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NoiseBandNet: Controllable Time-Varying Neural
Synthesis of Sound Effects Using Filterbanks

Adrián Barahona-Ríos and Tom Collins

Abstract—Controllable neural audio synthesis of sound effects
is a challenging task due to the potential scarcity and spectro-
temporal variance of the data. Differentiable digital signal pro-
cessing (DDSP) synthesisers have been successfully employed to
model and control musical and harmonic signals using relatively
limited data and computational resources. Here we propose Noise-
BandNet, an architecture capable of synthesising and controlling
sound effects by filtering white noise through a filterbank, thus
going further than previous systems that make assumptions about
the harmonic nature of sounds. We evaluate our approach via a
series of experiments, modelling footsteps, thunderstorm, pottery,
knocking, and metal sound effects. Comparing NoiseBandNet au-
dio reconstruction capabilities to four variants of the DDSP-filtered
noise synthesiser, NoiseBandNet scores higher in nine out of ten
evaluation categories, establishing a flexible DDSP method for
generating time-varying, inharmonic sound effects of arbitrary
length with both good time and frequency resolution. Finally, we
introduce some potential creative uses of NoiseBandNet, by gener-
ating variations, performing loudness transfer, and by training it
on user-defined control curves.

Index Terms—Neural audio synthesis, differentiable digital
signal processing, sound effects, procedural audio, game audio.

I. INTRODUCTION

IN MEDIA, sound effects can be defined as those sound ele-
ments other than music or speech [1]. Typical sound effects

are, for instance, footsteps or environmental sounds such as rain.
This broad definition implies that sound effects may exhibit,
within the same category, wide and narrow spectral bands or
static and transient amplitude envelopes [2]. Sound effects are
usually produced by sound designers or foley artists by either
recording the sounds on demand or sourcing and transforming
the assets from pre-recorded sound libraries. However, with the
increasing size and complexity of video games and interactive
media, creating enough sound assets is time-consuming, espe-
cially in scenarios such as virtual reality (VR), where players
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may freely interact with elements of the virtual environment
using haptic controllers [3].

Alternatively to pre-recorded samples, sound effects can also
be produced using sound synthesisers – a method which is often
called procedural audio [4]. Typically, procedural audio models
are handcrafted and built upon digital signal processing (DSP)
algorithms running in real-time with parametric controls [4]. Yet
the process of building procedural audio models may be chal-
lenging for sound designers, and the resulting audio may also
lack plausibility when compared to pre-recorded samples [5],
[6]. Differentiable digital signal processing (DDSP) [7] com-
monly refers to the concept of using DSP algorithms alongside
deep learning. In the original DDSP paper, Engel et al. [7]
synthesise harmonic musical notes controlled by pitch and
loudness using a harmonic plus noise synthesiser [8]. Once
trained, the resulting synthesiser is able to produce sounds with
human-interpretable controls (e.g., pitch and loudness).

In the context of the synthesis of sound effects, and partic-
ularly in game audio, human-interpretable continuous controls
are desirable, as the synthesiser could adapt its output to, for
instance, in-game events (in the case of running in real-time)
or to animations (running offline). DDSP-based models also
benefit from requiring comparatively less data to train than other
data-driven approaches [7]. Additionally, DDSP synthesisers
have been demonstrated to be able to run in real-time [9], offering
the potential of being integrated into live scenarios such as video
games.

Our end goals are to build a general-purpose DDSP syn-
thesiser capable of producing a) sounds with acceptable time
and frequency resolution, and b) audio of arbitrary length,
just by providing conditioning vectors containing the desired
parametric controls. The original DDSP synthesiser [7] relies
on the premise that the audio it aims to model is harmonic,
which is not the case for most sound effects. Very recently, [10]
proposed a method to estimate sinusoidal components using
gradient descent, which has been a challenging task when us-
ing Fourier-based loss functions [11], opening the possibility
of modelling inharmonic sinusoids using DDSP synthesisers.
Sound effects, however, may contain noisy or very narrow-band
elements that are difficult to model using sinusoidal partials [2],
plus the method of [10] has yet to be applied to the context of
sound effects. Another option could be to use a time-varying
finite impulse response (FIR) filter as in the original DDSP
subtractive noise synthesiser, but it suffers from a time and
frequency trade-off, where, in order to obtain good frequency
resolution, the number of taps in the FIR filter need to be
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Fig. 1. Reconstruction task comparison between the DDSP time-varying FIR noise synthesiser and NoiseBandNet. The top row shows the waveform of the
entire sound, the middle row its log-magnitude spectrogram and at the bottom a detail of the transient. The transient spot is annotated with a vertical dashed line
in the first and third rows. The left column shows the original training sample: a short metal impact. The middle columns show the reconstruction of five different
configurations of the DDSP time-varying FIR noise synthesiser with 128, 512, 1024, 4096, and 8192 taps, respectively, all of them with a hop size of 32 samples.
Observe its time and frequency trade-off: the frequency resolution increases with the number of taps at the same time the time resolution decreases, and vice-versa.
The right column shows the NoiseBandNet reconstruction using 2048 filters and a synthesis window size of 32 samples, maintaining both good time and frequency
resolution.

relatively high, which in return smears the transients, and vice-
versa. This phenomenon is depicted in Fig. 1. As an alternative,
and inspired by the work of [2] where they use multi-rate
filterbanks and sub-band processing to overcome the time and
frequency trade-off of the inverse FFT method (very closely
related to the DDSP FIR-noise synthesiser case), we explore
the use of filterbanks in this context, leading to a definition
of a new architecture called NoiseBandNet. While we do not
use sub-band processing in our work, we incorporate some
of the ideas from [2] into a differentiable pipeline, linking
human-interpretable control parameters to the output audio. We
compare NoiseBandNet to the original DDSP noise synthesiser
and establish a more suitable method to generate time-varying
inharmonic sound effects of unconstrained length using DDSP
synthesisers, with both good time and frequency resolution.
Thus, our main contributions, framed within the extension of
the DDSP architecture, are: the possibility of training and syn-
thesising sounds employing high-level control vectors (includ-
ing user-defined ones); the proposed synthesis method, which
allows for the generation of arbitrary sounds without precon-
ceived characteristics (e.g., not being restricted to harmonic
sounds). Code and audio examples can be found at the project
website.1

1https://adrianbarahonarios.com/noisebandnet/

II. RELATED WORK

There are multiple studies on the synthesis of sound effects
using DSP techniques. From aeroacoustic [12] or footstep [13]
sounds, to guidelines to choose appropriate synthesis meth-
ods [4], or efforts to bring models to the wider public [14]. Most
current models, however, still lack plausibility when compared
to pre-recorded samples [5], [6].

