perspective of extracting
noise-irrelevant features, showing that dynamic filters generate
more diverse feature maps with lower cross-correlation. The
main difference to CondConv [18] is that DyNet [41] proposes to
extract a shared context from the CNN block input to parametrize
all dynamic convolutions in the block. Similar to CondConv, the
context is extracted by GAP and a trainable linear transforma-
tion. Sharing the computation of the context across all dynamic
components in a CNN block is an idea that we will also make
use of when designing our proposed DyMNs.

Dynamic convolution is further developed in [13] by com-
pressing the kernel space using the constraint

∑
k αk = 1 on the

computed kernel attention weights. As a result, a smaller number
of kernels K can be used, saving computations and parameters.
As shown in (2), the constraint is enforced by applying a soft-
max instead of a sigmoid function. The dynamically predicted
coefficients α̃k are scaled by a temperature τ before the softmax
to ensure near-uniform attention in early epochs.

αk =
exp(α̃k/τ)

∑K
k exp(α̃k/τ)

(2)

In the audio domain, recent developments of dynamic convo-
lutions involve temporal dynamic convolutions (TDY) [44] and
frequency dynamic convolutions (FDY) [45]. TDY dynamically
adapts the filters along the time axis to consider time-varying
characteristics of speech; FDY has been shown to improve sound
event detection by dynamically adapting the filters along the
frequency axis, addressing the fact that the frequency dimension
is not shift-invariant. However, both TDY and FDY execute K
parallel convolutions before combining the results, leading to
considerable computational overhead during inference. There-
fore, the dynamic convolution proposed in [13] will be used in
this work rather than the more computationally costly versions
TDY and FDY.

For completeness, we point out that dynamic convolution is
not exclusively studied for audio and vision but has also been
explored in NLP for generating input-aware convolutional filters
based on the input sentences [39], [46], [47].

Dynamic Activation Function: Less explored in comparison
to dynamic convolutions and CNN attention mechanisms are
dynamic activation functions. Si et al. [19] dynamically adapt
the threshold value of ReLU activations in an MLP network.
Chen et al. extend this line of research by introducing dynamic
ReLU (Dy-ReLU) [14], which works as a dynamic and efficient
version of Maxout [48]. A hyperfunction similar to SE [17]
dynamically predicts coefficients (slopes and intercepts) for M

linear mappings. In the most common version of Dy-ReLU, the
coefficients are spatially shared but differ across channels. This
variant, known as Dy-ReLU-B, will be used in this work. After
normalizing the coefficients to specific ranges, the element-wise
maximum is applied across theM linear mappings. Specifically,
given xc, the input plane of the channel with index c, and the
predicted coefficients αm

c (slope) and βm
c (intercept) for that

channel, the output plane yc is calculated as follows:

yc = max
1≤m≤M

{αm
c xc + βm

c } (3)

Dy-ReLU-B requires 2 ∗M ∗ C dynamic coefficients, result-
ing from slope and intercept for M linear mappings for each of
the C channels.

CNN Attention Mechanisms: While self-attention in Trans-
formers [3] captures global dependencies in sequential data,
CNN attention aims to emphasize relevant information in a
feature map. Specifically, feature maps in 2D-CNNs consist of
three dimensions corresponding to the number of channels C,
the height H , and the width W of an image. CNN attention
mechanisms typically compute recalibration weights for chan-
nels or spatial locations.

The most prominent instance of a CNN attention mechanism
is the channel recalibration method SE [17] integrated into
MobileNetV3 [10] and EfficientNets [30], [31]. As shown in (4),
SE applies a squeeze (Fsq ) and an excitation (Fex ) operation on
an inputx to obtain channel recalibration weights sof sizeC.Fsq

applies GAP to collect contextual information, and Fex captures
channel-wise dependencies via a non-linear transformation with
trainable parameters W followed by a sigmoid activation to
compute the channel weights.

s = Fex (Fsq(x),W) (4)

Other channel attention mechanisms differ mainly in how
they realizeFsq andFex . The Style-based Recalibration Module
(SRM) [20] extends SE by combing GAP and global standard
pooling to realize Fsq , followed by a channel-wise fully con-
nected layer, batch norm [49], and a sigmoid activation function
for Fex . Global Context (GC) blocks [24] differ from the afore-
mentioned attention mechanisms by performing additive instead
of multiplicative recalibration. The recently introduced Global
Response Normalization (GRN) [50] serves as a particular
lightweight attention module by recalibrating the channels based
on their L2 norms and adding only two learnable parameters, a
scale and a shift.

Besides methods focusing only on recalibrating channels,
other methods additionally compute attention weights for the
two spatial dimensions. In this regard, the Convolutional Block
Attention Module (CBAM) [21] computes attention weights for
spatial locations of size HxW using a channel pooling opera-
tion to squeeze contextual information, followed by a sigmoid
activation function. While channel and spatial recalibrations
are applied sequentially in CBAM [21], Coordinate Attention
(CA) [15] factorizes the attention mechanism into two parallel
context encoding processes. Feature maps are aggregated by
GAP along the spatial dimensions to obtain two slices of shapes
CxH and CxW . These slices are processed separately and
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then used as spatially aware recalibration weights. Similarly,
Triplet Attention (TA) [23] reduces the three dimensions of a
feature map by average and max pooling, processes the three
2-dimensional slices separately, and recalibrates the feature map
with the resulting three sets of recalibration weights.

To choose an appropriate CNN attention mechanism, we
integrate different methods into MobileNetV3 [10] and evaluate
the model’s performance on AudioSet [2]. The results, listed in
Table VIII and presented in Section VI-C1 in detail, reveal that
the CA method performs best for audio tagging.

C. Pre-Trained Audio Models

Models in the audio domain are typically pre-trained in a
supervised or self-supervised way on large-scale datasets, such
as AudioSet [2]. AudioSet consists of around 2 million weakly
labeled 10-second audio snippets downloaded from YouTube.
The audio clips are manually annotated with 527 different event
classes hierarchically sorted in an ontology.

