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Audio Super-Resolution With Robust Speech
Representation Learning of Masked Autoencoder

Seung-Bin Kim ", Sang-Hoon Lee

Abstract—This paper proposes Fre-Painter, a high-fidelity audio
super-resolution system that utilizes robust speech representation
learning with various masking strategies. Recently, masked autoen-
coders have been found to be beneficial in learning robust repre-
sentations of audio for speech classification tasks. Following these
studies, we leverage these representations and investigate several
masking strategies for neural audio super-resolution. In this paper,
we propose an upper-band masking strategy with the initialization
of the mask token, which is simple but efficient for audio super-
resolution. Furthermore, we propose a mix-ratio masking strategy
that makes the model robust for input speech with various sampling
rates. For practical applicability, we extend Fre-Painter to a text-
to-speech system, which synthesizes high-resolution speech using
low-resolution speech data. The experimental results demonstrate
that Fre-Painter outperforms other neural audio super-resolution
models.

Index Terms—Audio super-resolution, bandwidth extension,
self-supervised learning, masked autoencoder, audio synthesis.

I. INTRODUCTION

UDIO super-resolution is a process that aims to reconstruct
A the high-frequency information of low-resolution audio,
thereby generating high-resolution audio. This process, also
known as bandwidth extension, enhances the audio quality. In
the early stages of this field, the primary research focus was
the extension of bandwidth from narrowband to wideband by
leveraging deep neural networks [1], [2], [3]. As the demand
for high-quality audio has increased across various applications,
research on audio super-resolution has been actively conducted,
leading to significant improvements in the reconstruction of
high-quality, high-resolution audio from low-resolution audio.
This progress has resulted in the development of models capable
of achieving higher resolution in audio super-resolution such
as [4], [5].
However, many of these studies have limitations related to the
fixed sampling rate of the input audio signal. In practice, audio
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to be upsampled is not guaranteed to have a consistent sampling
rate. Consequently, multiple models need to be trained to handle
audio at various sampling rates and perform upsampling. To
address these problems, [6] and [7] proposed methods that use
a series of the processed audio as input during the training
process. This series of steps typically involves sequentially
applying a low-pass filter with random ripples and orders to
all data at each training step, followed by downsampling the
audio signal and upsampling it. However, these operations can
slightly decrease the training process efficiency. Moreover, a
gap remains between high-resolution and upsampled audio,
particularly in the high-frequency range. Therefore, we intro-
duce various masking strategies to efficiently train the system
to perform audio super-resolution for a variety of sampling
rates and to enhance its ability to reconstruct high-frequency
information.

Recently, a masked autoencoder (MAE) with Vision Trans-
formers (ViT) [8] has exhibited its superiority in robust rep-
resentation learning in computer vision [9]. Moreover, several
studies [10], [11] have introduced MAE to speech classification
tasks. Although MAE excels in various downstream tasks, it
has not yet garnered attention in audio generation tasks such as
neural upsampling, neural vocoding, and other speech synthesis
tasks.

In this paper, we propose Fre-Painter, a robust neural audio
super-resolution system that utilizes robust speech representa-
tion learning using MAE and several masking strategies. We
utilize a large-scale dataset to pre-train the MAE to gener-
ate more robust representations. At the fine-tuning stage, we
jointly train the neural vocoder as a generator with the pre-
trained MAE encoder. We also introduced upper-band masking
strategy, which masks the high-frequency components of the
input Mel-spectrogram, to enable efficient training for audio
super-resolution. In addition, to ensure the robustness of the
model across various sampling rates, we introduced a mix-ratio
masking strategy, which randomly determines the masking ra-
tio during training. Consequently, our model can synthesize
high-quality, high-resolution audio from low-resolution audio,
irrespective of its sampling rate.

Our model, Fre-Painter, derives its name from its ability to
reconstruct the missing high-frequency components of a Mel-
spectrogram converted from low-resolution audio, similar to the
process of painting. The experimental results demonstrate that
Fre-Painter excels in synthesizing high-quality, high-resolution
audio waveform from a Mel-spectrogram converted from low-
resolution audio.
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Furthermore, we extended Fre-Painter to a two-stage text-
to-speech (TTS) system. Specifically, by adopting neural audio
super-resolution as a vocoder, we developed a TTS system
that can synthesize high-resolution speech from text using an
acoustic model which is trained on a low-resolution speech
dataset. The contributions of this study can be summarized as
follows:

e We propose Fre-Painter, a robust neural audio super-
resolution system that can synthesize high-quality, high-
resolution audio from low-resolution audio of various sam-
pling rates from 2 kHz to 24 kHz.

o We successfully integrate an MAE into audio super-
resolution and investigate various masking strategies for
speech synthesis tasks.

® We extend Fre-Painter to serve as a vocoder in a two-stage
TTS system, enabling the synthesis of high-resolution
speech from text with an acoustic model trained on a
low-resolution speech dataset.

The audio samples and their corresponding codes are available

at https://frepainter.github.io/demo. We encourage the reader to
experience the demo audio samples.