Audio synthesis using deep learning, often called neural audio
synthesis, can be seen as an alternative to pure DSP-driven
synthesis. While this work has usually focused on speech or
music signals, studies on the synthesis of sound effects exist.
For instance, in [15], knocking sound effects are synthesised
conditioned by emotions, and in [6], footstep sound effects are
synthesised conditioned on surface materials. Other approaches
focus on more general environmental sound categories [16],
[17]. There has also been a growing interest in generating sound
effects conditioned on natural language prompts [18], [19].
There is work addressing scarcity of training data when using
neural audio synthesis too, especially relevant for sound effects.
In [20], unconditional sound variations of arbitrary length are
produced just by providing ≈20 seconds of data, and in [5],
unconditional variations of short (≈200–750 ms) one-shot sound
effects are synthesised by training on a single audio example,
which has also been applied to the task of data sonification [21].
More recently, [22] generates novel sound effect variations of

https://adrianbarahonarios.com/noisebandnet/
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arbitrary length conditioned on mel-spectrograms, training on a
small dataset.

DDSP architectures can be seen as a middle ground between
models trained on large datasets over extended periods of time
and architectures that generate data from a few examples, as
they exploit inherent biases in DSP components such as filters or
oscillators to facilitate the training, synthesis and control tasks.
Apart from the original DDSP architecture [7], other studies ex-
plore the use of waveshaping [23], wavetable [24], or frequency
modulation (FM) [25] synthesis, all of them focusing on the
modelling of harmonic or musical sounds. Other approaches,
closer to sound effects, focus on the synthesis of rigid-body
impacts by predicting the properties of resonant infinite im-
pulse response (IIR) filters based on the object shape [26], the
synthesis of harmonic engine sounds [27], or footsteps using
the original DDSP time-varying FIR noise synthesiser [28]. In
our case, we aim to provide a general-purpose method that, in
principle, does not have any pre-conceptions about the target
sound to be modelled, and that is able to render both wide and
narrow spectral components of time-varying sounds.

Creatively controlling and conditioning deep learning au-
dio models has also been studied previously. In [29], drum
sounds are synthesised conditioned on timbral features. Other
approaches such as [30] drive the synthesis of environmental
sounds using onomatopoeic words, perform real-time timbre
transfer [31], use the latent space of a generative adversarial
network (GAN) [32] to condition a recurrent neural network
(RNN) to synthesise sound textures [33], or generate music by
pose sequences [34]. Topics akin to the inverse of these control
schemes have also been investigated, such as providing an audio
example as input, and using a neural network approach to retrieve
synthesiser control parameters [35].

The use of filterbanks in the context of sound texture synthesis
was investigated in [36], where target sounds were decomposed
into sub-bands using a cochlear filterbank, and a set of statistics
were extracted from their amplitude envelopes to build a syn-
thesis model. In contrast to this, multi-rate filterbanks have also
been used to model time-varying environmental sounds with
narrow spectral components, thus using the filterbank structure
itself to spectrally shape white noise [2]. They use sub-band
processing to approximate the frequency response of a series
of FIR filters that comprise a filterbank, and multiply each of
the noise bands resulting from filtering white noise though the
filterbank by a time-varying amplitude in order to match the
target audio. Our method is related to [2] as we also employ a
filterbank to process white noise in order to reconstruct a target
sound. We do not employ sub-band processing, however, and
do incorporate the filterbank as part of a broader deep learning
model in order to link control parameters to the reconstructed
audio, allowing for the control of the generated sounds.

III. METHOD

Our proposed method consists of using a deep learning model
similar to the original DDSP architecture, conditioned on high-
level audio controls to output M -band time-varying amplitudes,
and multiply them by the M bands resulting from processing

white noise through a filterbank. From a high-level perspective,
we first build a filterbank comprised of adjacent FIR filters
with narrow frequency responses that jointly cover an arbitrar-
ily wide-ranging frequency spectrum. Then, in order to ease
the computational burden of our approach, we precompute the
filtering operation on a white noise instance with all the different
filters of the filterbank, “baking” those noise bands. Lastly, we
use an architecture similar to the original DDSP paper to predict
the time-varying amplitudes of each of the bands for a target
dataset, conditioning it on high-level controls, and effectively
linking control parameters to the output of the synthesiser. The
final output is generated by summing all the bands together in
the time-domain.

A. Filterbank Design

Since our method does not make assumptions about the
frequency content of the sound to be modelled, and in order
to allow for the synthesis of both narrow and broad frequency
components, we need to design narrow bandpass filters, with the
union of their combined frequency responses covering the whole
frequency spectrum [0,Fs/2], where Fs is the sampling rate,
which we set to Fs = 44.1 kHz. Thus, two adjacent bandpass
filters will share one of their two band edges with each other to
cover the totality of the frequency spectrum.

We start by deciding the number of filters M that will com-
prise the filterbank to obtain a good frequency resolution, which,
based on pilot experiments, we set to M = 2048 filters. Second,
we decide how those filters are going to be distributed across
the frequency spectrum. As in [2], we emphasise the lower
end of the frequency spectrum by covering those frequencies
with more filters than at the higher end. Specifically, we use
half of the filters (1024 in our case, [1,...,1024]) to cover the
first quarter of the frequency spectrum [0,Fs/8], distributing
their center frequencies linearly in the interval. The other half
of the filters (the other 1024 filters, [1025, . . .,M ]) cover the
remaining interval of the frequency spectrum, [Fs/8,Fs/2], with
their center frequencies spaced evenly on a logarithmic scale,
thus increasing their bandwidth along it (i.e., filters at the higher
end of the spectrum have a greater bandwidth than filters at
the lower end). While this distribution may not be optimal, in
general a more densely populated lower end of the spectrum is
desirable, since the human ear is more sensitive in this range
than in the higher end [37]. That said, our method is flexible, so
could initiated with different filterbank configurations in future.

