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Binaural Sound Source Distance Estimation and
Localization for a Moving Listener

Daniel Aleksander Krause , Guillermo García-Barrios , Archontis Politis ,
and Annamaria Mesaros , Senior Member, IEEE

Abstract—In this paper, we investigate the tasks of binaural
source distance estimation (SDE) and direction-of-arrival estima-
tion (DOAE) using motion-based cues in a scenario with a walking
listener. On top of performing both tasks as separate problems,
we study two methods of solving the joint task of simultaneous
source distance estimation and localization (SDEL), with a single
model. Experiments are conducted for three different scenarios: a
static receiver; a static receiver with a rotating head; and a freely
moving listener inside a room. The study proposes rotation and
translation features to include information about the receiver’s
motion during model training and studies the effects of these on
the final performance. The work includes extended simulation of
three datasets containing numerous testing scenarios for sound
sources, covering a wide range of DOAs and a source-to-receiver
distance up to 15 m. Results are further analyzed with respect to
room reverberation, walking speed, as well as source-to-receiver
distance. The presented outcomes show large improvements in both
DOA and distance estimation for a model that uses motion-based
cues as compared with a static scenario. These include a decrease
of 9.50◦ in DOA and 1.56 m in distance errors for a joint model,
followed by 16.17◦ and 0.17 m for separate models.

Index Terms—Sound source localization, sound distance
estimation, binaural audio.

I. INTRODUCTION

SOURCE Distance Estimation (SDE) and Direction of Ar-
rival Estimation (DOAE) constitute an important part of the

Computational Acoustic Scene Analysis (CASA) research field
and have numerous practical applications: autonomous robots
can benefit from information about the location of surrounding
objects while moving in space [1], [2], [3]; knowledge on
Direction of Arrival (DOA) and distance can help enhance the
robustness of speech recognition and separation systems [4],
[5]; surveillance systems in public spaces and smart homes
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utilize this information for detailed descriptions of dangerous
events [6], [7]; teleconferencing systems can use such informa-
tion to beamform and enhance speech [8], [9].

Recent research on CASA shows interest in merged tasks
utilizing spatial recordings, such as sound event localization and
detection (SELD) [10] or sound event detection and acoustic
scene classification [11]. Although DOA and source distance
are both estimated from multi-microphone recordings, the latter
has been investigated to a much lesser extent [12], for two
reasons: successful DOAE offers enough information for many
downstream spatial filtering tasks, and it is an easier task than
SDE; cues that contribute to SDE vanish or become ambiguous
very quickly as the distance from the array grows. The shared
information between DOA and distance make a joint approach
worth investigating, to obtain estimation of the full position of
an object. This can be done in a single task approach, where
the position is explicitly estimated, or as a multi-task, where
the DOA and the distance are separately estimated. We refer
to the joint task as Source Distance Estimation and Localization
(SDEL).

Most methods for DOA and distance estimation rely on micro-
phone arrays with more than two microphones [13]. However,
two-channel binaural recordings are an important format for
acoustic scene analysis, being based on the same spatial cues as
the human auditory system, therefore matching the perspective
of a human or human-like recorder such as anthropomorphic
robots [14]. In particular, in recent years, there has been a notable
increase in the use of microphones in wearable on-head devices,
which opens a whole new space for innovations [15].

Existing research on SDEL, SDE, or DOAE from binaural sig-
nals including a dynamic receiver is fairly limited. Most studies
focus solely on DOAE and are mostly limited to a certain range of
both azimuth and elevation angles, or just the azimuth [16], [17].
On the other hand, binaural source distance estimation based on
deep neural networks (DNNs) is a highly under-researched task,
with only a few studies investigating it for a limited set of static
distances in a near range up to 5 m [18], [19]. The existing
literature offers no insight if binaural SDE is possible at further
distances in realistic scenarios. Research on joint SDE & DOAE
using binaural audio is even more limited, with only one study
investigating joint modeling via a DNN architecture just for a
few positions in the close frontal plane [20]. Finally, the effect of
motion-based cues has been investigated only for DOAE systems
in a limited testing scenario of azimuth localization in the range
of ±90◦ [21]. Therefore, there is no research studying binaural
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DOAE and SDE as a joint task for a more realistic scenario,
including tests on a full sphere of DOAs, a wider range of
distances, and a moving listener.

This study investigates the scenario of a moving listener for
the tasks of DOAE and SDE, performed both separately and
jointly. Based on the shortcomings of the current literature, we
aim at answering the following research questions: (1) Does the
movement of the listener, be it its position or head orientation,
improve the performance of SDE and DOAE systems? (2) Are
translation and rotation features an efficient way of expressing
the listener’s motion? (3) Does a joint SDEL system perform
comparably or even better than separate SDE and DOAE mod-
els?; and finally (4) Does a joint task achieve better performance
as single or multi-task trained systems?

Answering the above questions, the contributions of this study
are as follows:
� An investigation of two methods of performing binaural

SDEL using a single task and a multi-task approach.
� Exhaustive testing scenarios including the use of 2500

simulated rooms and a continuous natural distribution of
source DOAs in both azimuth and elevation for a wide
range of distances up to 15 m.

� Performance comparison of a joint SDEL task with sepa-
rate DOAE and SDE systems for multiple scenarios.

� Exhaustive experiments investigating the influence of
motion-based cues on the performance of both tasks, in-
cluding a rotating head and a moving listener.

� In addition, we provide a study on the DOA and distance
error dependence on reverberation, source-to-receiver dis-
tance, as well as walking speed.

� Moreover, in order to allow for research reproducibility,
three datasets containing all testing scenarios1 and a code
repository including the training framework2 have been
made publicly available.

The rest of the paper is organized as follows. Section II
presents an overview of the existing literature regarding binaural
DOAE and SDE. In Section III, we describe the proposed
SDEL method, including the utilized DNN architectures, feature
extraction and training procedures. Section IV explains the
method evaluation procedure, including a detailed description
of the datasets and evaluation metrics used. In Section V, the
experimental scenarios are explained and the results of all the
experiments are presented along with a detailed analysis of
their content. Finally, Section VI summarizes all the conclusions
emerging from this study.

II. RELATED WORK

A. Sound Source Localization

Sound source localization (SSL) is the task of determining
the location of a sound source with respect to the receiver.
The task can be defined as estimating a certain position of the
source or its direction of arrival. In this paper, we focus on
DOA estimation, since the remaining information is handled

1DOI: 10.5281/zenodo.7689063
2[Online]. Available: https://github.com/danielkrause/Moving-Binaural-

SDEL

by the source distance estimation task. Studies on DOAE vary
greatly in the utilized array geometry and spatial audio format,
with popular choices being distributed microphones [22], [23],
tetrahedral arrays [24], [25], Ambisonics [26], [27], and binaural
recordings [16], [17]. Classical DOA techniques include para-
metric methods such as the generalized cross-correlation with
phase transform (GCC-PHAT) [28], Steered Response Power
(SRP) [29], and subspace-based approaches such as MUltiple
SIgnal Classification (MUSIC) [30] and Estimation of Signal
Parameters via Rational Invariance Techniques (ESPRIT) [31].
These methods perform efficiently in certain scenarios, but are
limited by various constraints on the acoustic array geometry
and the assumptions of the model. Common problems include
the knowledge about the number of estimated sound sources or
low robustness against reverberation and difficult noise condi-
tions [32]. Regarding binaural localization, joint evaluation of
interaural time differences (ITDs) and interaural level differ-
ences (ILDs) was used to estimate the azimuth angle in [33].
Zannini et al. improved this method by probing the adverse
effect of reverberation [34], while Wan et al. incorporated head-
related transfer functions (HRTFs) for improving the precision
of azimuth angle estimation [35]. Subsequent studies exploited
the frequency-domain diversity of HRTFs for multi-source sce-
narios, extending the estimation to both, azimuth and elevation
planes [36].

The recent methods based on machine learning (ML) over-
come many limitations of the classical model-based solutions.
ML models trained via supervised learning adapt to different
acoustic conditions when provided with sufficient amount of
training data. While early solutions used simple models such as
Gaussian Mixture Models [37], Support Vector Machines [38]
or kernel estimators [39], state-of-the-art solutions use deep
learning techniques [27], [40], [41]. Deep Neural Networks
provide a higher model complexity, which enables modeling
more compound phenomena by utilizing large amounts of data.
A systematic review of deep learning for DOAE is available
in [42].