Large-Scale Pretrained Audio Neural Networks for Audio
Pattern Recognition (PANNs) [36] introduces a series of
AudioSet-pre-trained CNNs of varying complexities and
architectures widely used for downstream applications in
audio-related domains such as sound event detection [51],
automated audio captioning [52], language-based audio
retrieval [53], emotion recognition [54], or even optical fiber
sensing [55]. The prevalence of PANNs across many different
downstream application areas underlines the community’s
interest in pre-trained audio models for end-to-end fine-tuning.
The study presented in [36] includes MobileNetV2 [16], which
shows a good performance-complexity trade-off but falls behind
CNN14 [36] in terms of performance. Gong et al. [37] improve
over PANNs in terms of performance and complexity by using
an EfficientNet-B2 [30] pre-trained on ImageNet [1], balanced
sampling, and label enhancement. Efficient Residual Audio
Neural Networks for Audio Pattern Recognition (ERANNs) [56]
improve the performance on AudioSet further while controlling
efficiency through temporal downsampling via strided convo-
lutions. However, despite all these improvements, CNNs have
been substantially outperformed by supervised [5], [11], [38],
[57] and self-supervised [58], [59], [60] Transformer models.

Recently, it has been shown that the sharp increase in audio
tagging performance on AudioSet achieved by Transformers can
be exploited and transferred to efficient CNNs using KD [6], [8].
In this context, Gong et al. [38] report that Transformers and
CNNs are good teachers for each other, improving the perfor-
mance of both models, and Schmid et al. [9] use Transformer-to-
CNN KD to match the performance of a PaSST [11] Transformer
model with a MobileNetV3 having only 6% of the parameters
and requiring 100 times fewer MACs. These efficient, pre-
trained CNNs have been shown to extract high-quality audio
representations [12] and have a high potential to be fine-tuned
for low-complexity on-device applications. In parallel to our
work, which focuses on architectural improvements of efficient
CNNs with dynamic components, Dinkel et al. [61] recently
improved the KD setup introduced in [9] by using consistent
ensemble distillation and an improved teacher model.

TABLE I
SPECIFICATION OF THE MOBILENETV3 [10] NETWORK ARCHITECTURE USED

FOR THE PROPOSED DYMNS

III. PROPOSED DYNAMIC MODEL

This section introduces the proposed dynamic model consist-
ing of dynamic convolutions (Dy-Conv) [13], dynamic ReLU
(Dy-ReLU) [14], and Coordinate Attention (CA) [15]. This de-
sign decision is based on our belief that the three dynamic meth-
ods are complementary: Dy-Conv can extract noise-invariant
features [41]; Dy-ReLU increases the model’s expressiveness by
applying a dynamic non-linear function; and CA detects impor-
tant channels, time frames, and frequency bins. These dynamic
components are integrated into efficient inverted residual blocks
(IR blocks) [16], as our focus is on creating efficient pre-trained
audio models. In particular, we use the global network design
of MobileNetV3-Large (MN) [10], as shown in Table I. MN is
constructed of an input convolution, 15 IR blocks, GAP, and two
fully-connected layers to make predictions for K classes. The
spatial dimensions are downsampled using strided convolution,
and the overall downsampling factor before the global pooling
operation is 32 on both frequency bands and time frames.
The initial input size of 128 frequency bins and 1000 time
frames is modeled after the pre-processing setup for a 10-second
audio recording, as described in Section IV-A. To adapt the
model’s complexity, MN is scaled by network width using a
width multiplier α to modify the number of channels. MN is
optimized for latency and has shown to provide an excellent
performance–complexity trade-off on AudioSet [9].

In the following, we describe our proposed dynamic IR block
in a top-down manner. We start by reviewing the conventional IR
block in Section III-A and introduce the modifications that lead
to the dynamic IR block in Section III-B. We then zoom into the
four central components of the dynamic IR block: the Context
Generation Module (Section III-C), Dy-Conv (Section III-D),
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Dy-ReLU (Section III-E), and CA (Section III-F). For all these
additional components, we will identify the computationally
most costly part in terms of MACs and compare it to the cost of
convolutions in the conventional IR block.

A. Inverted Residual Block

IR blocks [16] are constructed of (1) a pointwise channel
expansion convolution projecting the number of channels from
CIN to CEXP using 1x1 kernels, (2) a depthwise convolution
operating on each of the CEXP channels independently, and
(3) a pointwise projection convolution projecting the channels
from CEXP to COUT with 1x1 kernels. For most blocks, it
holds that CIN = COUT . However, transition blocks increase
the number of channels, leading to COUT > CIN . Each con-
volution is followed by a batch norm [49] and a non-linearity,
except for the linear bottleneck after the last convolution. The
depthwise convolution can be strided to downsample the spatial
dimensions. If the spatial dimensions and the number of channels
match, a residual connection from block input to block output
is used.

The pointwise convolutions are the computationally most
expensive operations in an IR block. Specifically, given a block
with COUT output channels, CEXP channels in the expanded
channel representation, and spatial output dimensions of sizes
TOUT and FOUT , the final pointwise convolution performs
CEXP ∗ COUT ∗ TOUT ∗ FOUT MACs.

B. Dynamic Inverted Residual Block

Starting from the conventional IR block, we apply the modi-
fications listed below to integrate the dynamic components.

1) Conv −→ Dy-Conv: We replace all three convolutions in
the IR block with Dy-Conv [13].

2) ReLU −→ Dy-ReLU: The ReLU activation function after
the depthwise convolution is replaced by Dy-ReLU [14].
As shown in Section VI, using additional Dy-ReLUs after
the two pointwise convolutions does not yield further
improvements.

3) SE −→ CA: Instead of SE [17], CA [15] is used as the
attention mechanism. As will be shown in Section VI, this
replacement yields substantial performance gains.

Fig. 1 shows the overall structure of the dynamic IR block.
All three types of dynamic components have in common the
fact that they require statistics extracted from the input sample
for dynamic parameterization and reweighting. We share the
computation of these statistics across all dynamic components
in a common Context Generation Module (CGM), which will
be explained in detail in Section III-C. The CGM operates on
the input of the IR block and outputs an embedded time and fre-
quency sequence, i.e., two separate lists of embeddings for time
frames and frequency bins (depicted as green blocks in Fig. 1).
The following sections on Dy-Conv (Section III-D), Dy-ReLU
(Section III-E), and CA (Section III-F) will explain in detail how
these sequences are processed for dynamic parameterization and
reweighting.