II. RELATED WORK

A. Audio Super-Resolution

Audio super-resolution systems have undergone substan-
tial advancements in recent years. With the advancements
in deep learning, it has been incorporated into audio super-
resolution [12], [13], [14], [15] superseding conventional sta-
tistical approaches. TFNet [16] has demonstrated that modeling
both the time and frequency domains can significantly enhance
audio super-resolution. Temporal FiLM [17] introduces feature-
wise modulation into audio super-resolution. [18] proposes a
lightweight model based on SEANet [19], and TUNet [20], a
low-complexity transformer-aided U-Net, also effectively re-
duces inference time due to its lightweight architecture.

However, the majority of early research has focused on band-
width extension from narrowband to wideband, with upsampling
to higher resolutions yet to be realized. WSRGlow [21] inte-
grates Oord [22] with Glow, and [23] combines Oord [22] with
generative adversarial network (GAN). Both models generate
high-resolution audio at 48 kHz. VoiceFixer [6] propose a two-
stage super-resolution approach, comprising an analysis step
with U-Net [24] and a synthesis step with a neural vocoder [25].
NVSR [26] introduces post-processing through the replacement
of lower frequencies.

To enhance the quality of audio, GANs have been explored
in audio processing tasks and have also been introduced in
audio super-resolution [27], [28], [29]. NU-GAN [30], [31],
and AERO [32] propose phase and magnitude modeling based
on GANs. BEHM-GAN [33] proposes a method that combines
a time-frequency domain generator with multiple time domain
discriminators. mdctGAN [34] introduces the modified discrete
cosine transform domain in audio super-resolution.

Given the impressive performance of diffusion probabilis-
tic models in audio generation tasks [35], [36], NU-Wave [5]
incorporates the diffusion probabilistic model into the audio
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super-resolution task. NU-Wave 2 [7] enhances the generation
of harmonics by introducing short-time Fourier convolution.
UDM+ [37] proposes a sampling algorithm that improves the
reconstruction of lower frequencies. AudioSR [38] proposes a
model capable of robustly performing audio super-resolution
across versatile audio types. However, these models require iter-
ative steps to generate high-quality audio, which inevitably leads
to a reduction in inference speed. Furthermore, a discernible
gap persists between the upsampled audio and high-resolution
original audio, particularly in the high-frequency components.

B. Self-Supervised Learning of Audio Representation

Learning general representations through self-supervised
learning with large-scale unlabeled data and fine-tuning the
model with labeled data has yielded impressive results in various
fields of natural language processing and computer vision.

In the field of speech processing, a vast amount of unlabeled
data is available for utilization. Initially, self-supervised learning
was primarily implemented for tasks such as emotion recogni-
tion [39] and speaker recognition [40]. However, it has gradually
expanded to other tasks as well. [41], [42], [43] propose mask
prediction-based self-supervised learning methods and extend
them to speech recognition.

In addition to speech recognition, self-supervised learning has
been utilized in other tasks. [44] utilizes representations from
self-supervised learning as additional linguistic representations
to bridge the information gap between text and speech for
TTS systems. [45] and [46] successfully enhance the perfor-
mance by incorporating self-supervised learning into speaker
recognition and verification tasks, respectively. [47] leverages
self-supervised learning to extract discrete units from unlabeled
language pair data instead of scarce labeled language pair data
for speech-to-speech translation. [48] has demonstrated that
the utilization of scaled-up pre-training data to learn universal
speech representations results in improvements across various
speech processing tasks.

Audio-MAE [10] extends the masked autoencoder to self-
supervised learning from audio spectrograms and introduces it in
audio and speech classification tasks. Based on the observation
that the high-frequency components of the Mel-spectrogram
converted from low-resolution audio are missing, similar to
the masked inputs in MAE, we aim to incorporate a Masked
Autoencoder into our audio super-resolution system.

C. Neural Audio Synthesis

Inrecent years, significant progress has been achieved in audio
synthesis using neural networks. It began with WaveNet [49],
which is an autoregressive neural network. This model outper-
form traditional concatenative and parametric methods. How-
ever, it had a drawback of being slow during the inference stage
because it require predicting a tremendous number of audio
samples autoregressively.

To address these issues, more efficient approaches to au-
dio synthesis models, such as WaveRNN [50] and Parallel
WaveNet [51], have been introduced. With the remarkable
achievements of GAN-based models in the field of computer
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Overall framework of Fre-Painter. Initially, we pre-train the masked autoencoder using a random masking strategy. Subsequently, the generator is jointly

trained with the pre-trained encoder of masked autoencoder. For audio super-resolution, we adopt an upper-band masking strategy during the fine-tuning.

vision, research on GAN-based models has been conducted in
the audio synthesis domain. MelGAN [52] propose a multi-scale
architecture with discriminators that operate on different audio
scales to learn features for different audio frequency ranges. [53]
propose a multi-resolution Short-time Fourier transform (STFT)
loss that can effectively capture the time-frequency distribution
of a realistic audio signal. HiFi-GAN [54] has demonstrated
the importance of periodic pattern modeling in audio for im-
proving sound quality and propose multi-period discriminators
that handles periodic audio signals by incorporating several sub-
discriminators. UnivNet [55] introduce multi-resolution spec-
trogram discriminators to address the over-smoothing problem,
and EnCodec [56] extend it by incorporating a complex-valued
STFT. [57], [58], [59] propose generators that consider the audio
properties. For a fair comparison, we employ HiFi-GAN as the
baseline model for the audio super-resolution to evaluate the
effectiveness of our methods.