Regarding binaural approaches, Youseff et al. [16] estimated
azimuth and elevation angles using video pixel coordinates
and binaural cues as the input of a deep model. In [17] the
authors used affinity propagation clustering for evaluating the
mismatched HRTF condition to improve SSL. More recently,
Liu et al. introduced a complex time-frequency mask for ex-
tracting robust binaural cues by preserving the direct path of the
HRTF [43]. To the authors’ best knowledge, no study has been
done on regression-based binaural DOA estimation that would
be tested for a large number of rooms and a full range of azimuth
angles. We investigated binaural localization in a scenario with
a rotating head, showing that head rotation information signif-
icantly improves the estimation precision [44]. This work is a
direct continuation of that study.

B. Source Distance Estimation

Source Distance Estimation (SDE) is the task of estimating the
line-of-sight distance of a sound source from the receiver. Com-
pared with DOA estimation, SDE is a very under-researched
topic, and widely considered a more difficult task. The main
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reason is that the estimation accuracy degrades rapidly for
small-sized arrays typically found in practice (e.g., from a few
centimeters to a few tens of centimeters) for even fairly small
distances from the array center (e.g., a few meters). Reasons
for that can include: a) diminishing inter-channel level differ-
ences and constant inter-channel time-differences as the source
transitions from a spherical wave to a plane wave captured
by the array, b) a dropping signal-to-noise ratio (SNR) and
a dropping direct-to-reverberant ratio (DRR) with increasing
source distance.

Most work in SDE is based on parametric methods and hand-
crafted features, for example using information about the direct-
to-reverberant ratio [45], the room impulse response (RIR) [46]
or mean of the signal and binaural cues such as the interaural
intensity difference (IID) [47]. Georganti et al. proposed binaural
signal magnitude difference standard deviation (BSMD-STD)
to train Gaussian Mixture Models (GMMs) and Support Vector
Machines (SVMs) [48]; Vesa used GMMs trained with magni-
tude squared coherence (MSC) features to include information
about the correlation between channels [49]; while Brendel
et al. estimated the coherent-to-diffuse power ratio to find the
source-microphone distance via GMMs [12]. Most of the afore-
mentioned methods rely on tunable complex algorithms, which
tend to lack robustness against differing acoustic conditions.

Research on SDE using DNNs has been very limited so far.
Yiwere et al. took an image classification approach based on
convolutional recurrent neural networks (CRNNs) trained with
log-mel spectrograms to classify between three different dis-
tances across three rooms [18]. The models showed good results
on data from the same room, but performed significantly worse
for recordings coming from a different environment. Sobghdel
et al. proposed relation networks to tackle this problem using
few-shot learning, showing improvements over traditional con-
volutional neural networks (CNNs) [19]. Both studies provided
tests for a limited set of finite distances in a close area up to 3–4
meters. This research is the first to present results for a wider
range of distances up to 14 meters and tested for more than 5
rooms.

C. Binaural Source Distance and DOA Estimation

Joint SDE and DOAE or SDEL is usually defined as position
estimation, referring to either a continuous position coordinate
in 2D/3D space (e.g., expressed in Cartesian x, y, z coordinates)
or to pre-defined position classes corresponding to a spatial
“binning” of the region of interest. This topic has been widely
researched for multiple types of acoustic systems employing
typically distributed microphone arrays, including spherical
microphones [50], triangular [51], smart loudspeakers [52] or
acoustic sensor arrays [53]. However, only a few studies aimed
at position estimation from binaural recordings.

In [47], a binaural distance estimation system was proposed
with localization-dependent correction improving the overall
distance error. Although the study provided directional azimuth
information as explicitly given values, without joint modeling,
it showed a strong interdependence between distance and local-
ization cues. Ghamdan et al. [54] used GMMs to classify the

sound source position defined as azimuth and distance, from
a finite set of classes. The study was limited to [−90◦, 90◦]
degrees in the azimuth plane and a set of three distances in the
close area up to 2 meters. The method showed good performance
when tested in the training room, but significantly worse under
unknown conditions. Finally, Yiwere et al. [20] proposed a
generic DNN model to perform joint SDEL using ILD and
cross-correlation features. The proposed method performed well
under both training and testing conditions; however, experiments
were limited to a set of three azimuth angles in the frontal plane
and four distance positions up to 3 meters. In [55] we studied
joint binaural localization and distance estimation, with both
tasks defined as coarse classification tasks, showing they can
be solved efficiently by a merged model. Here, we extend some
ideas from the previous study, presenting the first approach to full
regression-based joint binaural source localization and distance
estimation.

D. Binaural DOAE With Head Rotation or a Moving Listener

The most prominent source localization cues of the human
auditory system are: the interaural level difference, the interau-
ral time difference, and monaural spectral cues mainly due to
direction-dependent filtering effects of the pinna [36], [56]. ITD
and ILD cues can be ambiguous for source directions across con-
ical regions around the interaural axis, known as cones of confu-
sion, and result in inaccurate elevation estimation and front-back
confusions. The auditory system takes advantage of spectral
cues to solve these ambiguities, but in adverse conditions (i.e.,
long reverberation times or presence of noise), the information
obtained from these three cues is not enough to achieve optimal
localization accuracy. To solve this problem, humans rotate their
head or move around the space [57], resolving ambiguities by
modulating dynamically the localization cues.

A small number of research works focused on head rotation to
improve binaural DOAE. Ma et al. proposed a method that con-
siders maximum three simultaneous speakers in two different
reverberant rooms, and three azimuth head rotation strategies
limited to the ±90◦ range [58]. A similar approach studied the
same head rotation interval with sound sources placed at 3 m
from the receiver and five possible azimuth angles [59]. Another
study increased the number of rooms to 4, but reduced the
rotation interval to ±60◦ for training and ±30◦ for testing [60].
An extension of this was made in [61] and [62], facing the local-
ization problem as a 72-azimuth angle classification problem,
where the authors considered multiple sound sources in the full
360◦ azimuth range, but limiting the rotation of the head to±30◦.
Finally, in [63], a minimum mean square error-based localization
method was proposed using a Behind-The-Ear (BTE) system.
Although they evaluated four head rotation speeds (7.5 deg/s,
15 deg/s, 30 deg/s, and 45 deg/s), the source-to-receiver distance
was fixed and only one room was studied.

Only a few studies exist that take advantage of a moving
receiver to improve the binaural DOAE results. In this case, all
research works also benefit from the rotation of the head. Portello
et al. presented a particle filtering method for active speaker
localization using two microphones mounted on a spherical
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Fig. 1. Architecture of the deep model. The dotted line denotes the optional
branch to process motion-based features.

head [64], [65]. Both studies were limited to the azimuth plane,
and there is a lack of information about the moving receiver.
Also, the recordings consisted of two microphones spaced at a
certain distance, which are not truly binaural signals. The same
problem was found in [66], [67].

To our knowledge, the only relevant research work that studied
how to benefit from the rotation and motion of the head of the
listener was proposed in [21]. The authors evaluated 8 different
motion strategies in anechoic and reverberant rooms using a
particle-filter framework to estimate the azimuth incidence angle
and the distance. In more detail, they considered a static receiver
with and without head rotation, a moving receiver modeled by
a random walk, and different combinations of those. Although
they demonstrated the benefit of using motion-based cues in bin-
aural DOAE systems, the investigation was limited to azimuth
rotation angles comprised in the range of ±90◦. In [44], we first
proposed a DNN system that takes advantage of head movement
information and explicitly estimates the DOA for an unlimited
range of azimuth and elevation angles. In this study, we extend
this approach to scenarios with a moving listener.

III. METHOD

In our experiments, we use a general model architecture
scheme, which is depicted in Fig. 1. The proposed block diagram
allows for describing models performing DOAE and SDE as
separate tasks, as well as in a joint manner. The models take
a sequence of spectral features as an input, which is further
processed to calculate the desired output. For models utilizing
motion-based cues, there is an additional input branch marked
with a dotted line, which is responsible for processing the
features related to the rotating head and the listener’s movement.

Depending on which of the tasks the model is supposed to
perform, the number of output branches and their respective
output layers will vary - separate models performing either SDE
or DOAE will have a single output branch, whereas a multi-task
joint model will contain two branches. A detailed description of
the feature extraction process and the proposed DNN methods
is explained in the following sections.