Fig. 1. Dynamic IR block: Starting from the conventional IR block, all con-
volutions are replaced by Dy-Conv [13]; Dy-ReLU [14] replaces the non-linear
activation function after the depthwise convolution; and CA [15] is used instead
of SE [17]. The Context Generation Module (CGM) operates on the block
input and extracts embedded time and frequency sequences used to parametrize
Dy-Convs, Dy-ReLU, and CA. Dynamic components are depicted in red, and
context generation is shown in green. The shape of the input feature map size is
denoted in terms of batch size × channels × frequency bands × time frames.

Fig. 2. Context Generation Module (CGM): a zoom into the green parts of
Fig. 1. The CGM operates on the input of an IR block and outputs a time
and frequency sequence embedded in a reduced channel dimension of size H .
These sequences are used to parametrize Dy-Convs [13] and Dy-ReLU [14] and
to compute the channel-time and channel-frequency recalibration weights for
CA. The shape of the input feature map size is denoted in terms of batch size ×
channels × frequency bands × time frames.

C. Context Generation Module

The goal of the CGM is to collect informative statistics
from an input sample that can be used to parametrize the dy-
namic components without creating substantial computational
overhead. Fig. 2 depicts the details of this process. The CGM
transforms the block input feature map into embedded time
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(ST ) and frequency (SF ) sequences. Inspired by the original CA
module [15], introduced in the vision domain, the input feature
map is pooled separately across the two spatial dimensions to
retain positional information. The resulting time and frequency
sequences are then processed by a shared transformation con-
sisting of a linear layer, a batch norm [49], and hard swish
activation [10]. The linear layer embeds the channel dimension
of size CIN into a reduced space with H dimensions. We set H
to a fraction of the expanded channel representation, such that
H = CEXP/r, where r = 4 in our experiments.

The computationally most expensive operation in the CGM
is the linear layer, which performs CIN ∗H ∗ (TIN + FIN )
MACs. Compared to the first pointwise convolution in the IR
block, which requires CIN ∗ CEXP ∗ TIN ∗ FIN MACs, the
computational demand of the CGM is insignificant.

D. Dy-Conv

Our implementation of Dy-Conv is based on the dynamic con-
volution introduced in Chen et al. [13], discussed in Section II.
K different kernels are kept in parallel and are aggregated based
on normalized kernel attention weights αk. The aggregated
dynamic kernel W is then constructed as a weighted sum of the
K individual kernels: W =

∑K
k αkWk. Per default, we stick

with the recommended settings in [13] and use K = 4, and
linearly anneal the temperature τ for the softmax normalization,
given in (2), from 30 to 1 over the first epochs of training.

We apply the transformation shown in (5) to predict the
dynamic kernel attention weights from the CGM output se-
quences ST and SF . Firstly, the two sequences are concatenated
and pooled over the sequence length dimension, resulting in a
vector of size H . Secondly, a trainable linear transformation
with parameters W ∈ RKxH and b ∈ RK is used to predict the
weights collected in the vector Cdyconv.

Cdyconv = Pool(Concat[ST , SF ])W
T + b (5)

The computationally most expensive operation is the aggre-
gation of the K kernels, requiring at most K ∗ CEXP ∗ COUT

MACs for the final pointwise convolution. Since K = 4 is much
smaller than TOUT ∗ FOUT , constructing the dynamic kernel is
insignificant compared to the convolution itself.

E. Dy-ReLU

Our specific implementation of dynamic ReLU is the
spatially-shared and channel-wise Dy-ReLU-B [14] discussed
in Section II-B. Recall from (3) that Dy-ReLU-B requires a total
of 2 ∗M ∗ C dynamic coefficients to determine the shape of the
non-linearity for each of the C channels.

To obtain predictions from the CGM output sequences for the
2 ∗M ∗ C dynamic coefficients, we apply the transformation
shown in (6). The difference from the Dy-Conv coefficient
prediction is only in the shape of the trainable linear transfor-
mation and the resulting size of the coefficient vector Cdyrelu.
Specifically, we use W ∈ R2∗M∗CEXPxH and b ∈ R2∗M∗CEXP

resulting in a vector Cdyrelu of size 2 ∗M ∗ C. Most commonly,
M = 2 linear mappings are used [14], which is also the default

Fig. 3. Coordinate Attention (CA): CA highlights important channels, fre-
quency bins, and time frames by recalibrating the feature map by element-wise
multiplication with attention weights. It operates on the output sequences of the
CGM and transforms them separately into the channel-time S̃T and channel-
frequency S̃F attention weights. Average Pooling with a kernel size of 3 and
a stride of 2 is used in case of a strided IR block. The linear transformation
upsamples the number of channels fromH toCEXP to match the dimensionality
of the feature map after the depthwise convolution.

value in our setup.

Cdyrelu = Pool(Concat[ST , SF ])W
T + b (6)

The computational cost of Dy-ReLU is dominated by the
calculation of elementwise linear mappings (αm

c xc + βm
c ) as

part of (3). The total cost of computing M linear mappings
is M ∗ CEXP ∗ TOUT ∗ FOUT MACs. Since M = 2 is much
smaller than the number of block output channels COUT , the
cost of DyReLU is insignificant compared to the cost of the
final pointwise convolution (COUT ∗ CEXP ∗ TOUT ∗ FOUT )
as discussed in Section III-A.

F. Coordinate Attention

The purpose of CA [15] is to emphasize important spatial po-
sitions and channels by recalibrating a feature map with channel-
time and channel-frequency weights. As depicted in Fig. 3, CA
takes as input the embedded time and frequency sequences as
produced by the CGM, performs separate transformations per
sequence, and outputs the respective attention weights. (7) shows
the transformation from the embedded sequences S{T,F } to the
respective attention weights S̃{T,F }. To match the dimensions
of the feature map, an average pooling operation with a kernel
size of 3 and a stride of 2 is applied in case of a strided
depthwise convolution in the IR block. The result is processed
by a trainable linear layer with parameters W ∈ RCEXPxH and
b ∈ RCEXP to match the channel dimension of the feature map.
The final sigmoid function converts the resulting sequences into
attention weights that are used to recalibrate the feature map via
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elementwise multiplications.