To implement the filterbank, we use real FIR filters, designing
them with the Kaiser window method with a transition widthΔω

of 20% of the filter bandwidth:

Δω =
|ω1 − ω2|

Fs
· 0.2 (1)

where Fs is the sampling rate, and ω1 and ω2 are the left and
right band edges respectively. We use a stopband attenuation of
As = 50dB, as in [2]. All the filters are bandpass except for the
first one, which is a lowpass filter that covers the [0, fmin] interval,
with fmin = 20Hz; and the last one, which is a highpass filter
that covers the [ω1,Fs/2] interval, where ω1 is the right band
edge of the penultimate bandpass filter.
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Fig. 2. Detail of the frequency response of some of the filters employed in a
2048-filter filterbank. Each of the filters is represented by a different colour.

An example of the frequency response of some of the filters
is depicted in Fig. 2. For reference, using the configuration
described above, the longer FIR filter in the filterbank has a
total of 120287 taps. The bandwidth of the linearly-distributed
(bandpass) filters in the low end isB(1,...,1024) ≈ 5.4Hz, and the
bandwidth of the last (highpass) filter is BM ≈ 30Hz. Once we
build the filterbank, we zero-pad all the filters’ impulse responses
to the next power of 2 of the length of the filter with more taps, so
they all have the same length. Using the proposed configuration,
this results in filters with 131072 taps. The large length of these
filters is due to their very narrow nature.

B. Deterministic Loopable Noise Bands

Considering we use many (M = 2048) and long (131072-tap)
FIR filters in our system, generating the noise bands themselves
(i.e., a convolving a noise instance with all the filters) is a
computationally expensive operation, which can bottleneck both
the training and inference of the model. This is especially true
during training where, at each training step, the noise bands may
need to be recalculated; or in longer sequences during inference
(e.g., generating 120-seconds’ worth of audio).

To ease the computational burden of our system, we follow
the technique described in [38], where they propose a method
to extend stationary sounds such as airplane cabin noise, but
applying it to the noise bands resulting from filtering a white
noise instance with all the filters of the filterbank. Our aim is to
compute these noise bands only once and store (“bake”) them,
removing the need of recomputing the operation each time the
synthesiser generates an output.

More specifically, we use their proposed FFT convolution
approach that leads to sounds that can be concatenated along
their x-axis thanks to circular convolution. By the convolu-
tion theorem, it is known that convolution in the time-domain
is equivalent to point-wise frequency-domain multiplication,
which can be written as follows for the filtering of a white noise
signal with an FIR filter [38]:

y = RnoiseRfiltere
j(θnoise+θfilter), (2)

with R and θ representing the magnitude and phase respectively
resulting from the FFT. Since white noise ideally has a flat

magnitude response, they set it to unity Rnoise = 1, and since the
phase of the noise signal, θnoise, already randomises the phase
of the operation (θnoise + θfilter), they replace it with a random
phase, obtaining the final expression [38]:

y = Rfiltere
j(θrandom), (3)

where θrandom is formed by uniformly distributed random values
drawn from a [−π, π] interval and having its first and last values
(DC and Nyquist frequencies, respectively) set to 0 [38]. Since
the FFT exhibits Hermitian symmetry for real-valued data, the
values beyond the Nyquist frequency (the negative frequency
values) are just the complex conjugate of the positive ones
mirrored from the Nyquist frequency, excluding the Nyquist and
DC elements. Therefore, θrandom is defined as follows:

θrandom = (0, r1, r2, . . . , rn, 0,−rn,−rn−1, . . . ,−r1) (4)

where r are the uniformly distributed random values drawn
from a [−π, π] interval, and −r their mirrored (i.e., reversed)
elements [38].

Finally, by taking the inverse FFT of (3), the “loopable”
noise band is created due to the resulting circular convolution
operation described above:

y = IFFT
(
Rfiltere

j(θrandom)
)

(5)

Thus, the M noise bands are built as follow:

Y =

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yM

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

IFFT
(
Rfilter1e

j(θrandom)
)

IFFT
(
Rfilter2e

j(θrandom)
)

...

IFFT
(
RfilterM ej(θrandom)

)

⎤
⎥⎥⎥⎥⎦

(6)

Using our proposed configuration, each of the noise bands have
a length of 131072 samples, corresponding to ≈ 3 seconds of
audio at 44.1 kHz. We also enforce a deterministic behaviour
by setting the same random seed each time a noise band is
generated. This is done to 1) maintain coherence each time noise
bands are built (i.e., the noise bands used during training and
inference will be identical) and 2) being able to share the same
noise band instances across multiple models, granting they have
the same filterbank configuration. Also, since the amplitude of
each the resulting noise bands may be very small, due to the
narrow portion of the frequency spectrum they focus on, we find
the maximum amplitude value Amax across all the noise bands
that comprise the filterbank, and divide all the bands by thisAmax

value, effectively scaling their amplitudes up to what we found
to be a reasonable level. While this leads to neither homogeneous
amplitude distribution across bands, nor a normalised amplitude
(i.e., in the range [−1, 1]), when all the bands are summed
together without further intervention, the scale of the individual
noise bands will be handled by the time-varying amplitude
predicted by the model (see Section III-C).

Thus, by using the method proposed in [38], we generate
deterministic and loopable noise bands that only need to be
computed once and can be extended arbitrarily in time by just
concatenating them along their x-axis. An example of this is
depicted in Fig. 3, where two instances of the same noise band
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Fig. 3. Loopable noise bands. Two instances of the same noise band are
concatenated along their x-axis. The top figure shows the waveform of both
noise bands, one after the other, each one with a distinctive colour. The bottom
figure shows the detail of the point where the end of the first noise band instance
meets the start of the second one. Notice how, thanks to circular convolution,
the start and the end of the segments are “joined up.”

are concatenated, one after the other. Conceptually, each of
those noise bands could be somewhat seen as a wavetable. A
wavetable is defined as a block of memory (i.e., a “table”) where
a discretised signal is stored [39] and, while they are usually
employed to store a single period of a waveform, a loopable
noise band may be regarded as a period – as it can be looped –
of the portion of the frequency spectrum it captures.

