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Abstract—This paper presents an accented text-to-speech (TTS)
synthesis framework with limited training data. We study two as-
pects concerning accent rendering: phonetic (phoneme difference)
and prosodic (pitch pattern and phoneme duration) variations.
The proposed accented TTS framework consists of two models:
an accented front-end for grapheme-to-phoneme (G2P) conversion
and an accented acoustic model with integrated pitch and dura-
tion predictors for phoneme-to-Mel-spectrogram prediction. The
accented front-end directly models the phonetic variation, while the
accented acoustic model explicitly controls the prosodic variation.
Specifically, both models are first pre-trained on a large amount of
data, then only the accent-related layers are fine-tuned on a limited
amount of data for the target accent. In the experiments, speech
data of three English accents, i.e., General American English,
Irish English, and British English Received Pronunciation, are
used for pre-training. The pre-trained models are then fine-tuned
with Scottish and General Australian English accents, respectively.
Both objective and subjective evaluation results show that the
accented TTS front-end fine-tuned with a small accented phonetic
lexicon (5 k words) effectively handles the phonetic variation of
accents, while the accented TTS acoustic model fine-tuned with a
limited amount of accented speech data (approximately 3 minutes)
effectively improves the prosodic rendering including pitch and
duration. The overall accent modeling contributes to improved
speech quality and accent similarity.

Index Terms—Text-to-speech (TTS), accent, phonetic variation,
prosodic variation.
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I. INTRODUCTION

T EXT-TO-SPEECH (TTS) synthesis aims to synthesize
high-quality speech from the given text input. Traditional

TTS pipelines are based on statistical parametric modeling [1],
[2], [3], which involves multiple components in the training
phase. Recently, end-to-end (E2E) neural TTS systems [4], [5],
[6], [7], [8] achieve state-of-the-art performance, generating
human-like natural speech directly from text input. However, to
meet different customer requirements in real-world applications,
accented TTS is required for an improved user experience.
Accented TTS can help people with different accents or dialects
to express themselves authentically and also allow them to
use more natural and familiar sounds, improving their overall
communication experience. Another potential use case for ac-
cented TTS is the customization of generated voices to users’
accent preferences. This personalized service can increase user
engagement, satisfaction and adoption with customer service,
voice assistants and audiobooks. However, transcribing a large
amount of accented speech requires a lot of effort, and in prac-
tice, extensive recordings of accented speech from low-resource
languages are not always available. The problem of data scarcity
in accented speech makes it necessary to create an accented TTS
with limited data.

Unlike multi-speaker TTS [9], [10], [11] systems that produce
the voice of a target speaker by conditioning on an utterance-
level speaker representation, or emotional TTS [12], [13], [14]
systems that represent the specific emotion with an utterance-
level emotion embedding, an accent is characterized at different
levels of an utterance [15]. Therefore, it is challenging to pre-
serve the speaker identity and accent attributes simultaneously
in the generated speech from TTS, especially when the available
data for the target accent is limited. This study is motivated to
address such problems in accented TTS synthesis.

A foreign accent occurs when a native speaker of the first
language (L1) pronounces the second language (L2) due to
different linguistic systems between L1 and L2 [16], [17].
The pronunciation pattern of the segmental and suprasegmental
structures affects the perception of a foreign accent [18], [19].
The attributes of a foreign accent can be mainly categorized
into the variations of phoneme and prosody [19], both of which
are essential components of accent representation [20], [21].
Taking English as an example, the phonetic transcriptions of
lexical words vary from accent to accent. Such differences can
be described in two aspects [22]: (a) the difference between the
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phoneme sets, e.g., the vowel set /ax, ea, ia, ua, oh/ does not
appear in both British and American English accents; (b) the
difference between the phonetic transcriptions, e.g., the word
‘day’ is transcribed as /dei/ in the American accent, while /dæi/
in the Australian accent. On the other hand, prosody attributes
such as pitch [23] and duration are shown to be effective in accent
morphing [22]. In a study on Turkish [24], results suggest that
fundamental frequency (F0) and duration play a critical role
in the rendering of accents. Obvious differences are observed
between lexically accented and unaccented syllables with re-
spect to F0 peaks. In [25], [26], F0 and duration are selectively
transplanted to observe that the two prosodic cues significantly
affect accentedness.

To build an accented TTS system, the research problem is how
to effectively model the accent-specific phonetic and prosodic
patterns. In this work, we consider that an accent can be char-
acterized by three key attributes, namely, phonetic variation,
pitch pattern, and phoneme duration. We propose a framework
for accented TTS that consists of an accented front-end for
grapheme-to-phoneme (G2P) conversion and an accented acous-
tic model for phoneme-to-Mel-spectrogram prediction. We then
study ways to build an accented TTS system with a limited
amount of training data. In particular, we leverage the pre-trained
models to transfer the shared knowledge from the large-scale
general data to an accented TTS system.

In this paper, we propose an accented front-end to model the
accent-specific phonetic variation. The front-end [27] learns to
convert input text into a phonetic sequence in the target accent.
Meanwhile, we also integrate a pitch predictor and a duration
predictor into the acoustic model to modulate the F0 and
phoneme duration for accent rendering. In order to investigate
the respective effectiveness of lexicon and speech data on gen-
erating accented speech under the condition of limited data, the
proposed techniques are validated in two scenarios. In the first
scenario, we assume that we have only a small accented phonetic
lexicon and explore how to handle the phonetic variation in the
TTS front-end. In the second scenario, we further assume that we
not only have a small accented phonetic lexicon, but also a small
amount of accented speech data. With both limited lexicon and
speech data, we explore how prosodic variation can be modeled
alongside the phonetic variation. The main contributions of this
work are summarized below:
� We formulate the accent rendering problem by addressing

three key attributes of speech, namely, phonetic variation,
pitch pattern, and phoneme duration.

� We address the phonetic variation problem by fine-tuning
the TTS front-end with a small accented phonetic lexicon.

� We control the prosody of speech by incorporating F0 and
duration predictors in the TTS acoustic model, which can
be fine-tuned with limited accented speech data. The F0
and duration are further adopted as additional inputs to the
attention-based decoder.