1II. METHOD

In this paper, we propose a robust neural audio super-
resolution system called Fre-Painter. For robust speech latent
representation, we utilize a self-supervised learning model based
on the MAE. Following the pre-training of the MAE with a
substantial volume of data, we jointly train the encoder of pre-
trained and the neural vocoder, incorporating frequency-domain
masking strategy for audio super-resolution. Fig. 1 illustrates
the framework of Fre-Painter. Further details are presented in
the following subsections.

A. Masked Autoencoder

The high-frequency component of the Mel-spectrogram,
which is converted from low-resolution audio, is devoid of
information. In an audio super-resolution task, this vacant com-
ponent must be reconstructed based on information from the

low-frequency component. This process is similar to the manner
in which MAE reconstructs masked patches to their original
values. Therefore, we adopt a MAE framework. Furthermore,
by pre-training with a substantial volume of data, our model can
extract a robust speech representation from the audio.

1) Patch Embeddings: The input audio waveform is con-
verted into a Mel-spectrogram and thereafter divided into regular
non-overlapping patches as in [9]. These patches are embedded
by two-dimensional (2D) convolution and flattened to patch em-
beddings. Subsequently, 2D sinusoidal positional embeddings
are added to the patch embeddings to enable the model to capture
the time- and frequency-wise structure of the Mel-spectrogram.

2) Encoder: For self-supervised learning, we partition the
patches into unmasked and masked subsets, and then apply
masking specifically to the masked subset. Detailed masking
strategies are described in Subsection III-C. We construct en-
coder following the ViT [8], [60]. During the pre-training, encod-
ing is performed solely on the patches of the unmasked subset,
thereby reducing the computational cost and training time.

3) Decoder: The decoder is constructed similarly to the
encoder. However, we aim to use only the encoder in down-
stream task and discard the decoder. Therefore, to empower
the encoder to extract a more robust representation from the
Mel-spectrogram, we purposefully design the decoder with
fewer layers and a reduced hidden dimension compared with
the encoder, making it shallower and narrower.

Given that we encode only the unmasked subset, it is nec-
essary to fill the sections corresponding to the masked subset
with mask tokens. Hence, we combine the encoder output with
trainable mask tokens. Subsequently, we restore the order of the
patches to their original sequence and add positional embedding
for the decoder input. Finally, we add a linear projection layer
above the decoder blocks to reconstruct the Mel-spectrogram.

4) Objective: In the pre-training, the MAE is optimized with
the objective of minimizing the mean square error (MSE) loss
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between the reconstructed and ground truth Mel-spectrogram.

zy = Enc(xy,), (1)
= Dec(zy,tm), )
Lpre = E.n |2 — z(|2], 3)

where x,,, t,,,, and x denote the unmasked subset, trainable mask
token, and Mel-spectrogram of the ground truth, respectively.
Lre is calculated only for the masked subset.

B. Audio Super-Resolution

For the downstream task, audio super-resolution, we discard
the decoder from the pre-trained MAE and retain only the
encoder. In contrast to pre-training, which uses only unmasked
patches for an input, the encoder for downstream task takes the
entire patches z, including the masked patches, to reduce the
mismatch with the inference scenario, which uses a degraded
Mel-spectrogram.

To generate the upsampled audio waveform, Fre-Painter uses
the generator G of HiFi-GAN [54]. The generator synthesizes
a waveform from the output of encoder. For the reconstruction
loss, we calculate L, distance between Mel-spectrograms as
follows:

z = Enc(z), “)
§=G(2), o)
Lrce = E(g},m)“|¢@) - ‘THl]v (6)

where ¢ denotes the STFT with applying Mel filter.

Discriminator D, which distinguishes between the ground
truth waveform and waveform synthesized via a generator, is
used for adversarial training. We use the multi-period discrimi-
nator (MPD) [54] and multi-scale discriminator (MSD) [52]. In
addition, we add feature matching loss [52] that measures the L
distance between the intermediate features of the discriminator
as follows:

Laaw(D;G) =Ky [(D(y) —1)* + (D(G(2))*], (D
Laav(G; D) =E. [(D(G(z)) — 1)?] (8)

T
1, _
@m@iﬂZ@w)E:NMU@%JVWQMh,(%

=1

where D, N;, and T denote the i-th layer feature map, number
of units, and number of layers in the discriminator, respectively.
The total loss for Fre-Painter can be expressed as follows:

Lo = Eadv(G; D) + )\fmﬁfm(GE D) + ArecLrec,
£D - ﬁadv(D; G),

(10)
(1)

where A ¢, and A, are loss weights.

C. Masking Strategies

We introduce efficient and effective masking strategies for
training an audio super-resolution system. [llustrative examples
of masking can be found in Fig. 2.
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Fig. 2. Tllustration of masking strategies on Mel-spectrogram.