C. Architecture

NoiseBandNet, depicted in Fig. 4, is built upon the original
DDSP architecture [7], but replacing their harmonic-plus-noise
synthesiser with a filterbank structure. As in DDSP, the internal
sampling rate of the model is a fraction of the target dataset
sampling rate Fs. To obtain a good time resolution, and as in [2],
we select a synthesis window size W of 32 samples, granting
the model an internal sampling rate of Fs/W , thus producing
an amplitude value every W samples. Greater W values will
lead to poorer time resolution but less computational burden,
and vice-versa.

The inputs to the neural network component of NoiseBandNet
are the control parameters, which in the Fig. 4 are loudness
and spectral centroid extracted from the training data. These
control parameters may be different depending on the control
scheme, such as only loudness, or other user-defined controls.
Independently of the control scheme, and to synchronise the
control parameters to the training data (i.e., to have a 1 : 1
mapping between the control parameters and the samples in
the target audio), originally the control parameters will have the
same length as the dataset waveforms, interpolating them to this
length if needed. Before passing the control parameter vectors to
the network, we resample them according to Fs/W , the internal
sampling rate of our model.

Similar to [7], the control vectors are passed through a time-
distributed multi-layer perceptron (MLP) block (one per control

parameter vector and in parallel, as depicted in Fig. 4) and a gated
recurrent unit (GRU) [40]. The output of the GRU is passed
through a series of time-distributed MLP blocks leading to
final time-distributed dense layer which outputs the the M -band
time-varying amplitudes (each one of them corresponding to
each of the noise bands), with a sampling rate of Fs/W . As
in [7], to avoid negative amplitude values we scale the resulting
amplitudes using a modified sigmoid activation function, in our
case:

y = 2.0 · sigmoid(x)ln(10) + 10−18 (7)

Then, to bring them to audio rate Fs, we upsample these am-
plitudes by a factor of W using linear interpolation. We then
multiply the amplitudes by the noise bands in the time-domain.
To clarify, while it would be possible to multiply the amplitudes
by the noise bands directly by downsampling the latter to a Fs/W
sampling rate, and upsampling the resulting operation to audio
rate Fs afterwards, this could introduce artifacts derived from
the resampling operation. Therefore we opt to upsample the
amplitudes first, to multiply them with the noise bands in the
time-domain. Lastly, we sum all the M noise bands together to
produce the final output audio:

y =
M∑
i=1

Ai · bandi, (8)

where Ai and band i are the i th predicted upsampled amplitude
and noise band respectively.

Unless stated otherwise, we model mono audio with a sam-
pling rate Fs of 44.1 kHz.

D. Training and Inference

We train the network on batches of audio chunks of length
Lchunk. We concatenate all the training waveforms along the time
dimension and select random chunks of lengthLchunk from them.
This avoids the network memorising predicted amplitude values
to the position of the training examples with respect of time,
and so increases its generalisation capabilities when generating
longer sequences (especially important when training with small
datasets or one-shots). If the training dataset is comprised of a
very short (Ldataset < Lchunk) training example, we simply repeat
it along the x-axis until Ldataset ≥ Lchunk. As the control parame-
ters have the same length as the audio, we select the same chunk
and resample it to Fs/W before passing them to the network.
Note, we do not use any data augmentation techniques during
training. Instead, we train solely on the audio data provided by
the user, in conjunction with their intended control vectors.

Likewise, it is possible that the length of the training chunks
Lchunk may be smaller than the length of the noise bands Lbands.
To prevent the network being exposed to noise band portions
never seen during training, we “roll” the noise bands along
their x-axis at each training step, to a randomised integer shift
drawn from a uniformly distributed random value in [0, Lbands],
achieving the use of a different, randomised portion of the noise
bands at each training step. During training, we compare the
output audio against the target audio using a multi-resolution
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Fig. 4. Overview of the NoiseBandNet architecture and training process. In this case, loudness and spectral centroid features are extracted from the training audio
and passed to the network, which predicts an M -band matrix of time-varying amplitudes at an Fs sampling rate divided by a synthesis window size W . Depending
on the control scheme, these features or control parameters may be different (e.g., only loudness, or user-provided control parameters). The predicted amplitudes are
upsampled using linear interpolation by a factor of W to match the audio length, and multiplied by the M noise bands. The output audio is generated by summing
all the bands together. Finally, the model is optimised by comparing the resulting sound against the target audio using a multi-resolution STFT (MRSTFT) loss.

STFT (MRSTFT) loss [41], with the aim of reconstructing the
input audio for the given control parameters.

Once trained, the model needs only control parameter vectors
of arbitrary length Lcontrol to produce an output of Lcontrol ·W
length in samples. Due to the nature of the architecture, this
output is deterministic (i.e., the model produces the same output
amplitudes for the same control parameter input). However, in
practice, the output audio resulting from multiplying the noise
bands by the same predicted amplitudes may be slightly different
since, as described above, we randomise the start of the noise
bands by a [0, Lbands]-shift, and their energy is not constant over
their length (refer to Fig. 3, where the amplitude of the band
fluctuates over time).

IV. RECONSTRUCTION

First, we evaluate NoiseBandNet by comparing its recon-
struction capabilities to different configurations of the original
DDSP time-varying FIR noise synthesiser [7]. Their synthesiser
produces an output by convolving white noise frame-by-frame
with an FIR filter predicted by the network, then overlap-adding
the frames. As in [7], we do not model the FIR filters’ impulse
responses directly, but their magnitudes.