The rest of the paper is organized as follows. In Section II,
we introduce the related work to set the stage of this study.
Our proposed method and framework are presented in Section
III. The experimental setup and result analysis are shown in
Section IV and V, respectively. Section VI concludes this paper.

II. RELATED WORK

A. Traditional Accented TTS Synthesis

Accented speech synthesis for various languages has been
investigated. In [28], [29], Indian accented speech synthesis is
studied with Festvox, a unit selection tool. Kolluru el at. [30]
propose a method to generate multi-accent pronunciations for
individual speaker by building a space of accents. They convert
the phoneme sequence in the canonical version to an accented
sequence via joint sequence model interpolation. The interpo-
lated weights as points specify the different accents within an
accent space. This method effectively changes the pronunciation
of phonemes across accents. However, the prosodic variation,
e.g., pitch and phoneme duration, of accent attributes is not
modeled explicitly.

Anumanchipalli et al. [31] present an intonation model that
automatically predicts the appropriate intonation contours from
text for a statistical parametric speech synthesis system. This
intonation model takes the accent group, a sequence of into-
nation events, as the modeling unit. This work reveals that the
unit of accent components, such as F0, has an extremely high
correlation with the linguistic pattern from text, which motivates
us to consider usingF0 to control the prosodic variation in accent
rendering.

B. Neural E2E Accented TTS Synthesis

With the advanced neural-network-based approaches,
Abeysinghe et al. [32] adopt the E2E TTS architecture for
accented speech generation. They pre-train a native TTS
model with an American speech corpus and then perform
fine-tuning with a non-native speech corpus. They visualize
and analyze the vowel space variation during the fine-tuning
stage and claim that the vowel space of voice generated from
the fine-tuned model is closer to the non-native speech than to
the native speech. Liu et al. [33] present a controllable accented
TTS framework. They propose an accent intensity modeling
method that quantifies the accent intensity for each sample and a
consistency constraint loss subject to the total TTS training loss.
Their results demonstrate the effectiveness of using intensity
control on accent rendering. Melechovsky et al. [34] propose
a controllable speech synthesis system based on a conditional
variational autoencoder. Their proposed method is capable of
generating a specific speaker’s voice with an arbitrary target
accent.

However, none of the above works address the phonetic vari-
ation of English accents, which is a significant aspect in accent
morphing. Moreover, prior studies typically rely on a large
amount of training data, which limits the scope of applications
with low-resource settings.

In this paper, we seek to model both phonetic and prosodic
variations in accented TTS with limited training data. To model
the prosodic information, Yasuda et al. [35] develop an E2E
Japanese speech synthesis system by capturing long-term de-
pendencies related to pitch accents from text encoder with an
additional self-attention layer. In addition, Yasuda et al. [36]
examine that the pre-trained PnG BERT can capture the
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Fig. 1. System diagram of a typical TTS synthesis pipeline. Mel refers to the
acoustic feature Mel-spectrogram, while Wav is the speech waveform.

information related to pitch accents for a Japanese TTS sys-
tem. They perform fine-tuning PnG BERT together with a TTS
system and a tone prediction task to force PnG BERT to enrich
the pitch accent information. Therefore, we consider controlling
prosodic information of accent rendering from the text encoder
and extending it to accented speech generation in limited data
scenarios.

III. METHODOLOGY

A TTS system is generally a pipeline of three components,
as shown in Fig. 1: front-end, acoustic model, and vocoder. The
front-end plays a crucial role in a TTS system to provide the
required phoneme-relevant linguistic knowledge [37], [38], [39].
We propose an accented TTS system that consists of an accented
front-end and an accented acoustic model. The accented front-
end model transcribes the text input into an accented phoneme
representation, that handles the accented phonetic variation. We
use one of the state-of-the-art E2E TTS systems, Tacotron 2 [5]
architecture, as the backbone of our accented acoustic model to
predict the Mel-spectrogram with rich accented representations.
The Parallel WaveGAN [40] is adopted as the neural vocoder
to generate the speech waveform in the time-domain from the
predicted Mel-spectrogram.

We study two scenarios on the accented TTS framework, a)
only a small accented phonetic lexicon is available for the target
accent. b) both a small accented phonetic lexicon and limited
accented speech samples are available for the target accent.

A. Accented TTS Framework

1) Accented Front-End: The Transformer-based model [41]
is well-known and effective for converting graphemes into
phonemes. However, it requires a large phonetic lexicon to build
a standard Transformer-based G2P model, which is unrealistic
for various English accents. It has been reported [42], [43] that
the performance of low-resource G2P models are improved by
transferring shared knowledge from pre-trained models. Thus,
we employ the technique of pre-training followed by fine-tuning
to build an accented front-end with a limited size of accented
phonetic lexicon.

Inspired by the studies in multi-lingual and multi-speaker
speech synthesis [44], [45], [46], we propose to pre-train a
multi-accent G2P model with multiple English phonetic lexicons
and fine-tune the accent-related layers with a small accented
phonetic lexicon for the target accent. A multi-accent G2P
approach is motivated by the idea of the multi-lingual G2P
model, where a G2P system is built to model multiple phonetic
systems. The former deals with accents, while the latter deals
with languages. An early study [47] takes the language identity
(ID) as an additional input for training a multi-lingual G2P

model. We use an accent ID instead to pre-train a multi-accent
G2P model in this work.

The left panel of Fig. 2 is the multi-accent front-end for
G2P conversion. Overall, the G2P model takes both an English
grapheme sequence and an accent ID as the input and generates
a phoneme sequence as the output. In practice, the grapheme
sequence is converted into a grapheme embedding sequence
via an embedding table. Considering the order of the input
and output sequence, the positional encoding [48] is combined
with the input of both the G2P encoder and the G2P decoder to
provide the positional information within a sequence. The G2P
encoder consists of a stack of 3 identical Transformer encoders.
Each Transformer encoder has a multi-head self-attention layer
and a fully connected feed-forward network. The G2P encoder
maps the grapheme embedding with the positional encoding to a
sequence of latent textual representations that is the same length
as the input grapheme sequence.