S̃{T,F } = Sigmoid(Pool(S{T,F })WT + b) (7)

The computationally most expensive operations in CA are
the linear layers, which jointly perform H ∗ CEXP ∗ (TOUT +
FOUT ) MACs. Compared to the final pointwise convolution in
the IR block, which requires COUT ∗ CEXP ∗ TOUT ∗ FOUT

MACs, the computational demand of CA is negligible since
COUT ≈ H and the product of the spatial dimensions is typically
much larger than their sum.

IV. PRE-TRAINING ON LARGE-SCALE AUDIO TAGGING

In this section, we report the pre-training results of the
introduced dynamic CNNs on the task of large-scale audio
tagging on AudioSet [2]. That is, models need to assign one
or multiple labels out of 527 classes to 10-second audio clips.
Since AudioSet must be downloaded from YouTube, different
proportions of the dataset can be successfully downloaded. In
this regard, our setup is strictly comparable to the dataset used
in [11] and [9]. The proposed DyMN is scaled to three different
complexities using width multipliers α ∈ {0.4, 1, 2}. Adapting
the width multiplier changes the number of channels in the IR
blocks while keeping the total number of blocks constant. We
denote the resulting models as DyMN small (DyMN-S), DyMN
medium (DyMN-M), and DyMN large (DyMN-L). By default,
we replace all 15 IR blocks with their dynamic counterparts;
however, we will also discuss the effect of applying the dynamic
IR blocks selectively in Section VI-B2. The results will be
compared in terms of parameter and computational efficiency to
other models pre-trained on AudioSet from the related work. In
particular, we are interested in a comparison to the non-dynamic
counterpart of our proposed DyMNs, the efficient MNs used
in [9].

A. Pre-Training Setup

1) Preprocessing and Augmentation: To pre-train our mod-
els on AudioSet, we match the preprocessing used in [11]
and [9]. We use mono audio with a sampling rate of 32 kHz
and apply STFT with a window length of 25 ms and a hop size
of 10 ms. Mel spectrograms are computed using a Mel filterbank
with 128 frequency bins, and the minimum and maximum
frequencies are randomly perturbed within a range of 10 Hz
and 2 kHz, respectively. Aligned with [9], Mixup [62] with
a mixing coefficient of 0.3 is the only spectrogram-level data
augmentation used since we are using offline KD as described
in Section IV-B and it has been shown that consistent KD is
beneficial [9], [63].

2) Training: Models are trained for a total of 200 epochs,
and 100,000 samples are drawn at random without replacement
from the full AudioSet in each epoch. We use a learning rate
scheduler consisting of an exponential warmup phase until
epoch 8, followed by a constant peak learning rate phase, 95
epochs of linear rampdown, and 25 epochs of fine-tuning with
1% of the peak learning rate. The peak learning rates are set to
2× 10−3, 1× 10−3, and 5× 10−4 for DyMN-S/M/L, respec-
tively. We use the Adam optimizer [64] with a batch size of
120. We adopt the importance sampling strategy based on label

frequency from [11] to counter the long tail of infrequent classes.
The results presented in this section are achieved by DyMNs
pre-trained on ImageNet [1], which has been shown to improve
performance substantially [37].

3) Dynamic Component Settings: The temperature τ used in
the context of Dy-Convs (see (1)) is linearly annealed from 30
to 1 in the first 30 epochs of training. The sequence embedding
dimension H , as defined in the CGM (Fig. 2), is set to CEXP/r
with r = 4. However, we additionally restrict its size between
32 and 128 to ensure that the sequences can capture enough
information about the feature map in the early layers and do not
get unnecessarily complex in the final layers. These bounds are
scaled accordingly with the model’s width multiplier α.

B. Offline Knowledge Distillation

We copy the Transformer-to-CNN KD method introduced
in [9] to train our DyMNs. Specifically, the DyMNs act as
students in the KD setup and optimize the loss given in (8).
The loss is a weighted sum of label loss Ll and distillation loss
Lkd , traded off by a hyperparameter λ. y denotes the AudioSet
labels, zS and zT are the student and teacher logits, respectively,
δ is the sigmoid activation function, and Binary-Cross-Entropy
is applied for Ll and Lkd .

Loss = λLl(δ(zS), y) + (1− λ)Lkd(δ(zS), δ(zT )) (8)

The teacher logits zT are constructed by ensembling the logits
of 9 different PaSST models [11], achieving a mean average
precision (mAP) of 49.5 on the AudioSet evaluation set. Aligned
with [9], we pre-compute the ensemble logits for all recordings
in the training set to speed up the training of the DyMN students
and use λ = 0.1 to emphasize the distillation loss.

C. Results on AudioSet

In the following, we will compare the computational effi-
ciency and the parameter efficiency across different models
trained on AudioSet. In particular, the DyMNs are trained in the
same setup as the MNs in [9], which permits a fair comparison
in assessing the effect of the proposed dynamic IR block. All
results presented throughout this paper are averages of at least
3 independent runs and the last 10 epochs of training.

1) Computational Complexity: The number of MACs is cal-
culated on 10-second audio recordings using the model pro-
filer contained in Microsoft’s DeepSpeed framework [66]. The
results are presented in Fig. 4 and Table II. Fig. 4 plots the
performance of different models against the consumed MACs
and compares the proposed DyMNs (red stars) to other popular
CNNs (circles) and Transformers (crosses) trained on AudioSet.
In addition, a detailed comparison between DyMNs and the MNs
from [9] is offered in Table II. The horizontal lines divide the
table into three sections, comparing models of similar compu-
tational complexities.