A. Experiments

To evaluate the reconstruction capabilities of the systems, we
select five sound effect categories relevant to video games, which
exhibit both broad and narrow spectral components and a wide
range of amplitude envelopes [4], [15]:
� Footsteps (≈4.4 seconds): Footsteps on a metallic stair-

case.
� Thunderstorm (≈14.0 seconds): Rain and close thunder

sounds.
� Pottery (≈95.0 seconds): Breaking and scrapping pottery

shards.
� Knocking (≈11.0 seconds): Knocking sound effects with

different intensities and emotional intentions.
� Metal (≈19.0 seconds): Hitting and scrapping metal bars.

We source all the training sound effects from the Freesound
website [42], except for the knocking sound effects, where we
use an excerpt of the dataset provided by [15].

We choose loudness and spectral centroid to evaluate the
reconstruction capabilities of the systems, as they are related
to the original DDSP loudness and pitch control vectors, but
without the constraint of being harmonically-oriented. To extract
the loudness and the spectral centroid, we use an FFT size of
128 and 512 respectively, both with 75% overlap. For each
sound category, we normalise each of the features to a [0,1]
range. Note this is dataset-dependent: we do not normalise the
control parameters using their their full range (e.g., [0,Fs/2] in
the spectral centroid case), but using the maximum and mini-
mum values computed across a particular dataset. This prevents
feature values being localised to a small portion of the [0, 1]
interval for certain sounds (e.g., quieter sound categories would
have many loudness values near 0).

We train a NoiseBandNet model for each of the sound cate-
gories using a hidden size of 128 for all layers, an M = 2048-
band filterbank, and a synthesis window W of 32 samples,
following the same design described in Section III. We train
all models for 10000 epochs using a learning rate of 0.001,
batch size of 16, an audio chunk size of 65536 samples, Adam
optimiser, and an MRSTFT loss [41] (with FFT sizes for the
MRSTFT of 8192, 4096, 2048, 1024, 512, 128, 32, 75% over-
lap, and window lengths of the same size as the FFTs), em-
ploying the auraloss implementation [43].

Using an NVIDIA Tesla V100, the training process takes
≈45 min for all models, except for the pottery model, which
takes ≈180 min. Once trained, the saved model weights have
a size of ≈1.8 MB, with each model having a total of 464 K
parameters. During inference, the time required to synthesise a
single batch signal with an output length of 1322976 samples
(around 30 seconds of audio at 44.1 kHz) is of 529.5± 2.4
(mean ± sd) milliseconds on a consumer GPU (NVIDIA GTX
1060), and 13.4± 0.3 (mean ± sd) seconds on a consumer CPU
(AMD Ryzen 5 1600), measured on a 100-run test.

We evaluate NoiseBandNet resynthesis capabilities against
four variants of the original DDSP model filtered noise syn-
thesiser [7], with a configuration of FIR filter taps of 256
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TABLE I
MRSTFT LOSS (MEAN ± SD) AND FAD RESULTS FOR THE RECONSTRUCTION TASK ON SEVERAL SOUND CATEGORIES COMPARING THE DDSP FIR NOISE

SYNTHESISER USING DIFFERENT CONFIGURATIONS AGAINST NOISEBANDNET

(DDSP256 taps), 512 (DDSP512 taps), 1024 (DDSP1024 taps) and
4096 (DDSP4096 taps). We use a hop size of 32 samples for all
of the models. While such hop size is small for some models
compared to a more standard 75% overlap, we use this value
to 1) compare NoiseBandNet and DDSP using a configuration
that is as close as possible for all systems, and 2) demonstrate
that a smaller hop size does not necessarily improve the time
resolution for the DDSP time-varying FIR noise synthesiser
(refer to Fig. 1). We use a hidden size of 128 for all of the
models and a single input MLP per input feature, as in Noise-
BandNet (see Fig. 4). We employ the DDSP noise synthesiser
Pytorch implementation found in [44],2 do not model reverb,
and use the same training configuration and loss function as the
NoiseBandNet models.

B. Results

We use two objective metrics to assess all five models’ re-
construction fidelities. First, the MRSTFT loss described above,
measured from 19 different values at training time as models
converged near their final epochs, to compensate for small pos-
sible fluctuations occurring during training. Second, the Fréchet
Audio Distance (FAD) [45], a quality metric that correlates to
human listeners better than spectral distances.3 MRSTFT loss
and FAD results are reported in Table I.

A two-way ANOVA on the MRSTFT loss data with fac-
tors for model (five levels, of NoiseBandNet and the four
variants of the original DDSP model) and sound effect (five
levels of footsteps, thunderstorm, pottery sounds, knocking
sound effects and metal sounds) reveals a significant interac-
tion (F (16, 450) = 193, p < .001), as well as significant main
effects of model (F (4, 450) = 2128, p < .001) and sound ef-
fect (F (4, 450) = 1217, p < .001), suggesting that the type of
model drives differences in loss, so does the type of sound effect,
and that certain combinations of model and sound effect lead to
either particularly low or high loss values.

An analysis of multiple pairwise comparisons (Tukey’s Hon-
est Significant Difference method) was conducted to investi-
gate which pairings of groups differ. We found that Noise-
BandNet significantly outperforms DDSP256 taps (mean diff =
0.234, p < .001), DDSP512 taps (mean diff = 0.189, p < .001),
DDSP1024 taps (mean diff = 0.164, p < .001) and DDSP4096 taps

(mean diff = 0.150, p < .001). Thus, NoiseBandNet obtains
significantly better MRSTFT reconstruction values compared
to the variants of the original DDSP noise synthesiser. In terms

2https://github.com/YatingMusic/ddsp-singing-vocoders
3https://github.com/gudgud96/frechet-audio-distance

of the DDSP model variants’ performance across the different
sound effect categories, they were most effective for footsteps,
then knocking, pottery, and thunder, with relatively small dif-
ferences in performance between variants. This was in contrast
to the metal category, where DDSP variants displayed relatively
large differences in performance.

The FAD results follow a very similar pattern to those for
MRSTFT, but we note the exception that DDSP512 taps performs
better than NoiseBandNet in terms of FAD for the pottery sound
effect category. This discrepancy may be caused by the small
size of our datasets, which negatively affects the accuracy of the
metric [45].