1) Masking Strategies for Pre-Training: The masking strate-
gies during the pre-training follows the strategies in [10]. A
random masking strategy involves masking some of the patches
randomly. Given that a Mel-spectrogram carries information
according to time and frequency of the audio, frequency and time
masking strategies mask frequency-wise and time-wise patches,
respectively. A time + frequency masking strategy mask both
directions simultaneously.

2) Upper-Band Masking: We propose an upper-band mask-
ing strategy that masks above the target frequency bands of the
Mel-spectrogram during training. In this way, these masks can
delude the model to regard the masked Mel-spectrogram as the
degraded Mel-spectrogram, which is transformed from audio
with a low resolution.

3) Mix-Ratio Masking: To robustly take the input of various
sampling rates, we propose mix-ratio upper-band masking. We
hypothesize that masking with a certain ratio results in trade-off
between upsampling and reconstruction ability according to the
sampling rate. To consider both abilities, we utilize mix-ratio
masking for the input with various sampling rates. A detailed
analysis is presented in Section V-A2.

4) Mask Token Initialization: In the downstream task, we
initialize the mask token with a certain value to make the
masked Mel-spectrogram similar to the Mel-spectrogram con-
verted from low-resolution audio. We set the initial value of the
mask token as the value averaged over the upper-band of the
Mel-spectrogram converted from low-resolution audio.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We pre-train the MAE on the LibriTTS
dataset [61], which is a large multi-speaker speech synthesis
dataset containing 586 hours of audio for 2,456 speakers. For
the downstream task, experiments are conducted on the VCTK
dataset [62], which contains 41 hours of audio for 108 speakers.
We divide the 108 speakers into 100 speakers for the training
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dataset and the remaining eight speakers for the test dataset.
For accurate evaluation, audio samples are trimmed of silence
using a 20 dB threshold. To generate low-resolution input audio
for the test dataset used in evaluating audio super-resolution,
the audio samples were processed using an order eight Cheby-
shev Type I low-pass filter with 0.05 dB of ripple. They were
then downsampled to the input sampling rate and subsequently
upsampled to the input sampling rate of the models. Audio
super-resolution experiments are conducted at various input
sampling rates, including an extremely low sampling rate of
2 kHz, and multiple rates of 4, 8, 12, 16, and 24 kHz.

2) Preprocessing: For the purpose of using the Mel-
spectrogram converted from 24 kHz audio as input, we down-
sample all the training data to 24 kHz, excluding the LibriTTS
dataset which originally has a sampling rate of 24 kHz. Then the
audio is transformed into a linear spectrogram using a STFT. The
Fourier transform, window size, and hop size are set as 2048,
1200, and 300 frames, respectively. Finally, a Mel filter with 128
bins is applied to the linear spectrogram. For loss calculation,
we used audio with a sampling rate of 24 kHz and 48 kHz as the
target audio for the model that upsamples to 24 kHz and 48 kHz,
respectively.

3) Training: We train Fre-Painter using the AdamW opti-
mizer [63] with 5; = 0.8, S = 0.99, and weight decay A =
0.01 with two NVIDIA RTX A6000 GPUs. For the learning
rate scheduling, we use the exponential decay with factor v =
0.999'/8 and an initial learning rate of 2 x 10~*. We pre-train
and fine-tune the model for 100 k steps and 200 k steps, re-
spectively. The models designed for upsampling to 24 kHz and
48 kHz consist of 22.91 M and 22.95 M parameters, respec-
tively. To reduce the training time and memory usage during
fine-tuning, we adopt the windowed generator training [64],
which generates a waveform from only a segment of latent repre-
sentation z. Segmentation is performed by randomly extracting
32 frames from the latent representations. For discriminator and
loss calculation, audio corresponding to the segmented latent
representations is also extracted.

4) Implementation Details: We use a vanilla ViT with 12
layers and 256 dimensions as the encoder and eight layers and
196 dimensions as the decoder. We use a patch size of 16 x 16.
The generator and discriminators follow the same architecture
as HiFi-GAN v1 [54] except for the upsample rates and kernel
sizes. For the 24 kHz upsampling model, these are [5,5,4,3] and
[11,11,8,7] respectively, whereas for the 48 kHz upsampling
model, they are [5,5,4,3,2] and [11,11,8,7,4] respectively. We
use only the first sub-discriminator of MSD.

B. Evaluation Metrics

1) Log-Spectral Distance: For objective evaluation, we mea-
sure the log-spectral distance (LSD) between the upsampled and
ground truth audio. To evaluate the distortion of high-frequency
bands, we calculate a high-frequency LSD (LSD-HF), which
is the spectral distance between the high-frequency bands. The
range of the high-frequency bands is set to more than half of the
input audio sampling rate, according to the Nyquist theorem.
A low-frequency LSD (LSD-LF) is also used to measure the
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reconstruction of low-frequency bands. The formulation for
calculating the LSD is as follows:

(12)
t—
T
1 1 K .
LSDHF(S,S)—T Kb f+1zk:b ; S%,k’
= n n
(13)
, S(t, k
Dis = logyg ( Sgt ki) , (14)

where T, K, S, S , and b, s denote the time frames, total number
of bins in the spectrogram, ground truth audio spectrogram,
upsampled audio spectrogram, and bin that corresponds to the
Nyquist frequency, respectively.