A. Input Feature Extraction

The utilized features may be divided into two main groups:
spectral and motion-based. Spectral features are time-frequency
representations obtained from the complex spectrogram of the
signals, whereas motion-based features directly describe the
movement of the listener.

Models take a spectral feature matrix of shape CH × T ×K
as input, whereCH is the number of spectral feature channels,T
is the length of the temporal sequence and K is the total number
of frequency bins.T is set to 250 frames, which represents a 2.5 s
slice of the signal. To obtain the spectral features, the complex
spectrogram is calculated using a Short-Time Fourier Transform
(STFT) with a Hamming window of 20 ms length and 50%
overlap between frames. The size of the FFT was 512 samples
resulting in K = 256 frequency bins up to Nyquist frequency
and excluding the DC bin. Then, the mean magnitude spec-
trogram is calculated from both binaural channels to include
energy-related information about the signal:

|X|mean[n, k] =
|Xl[n, k]|+ |Xr[n, k]|

2
, (1)

where X[n, k] denotes the complex spectrogram value for the
n-th frame and k-th frequency bin, whilst l and r stand for the
left and right channels, respectively.

Next, we utilize two binaural cues to provide spatial infor-
mation about the sound sources. Firstly, we extract Interchannel
Phase Differences (IPDs) defined as:

IPD[n, k] = arg(Xl[n, k])− arg(Xr[n, k]). (2)

The IPDs are further processed by taking the sines and cosines
(sin&cos) of the phase values.

SI[n, k] = sin (IPD[n, k]), (3)

CI[n, k] = cos (IPD[n, k]). (4)

Utilizing the sine and cosine values of phase differences pro-
duces a smoother representation compared with raw values
and avoids phase wrapping. These features have been firstly
proposed for multichannel DNN-based speech separation [68]
and further investigated for localization in [44], [69]. On top of
that, we utilize the ILDs, which constitute another major binaural
cue that becomes important above 1.5 kHz due to the diminishing
effect of IPDs related with the physical distance between the
ears [70]. The ILDs are defined as follows:

ILD[n, k] =
|Xl[n, k]|
|Xr[n, k]| . (5)

The mean magnitude spectrogram, sines and cosines of IPDs,
and ILDs sum up to a total ofCH = 4 spectral feature channels.
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TABLE I
INPUT PARAMETERS FOR THE MODELS

For scenarios including movements of the listener, we propose
two novel feature types describing the motion: the rotation of
the head with respect to the initial head orientation (hereafter
referred as rotation features), and the Cartesian position of
the listener with respect to their initial position (referred to
as translation features). The motion-based cues are passed
to a separate input DNN branch as a single-channel matrix
of shape 1× T ×MF , where MF denotes the total number
of features. The rotation features are expressed by means of
the four quaternion values (a, b, c, d ∈ R), where a quaternion
is a hypercomplex number defined as q = a+ bi+ cj+ dk
modeling rotational states or changes. Compared to simpler
representations, such as Euler angles, quaternions avoid phase
wrapping and rotational ambiguities [71]. Head rotations are
relative to an unrotated head leveled on the horizontal plane and
with look direction towards the positive x-axis.

Translation features are defined as the difference between the
initial and current position of the listener:

Ptranslation[n] = Px,y,z[n]− Px,y,z[0], (6)

where Px,y,z[n] denotes the position of the listener in the n-th
frame, expressed in the Cartesian x, y, z coordinates. In total,
the number of motion-based features equals to MF = 4 for ro-
tation features and MF = 7 when using rotation and translation
features jointly. All the model input parameters are summarized
in Table I.

B. Model Architecture

The basic DNN architecture, depicted in Fig. 1, is based on
a model from our previous study [44], which was proven to
perform efficiently for an DOAE system utilizing information
about head rotation. Here, we introduce a few changes to tackle
the new problems under investigation.

The spectral features are initially processed by three convo-
lutional blocks. Each block consists of a 2D convolutional layer
containing 128 3 × 3 filters, followed by batch normalization
(BN) and a 1 × 4 max-pooling operation across the frequency
dimension. The time-frequency filters obtain local frequency
dependencies, while also exploiting frame-to-frame changes in
the time dimension, allowing for representing changes due to
head orientation and listener position. The max-pooling oper-
ation is used to compress frequency-specific information and
reduce the dimension size for further processing in the following
layers. For scenarios with a rotating head and a moving listener,
we introduce a special second branch to process motion-based
features. The branch consists of two convolutional layers, each
consisting of 128 3 × 3 filters and BN. The output of the second
branch is then concatenated with the output of the first one along
the last dimension.

Next, the processed feature maps are passed to a single bi-
directional Gated Recurrent Unit (GRU) layer, consisting of 128
layers and tanh activations. The use of a recurrent layer allows
for stronger temporal modeling of the signal, which again allows
for exploiting important inter-frame information, emphasizing
the extracted motion-based cues. Finally, the unit outputs are
further passed to Q parallel output blocks, each consisting of
three fully-connected (FC) layers. In each of the output blocks,
the first two layers contain G = 128 neurons and a a rectified
linear unit (ReLU) activation function. The final layer outputs
Cq values for each frame in the sequence, resulting in a T × Cq

output matrix. The values of MF , Q and Cq, q = 1, .., Q, are
dependent on the performed task and the investigated scenario.
MF stands for the total number of utilized motion-based cues,Q
is the number of individual performed tasks andCq describes the
number of outputs values in each q-th output branch. The details
about these parameters are further explained in Section III-C.

In most scenarios, we treat both DOAE and SDE as regression
tasks, in which the corresponding outputs are trained using the
Mean Squared Error (MSE) loss. In some cases, we reduce
distance estimation to a binary classification task (see Section II-
I-C), for which the binary cross-entropy (BCE) loss is utilized.
All models are trained for a maximum of 200 epochs using Adam
optimizer and early stopping after 30 epochs of no improvement
in training. The networks are implemented using the PyTorch
library [72].

C. Model Outputs

In this study, we investigate three different tasks - separate
SDE and DOAE, as well as joint SDEL. In general, we treat all
tasks as regression problems, where both the direction of arrival
and the distance can be mutually defined by the explicit position
of the sound source with respect to the receiver. In this chapter,
we describe the definitions of the model outputs to tackle the
problems under investigation.

When the receiver is moving, the origin is moving along with
it. Given the position defined as a vector in Cartesian coordi-
nates Px,y,z , the source-to-receiver distance can be obtained by
calculating the norm of the vector:

d =
√

P 2
x + P 2

y + P 2
z , (7)

whereas the DOA is defined as the normalized position vector:

DOAx,y,z =
Px,y,z√

P 2
x + P 2

y + P 2
z

. (8)

In some cases, we provide additional experiments with a sim-
plified version of source distance estimation, compressing the
task to a coarse classification problem, where each sound source
is classified as “near” (up to 5 m) or “far” (above 5 m). They
serve as additional comparison points to the regression-based
SDE, since a coarse classification approach has been proven
to be very effective in one of our previous studies [55], whilst
accurate distance estimation from binaural recordings is a more
challenging task.
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TABLE II
OUTPUT PARAMETERS FOR DIFFERENT MODELS

Depending on the performed task and utilized method, the
model outputs have varying parameters Q and Cq as shown in
Fig. 1. Below, we describe the problem definition for each of
the investigated tasks and the details about the model outputs,
which are also summarized in Table II.

1) Separate DOAE & SDE Models: To benchmark the per-
formance of DNNs performing the joint task of SDEL, experi-
ments for separate SDE and DOAE models are provided. These
include:
� SDE: to perform distance estimation alone, we utilize a

single output branch (Q = 1) with a ReLU output (for the
regression approach) or a sigmoid output (for the binary
classification approach). The model outputs a single dis-
tance value, hence Cq = 1.

� DOAE: separate DOA estimation is obtained by utilizing
a single output branch (Q = 1) with Cq = 3 output neu-
rons, followed by a tanh activation function to obtain the
normalized DOAx,y,z vector.

2) Joint SDEL Models: Estimation of the sound source dis-
tance and direction, is studied in a single task and a multi task
setting, following these two representations:
� Single task: In this method a single output branch (Q = 1)

attempts to model directly the exact position of the sound
source Px,y,z . The model output contains Cq = 3 linear
neurons, altogether resembling the x, y, z coordinates of
the source.