V. CREATIVE USES

As a second evaluative perspective, in this section we high-
light some potential creative uses to which NoiseBandNet can
be put. We encourage readers to listen to the audio examples,
which can be found at the project website.4

A. Amplitude Randomisation

Given that NoiseBandNet uses DSP components at its core
to produce audio, we can exploit their inherent biases to further
alter the output signal. As outlined in Section III-D, the output
amplitudes of the model using the proposed architecture are
deterministic. Here, as an example, we present two strategies to
generate variations from the predicted time-varying amplitudes.
This may be especially relevant to game audio, where it is
common to use multiple audio clips to sound design the same
in-game interaction in order to avoid repetition [46].

First, we propose to randomise the top k amplitudes kamp

within a desired frame length Lframe (i.e., we randomise the
output amplitudes each Lframe amplitude values). To achieve
this, first we select the frame length Lframe and split the output
amplitudes to non-overlapping frames of that length. Note we
split these frames before performing the linear interpolation
operation that upsample the amplitude values to audio rate.
Then, we find the desired top amplitudes kamp on each frame
by summing the amplitude values for each of the bands on
that frame across the time-axis and selecting the greatest k
values. After that, we apply a randomised amplitude modifier
in a user-defined range of [multmin,multmax] by multiplying the
amplitude values in that frame by it, scaling them up or down.
Since all amplitudes still need to be interpolated to audio rate, the
transition between their values is smoothed. We also found that
if we compute a different amplitude randomisation for the same

4https://adrianbarahonarios.com/noisebandnet/

https://github.com/YatingMusic/ddsp-singing-vocoders
https://github.com/gudgud96/frechet-audio-distance
https://adrianbarahonarios.com/noisebandnet/
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Fig. 5. Log-magnitude spectrograms from the result of the different ran-
domisation schemes. The left column represents a non-randomised (just recon-
structed) sound: a metal impact. The second and third columns show two exam-
ples of the resulting randomised sound. In the first row we employ the top k ran-
domisation scheme using Lframe = 430 (3 frames), k = 100 and a randomised
multiplier in a [0.0, 1.0] range. The second row depicts the frequency shift
randomisation scheme with Lframe = 645 (2 frames), finit = 30 and fshift = 3.
The third row shows both randomisation combined, using Lframe = 645 (2
frames), k = 100, a [0.0, 1.0] multiplier, finit = 30 and fshift = 3.

amplitude output, we can generate stereo sequences by panning
them left and right as the resulting signal, with the variation
introduced by the band shift explained in Section III-D being
slightly different for relatively small [multmin,multmax] values.

Second, we propose another strategy to perform frame-wise
pitch-shift on the output amplitudes. Again, we select a de-
sired frame length Lframe and split the output amplitudes into
non-overlapping frames of before the linear interpolation op-
eration. Within that frame, we “roll” all the amplitude values
to a randomised integer value [−fshift, fshift] on their band-axis,
effectively transposing the bands from one amplitude to another.
We take into account the previous fshift values to compute the
current shift, implementing a process somewhat similar to a
random walk. We also allow for an initial frequency shift finit

that rolls all the amplitude values in a randomised [−finit, finit]
range, effectively transposing the entire sound. Likewise, the
subsequent linear interpolation operation to audio rate will pro-
vide a relatively smooth transition between shifts.

An example of both schemes is depicted in Fig. 5, showing
the top k randomisation in the first row, the frequency shift ran-
domisation in the second row and both randomisation schemes
applied together in the third row.

B. Loudness Transfer

In [7] they were capable of performing timbre transfer (i.e.,
transferring the pitch and loudness of an incoming audio to the

instrument the model is trained on) using just 13 minutes of
expressive solo violin performances. However, unlike harmonic
sounds that are constrained by a discretised and well-defined
pitch, in Section IV-A we use spectral centroid as an alternative
control vector for inharmonic sounds (such as in most sound
effects), thus introducing a higher degree of freedom to the
control parameters. Considering the deterministic nature of the
output amplitudes from the model, and since obtaining enough
expressive data to represent all possible loudness and spectral
centroid and interactions may be challenging in the context of
sound effects, here we employ a control scheme that only relies
on one of the features: loudness. Our aim is to transfer the
relative loudness envelope of one sound to another, training
our network on the latter and using the extracted loudness
envelope of the former during inference. This is possible due to
loudness being mathematically defined (i.e., it can be extracted
programmatically) and normalised to a [0,1] range relative to
the training and inference data, as described in Section IV-A,
covering the full loudness range regardless of the training data.

To demonstrate the loudness transfer capabilities of the model,
we follow the same training procedure as in Section IV-A,
but using loudness as the only control parameter. We train
three different models on the following short sounds: a metal
impact (≈1.0 s), the Wilhelm scream (≈1.2 seconds), and an
electric drill sound (≈3.4 seconds). Due to having a single
control parameter and therefore a single input MLP, the trained
models are slightly smaller than the ones trained on two control
parameters. More specifically, they have a total of ≈414 K
parameters (as opposed to 464 K) and their weights are of size
≈1.6 MB (as opposed to≈1.8MB). For reference, the MRSTFT
reconstruction loss for the different models is 1.04± 0.01 for the
metal impact model, 1.09± 0.01 for the Wilhelm scream model
and 1.17± 0.01 for the drill model using the same objective as
in Section IV-A.

We then choose another three sounds to transfer their loudness
envelope to all the trained models: a rhythmic beatbox sound,
scribbling using a pencil onto paper sounds, and a squeaky toy
sound effect. We collect all the training and inference sound
effects from the Freesound website [42]. The loudness transfer
is performed by simply extracting the loudness from the target
sounds (beatbox, scribbling and drill in our examples) com-
puting it using the same procedure described in Section IV-A
(including normalising it to a [0,1] range), and using the resulting
vector (interpolated accordingly to the internal Fs/W sampling
rate) as the input to the trained models (metal impact, Wilhelm
scream, and electric drill). We choose a 219 sample length
excerpt from the target sounds (≈ 12s at 44.1 kHz) and apply
the operation described above.