The G2P decoder consists of a stack of 3 identical Transformer
decoders. Each Transformer decoder has a masked multi-head
self-attention layer and a fully connected feed-forward network.
In the middle of these two sub-layers, there is a multi-head
attention layer to learn the alignment between the grapheme se-
quence and the phoneme sequence. The attention mechanism for
alignment prediction uses the output of the masked multi-head
self-attention module and attends to the sequential latent textual
representations from the G2P encoder. For each accent, we have
an accented phonetic lexicon. An English grapheme sequence
can have multiple phonetic transcriptions, one for each accent, as
the example shown in Section I. To control the accent variation
during training of the multi-accent G2P model, we use an accent
ID as an additional input to the decoder. The accent ID guides the
G2P model to generate the accented phoneme sequence from the
same accented lexicon. The phoneme sequence and the accent
ID are converted to the phoneme embedding and the accent
embedding, via two different embedding tables in the pre-net,
respectively. The accent embedding is a vector that applies to the
entire phoneme sequence. Specifically, the accent embedding
is duplicated at the phoneme-level and concatenated with the
phoneme embedding. The combination of phoneme embedding
and accent embedding is then passed to a linear projection layer
in the pre-net. The G2P decoder takes the encoded latent textual
representation and the output of the pre-net together with the
positional encoding to generate phonetic output embeddings
in an autoregressive manner, using the output phoneme of the
previous step as the input at the current step.

The embedding vectors from the decoder output are converted
to the discrete phoneme sequence by a linear projection layer
with a softmax function. The softmax function produces the
probability that the predicted phoneme belongs to each phoneme
class. At run-time, the phoneme class that has the highest prob-
ability is predicted. The G2P decoder works on the principle
of teacher-forcing. During training, it takes the ground truth
phoneme sequence as input, while at run-time, it takes the
predicted phoneme sequence as the contextual input.

The loss function for training the G2P model is defined as
the cross-entropy (CE) between the G2P output and the ground
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Fig. 2. Block diagram of the proposed accented TTS framework. The left panel is the accented front-end for G2P conversion, while the right panel is the
accented acoustic model for phoneme-to-Mel-spectrogram prediction. The phoneme bottleneck extracted from the G2P decoder output serves as the input of the
acoustic model encoder. The front-end and acoustic model are pre-trained and then fine-tuned individually. All modules shown in this figure are involved during
the pre-training stage. During the fine-tuning stage, only the parameters in the blue color modules are updated, while the other modules in the white color are fixed.
The speaker encoder and neural vocoder are omitted for simplicity.

truth phoneme sequence:

LossCE = −
N∑
i=1

log (p (xi|x̂i)) (1)

whereN is the number of total classes, and p(xi|x̂i) is the output
of the softmax function, i.e., the probability that the predicted
phoneme x̂i belongs to the corresponding phoneme label xi.

2) Accented Acoustic Model: The right panel of Fig. 2 is a
variant of TTS encoder-decoder acoustic model. In a standard
TTS system, an embedding table maps a phoneme to its embed-
ding vector in a continuous space. However, some phonemes
in one accent may not exist in another accent. To generalize an
accented front-end trained for one accent to another, we propose
to make use of the embedding vector from the G2P decoder
output, i.e., the phoneme bottleneck, instead of the discrete
phoneme ID as the input to the TTS acoustic model. In this
way, we hope to handle the pronunciation of unseen phonemes,
even when the speech training data for the target accent is not
available. This will be discussed in Section V-A.2).

To facilitate the fine-tuning with limited accented speech data
for the target accent, we propose to pre-train a multi-speaker TTS
acoustic model. The proposed acoustic model also follows the
strategy of pre-training and fine-tuning. It adopts the Tacotron 2
architecture, a data-driven model that represents the state-of-the-
art performance in TTS. However, Tacotron 2 does not explicitly
model the prosodic attributes of accents, e.g., pitch pattern and
phoneme duration. Therefore, we incorporate pitch and duration
predictors into the TTS acoustic model to enable the model to
predict accurate pitch and phoneme duration that are close to
ground truth.

As shown in Fig. 2, the TTS acoustic model takes phoneme
bottleneck features as input. The text encoder is composed of
3 convolutional neural networks (CNNs) and a bidirectional
long short-term memory (LSTM). The text encoder converts
phoneme bottleneck features into the sequential hidden phoneme
representation. We condition the multi-speaker TTS pre-training
on a d-vector-based speaker embedding, which represents the
speaker identity. Since the pitch pattern and phoneme duration
are also affected by the individual speaker, the speaker embed-
ding is added to the output of the text encoder before the pitch
and duration predictors. Phoneme modeling handled by the text
encoder is an essential part of accented speech representation.
Different from FastSpeech 2 [8], in this work, we adopt both
duration predictor and attention mechanism to provide more
accurate phoneme boundary with limited speech data, and the
pitch and duration predictors are incorporated with the text
encoder. The architectures of the pitch and duration predictors
are the same and consist of two 1D CNNs and a linear projection
layer. They use the combination of the output of the text encoder
and the speaker embedding to predict the F0 and duration at the
phoneme-level, respectively. The F0 and phoneme duration are
added with the TTS acoustic model via an embedding table and
a linear projection layer, respectively.

The decoder network takes the combination of text encoder
output, speaker embedding, F0, and phoneme duration to pre-
dict Mel-spectrogram and the stop token label. The location-
sensitive attention mechanism in the decoder learns the duration
alignment between the phoneme and the Mel-spectrogram.
There are two fully connected layers, two LSTM layers, and
two linear projection layers in the decoder to predict the
Mel-spectrogram and the stop token label in an autoregressive
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manner [5]. A post-net with the residual connection is used for
the Mel-spectrogram reconstruction.

In the training stage, the ground truth of the Mel-spectrogram,
F0, and phoneme duration are used in a teacher-forcing manner,
while the predicted ones are used at run-time. The stop token
loss function is defined as the binary cross-entropy, and the
mean squared error (MSE) is adopted as the loss function for
the prediction of Mel-spectrogram, F0, and phoneme duration:

LossMSE =
1

N

N∑
i=1

(xi − x̂i)
2 (2)

where N is the length of the sequence, xi and x̂i are the values
from the ground truth sequence and predicted one at the ith
element.