� Multi task: This approach attempts to model both SDE and
DOAE tasks by a single DNN with two separate output
branches (Q = 2), one for each task. Here, the DOA output
models the normalized vector DOAx,y,z via a tanh activa-
tion function, whereas the SDE branch explicitly outputs
the source-to-receiver distance d using a ReLU activation.
Moreover, for additional comparison, we investigate an
alternative model with a binary output for SDE, classi-
fying each sound source as “near” or “far” as described
earlier. In this case, the sigmoid activation function is used.
In both cases we obtain three DOA values and a single
distance value from separate output branches, resulting in
Cq = [3, 1]. We calculate the final training loss as a linear
combination of both output losses with weights offsetting
the uneven initial loss values for both tasks. When training a
model with regression SDE, we apply an DOAE/SDE ratio
of 3:1, whereas for binary SDE the ratio is 1:11, intended
to provide a similar training loss for both tasks during the
starting epochs.

IV. EXPERIMENTAL SETUP

A. Experimental Scenarios

To investigate the joint performance of DOAE and SDE and
the effect of motion cues on the performance of both tasks,
we split our experiments into two stages. Firstly, we perform
experiments with separate models for each task. Next, we inves-
tigate both methods of performing the joint SDEL task and study
their performance as compared to the separate models. For both
stages, the models are trained and tested for three basic scenarios
allowing to investigate the effect of motion-based cues:
� Static: Both the source and the receiver are static, hence the

models are trained with spectral features only (MF = 0).
� Rotation: here, we consider a static receiver with a rotat-

ing head, defined by a full azimuth-range rotation range.
Rotation features are used to exploit the rotation informa-
tion explicitly (MF = 4). The rotation scenario without
motion-based cues has been investigated in our previous
study [44] and the use of features has been proven to be
more effective.

� Walking: Finally, we investigate a scenario in which the
listener is moving freely inside the room, hence the dis-
tance and DOA are dynamically changing from frame to
frame. To investigate the extent to which motion-based
cues are affecting the model’s performance, we perform
experiments without additional features (MF = 0), with
rotation features (MF = 4), and using a joint set of rotation
and translation features (MF = 7).

B. Dataset

The dataset used to evaluate the models comprises three
different scenarios: a static receiver (later denoted as “Static”),
a static receiver with a rotating head (referred as “Rotation”)
and a receiver moving in space (“Walking”). For all of them,
a single speech sound source is considered. All audio files
contain speech signals only, without silence between speakers,
to avoid the necessity for an additional detection system. As the
source signal, male and female anechoic speech audios of 10 s
length from the TIMIT dataset [73] were reverberated in each
simulation.

Since the SDEL models in this study are trained and evaluated
solely through simulations, the simulations need to be both fast,
generating a large number of diverse reverberant scenarios, and
accurate, delivering the appropriate spatial and motion features
in the simulated audio. More specifically, we target the following
simulation requirements: a) realistic acoustic conditions with
frequency-dependent absorption, shown to improve generaliza-
tion to real test conditions [74], b) directional receivers with
measured directional responses, such as Head Related Transfer
Functions (HRTFs) for binaural simulations, c) moving receivers
at various speeds, d) rotating directional receivers at various
speeds, and f) the ability to generate thousands of such scenarios
with signal output of several seconds in reasonable time. The
last requirement is met currently only by simulators using the
image-source method (ISM) for shoebox geometries. Due to the
lack of publicly available shoebox ISM simulators (e.g. [75],
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TABLE III
PARAMETER VALUES FOR DATA GENERATION

Fig. 2. Distribution of the reverberation time in simulations. The number of
rooms with a RT comprised between 5 s and 8 s is 56.

[76]) that fulfilled these requirements, we repurposed a custom
one developed earlier by the authors for spatial audio coding
studies [77], extended to handle dynamic binaural rendering
scenarios.

1) Room and Reverberation Parameters: Room dimensions,
source, and receiver positions were randomized in each simu-
lated scenario according to the ranges and constraints shown in
Table III. Since the same randomization procedure was used in
the earlier rotation-only study of [44], the same 2500 random
room configurations generated in that study were re-used here for
an equitable comparison with those previous results. Regarding
acoustic conditions, instead of targeting a uniform distribution of
reverberation times and estimating absorption coefficient values
in order to achieve those, as is commonly done, we opted for
a more realistic simulation setting. Absorption profiles from
tables of typical acoustic materials [78] for wall, ceiling, and
floor surfaces were randomly assigned to individual surfaces for
each simulation scenario. In this manner we get a more realistic
distribution of reverberation times, shown in Fig. 2, and we avoid
unnatural cases, e.g., very long reverberation times in very small
rooms.

2) Random Head Rotation and Random Walk Simulation:
The random receiver positions indicated the listener position
for static and rotation-only scenarios, or the initial position for
walking scenarios. The sources were static across all three sce-
narios. Regarding the rotation-only scenario, 5 angular speeds
of yaw rotation were simulated as shown in Table III, uniformly
distributed across the 2500 simulated rooms (500 per rotation

Fig. 3. Distribution of the source-to-receiver distances for all the positions of
the simulated trajectories.

Fig. 4. Distribution of the source-to-receiver average distances for all the
positions of the simulated trajectories and the source-to-receiver distances of
the static scenario.

speed). Regarding the walking scenario, a random walk trajec-
tory composed from line segments was drawn in each simulated
room. A random horizontal walking direction was computed to
form the first walking segment; a new line segment at a new ran-
dom direction was added every time the trajectory encountered a
wall.3 The orientation of the head corresponded to the direction
of the walker. In addition, the head orientation was smoothly
rotated each time the walking direction changed. Based on
studies on average walking speeds [79], 5 different velocities
were generated: 0.8, 1.0, 1.2, 1.4, 1.6 m/s, uniformly distributed
across rooms (500 per walking speed). Finally, the distribution
of the source-to-receiver distances for all the trajectory points
(100 positions) is shown in Fig. 3, and their average distance
per trajectory is presented jointly with the source-to-receiver
distance of the static scenario in Fig. 4.

C. Evaluation Metrics

The investigated models are evaluated using separate metrics
for SDE and DOA estimation. For DOA estimation, we use the
standard DOA error, which is defined as follows:

EDOA =
1

N

N−1∑
n=0

σ(xR[n],xE [n]), (9)

3The complete details of the listener motion simulation are available in the
provided supplementary material which presents the entire dataset simulation.
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TABLE IV
RESULTS OBTAINED FOR SEPARATE MODELS FOR VARIOUS SCENARIOS

where n denotes the frame index over which the DOAs are
estimated by the model. The error is averaged over allN frames,
since in our experiments the sources are active throughout the
whole file.σ stands for the angular distance between two vectors:

σ = arccos

(
xT
ExR

||xE || · ||xR||
)

(10)

where xE and xR stand for the estimated and reference DOAs.
For source distance estimation, we use two metrics to ana-

lyze the model’s performance. Firstly, we compute the absolute
distance error:

EDist =
1

N

N−1∑
n=0

|dR[n]− dE [n]|, (11)

Here, dR and dE denote the reference and estimated distance,
respectively. As an additional measure, we calculate the relative
accuracy of the model. The relative accuracy measures the
number of frames in which the estimated distance falls in an
accepted threshold area, deviating from the target distance. This
measure might be more appropriate for practical applications,
where the performance is expected to be more accurate for closer
distances than for further ones. Here, we use a threshold of 10%
with respect to the reference distance:

RelAcc =
100%

N

N−1∑
n=0

1(|dR[n]− dE [n]| < 0.1dR[n]). (12)

In some scenarios, we reduce the SDE problem to a binary
classification problem, in which sources appearing closer than
5 m are considered “near” (positive one), whilst sources further
than 5 m are considered “far” (negative zero). In these cases, we
use the standard accuracy measure:

Acc =
100%

N

N−1∑
n=0

1(dbin,R[n] == dbin,E [n]), (13)

where dbin,R and dbin,E stand for the reference and estimated
binary distance labels.