The plot shows that DyMNs (red line) and MNs [9] (green
line) trained in the Transformer-to-CNN KD setup [9] outper-
form other CNNs in terms of both prediction performance and
computational efficiency. The crosses depict the Transformer
models PaSST-S [11], which is used as the teacher for MNs and
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Fig. 4. Plot compares the performance – computational complexity trade-
off across different single (i.e., non-ensemble) models on AudioSet. CNNs
(MNs [9], PSLA [37], CNN14 [36], ResNet38 [36], CMKD-CNN [38],
ConvNeXt [65]) are shown as circles; Transformer models (PaSST-S [11],
BEATs [59] and HTS-AT [57]) are depicted as crosses; and our proposed DyMNs
are indicated by the red stars. To aid the visual comparison, we connect the
width-scaled MNs and DyMNs by lines and add a DyMN with α = 0.6 in
addition to DyMN-S/M/L. The computational complexity is measured in terms
of multiply-accumulate operations (MACs) plotted in log scale on the x-axis.

TABLE II
THIS TABLE COMPARES MOBILENETS (MNS) FROM [9] USING THE DEFAULT

IR BLOCK TO DYMNS USING THE PROPOSED DYNAMIC IR BLOCK

DyMNs;1 BEATs [59], which achieves the best performance on
AudioSet; and HTS-AT [57], a particularly efficient implemen-
tation based on the Swin Transformer [67]. While both DyMNs
and MNs can outperform a single-teacher model, the PaSST
ensemble teacher performance of 49.5 mAP is not reached. How-
ever, DyMN-L outperforms even the best-performing Trans-
former model BEATs [59] while requiring less than 5% of its
MACs.

Table II shows that integrating the dynamic components only
marginally increases the number of consumed MACs. Using the

1More precisely: we show here one single Transformer model from the teacher
ensemble, in order to only have comparable single models in the plot. The
9-model PaSST ensemble would figure at (6.4 ∗ 102, 49.5) in Fig. 4; in Fig. 5, it
would completely distort the plot, with a parameter complexity of 775.3 million.

Fig. 5. Plot compares the parameter-efficiency across multiple different sin-
gle models on AudioSet [2]. CNNs (MNs [9], PSLA [37], ERANN [56],
Wavegram-Logmel CNN [36], CNN14 [36], ResNet38 [36], CMKD-CNN [38],
ConvNeXt [65], EAT-M [68]) are denoted as circles. Transformers (Audio-
MAE [58], HTS-AT [57], PaSST-S [11], PaSST-S-L [11], AST [5], CMKD-
AST [38], BEATs [59]) are denoted as crosses. Our proposed DyMNs are
indicated by the red stars. To aid the visual comparison, we connect the
width-scaled MNs and DyMNs by lines and add a DyMN with α = 0.6 in
addition to DyMN-S/M/L.

dynamic instead of the conventional IR blocks leads to a compu-
tational overhead of around 7–10% for DyMN-S/M/L compared
to MNs with the same number of channels, i.e., the same value
for α. However, the results show that dynamic IR blocks can
boost performance substantially, with DyMN-S/M/L improving
over their static counterpart with a matching width multiplier
by 2.0, 0.7, and 1.2 points in mAP, respectively. In particular,
it should be pointed out that using the dynamic IR blocks is
more efficient than scaling up the number of channels. DyMN-S
(α = 0.4) has 25% fewer MACs and improves performance
by 0.8 points in mAP compared to MN (α = 0.5), DyMN-M
(α = 1.0) almost matches the performance of the MN with twice
the width (α = 2.0), and DyMN-L (α = 2.0) outperforms even
the largest MN (α = 4.0) while requiring approximately 4 times
less MACs.

2) Parameter Complexity: The parameter efficiency on Au-
dioSet is compared across different CNNs (circles) and Trans-
formers (crosses) in Fig. 5. Both MNs and DyMNs outperform a
variety of Transformers and CNNs in terms of the performance–
complexity trade-off. BEATs [59] is the only model that outper-
forms the best MNs, but DyMN-L achieves a higher mAP with
less than half the number of parameters.

Although the dynamic convolutions require more than K
times as many parameters as conventional convolution layers,
and the fully connected layers predicting the Dy-ReLU activa-
tion coefficients are also non-negligible, DyMNs are competitive
with MNs in terms of parameter efficiency. In particular, for
larger width multipliers, Fig. 5 shows that using dynamic IR
blocks instead of increasing α, which increases the number of
parameters approximately by α2, is more efficient. Specifically,
the results in Table II show that the performance of MNs only
increases marginally when using α values > 2. However, the
performance can be boosted substantially using the proposed
dynamic IR blocks, with DyMN-L outperforming MN (α =
4.0) by 0.7 points in mAP using 42% less parameters.
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V. EXPERIMENTS ON DOWNSTREAM TASKS

The previous section has shown that the introduction of dy-
namic components to MNs increases the pre-training perfor-
mance on large-scale AudioSet. However, the main question is
whether the performance gain during pre-training can be carried
over to downstream tasks. We fine-tune AudioSet-pre-trained
MNs and DyMNs on the tasks of polyphonic musical instrument
recognition, environmental sound classification, sound event
tagging, and acoustic scene classification and compare their
performance against each other, the pre-training teacher Trans-
former PaSST [11], and the state of the art on the respective tasks.
Furthermore, we share the same fine-tuning pipeline across all
downstream tasks and only adapt the learning rate to show
that no extensive hyperparameter tuning is required for high
performance on downstream tasks.

A. Tasks

1) Polyphonic Musical Instrument Recognition: This task is
to recognize all instruments present in an audio clip. It is based on
the OpenMic dataset [25], which consists of 20,000 10-second
audio clips. Each clip is annotated with multiple tags out of 20
different classes. The performance metric is mean average pre-
cision (mAP). The state of the art for this task is the Transformer
model PaSST [11], which surpassed receptive-field-regularized
CNNs [69] as the previous state-of-the-art method.

2) Environmental Sound Classification: This task is to clas-
sify 5-second audio recordings into one out of 50 different
classes. It is based on the ESC50 [26] dataset, consisting of
2,000 environmental sound recordings. The performance metric
for this task is accuracy, and we report the results in terms of
average accuracy on the 5 official folds [26]. The state-of-the-art
model on this dataset is the Transformer BEATs [59]; in terms of
CNNs, the fine-tuned audio encoder of CLAP [70] has the lead.

