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Principled Comparisons for End-to-End Speech
Recognition: Attention vs Hybrid at the
1000-Hour Scale

Aku Rouhe ¥, Tamas Grosz

Abstract—End-to-End speech recognition has become the center
of attention for speech recognition research, but Hybrid Hidden
Markov Model Deep Neural Network (HMM/DNN) -systems re-
main a competitive approach in terms of performance. End-to-End
models may be better at very large data scales, and HMM/DNN-
systems may have an advantage in low-resource scenarios, but the
thousand-hour scale is particularly interesting for comparisons. At
that scale experiments have not been able to conclusively demon-
strate which approach is best, or if the heterogeneous approaches
yield similar results.In this work, we work towards answering that
question for Attention-based Encoder-Decoder models compared
with HMM/DNN-systems. We present two simple experimental
design principles, and how to build systems adhering to those prin-
ciples. We demonstrate how those principles remove confounding
variables related to both data, and neural architecture and training.
We apply the principles in a set of experiments on three diverse
thousand-hour-scale tasks. In our experiments, the HMM/DNN-
systems yield equal or better results in almost all cases.

Index Terms—ASR, End-to-End, HMM/DNN.

1. INTRODUCTION

ROADLY, during the 1990 and 2000 decades, Hidden

Markov Model (HMM)-based speech recognition systems
were the only mainstream approach for building speech recog-
nition systems. HMM-based speech recognition has developed
in many ways, for instance, by using Deep Neural Network
(DNN) acoustic models in Hybrid HMM/DNN-systems. The
HMM/DNN-system approach continues to be competitive to-
day, but during the 2010 decade, multiple other competitive
approaches emerged, most common of them being: Connec-
tionist Temporal Classification (CTC) [1], RNN-Transducers [2]
(also called simply Transducers), and Attention-based Encoder-
Decoder (AED) models [3], [4]. These competing approaches
are all referred to by the umbrella term End-to-End speech
recognition.
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The End-to-End approaches have many differences with
HMM/DNN-systems, but there are also many differences be-
tween the End-to-End approaches. Comparing these heteroge-
neous approaches is not straight-forward, since experimental
results cannot be attributed to a single cause, because of the
many differences. Broadly speaking, in very large data tasks, at
the ten-thousand or hundred-thousand-hour scales, End-to-End
models are reported to outperform HMM/DNN-systems [5],
[6], and with limited resources, with a hundred hours and
less, HMM/DNN-systems may have an advantage [7], [8]. This
empirical result is also plausible theoretically, as End-to-End
models generally rely less on in-built structure [9].

However, the thousand-hour scale is particularly interesting
for comparisons, because no approach has been shown to be con-
clusively better [7], [10], and because the thousand-hour scale
is still possible to reach, resource-wise, in multiple languages,
in open datasets, and in multiple styles [11], [12], [13].

In this work we propose two simple experimental design prin-
ciples, which allow making stronger statements from compar-
isons of heterogeneous speech recognition systems. The Equal
Data Setting is a principle which avoids confounding differences
in data. The Matched Encoder Setting is a principle which avoids
differences in neural architecture and training.

We apply these principles in a set of experiments comparing
HMM/DNN-systems and AED-models. We focus on these two
approaches, because both have recently been shown to have high
performance [10], and because they are very different: using
input- vs. output-synchronous decoding, having implicit internal
vs. explicit external language models, using hard and explicit
vs. soft and implicit alignments. Additionally, building multiple
well-performing speech recognition systems is a large effort,
and thus we need to limit the scope of the work.

Our main contributions are as follows.

Firstly, we propose a conceptual framework for comparing
End-to-End and HMM -based speech recognition systems. We
develop the Equal Data Setting and Matched Encoder Setting
principles for experimental design. We show how to build
HMM/DNN-systems and AED-models, which adhere to these
principles.

Secondly, we conduct a set of experiments comparing
HMM/DNN-systems and AED-models, with the HMM/DNN-
systems consistently reaching equal or better performance com-
pared to our AED-models. Because of the principles we fol-
lowed, we are able to say that the results are not due to having
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additional data, nor due to the neural architecture or training
favouring the HMM/DNN-systems.

Thirdly, we make multiple discoveries about our HMM/DNN-
systems. We develop a multi-head decoding method, which
yields the best results. We find that frame-level training is still
useful, but on the other hand, expert pronunciation-lexicons and
tree-clustering for state-tying do not appear necessary, echoing
other recent work [14], [15], and potentially simplifying the
HMM/DNN-system.