2) Virtual Speech Quality Objective Listener: We also em-
ploy the virtual Speech quality objective listener (ViSQOL) [32],
[65], [66] for objective evaluation. In order to compare the
upsampled audio with the original audio, we adopt the audio
mode, which enables the analysis up to the higher bands of
24 kHz frequency.

3) Mean Opinion Score: For subjective evaluation, we con-
duct a mean opinion score (MOS) test with 20 listeners using
the crowd-sourced method via Amazon Mechanical Turk. The
listeners listen to 100 random audio samples and rated their
quality. To affirm statistical validity, we conduct an one-way
analysis of variance test on the MOS results. By confirming a
p-value of less than 0.05, we validate the statistical significance
of our experimental results.

4) ABX Preference Test: We conduct an ABX preference test
to directly compare the two models. Listeners listen to audio
from each model and choose which one they prefer. The order
of the models is randomized, and if there is no preference, they
can choose X. The test is carried out with 10 listeners on 30
random audio samples.

5) Pronunciation Accuracy: To evaluate the pronunciation
accuracy of TTS results, we use an automatic speech recognition
(ASR) models to measure the phoneme error rate (PER) and
word error rate (WER). For predicting phonemes and words,
the ASR models used are wav2vec 2.0 [41] and Whisper [67],
respectively.

6) Inference Speed: We calculate the inference speeds to
enable comparisons across models. The results are presented in
two ways: speed denotes the number of audio waveform samples
that can be generated per second, and real-time denotes how
many seconds of audio can be generated in one second.

V. RESULTS

A. Analysis on Masking Strategies

1) Pre-Training: To investigate speech representation with
respect to masking strategies during pre-training, we first train
the MAE with various masking strategies. Subsequently, we
fine-tune the model to reconstruct the Mel-spectrogram without
masking. To evaluate the performance of the pre-trained model,
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Fig. 3. LSD results by masking strategies in the pre-training.
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Fig. 4. LSD-HF results by masking strategies in the downstream task.

we measure the LSD between the reconstructed and ground
truth Mel-spectrograms. Fig. 3 shows that pre-training the MAE
with a high ratio (80%) of random masking results in a lower
reconstruction error than other masking strategies, as in the
classification task [10]. Hence, we use the pre-trained MAE with
a high ratio (80%) of random masking for the downstream task.

2) Fine-Tuning: For audio super-resolution, we explore vari-
ous masking strategies, as shown in Fig. 4. The results show that
upper-band masking is an appropriate method for reconstructing
the missing part of a Mel-spectrogram. We observe that the
model fine-tuned with upper-band masking can only fill in the
Mel-spectrogram above a certain band. We also observe that
model fine-tune with a high ratio of upper-band masking show
a performance decline for audio with a 16 kHz sampling rate.
The reason is that the encoder in Fre-Painter, which is a ViT,
receives Mel-spectrograms split into patches as input. During
training, the network corresponding to the masked areas is con-
tinuously trained to encode only the masked values. However,
in the inference process, the 16 kHz Mel-spectrogram has real
values in the areas that were previously masked. Consequently,
the encoder receives new values as input that it has not seen
during training. This leads to improper encoding and a decline
in the model’s performance. Therefore, we propose a mix-ratio
masking strategy, which can more accurately reconstruct audio
across any sampling rates audio. We compare our mix-ratio
masking strategy with two different methods. The first method,
mix-ratio v1, randomly selects the pre-defined ratios of 25%,
50%, and 75%. The second method, mix-ratio v2, randomly
selects ratios between 0% and 75%. From results shown in Fig. 5,
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Fig. 5. LSD-HF results by masking ratio in the downstream task.

we can observe that mix-ratio v2 outperforms the other methods
on average. Therefore, we ultimately adopt mix-ratio v2.

B. Evaluation of Audio Super-Resolution

Our evaluation was conducted in two stages, depending on
the target sampling rate. In the initial experiment, with the target
sampling rate designated at 24 kHz, we validated the capability
of Fre-Painter to correctly execute audio super-resolution. As
a baseline, we used HiFi-GAN [54], which is a generator of
Fre-Painter, and NU-Wave 2 [7]. NU-Wave 2 [7] was trained
by modifying its original target sampling rate from 48 kHz to
24 kHz, based on the official implementation. Note that NU-
Wave [7] can upsample from 6 kHz. For a fair comparison, MOS
is conducted only for input sampling rate above 8 kHz

In the second experiment, we extended Fre-Painter to enable
upsampling up to 48 kHz and conducted a performance com-
parison with other models. For this phase, we used the offi-
cial implementations and checkpoints provided. VoiceFixer [6],
NVSR [26], and AudioSR [38], which are trained with a target
sampling rate of 44.1 kHz, are evaluated with 44.1 kHz audio
as target. This information is provided for reference purposes.
MOS is conducted on audio suer-resolution results from 12 kHz
to 48 kHz.