3) Sound Event Tagging: The FSD50K dataset [28] consists
of 51,197 recordings that are annotated with 200 event classes
taken from the AudioSet [2] ontology. It is the second-largest
publicly available general-purpose sound event tagging dataset
after AudioSet, consisting of 100 hours of audio. FSD50K
is separated into training, validation, and evaluation splits.
We use the validation split to set up our fine-tuning pipeline
that is shared across all models and downstream tasks. The
performance is reported in terms of mAP on the evaluation set.
The multi-modal, giant-size ONE-PEACE [71] Transformer
with 4B parameters achieves state-of-the-art results on this
dataset. On the CNN side, the fine-tuned audio encoder of
CLAP [70] achieves the highest mAP.

4) Acoustic Scene Classification: This task is to classify
10-second audio recordings into one out of ten different acous-
tic scenes. The TAU Urban Acoustic Scenes 2020 Mobile
dataset [27] has been used in the DCASE 2020 Challenge
Task 1 and consists of 13,965 recordings in the train set and
2,979 in the test set. The performance is measured in terms of
accuracy. It is particularly difficult to find models that generalize
well on this dataset since it is recorded with a limited number
of microphones, some of which are completely unseen during
training and cause a distribution shift at test time. PaSST-S [11]

TABLE III
RESULTS ON THE DOWNSTREAM TASKS BASED ON OPENMIC [25],

ESC50 [26], FSD50K [28], AND DCASE20 [27]

is the state-of-the-art method on this dataset, outperforming the
top CNN [72] from the DCASE 2020 Challenge [27].

B. Fine-Tuning Setup

For fine-tuning models on downstream tasks, the pre-
processing of audio recordings applied in the pre-training stage,
as discussed in Section IV-A, is matched. Except for the learning
rate, we share the fine-tuning pipeline across all tasks and
models. We use the Adam optimizer and train for 80 epochs. The
learning rate schedule includes an exponential warmup phase for
10 epochs, followed by a linear rampdown for 65 epochs and 5
final epochs with 1% of the peak learning rate. The temperature
τ to compute the attention weights for Dy-Conv is fixed to 1.
As for data augmentation, we randomly roll the waveform over
time in a maximum range of ±125 ms. We use a two-level
mixup [62], both on the raw waveforms and on the spectrogram
level, and the audio waveform is multiplied to change the gain
by ±7 dB. The min and max frequencies of the mel filterbank
are randomly perturbed within ranges of 10 Hz and 2 kHz,
respectively. Interestingly, a critical performance factor on the
downstream tasks is the weight decay, which must be set to 0 to
achieve high performance.

C. Results

The results for the four downstream tasks are given in
Table III. For each of the tasks, we specify the baseline per-
formance (Baseline), global state of the art (SOTA), state of
the art among CNNs (SOTA CNN), and the performance of the
AudioSet teacher model PaSST-S [11]. We also compare our
proposed DyMNs to the MNs with matching width multipliers
and add an MN with an increased width of α = 3.0.

1) DyMNs vs. MNs: The DyMNs outperform the MNs with
matching width across all tasks and model sizes, except for α =
1.0 on FSD50K. DyMN-L even outperforms MN (α = 3.0) on
OpenMic, ESC-50, and DCASE20 while requiring less than half
of its MACs, as shown in Table II. These results underline the
fact that dynamic components can increase channel efficiency
and generalization performance. It further shows that using the



2236 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

dynamic components is a more efficient solution than simply
scaling up the width by increasing α.

2) DyMNs vs. PaSST: DyMN-L outperforms the pre-training
teacher model PaSST-S [11] on all four downstream tasks while
requiring less than half of its parameters and less than 3%
of its MACs for computing the predictions for a 10-second
audio recording. DyMN-M achieves comparable performance
on OpenMic and ESC-50, being 8 times smaller and requiring
less than 1% of the number of MACs compared to PaSST.

3) DyMNs vs. SOTA CNN: DyMN-L beats the state-of-
the-art CNN performance on all four downstream tasks. On
FSD50K, even the most lightweight models, DyMN-S and
MN (α = 0.4), outperform the top CNNs such as PSLA [37]
(56.7), CMKD-CNN [38] (58.2) or CLAP [70] (58.6). While
CMKD-CNN is the smallest of the aforementioned CNNs with
8M parameters, MN (α = 0.4) and DyMN-S are below 1M and
2M parameters, respectively.

4) DyMNs vs. SOTA: On OpenMic, DyMN-M and DyMN-L
outperform the state-of-the-art performance held by the Trans-
former model PaSST [11]. On ESC-50, DyMN-L lags slightly
behind the top method BEATs [59] but outperforms other recent
Transformers such as AST [5] (95.7), PaSST [11] (96.8) or HTS-
AT [57] (97.0). However, DyMN-L is much more lightweight
compared to BEATs, having less than half of its parameters and
less than 5% of its MACs. On FSD50K, besides the giant-size
model ONE-PEACE [71] with 4B parameters, DyMN-L out-
performs other recent Transformers such as PaSST [11] (65.3)
and CMKD-AST [38] (61.7) and on DCASE20, DyMN-L lags
only behind a specific version of PaSST (PaSST-B) that uses no
patchout (76.6).

VI. SYSTEMATIC CONFIGURATION STUDY

The purpose of this section is to gain insights into the training
setup, justify the design decisions that led to the final dynamic
IR block presented in Section III, and show that the proposed
variant has turned out to be beneficial across a variety of other
configurations.

In the following, we assess the impact of KD and ImageNet
pre-training in Section VI-A. We then present configuration
studies for the proposed dynamic IR block in Section VI-B and
delve into the details of the individual dynamic components in
Sections VI-C, VI-D, and VI-E, followed by a study on different
context generation variants in Section VI-F. All experiments
are conducted on AudioSet [2] using DyMN-M and MN with
the default width of α = 1.0. Except for the results presented
in Section VI-A, the results are obtained without ImageNet
pre-training. In the following tables, the default values in our
setup are indicated in bold. The tables also list the number of
MACs and parameters in millions for each experiment. In this
regard, we want to remind the reader that special attention should
be paid to the number of MACs, as computational efficiency is
the main objective of this work.