A. Related Work

Speech recognition approaches are most commonly compared
by reporting various state-of-the-art results from the literature
so far. On popular benchmarks this may also lead to intense
competition, with rapid progress on the state-of-the-art numbers.
For example, in [16], an AED-model using SpecAugment was
reported to surpass state-of-the-art results on Librispeech, but
concurrently in [7], an HMM/DNN-system achieved the lowest
error rates at that point. In [17] an AED-model was found to out-
perform other Switchboard-300 results in the literature. Though
these results were later surpassed by an HMM/DNN-system
in [10], the results of the earlier work with an AED-model
were already improved to the lowest currently known numbers
in [18]. In this competition for the state-of-the-art numbers, the
systems are not constrained in anyway, and implementations
differ considerably, e.g. in terms of the number of training
epochs.

Our proposed principled experimental design is more simi-
lar with experiments where speech recognition approaches are
compared directly, applying some specific constraints. For ex-
ample [19] compares HMM/DNN-systems, CTC-models, AED-
models, and Transducer-models using the same encoder archi-
tecture for all, though exact training parameters are not de-
scribed. In [7], AED-models and HMM/DNN-systems are com-
pared using the same neural model type (Bidirectional LSTM),
though the authors do not use exactly matching architectures
nor training hyperparameters, but opt instead to optimize each
model’s recipe in isolation.

Concurrently with our work, [9] provides an overview survey
of End-to-End speech recognition. The survey breaks down
the term End-to-End into more precisely defined concepts, and
also includes a section relating End-to-End speech recognition
to HMM-based speech recognition (the term Classical speech
recognition is used). Additionally, [20] presents the field from
an industry perspective, stating how choosing an appropriate
speech recognition approach to develop and deploy is not easy.

II. PRINCIPLES FOR COMPARISONS OF HETEROGENEOUS
SYSTEMS

Here we introduce two constraining principles for building
heterogeneous speech recognition systems for direct compar-
isons. The goal is to create comparisons which reveal more
about the differences in the speech recognition approaches, as
opposed to confounding elements such as differences in data or
optimization.

Firstly, we introduce the Equal Data Setting, which we first
explored in [8]. Secondly, in this work we also propose the
Matched Encoder Setting.

A. Equal Data Setting

Different speech recognition approaches may be able to
leverage different data sources: hybrid HMM/DNN-systems are
able to leverage curated pronunciation lexicons and additional
text-only data, while standard End-to-End AED-models only
use transcribed speech. In a practical, commercial application,
where the end goal is to train the best performing model, it is
sensible to use all available data sources. However, we wish to
quantify the differences in the models - not the differences in
data. Thus, we argue that the models should be compared under
an Equal Data Setting [8], where the data that is available to each
approach is exactly the same.

If we are comparing a speech recognition approach that only
uses End-to-End Data, i.e. just transcribed speech, the Equal
Data Setting limits all approaches to End-to-End Data. Mostly,
this limitation affects HMM/DNN-systems. In an Equal Data
Setting, HMM/DNN-systems use grapheme-based lexicons and
transcript-based language models. Training language models
only on transcripts will likely lead to less capable models,
but requires no special techniques, as it is just a reduction in
the amount of data available. Grapheme-based lexicons, where
the acoustic model units are based on characters, can be used
without any pronunciation dictionary data. For languages such
as English, with non-trivial pronunciation, grapheme-based sys-
tems can be expected to perform slightly worse, whereas for
languages like Finnish, which have a transparent orthography,
grapheme-based systems are the norm and curated lexicons do
not offer a benefit [21].

Instead of limiting the HMM/DNN-system to End-to-End
Data, it is possible to extend End-to-End models to use other
data types. Developing methods to leverage text-only data is
probably beneficial in any speech recognition approach. Joint
Training can be maintained by synthesizing audio or encoder
representations for the text-only data [22], [23], however this
requires an additional synthesis model. A simpler method is
using an external neural Language Model (LM) in shallow fusion
with an AED-model. This way it is possible to use additional
text-only data and retain an Equal Data Setting. However, the
resulting model is no longer Jointly Trained. Though shallow
fusion is the standard approach, it does not compensate for
the internal language model in the AED-model (only learnt
on the transcripts of the data). This compensation is possible
through more sophisticated methods (e.g. [24]). To leverage
pronunciation dictionaries, AED-models can be made to use
phoneme-based units, though this can make decoding more
complicated and may not offer any benefit over grapheme-based
units [25].