The total loss function of the proposed TTS acoustic model
is defined as:

LossTotal = αLossMel + βLossStop

+ γLossF0 + δLossDur (3)

where LossMel is the summarization of the Mel-spectrogram
reconstruction losses before and after the post-net.

B. Accented TTS Training With Limited Data

1) Only a Small Accented Phonetic Lexicon: We create an
accented front-end for the target accent to address the phonetic
variation problem with only a small target accented phonetic lex-
icon. Specifically, we fine-tune the accent-related layers of the
pre-trained multi-accent G2P model. The accent-related layers
are the layers related to phoneme generation. The fine-tuned
modules are drawn in blue, as shown in the Accented Front-End
model in Fig. 2.

In an early study [43], a low-resource G2P model with high
performance is built by fine-tuning only the phoneme embed-
ding table and the linear projection layer. Similarly, we use
the pre-trained model as initialization and freeze the grapheme
embedding table, G2P encoder, and G2P decoder modules,
which are shared for all accents during fine-tuning. In [43],
the phoneme embedding table and the linear projection layer
are re-initialized in the fine-tuning stage, because the phoneme
symbols are different in their pre-training and fine-tuning stages.
In contrast, we use the unified phoneme symbols for all accents
used in pre-training and fine-tuning stages. Therefore, instead
of the re-initialization, we fine-tune the following accent-related
layers based on their pre-trained parameters: the accent embed-
ding table and the phoneme embedding table in the pre-net, and
the linear projection layer after the G2P decoder. These modules
are fine-tuned so that the G2P model generates the phoneme
sequence of the target accented phonetic lexicon.

2) Both a Small Accented Phonetic Lexicon and Limited
Accented Speech Samples: Besides fine-tuning the pre-trained
G2P model, we further address the prosodic variation in the
generated accented speech by utilizing the limited accented
speech samples for the target accent. Specifically, we use the
pre-trained TTS acoustic model as initialization and fine-tune
the accent-related layers to modify the prosodic components.

As shown in Fig. 2, the fine-tuned modules of the Accented
Acoustic Model are drawn in blue color.

In a previous study [49], it has been reported that fine-tuning
the text encoder with limited speech data could degrade the TTS
performance due to the uneven distribution of linguistic infor-
mation. Therefore, we freeze the text encoder in the fine-tuning
stage. The attention layer and decoder aim to learn phoneme
alignment and Mel-spectrogram prediction. To reduce the gap
between the pre-trained acoustic model and the target accent,
we fine-tune the attention layer and decoder. Since the pitch
and duration predictors explicitly control the F0 and phoneme
duration of the generated speech, we fine-tune both predictors to
provide the information regarding the prosodic variation for the
target accent. In this way, the acoustic model is able to generate
accented speech with more accurate pitch and phoneme duration.
The generalization ability of the acoustic feature reconstruc-
tion of the post-net can be improved using a large number of
Mel-spectrogram in the pre-training stage. Thus, the pre-trained
post-net is fixed and shared for all accents in the fine-tuning
stage. All the loss functions in (3) are optimized in the fine-tuning
stage.

IV. EXPERIMENTAL SETUP

We conduct experiments to validate the effectiveness of the
proposed accented front-end model and accented acoustic model
on accent rendering. Both models are first pre-trained on a large
amount of data and then fine-tuned on limited accented data.

A. Accented Front-End

All phonetic lexicons involved are from the Unisyn Lexi-
con [50], which covers several accents of English with a unified
phoneme symbol inventory. If a word in a lexicon has multiple
phonetic transcriptions, we take the first one. We first pre-train
a multi-accent G2P model using accented phonetic lexicons
of General American English, Irish English, and British En-
glish Received Pronunciation with 56, 59, and 50 phonemes,
respectively. We then fine-tune the pre-trained G2P model sepa-
rately using accented phonetic lexicons of Scottish and General
Australian English with 61 and 51 phonemes, respectively. In
the fine-tuning stage, we vary the lexicon size of 1 k, 5 k,
10 k, and 40 k most frequent words, in addition to the full
lexicon size of about 120 k words to observe the effect. When
training the G2P model, the input is one utterance rather than
a single word as in [43]. The text transcripts are selected
from the LibriTTS [51] corpus. The utterances that are too
short or too long and the utterances with any out-of-vocabulary
word according to the phonetic lexicon are removed from the
dataset.

Two front-end models are implemented for comparison:
� SA-G2P: This is a pre-trained single-accent G2P model

trained only with General American English.
� MA-G2P: This is a pre-trained multi-accent G2P model

trained with multiple accented phonetic lexicons including
General American English, Irish English, and British En-
glish Received Pronunciation. The accent ID is used as an
additional input in the multi-accent G2P model.
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TABLE I
SUMMARY OF THE DATABASE USED FOR BUILDING THE ACCENTED

ACOUSTIC MODEL

The model architectures and network configurations of the
Transformer-based G2P model are shown in Table II. Each G2P
model is pre-trained for 100 epochs and fine-tuned for another
50 epochs for each experimental group. The model with the
lowest validation loss among pre-training epochs is used as the
initialization during the fine-tuning stage, and the model with
the lowest validation loss among fine-tuning epochs is used for
testing. The learning rate is 5e-4 and the batch size is 128 in
both pre-training and fine-tuning stages.

B. Accented Acoustic Model

We first pre-train a multi-speaker TTS acoustic model using
the subset of the CSTR_VCTK [52] speech corpus. To capture
the shared knowledge across accents, we pre-train the model
with speech data from multiple accents. We select the dataset
with the same accents as we pre-train the G2P model, i.e.,
the accents of General American English, Irish English, and
British English Received Pronunciation. Then, we fine-tune the
pre-trained acoustic model with a Scottish speaker’s data from
CMU_ARCTIC [53] corpus, and an Australian speaker’s data
generated by Google TTS API1, respectively. We randomly
select 50, 100, 200, and 300 utterances as the training data during
the fine-tuning stage. The details of the involved database are
summarized in Table I. All speech signals are down-sampled
to 16 k Hz and the silence at the beginning and end of each
utterance is trimmed. We use the logarithmic scale 80-dim
Mel-spectrogram as the acoustic feature that is extracted with
12.5 ms frame-shift and 50 ms frame length.