A. Impact of Knowledge Distillation and ImageNet
Pre-Training

The purpose of this section is to study the impact of KD and
ImageNet pre-training on MNs and DyMNs. For experiments

TABLE IV
COMPARING THE PERFORMANCE IMPACT OF IMAGENET PRE-TRAINING (PT)

AND KNOWLEDGE DISTILLATION (KD) ON MNS AND DYMNS

outside of KD, the training setup needs to be adapted in order
to account for the changed training objective. In this regard,
we use a learning rate of 5× 10−4 and include the data aug-
mentation techniques described in Section V-B. Additionally,
we apply SpecAugment [74], similar to [11]. Based on the
results presented in Table IV, we can make the following three
observations:

1) In line with [9], KD is a very important ingredient in the
training setup and accounts for a performance improve-
ment of 2.9 and 4.5 points mAP for MN and DyMN,
respectively. The difference between the improvements
underlines that the increased learning capacity of DyMNs
allows them to better exploit the rich training signal when
distilling knowledge from a large transformer ensemble.
However, we also observed that DyMNs are much more
prone to overfitting than MNs when trained outside of KD.

2) While the improvements of ImageNet pre-training are
marginal for DyMN with and without KD (0.2 points
mAP), the benefits are much larger for MN (1.2 and 1.7
points mAP, respectively). We therefore conclude that the
dynamic components learn domain-specific properties and
are less robust to the modality shift from the vision to the
audio domain.

3) KD, pre-training, and dynamic components are comple-
mentary. For the proposed DyMNs, KD contributes the
largest performance improvement (4.5 points mAP), fol-
lowed by the dynamic components (0.7 points mAP) and
pre-training (0.2 points mAP).

B. Dynamic IR Block

In this section, we perform a configuration study based on
the proposed dynamic IR block. We investigate the effect of
the individual dynamic components, the impact of applying the
dynamic IR blocks selectively, and the effect of applying Dy-
Conv and Dy-ReLU at different positions in the block.

1) Importance of Dynamic Components: Table V presents
the results for the proposed DyMN, the MobileNetV3 [10]
Baseline (MN Baseline) from [9], a fully static MN with no
SE [17] (MN Static), and all other combinations of the three
dynamic components in DyMNs.

The results show that dynamic, input-dependent processing
is important. The proposed DyMN improves the performance
by 3.1 points mAP over the static MN. While Dy-ReLU and
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TABLE V
IMPORTANCE OF DY-CONV, DY-RELU, AND CA IN THE PROPOSED DYNAMIC IR

BLOCK

TABLE VI
EFFECT OF SELECTIVE APPLICATION OF DYNAMIC IR BLOCKS

CA are of equal importance, Dy-Conv leads to the smallest
improvements. However, all three dynamic components are
beneficial for the overall performance and improve over MN
Baseline.

2) Selectively Applying the Dynamic IR Block: The purpose
of this experiment, with results summarized in Table VI, is to
determine at which positions in the model the dynamic blocks
have the highest impact. MN has a total of 15 IR blocks, all
of which are replaced by dynamic IR blocks in the proposed
DyMN. In this study, we replace only the first, middle, and last 5
blocks in the MN with dynamic IR blocks and keep conventional
IR blocks at the remaining positions. Additionally, the setting
Replace SE uses the dynamic IR block only at the positions at
which the original MN uses SE, resulting in 8 out of the 15 IR
blocks being dynamic.

Table VI shows that dynamic blocks are beneficial at different
positions in the model. Each selective variant outperforms the
MN Baseline from [9]. Applying the dynamic IR block to the
first 5 layers causes the least overhead in terms of MACs and
parameters, but the performance benefits the most when the last
5 layers in the network use the dynamic IR block. If, besides
computational efficiency, parameter efficiency is the main con-
cern for an application, applying the dynamic IR block only to
the first layers offers better performance with fewer parameters
when compared to the conventional MN architecture.

3) Effects of Dy-Conv and Dy-ReLU Positions: The proposed
dynamic IR block replaces all convolution layers with Dy-
Conv and uses Dy-ReLU only after the depthwise convolution.
Table VII shows the results for applying Dy-Conv and Dy-ReLU
at alternative positions. Pos. 1, 2, and 3 describe the first, second,

TABLE VII
EFFECT OF VARYING THE POSITION OF DY-CONVS AND DY-RELU IN THE

DYNAMIC IR BLOCK

TABLE VIII
MOBILENETV3 WITH DIFFERENT ATTENTION MECHANISMS INTEGRATED INTO

ALL IR BLOCKS BEFORE THE FINAL POINTWISE CONVOLUTION

and third convolutions in the dynamic IR block (shown in
Fig. 1) and the activation functions that follow them. In case
of Dy-ReLU at Pos. 3, we add an additional Dy-ReLU after the
final pointwise convolution.

The results show that replacing all convolution layers with Dy-
Conv is beneficial, and the proposed Dy-ReLU variant, where we
have a single Dy-ReLU at Pos. 2, achieves the best performance.
In particular, adding additional Dy-ReLUs does not improve
results further.

C. Attention Mechanism

This section presents a study on the choice of attention mech-
anism and the impact of channel-frequency and channel-time
recalibration in CA.

1) Choice of Attention Mechanism: Table VIII shows the
results for integrating different popular attention mechanisms
(CA [15], TA [23], SRM [20], GRN [50], SE [17], CBAM [21],
and GC [24]) into MN. All attention mechanisms are integrated
before the final pointwise convolution into all 15 IR blocks.

While several different attention methods are capable of
achieving substantial improvements over the static MN with
no attention mechanism, CA leads to the largest improvement
and is therefore the attention mechanism of choice for our
proposed dynamic IR block. Additionally, the overhead in terms
of MACs caused by using CA is much smaller in the dynamic IR
block since the proposed CGM extracts context from the block
input (CIN channels) instead of the expanded representation
(CEXP channels) and shares the computation of the context with
Dy-ReLU and Dy-Convs.