V. RESULTS AND DISCUSSION

A. Results for Separate Models

Results for all evaluated scenarios performed by separate
DOAE and SDE models are presented in Table IV. The presented
numbers are average and standard deviation values, calculated

over a 5-fold cross-validation split. Generally, similar differ-
ences between scenarios can be seen for both tasks, with a few
notable exceptions. As a reference, we use two models from the
literature, one for each task. As explained in Section II, no study
has been found that would investigate a regression-based model
for data with a moving receiver and a wide range of azimuth and
elevation angles. Therefore, we selected two studies that were as
close to this one as possible, whilst accepting major differences.
For DOA estimation, we use the classification-based method
presented in [20] with two important changes: a) we change
the last layer of the model to a framewise output to allow for
evaluating the moving scenario; b) the output layer is adjusted
to the full range of azimuth angles [0◦, 360◦] in the utilized data,
resulting in 12 possible classes spaced every 30◦. For SDE, we
utilize the model proposed in [18]. Again, we adjust the DNN
to a framewise output and a wider range of distances. Here, the
final set consists of 6 classes, corresponding to the following
ranges of distances: [1, 2), [2, 3), [3, 4), [4, 5), [5, 7) and [7,14].

For DOA estimation, the highest error of 17.83◦ is observed
for the static scenario. For the dataset including head rotation,
the error drops by over 4◦ to a level of 13.14◦. Both results are
in line with our previous study [44], which showed significant
improvements from using rotation features. The positive effect
of motion-based cues in this case comes from the fact that, by
utilizing information about rotation, the model is able to use a
wider range of azimuth angles to avoid the cone-of-confusion
effect. Still, much larger improvements can be seen for a scenario
with a walking listener. Even for training without the use of
motion-based cues, the DOA error decreases to a value of 2.06◦,
which is an over 8-fold improvement over the static scenario.
The use of rotation features lowers the error further to 1.67◦,
whereas the addition of translation features does not seem to
significantly change the results.

The far-reaching improvements from the walking scenario
alone might be simultaneously linked to two different fac-
tors. On the one hand, the walking listener might cause im-
proved performance by entering an area from which local-
ization becomes easier, which in result can lead to a correct
DOA estimation. On the other hand, by exploiting a dynamic
receiver trajectory, the model receives information about the
sound source from a varying range of angles and distances.
This information might be beneficial at the temporal model-
ing stage in the recurrent layers, where the inter-frame con-
text might improve the results for less advantageous receiver
positions.
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Analogously to the localization task, the worst performance
for sound distance estimation is observed for the static scenario,
with a distance error of 1.51 m and relative accuracy of 16.93%.
This is a considerably high error, showing that achieving good
source distance estimation performance for a wide range of
distances and angles is a highly challenging task for binaural
recordings. As expected, using motion-based features for a
rotating head improves the error significantly by 0.17 m and
1.84 p.p. Similarly to DOAE, rotating the head benefits distance
estimation by yielding more angles from the receiver, hence pro-
viding better distance dependent features such as echo patterns or
direct-to-reverberant ratio cues. Contrary to source localization
though, the walking scenario does not appear to decrease the
error when compared with the rotation scenario. For a model
without the use of motion-based cues, the distance error goes
back up to 1.50 m. Rotation and translation features reduce this
value to 1.46 m, which however is still a higher number than
for the rotating head case. The noticeable difference might be
caused by the fact that for the walking scenario the models are
supposed to estimate dynamically changing distances, which
is a harder task compared with a static distance throughout
the whole clip. In this case, the motion-based cues partially
offset the difficulty by providing explicit information about the
movement. However, a static receiver with a changing angle
seems to perform better, since a constant distance can be more
easily exploited by covering a wide azimuth range.

In the following column, we present the additional model
which performs SDE in a binary classification manner. Here, we
observe that despite the high distance error for regression-based
estimation, satisfactory results can be achieved for a simplified,
coarse classification task. For a static receiver, we obtain an
accuracy of 74.38% and 75.38% for a scenario with and without
a rotating head, respectively. Interestingly, results for a walking
scenario, whilst still good, are noticeably worse than for a
static receiver, showing an accuracy of around 71%, with an
additional increase to over 73% when using translation features.
The observed drop in performance might be caused by the nature
of coarse classification, in which the label of each sound source
does not change throughout the clip as long as the source does
not cross the border of 5 m, causing a possible mismatch with
the tracking of the dynamic listener’s position.

The last two columns present results obtained for the reference
models. The DOA model achieves an accuracy of 24.38% for
the static scenario, which compared with the accuracy of over
99% [20] reported in the original study shows the the model
does not generalize well for a large numbers of rooms and a
wider set of azimuth angles. For a moving scenario the accuracy
drops to 8.80%, further indicating the method’s low robustness
to dynamically changing conditions. The SDE model shows
an accuracy of 22.91%, which similarly to the DOA model
is a significantly lower score compared with the original pa-
per [18], in which the method achieved results between 44.82%
and 98.47% depending on the testing conditions. Interestingly,
distance estimation improves slightly for the moving scenario,
increasing the performance to 27.73%. That might be due to
the use of temporal information via RNNs, which analogously
to our proposed method, takes advantage of the inter-frame

dependencies to model the receiver’s movement. While the
reference results do not compare with the proposed method
because of largely different approaches and evaluation methods,
the reported scores show that binaural source localization and
distance estimation for a wide range of angles and distances is
a challenging task that needs further investigation.

B. Results for Joint Models

Next, we perform the same experiments with the joint SDEL
task models, with the final results presented in Table V. Most
noticeably, the performance of both tasks seems to decline
in most cases when compared with the separate models, an
expected effect resulting from modeling two tasks with a single
DNN of a similar complexity. This might be partially offset by
further fine-tuning of the model parameters, which is out of the
scope of this study.

For all joint model types, the differences between the inves-
tigated scenarios are generally similar to the observations made
in the previous stage of the study - a static scenario shows worst
performance, with a notable boost when using a rotating head
and an even higher improvement when switching to a walking
listener. Most importantly, while translation features seem to
have a negligible effect on the general performance of separate
DOAE and SDE models, they appear to have a higher influence
on the SDEL task. For both the single task and the multi task
approach, adding rotation and translation features increases the
DOA error when compared with rotation features alone - from
6.91◦ to 8.83◦ for the single task method, and from 6.48◦ to
10.05◦ for the multi task model.

On the contrary, translation features seem to improve the
distance error for both cases - from 1.90 m to 1.79 m for the
first model, and from 1.52 m to 1.45 m for the second. In
both cases, the total distance error improves over the model
utilizing a rotating head, which is another distinction from
the experiments performed with separate models. The positive
impact of translation features is further demonstrated for the
multi-task model with binary SDE, where the accuracy improves
by 6.13 p.p. over the rotation features alone. On top of that,
the distance estimation performance for the multi-task approach
with regression-based SDE is on par with the separate SDE
model evaluated for the same scenario (1.45 m vs. 1.46 m). These
results show that when opting for joint SDEL DNN training,
both motion-based features provide valuable information about
the receiver’s position, allowing especially for a more accurate
prediction of the source-to-receiver distance. However, it is not
clear why translation features might in some cases affect the
DOAE performance in a negative way.

Comparing the three proposed methods for performing joint
SDEL, the multi-task approach with binary SDE seems to be
the worst performing one for all scenarios. While in most cases
the observed accuracy is comparable with the separate model
(with only the walking listener with and without rotation features
having considerably lower performance), the DOA error remains
the highest for all performed experiments. The low performance
of the SSL part might be again caused by the different nature of
coarse classification, in which binary SDE labels do not relate
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TABLE V
RESULTS OBTAINED FOR JOINT SDEL MODELS - USING A SINGLE TASK APPROACH AND A MULTI-TASK APPROACH IN TWO VERSIONS - WITH A

REGRESSION-BASED SDE BRANCH (REGRESSION SDE) AND A BINARY SDE CLASSIFIER (BINARY SDE)

to direction-of-arrival vectors as directly as explicit distance
values. We also note, that in this case both tasks are trained
with different loss types, which might increase the inter-task
mismatch even further.