Speech recognition research has a long tradition of controlled
benchmarks with clearly defined training, validation and test
data (e.g. [11], [26], [27]). With the advent of End-to-End
approaches, the Equal Data Setting is needed as a more precise
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definition for experiments, due to the benchmarks’ additional
text resources and pronunciation lexicons.

B. Matched Encoder Setting

Virtually all current ASR approaches use a notion of an
Speech-Encoder, which maps the audio into a representation
that contains only the information relevant for transcription. In
an AED-model, the Speech-Encoder is simply the Encoder part
of the model, and in an HMM/DNN-system, the Speech-Encoder
is at the core of the Acoustic Model, before the representations
are mapped into emission probabilities. Both approaches can use
the exact same neural architectures for the Speech-Encoder. This
similarity is contrasted by very different paths for decoding text.
The AED-model includes the attentional decoder, from which
text is produced output-synchronously. An HMM/DNN-system
uses a search system that integrates the probabilities of the
Acoustic Model, the hidden Markov model transition probabil-
ities, a pronunciation model, a separate Language Model, and
possibly other models.

Since the task of speech recognition remains the same regard-
less of approach, similar representations are probably useful in
all approaches. Unfortunately the representations learned by the
AED-model encoder have only been studied inextensively [28],
[29].

We propose to use the same neural architecture for the Speech-
Encoder in heterogeneous speech recognition systems, such as
with HMM/DNN-systems and AED-models. This ensures that
the Speech-Encoder has the same capacity and is equally good
at modeling acoustics. In addition to the neural architecture,
the important neural network training hyperparameters, such
as batch size, learning rate schedule, and number of training
epochs, are matched. Only the approach specific hyperparam-
eters (e.g. the weight of an auxiliary Cross-Entropy loss in an
HMM/DNN-system) have no counterpart and thus cannot be
matched. The initialization is also matched. In similar vein, all
speech recognition approaches probably benefit from using aug-
mentation or auxiliary inputs such as speaker embeddings [16],
[18], [30], [31], and their use should be matched.

We call this approach of using the same Speech-Encoder,
with the same augmentation and auxiliary inputs, and the same
training hyperparameters the Matched Encoder Setting.

In a general sense, the goal is to avoid the phenomenon where
two systems are compared, but one of them is more heavily
optimized — what could be called the favourite child problem.
However, matched hyperparameter training is not trivial, since
neural network training depends on the criterion: the same train-
ing hyperparameters could be closer to optimal for one approach.
We still propose picking one model to optimize first, and then
applying those parameters to the other system. Crucially, this
sets a lower bound on the performance of the latter system — it
could only improve through further optimization. Furthermore,
if the latter system outperforms the former system, it is not
a result of the favourite child problem (at least in terms of
hyperparameter tuning). Finally, as we will show in Section II-B,
hyperparameters which work well for one system are often
applicable to another, as well.

C. What Else Should Be Controlled For?

There are certain things that we strived to control for, that do
not clearly follow from the Equal Data Setting and Matched
Encoder Setting. Firstly, we used the same subword vocab-
ularies for the language models of the HMM/DNN-systems
and for the outputs of the AED-models. Secondly, if we apply
sequence-discriminative training, we should apply it to both
approaches. Thirdly, we generally use single-pass decoding with
both models, in this case restricting the HMM/DNN-system to
N-gram language models, but we also explore neural language
model rescoring in some experiments.

We believe the principles proposed in this section follow from
good scientific practice. We also believe that following these
principles allows us to draw stronger conclusions from our ex-
periments in comparing HMM/DNN-systems and AED-models.
Nevertheless, these principles cannot cover all design choices in
determining the compared systems. We discuss limitations in
Section V-A.

III. SPEECH RECOGNITION SYSTEMS

We use the principles introduced in Section II to build
comparable HMM/DNN-systems and AED-models. We aim to
build HMM/DNN-systems and AED-models following well-
established, modern practices.

The Matched Encoder Setting practically necessitates using
the same software tools for training both the HMM/DNN-system
acoustic model and the AED-model, since different tools can
very easily have subtle differences in neural implementations.
There are few public, open source tools that allow this readily.
One example is combining the Returnn and the RASR toolk-
its [32] in the TensorFlow ecosystem. In the PyTorch ecosystem,
the Espresso [33] and the k2-fsa! toolkits allow some form of
AED-models and HMM/DNN-system, but both lack for ex-
ample sequence-discrinative AED-model training and Gaussian
Mixture Models (GMM). We conduct our experiments in the
PyTorch ecosystem, and opt to use SpeechBrain [34] to train
neural networks, and build the full recipes by integrating many
different toolkits. We release our recipes online,” hoping to help
further research in this implementation-intensive area.