While both the loudness of the target and trained models
sounds are normalised to a [0,1] range, it may happen that most
(or the most perceptually relevant) of their values are clustered in
a narrower interval, and outliers distort it. To solve this potential
issue, and to allow for a finer control over the output of the model,
we apply a user-defined scale modifier to the loudness values.
In our experiments, we applied the following modifiers to the
input loudness values of the sounds depicted in Fig. 6: for metal
impact, +0.1 on beatbox, −0.1 on scribbling, −0.1 on squeaky
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Fig. 6. Waveforms (top) and log-magnitude spectrograms (bottom) pairs resulting from the loudness transfer experiments. The extracted loudness of each sound
is represented in black, superimposed on the waveforms in a [0,1] range. The first row depicts the three sounds used to train each of the models: a metal impact, the
Wilhelm scream, and an electrical drill sound effect. The first column contains the sounds used for transferring their loudness envelopes. Starting from the second
row, the second, third, and fourth columns contain the loudness transfer results for the different sound combinations.

toy; for Wilhelm scream,+0.3 on beatbox,+0.15 on scribbling,
no modification on squeaky toy; for electric drill, +0.25 on
beatbox, no modification in scribbling, −0.1 on squeaky toy.

The results from the experiments are depicted in Fig. 6. It can
be discerned how the target loudness envelope, depicted in the
first column, is transferred successfully to the trained models,
depicted in the second, third, and fourth columns, starting from
the second row. It is also noticeable how the frequency content
of the resulting transferred sounds is time-varying, changing
over time depending on the input control parameter. To further
assess the success of the loudness transfer operation, we compute
the Pearson correlation coefficient of the input loudness used
to condition the network and the loudness extracted from the

TABLE II
PEARSON CORRELATION COEFFICIENT RESULTS OF THE LOUDNESS TRANSFER

OPERATION FOR THE DIFFERENT SOUNDS CONSIDERED

generated audio. The results are shown in Table II. There is a
strong correlation between each of the pairs (i.e., close to 1),
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Fig. 7. Graphical user interface used to manually label the data. The image
depicts the waveform (top) and the magnitude spectrogram (bottom) of an
electric drill sound. The cyan line on top of the spectrogram is the hand-annotated
control curve.

indicating a positive relationship between them, thus suggesting
that the extracted loudness from the generated audio follows the
input loudness closely.

C. Training/Synthesis With User-Defined Control Parameters

Since loudness (or spectral centroid) curves may be challeng-
ing to control and interpret from a user-perspective, or may not
be adequate for the potential use cases of a particular model,
here we explore training on user-provided control parameters,
taking inspiration from the Wwise audio middleware Real-Time
Parameter Controls (RTPCs).5 RTPCs can be used to attach
in-game parameters (e.g., speed of a car) to sound properties
(e.g., pitch of the engine), linking game events to sound control
curves. We anticipate a scenario in which a sound designer may
wish to draw control curves over audio files during training and,
once trained, draw new control curves to guide/shape the output
of the model.

To this end, we design a graphical user interface to manually
label the data based on potential control curves. The tool is
depicted in Fig. 7, containing a waveform of the sound to be
modelled at the top and its spectrogram at the bottom. By click-
ing on top of the spectrogram, a user can manually draw their
preferred control curve. Once drawn, this curve is normalised
to [0,1], in preparation for use with the model. We choose the
same three sounds used in Section V-B and envisage a user
with the following in mind regarding their control curves: for
metal impact, the curve might control impact force; for the
Wilhelm scream, the curve might control scream intensity; for
the electric drill, the curve might control drill power. We then
train the three models with those hand-drawn control curves
as their single input control parameter. For reference, in this
case the MRSTFT reconstruction loss for the different models
is of 1.05± 0.01 for the metal impact model, 1.01± 0.01 for
the Wilhelm scream model and 1.23± 0.01 for the drill model,
using the same objective and configuration as in Section IV-A.

To control the synthesiser, we provide a corresponding UI
tool for drawing the inference control parameters. It functions
exactly as the tool depicted in Fig. 7, but now the user has

5https://www.audiokinetic.com/en/library/edge/?source=SDK&id=
concept_rtpc.html

a blank canvas to draw their desired control curve for driving
the synthesiser. We draw three hand-crafted curves per model
with a length of 214 each (second, third, and fourth columns
of Fig. 8). Since we upsample the output amplitudes to audio
rate interpolating them by a factor defined by the synthesis
window size W = 32, the output signal length is of 214 · 32 =
524288 samples or ≈12 seconds at 44.1 kHz. The results of the
experiments are depicted in Fig. 8. The first column contains
the original sounds along their user-defined control curves used
during training, represented in black on top of the waveforms.
The subsequent columns are the synthesised sounds resulting
from using the new user-defined inference curves, depicted also
in black on top of their waveforms. For each sound category, it
can be seen that the resulting audio is broadly consistent with
the intended control curve.

VI. DISCUSSION

How high-fidelity sound effects can be generated 1) automat-
ically or 2) with dynamic or creative control where necessary or
desired – all without compromising the quality or plausibility
of the output audio – is a topic of interest to the fields of
sound design and game audio [4], [46], psychoacoustics [36],
and extended reality [3]. DDSP methods have shown promise
in recent years, at least where assumptions hold regarding the
harmonicity of the sounds being modeled [7]. Harmonic sounds
represent only a portion of sound effects, however, and so it
remained an open problem how to model and then synthesise
arbitrary sounds with acceptable time and frequency resolution,
and of arbitrary length.

The contribution of this paper is to address the modelling
and synthesis of arbitrary sounds, tackling both the problem of
reconstruction fidelity (see Section IV) and exploring some of
the creative uses (see Section V). Our solution is encapsulated
in a model called NoiseBandNet, an architecture capable of
synthesising continuous sound effects conditioned on high-level
parametric controls with consistently good time and frequency
resolution. We propose the use of filterbanks to shape white
noise, establishing a suitable approach towards modelling non-
musical or inharmonic sound effects using DDSP synthesisers.
NoiseBandNet is also lightweight and can be trained on very
limited data (≈1 s of audio), as shown in our experiments.
We also highlight the potential creative uses of the architecture
by generating sound variations, performing loudness transfer,
and training and synthesising audio with user-defined control
parameters.