Experiments are conducted at various sampling rates. Tables |
and II present that Fre-Painter can successfully perform audio
super-resolution from input audio of various sampling rates. Fur-
thermore, Tabels III and IV exhibit that Fre-Painter outperforms
the other models in terms of the LSD, LSD-HF, ViSQOL, and
MOS. Because Fre-Painter uses a Mel-spectrogram as an input
for the downstream task, it shows a slightly higher error rate in
terms of the LSD-LF compared to NU-Wave 2 [7] and UDM+
[37], which use a waveform as an input. Hence, there is room for
improvement in the performance by utilizing a low-resolution
waveform additionally. The results of audio super-resolution can
be seen in Fig. 6. For comparison, we selected NU-Wave 2 [7],
which has the best LSD-HF metric among models with a target
sampling rate of 48 kHz.

C. Comparison of Inference Speeds

Diffusion-based generative models require a iterative pro-
cess to produce high-quality audio waveform, which inherently
results in slower inference speeds. In contrast, as shown in
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Fig. 6.  Spectrograms of the ground truth, low-resolution input, and upsampled audio that has been upsampled to 48 kHz from its respective sampling rates. The
sampling rates of the input audio are arranged sequentially as 2, 8, 12, 16, and 24 kHz, per row.

Table IV, Fre-Painter has an inference speed that is 28 to 243

. o 19.67% 23.33% 57.00%
times faster than diffusion-based models.
Fre-Painter w/o pre-training No preference Fre-Painter
D. Ablation Study Fig. 7. Result of ABX preference test for the ablation study of pre-training.

We conducted an ablation study to demonstrate the effective-

ness of the proposed method, and the results are shown in the although the low-frequency information can be reconstructed,
Table V. We can observe that if the model is trained from scratch, —upsampling is not performed correctly.

it generally shows slightly lower quality compared to the model To demonstrate the effectiveness of pre-training, we con-
that is fine-tuned with a pre-trained encoder. Without initial- ducted an ABX preference test to directly compare models with
izing the mask token, the model cannot accurately recognize and without pre-training. Fig. 7 exhibits that audio generated by
which position has been masked or not. Consequently, audio  Fre-Painter with pre-training is more preferred. In our model, the
super-resolution is inadequately executed in the high-frequency  encoder uses a Mel-spectrogram converted from 24 kHz audio
region. In cases where training is conducted without masking, as input. Therefore, we can pre-train the encoder using a large
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TABLE I
OBJECTIVE EVALUATION RESULTS AND COMPARISONS FOR AUDIO
SUPER-RESOLUTION TO 24 KHZ
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TABLE III
OBIJECTIVE EVALUATION RESULTS AND COMPARISONS FOR AUDIO
SUPER-RESOLUTION TO 48 KHZ

Model LSD (}) LSD-HF (/) LSD-LF (}) ViSQOL (1) Model LSD ({) LSD-HF (}) LSD-LF (}) ViSQOL (1)
2 kHz — 24 kHz 2 kHz — 48 kHz
Input 4.81 5.01 0.62 2.04 Input 4.92 5.02 0.37 1.57
HiFi-GAN 3.18 3.30 093 1.99 VoiceFixer 1.31 1.33 0.82 2.26
NU-Wave 2 1.91 1.98 0.68 2.47 NU-Wave 2 1.56 1.59 0.40 1.72
Fre-Painter 1.27 1.30 0.77 332 NVSR* 1.30 1.33 0.32 2.45
Fre-Painter 1.09 1.10 0.71 2.84
4 kHz — 24 kHz
Input 4.47 4.88 0.85 2.07 4 kHz — 48 kHz
HiFi-GAN 3.05 3.32 0.80 2.05 Input 4.78 4.98 0.61 1.58
NU-Wave 2 1.70 1.84 0.69 2.64 VoiceFixer 1.25 1.28 0.88 2.44
Fre-Painter 114 1.20 0.70 3.53 NU-Wave 2 148 .54 V.42 181
NVSR* 1.22 1.27 0.36 2.61
8 kHz — 24 kHz AudioSR* 1.52 1.59 0.45 2.60
Input 3.77 4.56 0.92 2.09 Fre-Painter 1.01 1.03 0.69 3.03
HiFi-GAN 2.59 3.10 0.86 2.07
NU-Wave 2 1.39 1.62 0.68 2.9 put MM 56
Fre-Painter 1.06 1.18 0.75 3.64 VoiceFixer 121 126 092 256
12 kHz — 24 kHz NU-Wave 2 1.26 1.36 0.46 2.07
Input 3.15 4.37 0.79 2.12 NVSR* 112 1.22 0.43 2.79
HiFi-GAN 1.99 2.67 0.85 2.11 UDM+ 1.34 1.46 0.11 2.29
NU-Wave 2 1.18 1.55 0.56 3.12 AudioSR* 1.42 1.55 0.45 2.79
Fre-Painter  0.97 1.14 0.76 372 Fre-Painter  0.98 1.02 0.72 3.10
16 kHz — 24 kHz 12 kHz — 48 kHz
Input 256 4.27 0.84 237 Input 420 83 0.75 -8
HiFi-GAN 1.53 234 0.86 235 VoiceFixer* 1.17 1.24 0.95 2.61
NU-Wave 2 1.04 1.58 0.59 3.20 NU-Wave 2 L11 126 0.44 2:34
Fre-Painter  0.91 1.10 0.78 3.92 NVSR 1.06 120 046 28
UDM+ 1.16 1.33 0.14 2.59
AERO 0.93 0.95 0.82 3.07
AudioSR* 1.30 1.48 0.56 2.87
TABLE IT Fre-Painter  0.95 0.99 0.78 3.16
COMPARISON OF THE MOS WITH 95% CONFIDENCE INTERVALS FOR AUDIO
SUPER-RESOLUTION TO 24 KHZ 16 kHz — 48 kHz
Input 3.90 4.74 0.81 1.80
VoiceFixer* 1.15 1.23 0.96 273
Metric | GT | Input HiFi-GAN ~ NU-Wave 2 Fre-Painter NU-Wave 2 1.03 121 0.49 2.62
MOS (1) | 3.84 £ 0.07 | 344 £ 007 351 £007 3.65+008 3.76 £ 0.08 NVSR* 1.00 1.20 0.46 3.01
UDM+ 1.03 1.26 0.13 2.88
AudioSR* 1.22 1.46 0.56 2.98
Fre-Painter 0.90 0.95 0.79 3.36
| Db Audio w“ b4 24 kHz — 48 kHz
“ ! Super-resolution Input 2.77 3.85 0.69 2.97
STFT | WSRGlow 0.91 1.20 0.43 3.43
l STFT VoiceFixer* 1.10 1.25 0.95 3.07
NU-Wave 2 0.84 1.08 0.45 345
NVSR* 0.93 1.28 0.4 3.50
MWW‘W UDM+ 0.83 1.16 0.14 3.65
Replace AudioSR* 1.07 1.45 0.54 3.45
£ 2 Fre-Painter 0.86 0.89 0.79 3.77