We use three different Speech-Encoder neural architec-
tures: the Convolutional-Recurrent-Feedforward (CRDNN)
model [34], the Conformer (Confo) [35], and wav2vec 2.0
(w2v2.0) [36]. The CRDNN and Conformer-models take (re-
spectively) 40- and 80-dimensional Mel-scale filter bank log-
energy vectors as input. Both architectures have a front-end of
two convolutional layers, with the CRDNN using layers of 64
and 128 channels, and the Conformer using layers of 64 and
32 channels, and with both architectures using 3-by-3 kernels.
The convolutional layers subsample the input in time, three-fold
for HMM/DNN-systems and four-fold for AED-models, result-
ing in 30 ms and 40 ms output frame-rates, respectively. This
minor difference in the encoder does not change the number
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of parameters, but the different ASR approaches simply work
best at different time-granularities. A small exception is the
projection layer after the Conformer convolutional front-end,
which is necessarily slightly wider when the total stride is 3
(compared to 4 in the AED). From here on the architectures
diverge. On the CRDNN, the convolutional layers are followed
by three 512-wide bidirectional LSTM layers, and finally by
one 512-wide feed-forward layer. The CRDNN encoder has 27
million parameters altogether. With the Conformer, we use two
sizes: a small one (Conformerg) and a large one (Conformery,).
Conformerg has 12 Conformer layers with width 144, 4 attention
heads, and a feed-forward dimensionality of 1024. This results
in an encoder of just 9.3 million parameters. Conformer;, has
12 Conformer layers with width 512, 8 attention heads, and
a feed-forward dimensionality of 2048. The large Conformer
encoder has 76.2 million parameters.

The wav2vec 2.0 encoder is the Large size, which has 318
million parameters. The encoders have been pretrained on a
large untranscribed speech datasets using the wav2vec 2.0
Self-Supervised Learning (SSL) approach. The model has a
convolutional frontend, which takes the raw audio waveform
as input. We keep the convolutional frontend parameters frozen.
The bulk of the model is made up of Transformer (Trafo) layers.
We use openly available pretrained parameters (Uralic V2 for
Finnish, LV60 for Librispeech). The pretraining SSL approach
is explained in [36]. On top of the wav2vec 2.0 pretrained
model, we add two randomly initialized feed-forward layers
(1024-wide), which slightly improved our results in preliminary
experiments. The wav2vec 2.0 encoder natively runs at a 20 ms
output frame-rate. Thus its output does not cleanly divide into
the 30 ms rate of the HMM/DNN-system. Instead, the wav2vec
2.0 -based HMM/DNN-system uses the 20 ms output frame-rate.
The AED-model simply takes every other output, yielding the
regular 40 ms frame-rate.

The Conformer encoders are trained with SpecAugment [16],
as it is part of the recipe we adopt. We make a small ad-
justment: we do not use on-the-fly time stretching, so that
our original GMM-alignments can be used. Although purely
sequence-trained models could use time-stretching, in prelim-
inary tests, we found that removing the time stretching yields
us the same results as the recipe we adopt. The original work
on SpecAugment also suggests the time-stretching is not cru-
cial [16]. The CRDNN and wav2vec 2.0 encoders do not use
SpecAugment, keeping in line with our earlier work. Aug-
mentation and SpecAugment yield better performance, but this
applies to both AED-models [16] and HMM/DNN-systems [30],
and as such we believe it to be mostly a matter orthogonal to
comparisons such as those presented here.

A. Hybrid Hidden Markov Model / Deep Neural Network
Systems

The main HMM/DNN-systems are built in many stages,
starting with GMM acoustic models. These are then followed
by DNN acoustic models which use both the Lattice-Free Max-
imum Mutual Information (LF-MMI) [37] and Cross-Entropy

(CE) training criteria. Language models are trained separately.
To study the different benefits that the GMM alignments yield,
we also train HMM/DNN-systems which use either Flat Start
(FS) DNN acoustic models or only use Cross-Entropy targets.