Amongst the fully regression-based models, the multi-task
approach seems to outperform the single task method in most
cases. While the single task model achieves a lower DOA error
of 8.83◦ for a walking listener with a full set of motion-based
cues, the multi-task shows better DOAE performance in all
other scenarios. Most notably, for the “Walking” case with
rotation features, the model achieves a DOA error of 6.48◦,
the lowest value amongst all SDEL models, and a very good
general performance on the overall joint task. Analogously for
the SDE part, the single task approach achieves a slightly lower
distance error for a static scenario and a walking scenario without
additional features. However, in both these cases the general
error is very high, almost double the value of other models. In
all remaining cases, the multi-task approach significantly outper-
forms the single task method, particularly for the combination
of rotation and translation features. In this case, the multi-task
model achieves distance error lower by 0.34 m, which is the
best outcome amongst all SDEL experiments. These results
suggest that the multi-task approach is generally more efficient
at tackling the tasks of DOAE and SDE jointly, which is also
in line with the conclusions from our previous study on joint
proximity and direction classification [55]. While the single task
method offers a physically intuitive definition of the problem,
where the direction-of-arrival and distance are combined into
a single x, y, z position, the multi-task model allows for sep-
arate optimization of two distinct output branches, whilst still
exploiting shared inter-task information in the first layers of the
DNN.

In Fig. 5 we show two examples of differences between
ground truth values and model predictions in a moving scenario.
The results are shown for calculated azimuth and distance out-
puts. As can be seen in Fig. 5(a), the azimuth predictions more
or less follow the ground truth values. Most notable differences
are shown from the 570th frame onwards, where the slope for
model predictions is much steeper than for ground truth values.
Larger differences can be seen for distance outputs, as in Fig.
5(b). Even though the model predictions seem to follow a similar
pattern of increasing and decreasing values, the shape of the
slopes are largely different from the reference curve. The most
striking difference is a sudden jump of 2 m in the distance
value, located around the 310th frame. These jumps in values

are related to transitions between separate sequences modeled
by the DNN. The model analyses each sequence separately,
without temporal knowledge about the neighbouring time spans,
potentially leading to inconsistent predictions between different
sequences. This effect can be sometimes seen also for azimuth
values, as presented in 5(c). Even though the predictions follow
the ground truth values, two abrupt value changes can be seen
around the 250th and 500th frame. In both cases the jumps
create a larger deviation from the reference curve, since frames
following the first value in a sequence are biased by the former.
The outcome of this error is even more visible in Fig. 5(d), in
which we observe large jumps in distance values of over 1 m for
the same frames. This problem might be generally mitigated
by modeling longer time sequences inside the DNN model,
as well as by the utilization of smoothing techniques in the
post-processing phase. A technique allowing for transferring
temporal information between sequences might help to solve
this issue in a more generalized way.

C. Effects of Acoustic Conditions

Fig. 6 depicts the DOA and distance errors with respect to
walking speed (for the “Walking” scenario), source-to-receiver
distance, direct-to-reverberant ratio and room reverberation
time. The presented results are calculated for models performing
SDE and SDEL separately and for the following scenarios:
static, head rotation, and walking listener with rotation features
and with a full set of motion-based cues.

The relation between the distance error and walking speed for
a moving receiver is displayed in Fig. 6(a). The error decreases
for the speed of 1 m/s as compared with 0.8 m/s by 0.04 m for
both analyzed models, however for higher speeds the perfor-
mance seems to steadily deteriorate. One exception occurs for
the highest speed of 1.6 m/s when utilizing all motion-based
cues, which in contrast to other cases, seem to outperform the
use of rotation features alone. As for DOA estimation (Fig. 6(b)),
the relation seems to be less obvious. For a model trained with
rotation features only, the error stays at the same level of 2◦ for all
walking speeds, with an exceptional drop to 1◦ for 1 m/s. When
using both rotation and translation features, the performance
generally increases from 3◦ for 0.8 m/s to 4◦ for 1.6 m/s. On the
whole, the walking speed of 1 m/s shows best results for most
investigated cases.

Subfigures 6(c) and 6(d) show the distance and DOA errors
depending on the source-to-receiver distance in the file. As
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Fig. 5. Plots depicting exemplary differences between ground truth values and model predictions for a joint multi-task SDEL model in a moving scenario.
Comparisons are shown for azimuth angles and distances.

for distance estimation, we observe a very similar pattern for
the static and head rotation scenario, in which the error starts
at around 1.4 m for the near range of 1-2 m and then drops
to a level of around 1 m for 2-5 m. For a source-to-receiver
distance above 5 m, a steep increase can be observed, with the
error going up to 2.73 m and 3.29 m for the rotation and static
scenario, respectively. This drastic drop of performance can be
explained by a much lower direct-to-reverberant ratio for longer
distances, which can significantly hinder distance estimation,
which hugely relies on energy-based cues. In contrast to both
static scenarios, the walking scenario presents an almost straight
line at around 1.5 m for the whole distance range. This shows
that by utilizing a dynamic receiver, the model is able to average
the information from different positions, effectively flattening
its dependence on the source-to-receiver distance. As for the
DOAE model, an analogous pattern for both static scenarios can
be again observed, with a consequent drop of DOA error for
distances in the range of 2-5 m and a slight increase above 5 m.
Similarly to SDE, for the walking receiver we observe a fairly
straight line, with an exception of a minor drop of error above
2 m, which further proves the aforementioned conclusions. We
also note that for all distance ranges the DOA error stays below
5◦, which is generally a very good outcome.

In subfigures 6(e) and 6(f) the errors’ dependence on the
direct-to-reverberant ratio is shown. As for SDE, there is a
consequent decline of distance error with the increase of DRR
from −20 dB up to 5 dB for the “Static” and “Rot” scenarios.
The steady improvement of the models’ performance is linked

with the source energy being more pronounced in the signal,
making distance estimation less demanding. Interestingly, for
both scenarios we observe a slight increase of distance error
for the range of [5, 10] dB. This effect might occur due to the
loss of some reverberant information, which might be helpful in
certain cases. Contrary to that, both models trained for a scenario
with a walking listener show a nearly flat characteristic, which
is beneficial when dealing with low values of DRR. However, in
the range of [−5, 5] dB the static models achieve better results.
DOAE performance is following an analogous pattern for static
scenarios, where the DOA error is consistently dropping, whilst
the DRR is increasing. Worth noting is the difference of 25.30◦

between the “Static” and “Rot” scenarios in the range of [−20,
−15] dB, showing that especially for low DRRs the effects of
a rotating head help to capture more information from different
angles, significantly improving the estimation performance. Yet
again, models trained for the “Walking” scenario present mostly
equal performance across all DRR ranges, largely outperfoming
their static counterparts in all cases.

Finally, the effect of room reverberation is shown in subfigures
6(g) and 6(h). For both static scenarios and SDE, the curves
depict a relatively flat characteristic for the range up to 3 s with
a notable increase of distance error in the range between 3 s and
9 s, in which the reverb might have a higher impact on the results
by lowering the DRR. Results for the walking scenario seem to
follow a more complicated pattern - for a model utilizing only
rotation features, the highest distance error of 1.59 m is observed
for the range of 1-2 s, whereas the best performance is shown
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Fig. 6. Plots analysing the DOA and distance errors with respect to source-to-receiver distance, reverberation time, direct-to-reverberant ratio and walking speed.
The presented results are shown for tasks performed by separate models.

for RTs between 2 s and 3 s, with an error of 1.33 m. Although,
similarly to the static cases, the performance decreases again
for higher RT values, the performance seems to be still better
than for the middle range of 1-2 s. The model trained with
all motion-based features follows an identical pattern, with a

slightly higher distance error for most cases. The curves show
a particularly different dependence for the DOA error, which
reaches the highest values for low RT values in the range 0-1 s
when analyzed in a static scenario. For a model trained with
rotation features (which analogously to other cases, performs
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overly better than a completely static model), the error drops
by a large number of 15.16◦ when moving to the 1-2 s range,
achieving the lowest error of 1.81◦ for RT between 2 and 3
seconds. Such a massive difference shows the importance of
reverberant information for correct binaural source localization,
in which low RT disables the use of wall, floor and ceiling
reflections to improve DOA estimation precision. However, we
note a decrease of performance for the range of 3-9 s, in which
the amount of reverberant might dominate the direct sound
to a higher extent. The decrease is less severe for the model
utilizing rotation features, showing that a rotating head might
partially offset this issue. Interestingly, for both models that
utilize a walking listener, no significant differences in DOAE
performance can be observed. Similarly to the previous plots,
regardless of the set of features utilized, the DOA error seems
to stay at a relatively stable level of 1-3◦ for all RT values. It is
worth noting that similar values are obtained for a static scenario
in the RT range of 1 s to 3 s. However, for other reverberation
time values we observe much higher DOA errors due to a lack
of reverberation information or a very low DRR. The use of a
moving receiver effectively counters this problem by showing
equally good performance for all RT values.