We evaluated NoiseBandNet against four configurations of
the original DDSP filtered noise synthesiser [7], and found that
NoiseBandNet significantly outperforms all DDSP variants on
the task of resynthesising sounds from different categories, for
nine out of ten (sound category, evaluation metric) combinations
– the exception being for the metric of FAD on pottery sounds –.
In addition to overall better reconstruction capabilities compared
to the original DDSP noise synthesiser, our proposed filterbank
is not constrained by having its frequency response distributed
linearly, such as in the case of a time-varying FIR filter. Thus,
both the number of filters and their distribution across the

https://www.audiokinetic.com/en/library/edge/{?}source=SDK&id=concept_rtpc.html
https://www.audiokinetic.com/en/library/edge/{?}source=SDK&id=concept_rtpc.html
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Fig. 8. Waveforms (top) and log-magnitude spectrograms (bottom) pairs resulting from the training on user-defined control experiments. The training sounds are
depicted in the first column, with their user-defined training control parameters represented in black superimposed on the waveforms in a [0,1] range. The second,
third, and fourth columns contain the sounds generated by using user-defined inference curves for the three models, each one in a different row. The user-defined
inference control curves are also represented in black on top of the waveforms in a [0,1] range.

frequency spectrum is flexible and can be altered to accommo-
date other use cases.

Taking inspiration from current game audio workflows, we
also outlined the creative possibilities of NoiseBandNet through
a series of experiments, providing examples of amplitude ran-
domisation, automatic loudness transfer and training models
using user-defined controls. The code employed to generate
those sounds alongside the audio examples described throughout
the paper can be found in the accompanying material at the
project website.6

A. Limitations and Future Work

While we used a filterbank configuration with a higher
frequency resolution on the low end, broadly inspired by [2]

6https://adrianbarahonarios.com/noisebandnet/

and which provided satisfactory results on pilot experiments,
the design could be further improved by considering auditory
perception, for instance increasing the emphasis between 500
and 4000 Hz, where the sensitivity of frequency changes to
pure tones is higher [37]. Apart from the effect of the number
of filters and their distribution on synthesis quality, we also
plan to explore the use of alternative loss functions, such as
the differentiable joint time-frequency scattering (JTFS), used
recently in the context of audio classification with promising
results [47].

Since the proposed noise band structure is not tied to the
network architecture itself, for future work we aim to use noise
bands with other approaches. For instance, we could replace
the architecture with a more lightweight temporal convolution
network (TCN) [48], which has been successfully employed
to model audio effects [49] and in differentiable FM synthesis-
ers [25]. Another option may be using adversarial training [32] or

https://adrianbarahonarios.com/noisebandnet/


1584 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

a variational autoencoder (VAE) [50], [51], which opens up the
possibility of non-deterministic behaviour. NoiseBandNet could
also be applied to harmonic and musical signals, replacing the
original DDSP noise synthesiser, or potentially in combination
with it when sounds contain inharmonic partials (e.g., training
using an approach derived from [10]).

Despite the saved model weights being small in size (≈1.8 MB
and ≈1.6 MB for two and one control parameters, respectively),
the size of the noise bands is large (≈1 GB on disk for our
configuration), due to their the number and length. However,
as described in Section III-B, thanks to the deterministic nature
of the noise bands when using the same filterbank configuration,
a single instance can be used across multiple models, thus only
needing to create a single set of them. Nonetheless, to further
optimise the model size and alleviate the computational burden
involved in multiplying the output amplitudes from the model
with the noise bands in the time-domain, we plan to investigate
the use of neural audio codecs such as Encodec [52], and
multi-rate filterbanks and sub-band processing as in [2]. As we
reported in Section IV-A, the offline generation on a consumer
GPU is fast (≈529.5 milliseconds to generate 30 seconds of
audio), but it is much slower on CPU (≈13.4 seconds to generate
the same length). While more research needs to be conducted
to address these points, we hypothesise that a combination of
architectural changes (such as the use of TCNs), a more effi-
cient auditory-informed filterbank configuration, and the use of
neural audio codecs and sub-band processing as described above
may result in faster generation, which is especially relevant for
real-time synthesis in the context of game audio.

Regarding the automatic extraction of control parameters
from the audio, above (Section IV-A) we use loudness and
spectral centroid, computed using DSP methods. Other ap-
proaches, such as [27], develop highly engineered solutions to
extract control parameters from the target audio, such as engine
RPM in their case. It is desirable, however, to accommodate a
wider range of sounds and use cases. While a first approach
could be the use of sound event detection to extract similar
sounding clips from longer signals in data-scarce scenarios,
such as in [53], achieving the potential granularity required
to successfully label continuous data (e.g., drill power in our
examples) may be challenging. Another direction, inspired by
the recent proliferation of text-to-audio models such as [18],
[19], could be the generation short audio clips catered towards
being controlled by a model such as NoiseBandNet. For instance,
a text-to-audio model could be prompted to generate a drill sound
effect with a linearly increasing drill power, and the output audio
could be used as the input to NoiseBandNet alongside a linearly
increasing control parameter vector going from [0,1] (minimum
and maximum drill power values), granting the text-to-audio
model successfully renders a sound with those properties.

We acknowledge that while we present three different ex-
periments exploring the creative uses of the architecture, these
could be expanded and evaluated in a user study. Future work
will comprise carrying out a study with audio experts to evaluate
the creative possibilities of the model, and the plausibility of the
synthesised sounds. The study will also inform the amount and
type of data needed to satisfactorily accomplish a control task,
and the feasibility of training with multiple user-defined control

parameters (e.g., a weather audio model with both “rain and
thunder intensity” control curves). Since NoiseBandNet uses
DSP components (time-varying amplitudes applied to filters)
that audio experts are familiar with, we also plan to evaluate
and expand the randomisation schemes outlined in Section V-A.
Ultimately, we aim to understand how the model introduced
in this paper could affect the workflows of sound designers
and, more generally, audio experts in years to come when using
controllable neural audio synthesisers in the context of game
audio.
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