Our acoustic models use word-position-dependent grapheme-
units (permitting four variations of a character: at the begin-
ning, inside, and at the end of a word, and as single character
words [38]), except in Section IV-B, where we additionally
present results with word-position-dependent phoneme-units for
contrast.

1) Gaussian Mixture Models: The hybrid HMM/DNN-
system acoustic model recipe begins by training increasingly
more complex GMMs. We use the Kaldi toolkit [39] for all
GMMs. We follow the Kaldi standard four-stage GMM recipe
outline, where the last stage is a speaker-adapted tri-unit tristate
HMM/GMM-system. The final GMM acoustic model is used
to align the training data. These alignments are then used both
in the HMM tree-clustering algorithm for state-tying and for
Cross-Entropy target labels.

2) Deep Neural Network Acoustic Models: The early DNN
acoustic model formulations computed the probability of the
input belonging to a particular HMM emission state, and turned
this into emission likelihoods through normalizing (dividing)
by the prior probability. These DNNs use the frame-wise Cross-
Entropy criterion, which trains the network to match the GMM
alignments.

Cross-Entropy training remains a mainstream DNN acoustic
model training method, either used as the first training phase,
or as an auxiliary task. However, to achieve state-of-the-art
performance, HMM/DNN-systems use some form of sequence-
discriminative training. We use the sequence-discriminative LF-
MMI criterion, taking the implementation from PyChain [40].
Most of the improvement can be acheived with any sequence-
discriminative criterion, but a criterion that directly minimizes
the expected error, which we lack, could still yield some further
improvements [37], [41]. This presents a small caveat in the
interpretation of our results.

As recommended, we add [,-regularisation with weight
0.0005 to the outputs of the LF-MMI head [37], yielding minor
improvements. The outputs of the LF-MMI DNN acoustic mod-
els are typically interpreted as logarithmic pseudo-likelihoods,
requiring no division by the prior. It has been shown that LF-
MMI can be used for Flat Start training, requiring no alignments,
an output space based on simple pruning instead of tree-based
clustering, and starting from a randomly initialized neural net-
work [42]. This allows pure sequence-level training, offering
similar simplicity as CTC training of acoustic models, but with
a sequence-discriminative criterion.

Our main HMM/DNN-systems experiments use Cross-
Entropy and LF-MMI in a multi-task learning setup. For the
Cross-Entropy loss we apply uniform Label Smoothing (LS),
which can help calibrate the output of the model, aiding in
beam search [43]. In multi-task learning, the Cross-Entropy
and LF-MMI criteria have their own output head, which is a
separate linear layer, though both heads use the same units. We
note that since both heads are used to compute HMM emissions
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TABLE I
HMM / DNN DEVELOPMENT RESULTS ON FINNISH PARLIAMENT (FP)
TRAIN20 AND LIBRISPEECH, USING TRANSCRIPT LMS, ORDERED BY
DECREASING WER

Training Criteria | Inference Outputs | Dev WER [%]
FP Train20 Devl16
LF-MMI LF-MMI 15.12
LF-MMI + CE LF-MMI 14.32
FS LF-MMI LF-MMI 14.29
CE CE 13.73
LF-MMI + CE CE 13.11
LF-MMI + CE LF-MMI + CE 12.15
Librispeech Clean | Other
CE CE 5.34 14.44
LF-MMI + CE CE 5.17 13.88
FS LE-MMI LF-MMI 5.09 13.16
LF-MMI + CE LF-MMI 4.82 12.66
LF-MMI + CE LF-MMI + CE 4.61 12.43

FS stands for the flat start approach, which in this case means a trivially
pruned tree (instead of state-tying based on GMM alignment information).
All results with CRDNN encoders and (by exception) 80-element feature
vectors.

likelihoods, perhaps the term multi-loss learning or multi-head
model could also be appropriate. We use a three-fold reduced
output frame-rate for both the Cross-Entropy and the LF-MMI
heads, as is typical with LF-MMI. When we use the Cross-
Entropy output head in inference, we normalize the output with
aprior vector. The prior is estimated empirically by averaging the
Cross-Entropy head outputs on a sample of the training data. We
decode by computing log-likelihoods in SpeechBrain and then
using beam search in the Kaldi Weighted Finite State Transducer
(WEST) decoder.