2) Channel-Time and Channel-Frequency Recalibration in
CA: CA performs recalibration of the feature map with channel-
time and channel-frequency attention weights. The results given
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TABLE IX
EFFECT OF APPLYING CA SELECTIVELY FOR CHANNEL-TIME AND

CHANNEL-FREQUENCY RECALIBRATION

TABLE X
VARYING THE NUMBER OF DYNAMIC KERNELS K AND THE TEMPERATURE τ

FOR COMPUTING THE ATTENTION WEIGHTS IN DY-CONV

in Table IX assess the importance of these two recalibration
steps. While the channel-frequency weights are slightly more
important than the channel-time weights, using both of them
leads to the best results. Since the computation of channel-time
weights is costly in terms of MACs compared to the other
dynamic components, using only channel-frequency weights
can be considered a lightweight alternative with minimal com-
putational overhead.

D. Dy-Conv

In this section, the impact of the two hyperparameters of
Dy-Conv, the number of kernels K and the temperature τ , is
assessed.

1) Number of Dynamic Kernels K: The number of kernels
K specifies how many different kernels are aggregated in each
Dy-Conv layer. Table X shows the results forK ∈ {2, 4, 6}. The
performance improves only marginally from K = 2 to K = 4
kernels and plateaus for larger values of K.

2) Temperate τ : The temperature τ affects the computation
of kernel attention weights, as shown in (2). Aligned with [13],
by default, we use a temperature schedule for τ and anneal it
from 30 to 1 over the first 30 epochs of training. This ensures
near-uniform attention weights in the first epochs to properly
update all kernels. Table X compares the temperature schedule
to the results of using a constant temperature (τ ∈ {1, 10, 30}).
The results show that the performance is stable across different
constant temperature values in our setup. However, keeping the
temperature constant leads to a slight performance decrease,
underlining the advantage of using a temperature schedule.

E. Dy-ReLU

An important hyperparameter of Dy-ReLU is the number of
linear mappings M that the max operation, shown in (3), acts
on. The results for M ∈ {1, 2, 3} are shown in Table XI. M = 1
results in a dynamic linear function, while M = 2 and M =

TABLE XI
NUMBER OF LINEAR MAPPINGS M IN DY-RELU

TABLE XII
DIFFERENT SETTINGS FOR CONTEXT GENERATION

3 are dynamic non-linear functions. The non-linear functions
outperform the linear function, and aligned with the findings
in [14], M = 2 and M = 3, they achieve similar performance.

F. Context Generation

In this section, different variants of context generation are
studied. In particular, architectural variants are discussed in
Section VI-F1, and modifications of the context size H are
investigated in Section VI-F2.

1) Different Architectural Variants for Context Generation:
Table XII contains results for the following modifications to the
context generation process:
� no shared context: Refers to a setting in which Dy-Conv

and Dy-ReLU extract their own context by GAP and a
learnable non-linear transformation, as originally proposed
in [13] and [14], respectively. In this case, Dy-Conv and
Dy-ReLU do not make use of the CGM output sequences.
This experiment tests whether the shared CGM is capable
of extracting a sufficiently rich global context that can be
used to parametrize all dynamic components in a block.

� no shared seq. parameters: Indicates that, in contrast to
the CGM setup in Fig. 2, the linear layer and batch norm
parameters are not shared across the sequences. Instead,
two sets of parameters are learned to transform the time and
frequency sequences. The motivation for this experiment is
to decouple transformations involving time and frequency
information, which, in contrast to the height and width of
an image, encode different physical properties.

� concat pooled seq.: Describes a setting for which (5)
and (6) are modified. Specifically, the sequences ST and
SF are pooled separately, and the vectors of size H are
concatenated, resulting in a context vector of size 2 ∗H .
Aligned with the motivation of the last experiment, with
this experiment, we try to avoid mixing time and frequency
information.

The results presented in Table XII show that all of these
modifications lead to a slight decrease in performance, despite
all of them increasing the number of parameters. The proposed
design of the context generation is based on the findings of these
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TABLE XIII
VARYING THE SEQUENCE EMBEDDING SIZE H

experiments; the CGM follows the feature encoding process
used in CA [15], and the dynamic coefficients of Dy-Conv and
Dy-ReLU are derived as defined in (5) and (6), respectively.

2) Varying the Sequence Embedding Size H: As stated in
Section III-C, the embedding dimension for the time and fre-
quency sequences, computed by the CGM, is defined as H =
CEXP/r. Additionally, H is clipped between a lower bound
(HMIN = 32) and an upper bound (HMAX = 128) that are
scaled accordingly with the model’s width α. Table XIII shows
the results for different values of r, HMIN , and HMAX . The
results indicate that reducing the sequence embedding dimen-
sion H by either increasing r or decreasing HMIN and HMAX

leads to a decrease in mAP. This shows that assigning a certain
capacity to the global context is important for the dynamic
components to exploit their full potential. However, increasing
H by increasing the lower and upper bounds (HMIN = 64 and
HMAX = 256) does not yield further performance improve-
ments and shows that the performance saturates after a certain
context size is reached.

VII. CONCLUSION

In this work, we proposed dynamic convolutional neural
networks as efficient pre-trained audio models. We integrated
dynamic convolutions, dynamic ReLU, and Coordinate At-
tention into efficient inverted residual blocks and share the
computation of a global context for dynamic parameterization
across all dynamic modules in a block. The resulting models,
named DyMNs, are pre-trained on AudioSet at three different
complexity levels using Transformer-to-CNN Knowledge Dis-
tillation. DyMNs show a beneficial performance–complexity
trade-off compared to their non-dynamic counterparts and other
Transformers and CNNs. Specifically, Dy-MN-L achieves a pre-
training performance of 49.0 mAP on AudioSet, outperforming
current popular Audio Spectrogram Transformers. Experiments
on downstream tasks indicate that the proposed DyMNs outper-
form other CNNs by a large margin and are highly competitive
with Audio Spectrogram Transformers while being much more
computationally efficient. Furthermore, we show that DyMNs
are suitable for simple task-specific fine-tuning by sharing the
same fine-tuning pipeline across all downstream tasks. In short,
DyMNs are efficient, high-performing, easy-to-fine-tune audio
models that can have a large impact on the audio community,
especially in the context of resource-critical applications.
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