D. Effects of Background Noise

The present work focuses on studying motion-related effects
on reverberant source localization with simulations in order
to assess their importance independently from other factors
encountered in real life scenarios, such as background ambient
noise, or errors and biases in the provided listener rotation or
translation information. However, to give a basic perspective
on more realistic conditions, we present some results including
different levels of background noise. To test the models in noisy
conditions, we utilize real ambient noise recordings from the
TAU-SRIR DB database.4 The recordings are converted from
their original first-order Ambisonic format to binaural using the
magnitude-least squares decoding method [80]. Four cases are
tested based on the SNR between the simulated binaural speech
signals and the ambient noise level, with target SNRs of 5, 10,
15 or 20 dB. The noise signals are selected randomly for each
simulation scenario of binaural speech signals for the moving
listener according to each specific SNR scenario.

Table VI presents the results for the joint multi-task regression
model. As can be seen in the first column, both DOA and distance
errors increase significantly after the addition of background
noise to the testing set only. Minor differences between SNR
ranging from 10 dB to 20 dB can be observed, with the DOA
and distance errors increasing by at least 9.26◦ and 0.33 m
respectively. An even more significant drop in performance is
seen for an SNR equal to 5 dB: the DOA error increases to
23.06◦, whereas the distance error achieves the highest value of
1.89 m. These results can be explained by the total exclusion of
background noise from the training process and lack of training
techniques targeted to generalize the models to noise. However,
as shown in the second column, the performance of the model
increases significantly when noise is also present in the training
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TABLE VI
RESULTS FOR A JOINT MULTI-TASK MODEL AS TESTED ON DATA WITH ADDED

BACKGROUND NOISE

set. For the DOA estimation part, the error drops to the range
between 12.55◦ and 14.32◦, which is closer to the original results
without noise. Improvements for distance estimation appear to
be smaller, with an error ranging from 1.65 m for 20 dB to
1.71 m for 5 dB. The reason for the poorer performance of
the SDE branch might be related to noise affecting important
distance cues such as the DRR, since the binaural ambience has
mostly diffuse properties not unlike the late reverberant speech.
Further work is required to assess which are the most important
features being affected by background noise the most. These
results might be further improved by utilizing specific techniques
to increase robustness to noise in the data such as dropout or prior
denoising.

VI. CONCLUSION

In this paper, we propose a method for improving binaural
sound distance estimation and sound source localization by
utilizing a scenario with a walking listener. Our method is tested
for a large dataset of realistic scenarios, including 2500 differ-
ent rooms and a wide continuous range of source-to-receiver
distances and directions-of-arrival of sound sources. On top of
traditional spectral features, we propose two motion-based cues,
namely rotation and translation features, which are proven in our
experiments to have a significant impact on the performance of
both tasks. Especially for the DOAE task, the inclusion of these
cues decreased the error to 1.66◦ as compared with 17.83◦ for
a standard static scenario. In addition to improving the general
scores, a more detailed analysis shows that a walking listener al-
lows for flattening the error’s dependence on source-to-receiver
distance and room reverberation time, making both tasks more
robust to most acoustic condition changes.

On top of investigating SDE and DOAE separately, we
propose two methods of performing them by a joint model.
Comparing a single-task and multi-task approach, we show that
the latter method outperforms the state-of-the-art technique of
position estimation in most testing scenarios. The joint modeling
of two tasks leads to an expected decrease of performance on
both sides, which might be offset by parameter fine-tuning and
different architectural choices. Moreover, we note that despite of
notable improvements for distance estimation, it is nevertheless
challenging to obtain satisfying results due to the constraints of
binaural audio. Finally, the described results should be further
proven by experiments performed on real-life data, which is
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difficult to obtain for a large variety of testing scenarios. Hence,
these problems shall be explored in our future works.
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[42] P.-A. Grumiaux, S. Kitić, L. Girin, and A. Guérin, “A review of sound
source localization with deep learning methods,” J. Acoust. Soc. Am.,
vol. 152, pp. 107–151, 2022.

[43] H. Liu, P. Yuan, B. Yang, G. Yang, and Y. Chen, “Head-related
transfer functionreserved time-frequency masking for robust binaural
sound source localization,” CAAI Trans. Intell. Technol., vol. 7, no. 1,
pp. 26–33, 2021.

[44] G. García-Barrios, D. A. Krause, A. Politis, A. Mesaros, J. M. Gutiérrez-
Arriola, and R. Fraile, “Binaural source localization using deep learning
and head rotation information,” in Proc. IEEE 30th Eur. Signal Process.
Conf., 2022, pp. 36–40.

[45] Y.-C. Lu and M. Cooke, “Binaural estimation of sound source distance
via the direct-to-reverberant energy ratio for static and moving sources,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 7, pp. 1793–1805,
Sep. 2010.

https://dx.doi.org/10.1145/2871183
https://dx.doi.org/10.1109/JSTSP.2018.2885636.
https://www.mdpi.com/1424-8220/20/1/172
https://www.mdpi.com/1424-8220/20/1/172
https://www.mdpi.com/1996-1073/14/12/3446
https://www.mdpi.com/1996-1073/14/12/3446
https://dx.doi.org/10.1121/10.0011811.
https://dx.doi.org/10.1155/2010/415840
https://dx.doi.org/10.3389/frvir.2021.722321


1010 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

[46] P. N. Samarasinghe, T. D. Abhayapala, M. Polettfi, and T. Betlehem,
“On room impulse response between arbitrary points: An efficient pa-
rameterization,” in Proc. IEEE 6th Int. Symp. Commun. Control Signal
Process.2014, pp. 153–156.

[47] T. Rodemann, “A study on distance estimation in binaural sound localiza-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 425–430.

[48] E. Georganti, T. May, S. van de Par, and J. Mourjopoulos, “Sound source
distance estimation in rooms based on statistical properties of binaural
signals,” IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 8,
pp. 1727–1741, Aug. 2013.

[49] S. Vesa, “Binaural sound source distance learning in rooms,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 17, no. 8, pp. 1498–1507, Nov. 2009.

[50] J. Gontmacher, A. Yarhi, P. Havkin, D. Michri, and E. Fisher, “DSP-
based audio processing for controlling a mobile robot using a spherical
microphone array,” in Proc. IEEE 27th Conv. Elect. Electron. Eng. Isr.,
2012, pp. 1–5.

[51] D. Gabriel, R. Kojima, K. Hoshiba, K. Itoyama, K. Nishida, and K.
Nakadai, “2D sound source position estimation using microphone arrays
and its application to a VR-based bird song analysis system,” Adv. Robot.,
vol. 33, no. 7/8, pp. 403–414, 2019.

[52] J. K. Nielsen, “Loudspeaker and listening position estimation using smart
speakers,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018,
pp. 81–85.

[53] J. hwan Hwang, S. Seon, and C.-S. Park, “Position estimation of sound
source using three optical mach-zehnder acoustic sensor array,” Curr. Opt.
Photon., vol. 1, no. 6, pp. 573–578, Dec. 2017.

[54] L. Ghamdan, M. A. Ismail Shoman, R. A. Elwahab, and N. A. El-
Hadid Ghamry, “Position estimation of binaural sound source in rever-
berant environments,” Egyptian Inform. J., vol. 18, no. 2, pp. 87–93,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1110866516300378

[55] D. A. Krause, A. Politis, and A. Mesaros, “Joint direction and prox-
imity classification of overlapping sound events from binaural audio,”
in Proc. IEEE Workshop Appl. Signal Process. to Audio Acoust., 2021,
pp. 331–335.

[56] L. Rayleigh, “XII, on our perception of sound direction,” London, Edin-
burgh, Dublin Philos. Mag. J. Sci., vol. 13, no. 74, pp. 214–232, 1907.

[57] J. Blauert and S. Hearing, “The psychophysics of human sound localiza-
tion,” in Spatial Hearing, Cambridge, MA, USA: MIT Press, 1997.

[58] N. Ma, T. May, H. Wierstorf, and G. J. Brown, “A machine-hearing system
exploiting head movements for binaural sound localisation in reverberant
conditions,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2015,
pp. 2699–2703.