For the training of the phoneme-level pitch and duration
predictors, we obtain the phoneme boundary by applying force-
alignment using an automatic speech recognition (ASR) system.
As a generic ASR model does not work well across accents,
we train the accent-dependent ASR for force-alignment.2 The
phoneme duration is represented as the number of frames be-
longing to the same phoneme and transformed into a logarithmic
scale. The F0 is extracted using pyworld3 with 12.5 ms frame
shift. The linear interpolation method is adopted on the unvoiced
frames of F0. The frame-level F0 is down-sampled to the
phoneme-level according to the phoneme duration. Specifically,
we take the average of F0 values on the frames belonging to
the same phoneme. The phoneme-level F0 is then normalized
to have zero mean and unit variance over the speech data for

1[Online]. Available: https://cloud.google.com/text-to-speech
2[Online]. Available: https://montreal-forced-aligner.readthedocs.io/en/

latest
3[Online]. Available: https://pypi.org/project/pyworld

pre-training. The 256-dim speaker embedding is extracted from
a pre-trained speaker encoder. The speaker encoder is trained
with AISHELL-2 dataset [54], following [55].

The following six accented TTS systems are implemented for
comparison:
� Char-AM: This is a multi-speaker TTS acoustic model that

takes a character sequence as input.
� US_G2P-AM: This is an accented TTS framework that

consists of an American G2P model and a multi-speaker
TTS acoustic model. The American G2P model is part of
the pre-trained multi-accent G2P model conditioned on the
General American accent ID.

� SCOT_G2P-AM: This is an accented TTS framework that
consists of a Scottish G2P model and a multi-speaker TTS
acoustic model. The Scottish G2P model is the pre-trained
multi-accent G2P model fine-tuned with a Scottish pho-
netic lexicon of 5 k words.

� SCOT_G2P(PS)-AM: This is similar to SCOT_G2P-AM
except that the input for the TTS acoustic model is discrete
phoneme ID sequence from G2P output.

� AU_G2P-AM: This is similar to SCOT_G2P-AM except
that the G2P model is fine-tuned with a General Australian
phonetic lexicon of 5 k words.

� AU_G2P(PS)-AM: This is similar to SCOT_G2P(PS)-AM
except that the G2P model is fine-tuned with a General
Australian phonetic lexicon of 5 k words.

� SCOT_G2P-F0_Dur_AM: This is an accented TTS frame-
work that consists of a Scottish G2P model and a multi-
speaker TTS acoustic model with integrated pitch and
duration predictors. The Scottish G2P model is the pre-
trained multi-accent G2P model fine-tuned with a Scottish
phonetic lexicon of 5 k words.

� AU_G2P-F0_Dur_AM: This is similar to SCOT_G2P-
F0_Dur_AM except that the G2P model is fine-tuned with
a General Australian phonetic lexicon of 5 k words.

All G2P models and acoustic models involved are pre-trained.
In the following experiments, the TTS system followed with ‘-L’
denotes fine-tuning the G2P model with only a small accented
phonetic lexicon, with ‘-S’ denotes fine-tuning the acoustic
model with only limited accented speech data, and with ‘-LS’
denotes using both of them. If neither of these options is used,
it is a pre-trained system. Note that the TTS system with (PS)
takes the phoneme sequence as acoustic model input, otherwise
the phoneme bottleneck is taken as input to the text encoder.

The model architectures and network configurations of the
Tacotron 2-based acoustic model are summarized in Table II.
Each of the TTS acoustic models is pre-trained for 800 epochs
and fine-tuned for another 100 epochs for each experimental
group using Adam optimizer [56]. All weights α, β, γ, and δ in
(3) are set to 1. The learning rate is 1e-3 and 1e-4, and the batch
size is 32 and 8 for the pre-training stage and fine-tuning stage,
respectively.

C. Waveform Generation

We select Parallel WaveGAN [40] as the neural vocoder to re-
construct the time-domain speech waveform from the predicted

https://cloud.google.com/text-to-speech
https://montreal-forced-aligner.readthedocs.io/en/latest
https://montreal-forced-aligner.readthedocs.io/en/latest
https://pypi.org/project/pyworld
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TABLE II
SUMMARY OF MODEL ARCHITECTURES AND NETWORK CONFIGURATIONS FOR

THE PROPOSED ACCENTED TTS FRAMEWORK THAT CONSISTS OF AN

ACCENTED G2P MODEL AND AN ACCENTED TTS ACOUSTIC MODEL

Mel-spectrogram for all experiments owing to its capability of
generating high-quality speech waveform with a rapid speed. It
is pre-trained with the CSTR_VCTK [52] corpus, with the same
frame-shift and frame length as the TTS acoustic model.

V. EXPERIMENTAL ANALYSIS

We conduct both objective and subjective evaluations. In this
section, we report the experiments under two scenarios, a) only
a small accented phonetic lexicon is available. b) both a small
accented phonetic lexicon and limited accented speech samples
are available.

A. Only a Small Accented Phonetic Lexicon

In this scenario, we only fine-tune the pre-trained multi-accent
G2P model, while the pre-trained multi-speaker TTS acoustic

Fig. 3. Performance of both MA-G2P and SA-G2P fine-tuned with a Scottish
phonetic lexicon of difference sizes in terms of WER and PER. (i)–(v) indicate
the lexicon of 1 k, 5 k, 10 k, 40 k words and full lexicon size, respectively.
(a) WER (b) PER.

model is frozen. We evaluate the phonetic variation in the accent
rendering in terms of the accuracy of the output phoneme of
front-end model and the output speech of the complete system.

1) Objective Evaluation: We report the performance of the
G2P model in terms of phoneme error rate (PER) and word error
rate (WER). PER and WER indicate the Levenshtein distance
between the predicted sequence and reference at the phoneme
and word level, respectively. Lower PER and WER account
for more accurate predicted phoneme sequences. To evaluate
the phonetic variation of the output speech of TTS system, we
calculate the Kullback-Leibler divergence [57] (KLD) of pho-
netic posteriorgram between the generated speech and reference
speech to measure the phonetic distribution similarity. The lower
value suggests a better performance.

i) Accuracy of Accented Front-End: We compare two G2P
models: accented G2P by fine-tuning MA-G2P and that by fine-
tuning SA-G2P [43] on lexicons of different sizes. The results on
Scottish and Australian accents are illustrated in Figs. 3 and 4,
respectively, and show that the fine-tuned MA-G2P outperforms
the fine-tuned SA-G2P across all test cases. The results are also
consistent between Scottish and Australian accents.