The common Kaldi inference time solution is to discard the
Cross-Entropy head, and only use the LF-MMI outputs. Instead,
we find that in our implementation, the best performance is
achieved by using both output heads and linearly combining
their outputs after a log-softmax, with the same weights as used
during training (0.1 weight for Cross-Entropy). To the best of
our knowledge, this proposed multi-head inference is a novel
improvement for the HMM/DNN approach, though it resembles
an efficient form of model combination. We presented initial
results using this approach in [44] and explore it here in more
detail. Table I compares the various acoustic model training
criteria and output heads used during inference. The LF-MMI
+ Cross-Entropy training has a clear benefit both over LF-MMI
alone or Cross-Entropy alone on both Librispeech and Finnish
Parliament Train20 (see Section I'V-A for dataset information).
On Finnish Parliament Train20, perhaps because of the exten-
sively tuned HMM/GMM recipe, the Cross-Entropy head yields
the best single-head results. On Librispeech, the LF-MMI head
is the better one of the single output heads. Additionally, we
find that the simple pruning Flat Start LF-MMI outperforms
the tree-clustering state-tied LF-MMI in our test on Finnish
Parliament Train20. This is surprising, but seems to suggest
that the tree-clustering does not always yield better performance
in HMM acoustic modeling, which is also suggested in other
recent work [15] and would simplify the HMM/DNN-system

further. The investigation of this phenomenon is out of scope for
this work.

3) Language Models: HMM/DNN-systems typically use N-
gram language models, as they can easily be made computa-
tionally feasible for single-pass decoding. Additionally, large
neural language models may be used in rescoring to improve
results. Under the End-to-End Data limitation, the amount of
data available for language modeling is lower than in typical
systems. This emphasizes the data sparsity problem inherent
with N-gram language models using large vocabularies. Thus, it
is especially important to use subwords as the language modeling
unit, which leads to a smaller vocabulary. We use Byte Pair
Encoding (BPE) units with SentencePiece segmentation. With
SentencePiece units, we take care to handle the word-position-
dependent units correctly [8]. With subword units, itis especially
important to use longer N-gram spans [45] and thus we use the
VariKN toolkit, which can grow large span modified Kneser-Ney
backoff language models [46]. We use 10-gram models for all
transcript-based language models.

Neural language models are commonly thought to be more
data hungry than N-gram models. Thus the benefits from neural
language model rescoring may be diminished under the End-
to-End Data limitation. Nevertheless, we present some experi-
ments using neural language models, which are trained on the
transcripts only. All of our neural language models are based on
the Transformer architecture and use the same subword units as
the corresponding N-gram models. With HMM/DNN-systems,
we apply these neural language models in 100-best list rescoring
(we also tried a 1 000-best list but it did not improve results).
The neural language models are implemented in SpeechBrain.

The language model weight and word-insertion-penalty are
important decoding hyperparameters, and are optimized on de-
velopment sets.

We note that it has been shown that with efficient implemen-
tations, arbitrary history length neural language models can be
applied to single-pass search in HMM/DNN-systems [47]. How-
ever, here the single-pass HMM/DNN-system implementation is
limited to local context language models, leaving the advantages
of arbitrary-length history modeling to the AED-model in this
comparison.

B. Attention-Based Encoder-Decoder Models

The AED-models add an attentional decoder on top of the
Speech-Encoder. The decoder uses attention to find relevant
parts in the input, and then computes a distribution over the
output text units. We use the same set of subword units that
the HMM/DNN-system language models use. To optimize the
networks, we employ the Cross-Entropy criterion with label
smoothing and add an auxiliary CTC criterion, which has its
own output head on top of the encoder. The CTC head uses
the same subword units as the main attentional decoder. For
the CRDNN models, the CTC criterion is only used for the
first 15 nominal epochs, the idea being to aid learning in the
beginning of training, since the attention mechanism is difficult
to learn from random initialisation. For the Conformer and
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wav2vec 2.0 encoders, we use hybrid CTC/Attention model-
ing, where the CTC outputs are also used in decoding [48].
This joint CTC/Attention decoding is somewhat symmetrically
matched by the two-output-head decoding in the HMM/DNN-
system. We decode with beam search in SpeechBrain. To deal
with the length bias of AED-models [49], we use an end-
of-sentence probability threshold and an attention coverage
penalty [50].

Because the HMM/DNN-system uses sequence-
discriminative training, we want to apply a sequence-
discriminative criterion to the AED-model as well. We
implement the Minimum Word Error Rate (MWER)
-criterion [51]. We use the recommended settings: sampler
beam size 4, Cross-Entropy as regularisation with weight 0.01,
and regularisation through subtracting the mean number of
errors on a sample. We find it is important to use word-level
MWER, not subword-level, though a subword implementation
is faster because it requires no Sentencepiece conversion.