[59] C. Schymura, F. Winter, D. Kolossa, and S. Spors, “Binaural sound source
localisation and tracking using a dynamic spherical head model,” in Proc.
Interspeech, 2015, pp. 165–169.

[60] T. May, N. Ma, and G. J. Brown, “Robust localisation of multiple speakers
exploiting head movements and multi-conditional training of binaural
cues,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2015,
pp. 2679–2683.

[61] N. Ma, T. May, and G. J. Brown, “Exploiting deep neural networks
and head movements for robust binaural localization of multiple sources
in reverberant environments,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 12, pp. 2444–2453, Dec. 2017.

[62] N. Ma, J. A. Gonzalez, and G. J. Brown, “Robust binaural localization of a
target sound source by combining spectral source models and deep neural
networks,” IEEE/ACM Trans. Audio, Speech. Lang. Process., vol. 26,
no. 11, pp. 2122–2131, Nov. 2018.

[63] M. Zohourian and R. Martin, “Binaural speaker localization and sep-
aration based on a joint ITD/ILD model and head movement track-
ing,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2016,
pp. 430–434.

[64] A. Portello, P. Danès, and S. Argentieri, “Active binaural localization of
intermittent moving sources in the presence of false measurements,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 3294–3299.

[65] A. Portello, G. Bustamante, P. Danès, J. Piat, and J. Manhes, “Active
localization of an intermittent sound source from a moving binaural sen-
sor,” in Eur. Acoust. Assoc. Forum Acusticum, Krakov, Poland, Sep. 2014,
pp. 12–25. [Online]. Available:https://hal.laas.fr/hal-01969308

[66] L. Kneip and C. Baumann, “Binaural model for artificial spatial sound lo-
calization based on interaural time delays and movements of the interaural
axis,” J. Acoustical Soc. Amer., vol. 124, no. 5, pp. 3108–3119, 2008.

[67] D. Gala, N. Lindsay, and L. Sun, “Realtime active sound source localization
for unmanned ground robots using a self-rotational bi-microphone array,”
J. Intell. Robot. Syst., vol. 95, no. 3, pp. 935–954, Sep. 2019.

[68] Z.-Q. Wang, J. Le Roux, and J. R. Hershey, “Multi-channel deep clustering:
Discriminative spectral and spatial embeddings for speaker-independent
speech separation,” in Proc. IEEE 43rd Int. Conf. Acoust. Speech Signal
Process.2018, pp. 1–5.

[69] D. Krause, A. Politis, and K. Kowalczyk, “Feature overview for joint
modeling of sound event detection and localization using a microphone
array,” in Proc. 28th Eur. Signal Process. Conf., 2020, pp. 31–35.

[70] R. G. Klumpp and H. R. Eady, “Some measurements of interaural time dif-
ference thresholds,” J. Acoust. Soc. Amer., vol. 28, pp. 859–860, 1956. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:121232144

[71] S. B. Choe and J. J. Faraway, “Modeling head and hand orientation during
motion using quaternions,” SAE Trans., vol. 113, pp. 186–192, 2004.
[Online]. Available: http://www.jstor.org/stable/44737869

[72] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” NeurIPS, pp. 8024–8035, 2019.

[73] J. S. Garofolo, “TIMIT acoustic phonetic continuous speech corpus,” in
Linguistic Data Consortium, 1993.

[74] P. Srivastava, A. Deleforge, A. Politis, and E. Vincent, “How to (virtually)
train your sound source localizer,” 2022, arXiv:2211.16958.

[75] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A python
package for audio room simulation and array processing algorithms,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018, pp. 351–355.

[76] D. Diaz-Guerra, A. Miguel, and J. R. Beltran, “gpuRIR: A python library
for room impulse response simulation with GPU acceleration,” Multimedia
Tools Appl., vol. 80, pp. 5653–5671, 2021.

[77] A. Politis, “Microphone array processing for parametric spatial audio tech-
niques,” Ph.D. dissertation, Aalto Univ., Espoo, Finland, 2016, [Online].
Available: https://github.com/polarch/shoebox-roomsim

[78] “Sound absorption coefficient chart: JCW acoustic supplies,” [Online].
Available: https://www.acoustic-supplies.com/absorption-coefficient-
chart/

[79] R. W. Bohannon and A. Williams Andrews, “Normal walking speed: A
descriptive meta-analysis,” Physiotherapy, vol. 97, no. 3, pp. 182–189,
2011.

[80] F. Zotter and M. Frank, Ambisonics: A Practical 3D Audio Theory for
Recording, Studio Production, Sound Reinforcement, and Virtual Reality,
Berlin, Germany: Springer, 2019.

Daniel Aleksander Krause received the bachelor’s
and master’s degree in acoustical engineering from
the AGH University of Science and Technology,
Kraków, Poland, in 2018 and 2019, respectively. He is
currently a Doctoral Researcher with Tampere Uni-
versity, Tampere, Finland. His professional journey
includes a tenure as a Data Scientist with Fitech from
2017 to 2018, followed by a role in the Signal Pro-
cessing Group within the Department of Electronics
with AGH from 2019 to 2020. Since 2020, he has been
working towards the doctoral studies, contributing as

a Member of both the Audio Research Group and the Machine Listening group
with Tampere University. Starting in 2021, he assumed the role of Co-organizer
for the DCASE scientific challenge. His research interests include data science,
signal processing, machine learning, spatial audio, and acoustic scene analysis.

Guillermo García-Barrios was born in Madrid,
Spain, in 1994. He received the B.Sc. degree in sound
and image engineering, the M.Sc. degree in systems
and services engineering for the information society,
and the Ph.D. degree in acoustic signal processing
from the Universidad Politécnica de Madrid, Madrid,
Spain, in 2017, 2018, and 2023, respectively. He is
curently with Fivecomm as an R&D Engineer, an IoT
company focused on the digitalization of the industry.
His research interests include mobile communica-
tions, signal processing, cell-free massive MIMO,

simulations, machine learning, sound source localization, acoustics, and wireless
acoustic sensor networks.

https://www.sciencedirect.com/science/article/pii/S1110866516300378
https://www.sciencedirect.com/science/article/pii/S1110866516300378
https://hal.laas.fr/hal-01969308
https://api.semanticscholar.org/CorpusID:121232144
http://www.jstor.org/stable/44737869
https://github.com/polarch/shoebox-roomsim
https://www.acoustic-supplies.com/absorption-coefficient-chart/
https://www.acoustic-supplies.com/absorption-coefficient-chart/


KRAUSE et al.: BINAURAL SOUND SOURCE DISTANCE ESTIMATION AND LOCALIZATION FOR A MOVING LISTENER 1011

Archontis Politis received the M.Sc. degree in sound
and vibration studies from the Institute of Sound
and Vibration Research, University of Southampton,
Southampton, U.K., in 2008. He received the Doctor
of Science degree on spatial audio processing from
Aalto University, Espoo, Finland, in 2016. He is cur-
rently an Assistant Professor with Tampere Univer-
sity, Tampere, Finland. From 2008 to 2009, he was a
Researcher in a joint collaboration between the Glas-
gow school of Arts and Arup Acoustics, Glasgow,
U.K., performing research on virtual acoustics. In

2015 he was a visiting Researcher with the University of Maryland Institute
for Advanced Computer Studies, College Park, MA, USA and in the same
year he completed a research internship with Microsoft Research, Redmond,
WA, USA, on spatial audio technologies. He was an Editor of a book on
Parametric Spatial Audio Processing, Organizer with the DCASE scientific
challenge, and has chaired various special sessions in international conferences.
His research interests include spatial audio technologies, virtual acoustics, array
signal processing, and acoustic scene analysis.

Annamaria Mesaros (Senior Member, IEEE) re-
ceived the Ph.D. degree in signal processing from
the Tampere University of Technology, Tampere, Fin-
land, in 2012. She is currently an Associate Professor
with Tampere University, Tampere. Her research in-
terests include sound event detection in real-world
multisource environments and includes more than 40
scientific publications and many open datasets. She is
a Member of the Audio and Acoustic Signal Process-
ing Technical Committee of IEEE Signal Processing
Society. She is a Co-ordinator of the Detection and

Classification of Acoustic Scenes and Events (DCASE) Challenge, Vice-chair
of the DCASE Steering Group, and currently an Academy of Finland Research
Fellow for Teaching Machines to Listen.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