It suggests that MA-G2P benefits from shared phonetic
knowledge across accents. It is also observed that the Scottish
G2P works better than the Australian counterpart, which can be
explained by the fact that Scottish English accent is closer to
Irish English and British English Received Pronunciation than
the Australian English accent.

As fine-tuning MA-G2P with a lexicon of 5 k words achieves
a reasonable performance (PER 0.25% and WER 0.90% on
Scottish accent, PER 0.46% and WER 1.46% on Australian
accent) that is comparable with full lexicon size (PER 0.16% and
WER 0.58% on Scottish accent, PER 0.33% and WER 1.08%
on Australian accent), we select the G2P fine-tuned with an
accented phonetic lexicon of 5 k words as our accented front-end
in the limited data scenario for all subsequent experiments.

ii) Phonetic Variation: We perform statistical analysis on
accented phonetic lexicons to understand the difference between
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Fig. 4. Performance of both MA-G2P and SA-G2P fine-tuned with a General
Australian phonetic lexicon of difference sizes in terms of WER and PER. (i)–(v)
indicate the lexicon of 1 k, 5 k, 10 k, 40 k words and full lexicon size, respectively.
(a) WER (b) PER.

TABLE III
COMPARISON OF PHONETIC TRANSCRIPTIONS BETWEEN SCOTTISH / GENERAL

AUSTRALIAN ACCENT AND GENERAL AMERICAN ACCENT

Scottish / General Australian accent and General American
accent. We count the percentage of the shared words whose
phonetic transcriptions are the same between two lexicons and
the accented words whose phonetic transcriptions are different
between two lexicons. We further analyze the accented words
in terms of vowel and consonant variations. Specifically, we
calculate the rate of vowel and consonant differences by the
Levenshtein distance on the accented words between two lex-
icons, respectively. As shown in Table III, the vowel variation
is more prominent than the consonant one. The same findings
have been reported in prior studies [22], [58] on accented speech
corpora.

We therefore evaluate accent rendering by focusing on the
vowels on the accented words. We select 191 accented words
with a total of 304 vowel variations from the test set on Scottish
accent. We extract the phonetic posteriorgram from a pre-trained
speaker-independent ASR acoustic model. The frame-level pos-
teriorgram is then down-sampled to the phoneme-level accord-
ing to the phoneme boundary obtained by force-alignment. We
calculate the KLD of the phoneme-level posteriorgram to com-
pare the vowel distribution similarity, as shown in Table IV. We
can observe that the generated speech from SCOT_G2P-AM-L
has a closer vowel distribution to reference speech than that
from US_G2P-AM on Scottish accent. We also observe that
both G2P-AM outperform Char-AM.

From the above observations, we could claim the following
two statements: (a) TTS system with phoneme input is more able
to model phonetic variation accurately than that with character

TABLE IV
KL DIVERGENCE (KLD) OF VOWEL DISTRIBUTION ON THE ACCENTED WORDS

FOR THREE COMPARATIVE TTS SYSTEMS ON SCOTTISH ACCENT

Fig. 5. AB test results for naturalness of accented TTS systems with different
input representations from G2P output, discrete phoneme ID versus the phoneme
bottleneck, on both Scottish and Australian accents with 95% confidence inter-
vals. (a) Scottish accent. (b) Australian accent.

input. (b) The pre-trained G2P fine-tuned with a small accented
phonetic lexicon effectively changes the phonetic variation of
output speech of TTS system.

2) Subjective Evaluation: The subjective evaluations are
conducted through listening tests by human subjects. 20 listeners
who are proficient in English participate in each experimental set
of the listening tests.4 We conduct AB preference test to evaluate
the speech quality in terms of naturalness, and XAB preference
test to assess the accent pronunciation similarity.

i) Speech Quality: In the AB test, participants are asked to
listen to the two compared samples and choose the better one
based on naturalness. Each listener listens to 12 samples in a
single experiment, i.e., a total of 24 (12 × 2 (# of accents) =
24) samples. The results are shown in Fig. 5. SCOT_G2P-AM-L
and AU_G2P-AM-L with phoneme bottleneck input are com-
pared with their systems with phoneme ID input. We clearly
observe that accented TTS system with continuous phoneme
representation as input synthesizes accented speech with better
speech quality than the system with discrete phoneme token as
input. The target accented phonemes from the fine-tuned G2P
contain the unseen phonemes compared to the accents used in
the pre-training phase. Since only a small lexicon is available,
for the acoustic model with discrete phoneme ID as input, the
pronunciation of the unseen phonemes degrades the speech
quality of the generated accented speech. Therefore, in this work
we use the phoneme bottleneck as input for our acoustic model.

ii) Accent Pronunciation Similarity: In the XAB test, we label
the accented words in each utterance in red color. The listeners
are required to only pay attention to the labeled accented words
and ignore other words. Each listener listens to the reference
speech first and then chooses a more similar pronunciation to
the reference speech from two different samples. Each listener
listens to 18 samples in a single experiment, thus in a total
of 36 (18 × 2 (# of accents) = 36) samples. As shown in

4All speech samples are available at: https://xuehao-marker.github.io/taslp_
G2P-TTS/

https://xuehao-marker.github.io/taslp_G2P-TTS/
https://xuehao-marker.github.io/taslp_G2P-TTS/
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Fig. 6. XAB test results for accent pronunciation similarity of accented TTS
systems with G2P pre-trained and fine-tuned with a small accented phonetic
lexicon on both Scottish and Australian accents with 95% confidence intervals.
(a) Scottish accent. (b) Australian accent.

Fig. 6, US_G2P-AM is compared with SCOT_G2P-AM-L to
show the effect of the accented G2P on Scottish accent. Also,
US_G2P-AM is compared with AU_G2P-AM-L on Australian
accent. It can be seen that the TTS system with fine-tuned
G2P significantly achieves better performance than that with
pre-trained US_G2P in terms of accent pronunciation similarity,
which is consistent on both Scottish and Australian accents. The
results strongly support the idea of accented G2P modeling on
addressing phonetic variation problem, that only depends on a
small accented phonetic lexicon of 5 k words without the need
for accented speech samples during training.