Fig. 8.
quencies.

Overview of post-processing through the replacement of lower fre-

amount of 24 kHz audio data, which is easier to obtain than
48 kHz audio data. This approach enables more robust speech
representation learning.

E. Post-Processing Through Replacement of Lower
Frequencies

To improve the weak performance of Fre-Painter in lower fre-
quencies, we adopt post-processing through lower frequencies
replacement [26], [38]. This method involves replacing the lower
frequencies of the generated audio with the lower frequencies of
the input audio using STFT and inverse STFT (ISTFT), as the
input audio contains accurate low-frequency information. Fig. 8
illustrates the overview of the post-processing. Table VI exhibits

Models marked with * indicate that their target sampling rate is 44.1 khz.

significant improvements in terms of LSD-LF and ViSQOL
metrics when post-processing is applied to Fre-Painter’s output.

E Text-to-Speech Synthesis With Audio Super-Resolution

For practical applicability, we extend Fre-Painter to a two-
stage TTS system. In conventional two-stage TTS system, an
acoustic model generates a Mel-spectrogram as an intermediate
representation [68], [69], and then a neural vocoder synthesizes
an audio waveform from the Mel-spectrogram. Additionally, if
audio super-resolution is performed using models that take an
audio waveform as input, a total of three stages are involved.
On the other hand, Fre-Painter can replace traditional neural
vocoders while also performing audio super-resolution.

We trained Glow-TTS [69] as an acoustic model with au-
dio of 16 kHz, which is a common sampling rate in speech
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TABLE IV
COMPARISON OF INFERENCE SPEEDS AND MOS WITH 95% CONFIDENCE
INTERVALS FOR AUDIO SUPER-RESOLUTION FROM 12 KHZ TO 48 KHZ

Method | MOS (1) | Speed (kHz) (1)  Real-time (1) | # Param. (M) ({)
GT (48 kHz) | 3.81 + 0.05 - - -
GT (12 kHz) | 3.72 4+ 0.04 - - -
VoiceFixer 3.78 + 0.05 1151.91 x26.12 122.07
NVSR 3.80 £ 0.05 1348.16 x30.57 116.85
NU-Wave 2 3.77 £ 0.05 175.53 x3.66 1.71
UDM+ 3.79 £ 0.05 20.40 x0.43 2.31
AERO 3.76 + 0.05 4396.72 x91.60 19.43
AudioSR+ 3.77 £ 0.05 32.10 x0.67 258.20
Fre-Painter 3.80 £+ 0.05 5006.23 x104.30 22.95
TABLE V

ABLATION STUDY RESULTS FOR OBJECTIVE EVALUATION AND COMPARISON OF
MOS WITH 95% CONFIDENCE INTERVALS

Method ‘ MOS (1) LSD (}) LSD-HF (}) LSD-LF ({)
Fre-Painter ‘ 3.87 + 0.09 1.08 1.19 0.78
w/o pre-training 3.83 £ 0.08 1.14 1.24 0.85
w/o mask token init. | 3.72 4 0.08 2.12 247 0.92
w/o masking 3.61 £ 0.08 2.51 2.99 0.90
TABLE VI
OBJECTIVE EVALUATION RESULTS AND COMPARISONS FOR POST-PROCESSING
THROUGH REPLACEMENT
Model | LSD (J) LSD-HF (}) LSD-LF({) ViSQOL (1)
Fre-Painter 0.86 0.89 0.79 3.77
Fre-Painter + Post-processing 0.69 0.89 0.36 3.97

Audio super-resolution is performed from 24 khz to 48 khz.