We present some experiments where neural language models
of Section III-A3 are used in shallow fusion with the AED-
models.

C. Minimum Word Error Rate Training for Joint
CTC/Attention Models

The classic MWER algorithm does not account for Joint
CTC/Attention, so to use MWER, we needed to develop some
additional solution. It could theoretically be possible to develop
and implement MWER training for Joint CTC/Attention, but
practically we deemed it out of the scope of this work. Another
approach could be to use MWER training on the attentional
decoder, and keep updating the CTC head with the regular
CTC criterion. However, MWER training, which uses beam
search at every step, is particularly compute intensive. Thus we
deemed it best to freeze the encoder, and only update the atten-
tional decoder with MWER. This way, after MWER finetuning,
the encoder representations have not drifted away from ones
learned by CTC, and we can again apply Joint CTC/Attention
decoding.

IV. EXPERIMENTS

We showcase how the Equal Data Setting and Matched En-
coder Setting principles affect our results compared to not using
such principles. The effects of the End-to-End Data limits placed
in our proposed Equal Data Setting can be directly estimated
with comparable systems, which do not conform to the Equal
Data Setting. The effects of the proposed Matched Encoder
Setting are seen indirectly.

In our main experiments, we compare AED-models and
HMM/DNN-systems on three different tasks under the Matched
Encoder Setting and the Equal Data Setting (MES-EDS Com-
parison). Though we are interested in the relative results of the
different models, we also present some external baseline results
where applicable. Section IV-E analyses the results. First, we
introduce the datasets.

TABLE I
A DATA OVERVIEW: HOURS OF SPEECH, NUMBER OF SPEAKERS, AVERAGE
UTTERANCE LENGTH, AND NUMBER OF WORDS IN THE TRANSCRIPTION, FOR
EACH DATA SUBSET

Data Hours | Speakers | Avg.Len. | Words
Finnish Parliament Train20 1783 302 6.5s 11M
Finnish Parliament Test16 5.7 21 10.6 35k
Finnish Parliament Test20 4.7 28 6.6s 27k
Librispeech Train 961 >1000 12.3s M
Librispeech Test Clean 54 87 7.4s 52k
Librispeech Test Other 53 90 6.5s 52k
Combined Finnish Train 4224 18187 3.8s 29M
Lahjoita Puhetta Test 6.8 99 1.5s 55k
YLE Test 5.6 128 6.7s 37k

A. Datasets

We use three different thousand-hour-scale datasets: the
Finnish Parliament Train20 dataset, Librispeech, and a Com-
bined Finnish Data task. The Combined Finnish dataset includes
both the full Finnish Parliament ASR Corpus and the Lahjoita
Puhetta dataset, and it is a new task which we introduce here.

Table II summarises the data.

1) Finnish Parliament Train20: The Finnish Parliament (FP)
ASR Corpus [52] is the largest publicly available transcribed
Finnish speech corpus. The full training set is 3 087 hours, and
has 449 different speakers. The transcripts consist of 19 million
words. The speech, taken from recordings of the Finnish national
parliament plenary sessions, is semi-spontaneous and covers a
wide breadth of topics. The training data has two distinct subsets:
Train16 and Train20. We pick the Train20 subset. The Train20
subset has an extensively tuned recipe for GMMs [52], which
will aid in exploring the benefits of alignments in HMM/DNN-
systems. The Train20 dataset has 1 783 hours of data from 302
speakers and its transcripts have 11 million words.

The Finnish Parliament ASR Corpus also has a development
set, Dev16, and two test sets, Test16 and Test20. The Dev16 and
Test16 sets are from the year 2016, and Test20 is from 2020.
Additionally, the corpus has text-only resources for building
language models. We use the 30 million word text dataset, and
abbreviate it Parl30 M. This text data also derives from the
transcripts of the plenary sessions, so it has some overlap with the
training data. For all the Finnish Parliament Train20 experiments
we use a 1 750 BPE unit vocabulary, which was deemed to work
well in prior experiments [8].