B. Both a Small Accented Phonetic Lexicon and Limited
Accented Speech Samples

After studying the effect of fine-tuning a pre-trained G2P
model with a small accented phonetic lexicon, we further fine-
tune the TTS acoustic model with a limited amount of accented
speech data, to study the impact of the prosodic variation on
accent rendering. We evaluate the performance on Scottish and
Australian accents in terms of pitch pattern, phoneme duration,
speech quality, and accent similarity. All experimental systems
are tested on the same 100 unseen utterances.

1) Objective Evaluation: We calculate the F0 root mean
squared error (RMSE), logarithmic scale F0 correlation coeffi-
cient [59], and unvoiced/voiced (U/V) error rate to evaluate the
pitch amplitude and trajectory trend similarity. We calculate the
frame disturbance [60] and phoneme duration RMSE to evaluate
the accuracy of the predicted duration. Dynamic time warping
(DTW) [61] is used to align the generated Mel-spectrogram and
the reference. To further demonstrate the effectiveness of pitch
and duration predictors on the fine-tuning with limited accented
speech data, we fine-tune the TTS acoustic model with 50, 100,
200, and 300 utterances, respectively. The average objective test
results are summarized in Table V.

i) Pitch: The F0 RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)
2 (4)

where N is the total number of frames, xi and x̂i are the F0
values from the reference speech and generated speech at the ith
frame. The lower F0 RMSE indicates the lower pitch amplitude
error. Instead of log F0 RMSE [62], we calculate the original

F0 RMSE over the both voiced frames between the aligned
generated speech and reference speech.

The log-scale F0 correlation coefficient is defined as:

C =

∑N
i=1 (yi − y)

(
ŷi − ŷ

)
√∑N

i=1 (yi − y)2
√∑N

i=1

(
ŷi − ŷ

)2
(5)

where y = 1
N

∑N
i=1 yi and ŷ = 1

N

∑N
i=1 ŷi, yi and ŷi are the

log-scale F0 values from the reference speech and generated
speech at the ith frame and N is the number of the calculation
frames. We calculate the correlation coefficient only on both
voiced frames of the F0 from aligned reference speech and
generated speech. The correlation coefficient value is between
the interval of [−1, 1] and the closer to 1 indicates the higher
pitch trajectory trend similarity.

We compare the U/V labels between the generated speech and
reference speech in terms of U/V error rate, which is the ratio
of the frame discrepancy count to the total number of frames. A
lower U/V error rate indicates a better pitch reconstruction.

In Table V, we make three observations, (a) All TTS systems
fine-tuned with accented speech data outperform those without.
This confirms the effectiveness of prosody modeling in the TTS
acoustic model. It also suggests that the unseen d-vector-based
speaker embedding is able to represent the speaker characteris-
tic, while it lacks accent-related prosodic information. (b) From
the four fine-tuning cases with different amounts of accented
speech data, we note that the pitch performance of all G2P-
AM-LS is better than that of Char-AM-S. This confirms the
contribution of the G2P model to prosodic rendering. (c) We are
glad to see that our proposed G2P-F0_Dur_AM-LS consistently
achieves the lowest F0 RMSE, the highest correlation, and the
lowest U/V error rate among the three compared systems in each
fine-tuning case. This observation strongly demonstrates that the
pitch predictor contributes to the more accurate pitch trajectory
in the generated speech with only limited speech data for the
target accent. The observations are consistent on both Scottish
and Australian test cases.

We further visualize the pitch (F0) contours generated by
the three comparative systems and the reference speech. The
F0 contours on one Scottish utterance are shown in Fig. 7. We
observe that the F0 contour of SCOT_G2P-F0_Dur_AM-LS is
consistently the most similar one to the reference F0 across
all systems, and collaborates the objective evaluation results in
Table V.

ii) Duration: The frame disturbance is defined as:

Disturbance =

√√√√ 1

N

N∑
i=1

(pt − p̂t)
2 (6)

where pt and p̂t are the aligned path between the reference
and generated speech at the ith frame, and N is the number
of the aligned frames. The lower disturbance value indicates the
smaller duration distortion between the reference speech and
generated speech.

The definition of phoneme duration RMSE is similar to (4),
except that xi and x̂i here are the phoneme duration of the
reference and generated speech for the ith phoneme andN is the
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TABLE V
OBJECTIVE EVALUATION RESULTS IN TERMS OF PITCH AND DURATION OF THE COMPARATIVE TTS SYSTEMS FINE-TUNED WITH DIFFERENT SIZES OF ACCENTED

SPEECH DATA ON SCOTTISH AND AUSTRALIAN ACCENTS

Fig. 7. F0 contours on one Scottish utterance of the text transcription “I just do appreciate it without being able to express my feelings”. They are extracted from
the reference speech and generated speech from three comparison systems fine-tuned with 300 accented utterances.

number of phonemes. A lower duration RMSE indicates better
phoneme duration reconstruction.

In the last two columns of Table V, we report the duration
evaluation results on Scottish and Australian accents. We ob-
serve the same as in the pitch evaluation. (a) The duration
reconstruction becomes more accurate when fine-tuning with
limited accented speech data. (b) The overall performance of the
three comparatively fine-tuned systems is ranked in a descending

order: G2P-F0_Dur_AM-LS, G2P-AM-LS, and Char-AM-S.
This observation is also consistent on Scottish and Australian
accents. The results further confirm the contribution of the
duration predictor to the duration reconstruction.

It is noted that the pitch and duration predictors highly rely
on the small amount of accented speech training data.

2) Subjective Evaluation: We evaluate the speech quality in
terms of naturalness by mean opinion score (MOS) [63] and
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Fig. 8. MOS test results for naturalness of Char-AM, SCOT_G2P-AM-L,
SCOT_G2P-F0_Dur_AM-L and Reference Speech on Scottish accent with 95%
confidence intervals. (a) Not fine-tuned with accented speech data. (b) Fine-tuned
with 50 utterances. (c) Fine-tuned with 300 utterances.