TABLE VII
COMPARISON OF MOS WITH 95% CONFIDENCE INTERVALS, VISQOL, AND
PRONUNCIATION ACCURACY IN TEXT-TO-SPEECH WITH AUDIO
SUPER-RESOLUTION

Method | MOS (1) ViSQOL (1) | PER (I) WER ()
GT (48kHz) 3.75 + 0.02 - 9.45 1.15
GT (16kHz) 3.73 +£ 0.02 1.82 9.66 1.15
Glow-TTS + HiFi-GAN 3.67 + 0.02 1.61 15.76 3.90
Glow-TTS + HiFi-GAN + NU-Wave 2 | 3.68 + 0.02 2.02 15.49 3.61
Glow-TTS + HiFi-GAN + UDM+ 3.68 £+ 0.02 1.99 15.39 3.24
Glow-TTS + Fre-Painter 3.71 + 0.02 2.34 14.99 2.57

recognition datasets. In the inference procedure, we used the
trained Glow-TTS model to input text and generate a Mel-
spectrogram. Instead of using a neural vocoder, we utilized
Fre-Painter to synthesize a 48 kHz audio waveform directly from
the generated Mel-spectrogram. Notably, NU-Wave 2 [7] and
UDM+ [37] cannot upsample the Mel-spectrogram; therefore,
we utilize these in conjunction with HiFi-GAN. However this
three-stage process is ineffective. Table VII shows that Fre-
Painter performs better in TTS pipelines. The combination of
TTS system and audio super-resolution not only enhances audio
quality but also yields a slight improvement in pronunciation ac-
curacy. NU-Wave 2 [7] and UDM+ [37] achieve some enhance-
ment effects through diffusion-based generation. Fre-painter,
using the MAE-based generator, demonstrates superior perfor-
mance compared to HiFi-GAN and the three-stage pipeline.
The experimental results exhibits that it is feasible to efficiently
train the acoustic model with low-resolution data and synthesize
high-quality speech by utilizing an audio super-resolution model
as a neural vocoder.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

VI. DISCUSSION

A. Broader Impact

By utilizing the Mel-spectrogram as input, Fre-painter can be
effectively applied within a two-stage speech synthesis system.
Even when high-resolution samples are scarce for low-resource
languages or speakers, an acoustic model can be trained using
low-resolution speech data. The incorporation of Fre-painter as
a neural vocoder can facilitate the synthesis of high-resolution
audio waveforms.

In real-world scenarios, there exist audio files that have been
upsampled and stored without the restoration of high-frequency
information. For instance, in datasets like CommonVoice, all
audio files are set to a 48 kHz sampling rate. However, many
of these recordings lack high-frequency information. Once an
audio file is upsampled and stored, it becomes challenging to
discern its original sampling rate. Our model is capable of
enhancing audio quality by filling in the missing high-frequency
information, irrespective of the audio’s original sampling rate.

B. Limitations

Fre-Painter has demonstrated remarkable reconstruction ca-
pabilities specifically in high-frequency information, leading to
an overall superior performance. However, compared to models
that directly use audio waveform as an input, Fre-Painter exhibits
a slightly unsatisfactory reconstruction of low-frequency infor-
mation. Despite the low resolution of the audio, it contains accu-
rate information in the low-frequency range. Therefore, utilizing
input audio waveform can efficiently reconstruct information in
the low-frequency range. Post-processing through replacement
has significantly improves the low-frequencies, but there is still
room for improvement.

We have observed that Fre-Painter encounters failure cases
when performing audio super-resolution on some real-world
audio samples that are mixed with noise. When processing
audio with noise, the model also enhances the noise parts. These
unintended results indicate that the model performs audio super-
resolution on the overall audio without identifying or separating
the noise from the audio.

C. Future Work

Our future research will aim to explore strategies that use
audio waveforms as supplementary inputs to improve the re-
construction of low-frequency information. Furthermore, we
plan to expand the functionality of Fre-Painter to include audio
restoration tasks such as denoising. In addition, we will replace
the HiFi-GAN generator with BigVGAN [59] and scale up for
better generalization on various out-of-distribution scenarios.

VII. CONCLUSION

We propose Fre-Painter, a robust neural audio super-
resolution system with MAE and neural vocoder. We success-
fully integrate MAE into audio synthesis tasks by synthesizing
high-resolution audio from low-resolution audio. The experi-
mental results demonstrate the effectiveness of Fre-Painter for
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both subjective and objective metrics. We also investigate the
various masking strategies for pre-training and audio super-
resolution. We believe that it will be beneficial to future speech
research. Furthermore, we extend Fre-Painter to serve as a
vocoder in a two-stage TTS system that can synthesize high-
resolution speech from text using an acoustic model trained on
a low-resolution speech dataset.
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