Fig. 9. MOS test results for naturalness of Char-AM, AU_G2P-AM-L,
AU_G2P-F0_Dur_AM-L and Reference Speech on Australian accent with 95%
confidence intervals. (a) Not fine-tuned with accented speech data. (b) Fine-tuned
with 50 utterances. (c) Fine-tuned with 300 utterances.

further conduct XAB preference test and best-worst scaling
(BWS) [64] test to assess the accent similarity.

i) Speech Quality: In the MOS test, the listeners are asked
to rate the speech naturalness of the provided samples on a 5-
point scale from 1 to 5. Each listener rates 24 samples in a
single experiment, thus in a total of 144 (24 × 3 (# of fine-
tuning cases) × 2 (# of accents) = 144) samples. We evaluate
the three comparative TTS systems and reference speech under
three different scenarios, (a) Not fine-tuned with accented speech
data, (b) Fine-tuned with 50 accented speech utterances, (c) Fine-
tuned with 300 accented speech utterances, on both Scottish and
Australian accents. The results are presented in Fig. 8 and Fig. 9,
respectively.

In Fig. 8, it is observed that SCOT_G2P-F0_Dur_AM-L
achieves the highest score in all three cases, followed by
SCOT_G2P-AM-L and Char-AM. This shows that phoneme in-
put, pitch, and duration predictors help to generate higher quality
and more natural speech. A similar conclusion can be drawn for
Australian accent from Fig. 9. However, we note that in Fig. 9(a),
the performance of AU_G2P-F0_Dur_AM-L is not obviously
better than that of Char-AM, and even AU_G2P-AM-L obtains
the slightly lower score than Char-AM. While in Fig. 8(a) the
performance of SCOT_G2P-AM-L is much better than that of
Char-AM. We suspect that the phoneme representation of the
Australian accent is more distinctive than the Scottish accent
when compared with the pre-training data of General American

Fig. 10. XAB test results for accent similarity of G2P-F0_Dur_AM-L and
G2P-F0_Dur_AM-LS on both Scottish and Australian accents with 95% confi-
dence intervals. (a) Scottish accent. (b) Australian accent.

Fig. 11. XAB test results for accent similarity of Char-AM-S and G2P-AM-
LS on both Scottish and Australian accents with 95% confidence intervals.
(a) Scottish accent. (b) Australian accent.

Fig. 12. XAB test results for accent similarity of G2P-AM-LS and
G2PF0_Dur_AM-LS on both Scottish and Australian accents with 95% con-
fidence intervals. (a) Scottish accent. (b) Australian accent.

English, Irish English, and British English Received Pronuncia-
tion. The unseen phonemes in Australian accent adversely affect
the speech quality and naturalness to some extent. This may be
also the reason that both G2P-AM-L in Fig. 8(a) achieve better
performance than those two in Fig. 9(a).

ii) Accent Similarity: In the both XAB preference and BWS
tests, all TTS systems with ‘-LS’ denote that the TTS acoustic
models are fine-tuned with 50 accented speech utterances.

In the XAB preference test, the listeners are asked to listen to
a reference speech first and then select the more similar sample
to the reference speech from two different samples according
to the accent similarity. Each listener listens to 18 samples
in a single experiment, thus in a total of 108 (18 × 3 (# of
comparison pairs) × 2 (# of accents) = 108) samples. The
results are shown in Figs. 10–12. In Fig. 10, it is apparent
that the fine-tuned G2P-F0_Dur_AM-LS significantly outper-
forms the G2P-F0_Dur_AM-L. This shows that fine-tuning TTS
acoustic model with limited accented speech data improves
the prosodic rendering of generated accented speech. Fig. 11
shows that the generated speech from TTS acoustic model
with correct phoneme representation input has higher accent
similarity than that with character input. This demonstrates that
the phoneme-based encoder extracts the prosody-related textual
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TABLE VI
BWS TEST RESULTS FOR ACCENT SIMILARITY OF THE FOUR COMPARISON

SYSTEMS ON BOTH SCOTTISH AND AUSTRALIAN ACCENTS

information well, compared with the character-based encoder.
In Fig. 12, we are glad to see that after involving pitch and
duration predictors into the TTS acoustic model, there is an
obvious improvement in the perception of accent similarity in
the generated speech. This strongly shows the effectiveness of
the integrated pitch and duration predictors on accent rendering.
All the reported conclusions are consistent on both Scottish and
Australian accents.

In the BWS test, we provide 5 samples of the same content
to the listeners. They are asked to listen to the reference speech
first and then choose the most and the least similar samples
to the reference speech from four different samples according
to the accent similarity. Each listener listens to 30 samples
in a single experiment, thus in a total of 60 (30 × 2 (# of
accents) = 60) samples. The results on Scottish and Australian
accents are shown in Table VI. It is observed that the proposed
G2P-F0_Dur_AM-LS system obtains the highest best score and
the lowest worst score among the four comparative systems. We
also note that the G2P-F0_Dur_AM-L obtains significantly the
lowest best score and the highest worst score. This indicates
the effectiveness of fine-tuning with limited accented speech
data on accent rendering. From the overall trend, the system
performance on accent similarity can be ranked in an ascend-
ing order: G2P-F0_Dur_AM-L, Char-AM-S, G2P-AM-LS, and
G2P-F0_Dur_AM-LS. The obtained conclusions are the same
as those of the objective evaluations.

VI. CONCLUSION

We propose and validate an accented TTS framework by ad-
dressing both phonetic and prosodic variations of accent render-
ing. The study shows that the phonetic variation can be modeled
by an accented front-end with a small accented phonetic lexicon.
Meanwhile, prosodic variation can be modeled by an accented
TTS acoustic model with explicit pitch and duration control
when a limited amount of accented speech data is available. The
study also reveals that the accented front-end also contributes
to accented prosodic rendering. The key finding of this work
is that it is possible to effectively model a target accent with a
limited amount of accented lexical and speech data. In the future
work, we will explore a joint training framework that includes an
accented front-end and an accented acoustic model for accented
TTS synthesis. In addition, we also plan to conduct experiments
on other E2E TTS acoustic models to increase the generalization
of our proposed method.
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