2) Librispeech: Librispeech [11]is a well known and highly
competed English read speech task. We use the 960 h full set
from more than a thousand different speakers, and the transcripts
have 9 million words. Librispeech has two development and
test sets: a clean one and a noisy, “other” one. Official 4-gram
language models and official pronunciation dictionaries are dis-
tributed alongside the data. The 4-gram language model has been
trained on an official 800 million word text corpus. For the main
experiments, we train our own language models on the speech
transcripts, and use grapheme-based acoustic model units. We
use a 5 000 units BPE unit vocabulary for all Librispeech
experiments (this performed slightly better than 2 000 units in
preliminary experiments).
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We choose to experiment on Librispeech for a few reasons.
Firstly, it is English, where expert-knowledge pronunciation
dictionaries are typically used. Under the Equal Data Setting, we
limit the HMM/DNN-systems to grapheme-units, and English
allows us to quantify this side of the Equal Data Setting. Sec-
ondly, Librispeech has extensive baseline results for us to com-
pare to. Lastly, Librispeech covers another style: read speech.

3) Combined Finnish Data: We combine two datasets, the
Finnish Parliament ASR Corpus, and the Lahjoita Puhetta cor-
pus [13], to form a new Combined Finnish task. This task uses
the largest amount of transcribed Finnish speech training data
published so far, to the best of our knowledge. This combined
task is not just large, but also requires the speech recognition
approaches to handle multiple styles and domains. Altogether
the training set has 4 224 hours from 18 187 speakers, and the
transcripts contain 29 million words.

The Finnish Parliament ASR Corpus is described above in
Section IV-A1. The Lahjoita Puhetta corpus has 1 601 hours of
transcribed speech from 17 821 different speakers. The speech
was donated by the Finnish public and transcribed by profes-
sional transcription services. The speech is spontaneous and col-
loquial, covering many dialects and topics. A development and
test set split was introduced in the original publication and we use
the same setup in this work. The corpus includes automatically
created time-alignments for the recordings. Since the original
recordings are relatively long for speech recognition purposes,
we split all the recordings by pauses, which were marked by
the professional transcribers. This splitting is also done for the
development and test sets, because the long recordings would
lead to pathological output issues for AED-models [13]. These
output issues require further research outside the scope of this
work.

To create the Combined Finnish Data task development set,
we simply combine the Lahjoita Puhetta and Finnish Parliament
Dev16 development sets.

4) YLE Test: The YLE Test data contains about six hours
of Finnish broadcast news speech. The test data has a corre-
sponding development set, but we do not separately optimize
parameters on it in this work.

B. Equal Data Setting

We evaluate how the Equal Data Setting affects our re-
sults by comparing models which differ in resources. We con-
trast transcript-only language model results with extra-text lan-
guage model results. We compare grapheme-unit models with
phoneme-unit ones. With these results, we showcase how im-
portant it is to decouple differences in data from differences in
the ASR approaches.

On Finnish data, the only End-to-End Data limitation is the
amount of language model data. In Table III we present ex-
periments with HMM/DNN-systems using different language
model data and language model setups and additionally we
include results with AED-models with and without shallow
fusion language models. We do not apply internal language
model compensation here, which presents a caveat, as it could
improve the language model integration. The comparisons with

TABLE III
EXPERIMENTS VALIDATING THE EQUAL DATA SETTING ON FINNISH
PARLIAMENT TRAIN20
WER [%]
Family | 1st-pass LM Rescoring LM Dev16 | Testl6
- 11.72 8.21
Transcript 10-gram | Transcript Trafo 11.12 7.90
HMM Parl30M Trafo 9.59 6.56
Parl30M 10-gram | 963 6.69
Parl30M Trafo 8.61 5.94
- 14.26 10.39
AED Transcript Trafo - 12.74 9.03
Parl30M Trafo 10.00 6.66

All models use matched encoder setting CRDNNS.

TABLE IV
EXPERIMENTS VALIDATING THE EQUAL DATA SETTING ON LIBRISPEECH

Dev WER [%] | Test WER [%]

LM Units Clean Other | Clean Other
Transcript BPE 10-gram Graph 4.66 12.68 4.76 12.95
Official Word 4-Gram 3.68 1040 3.92 10.52
Phon. 3.59 10.20 3.95 10.38

All models are HMM/ DNN-systems with matched encoder setting CRDNNS and (by
exception) 80-element features.

neural language models keep the data equal, but the AED-models
are no longer jointly trained. The transcript-based Transformer
language model yields a 4% relative improvement over the
transcript 10-gram model for the HMM/DNN-system and a 13%
relative improvement over the non-shallow-fusion result for the
AED-model. The Parl30 M 10-gram and Transformer rescoring
combination brings a 28% relative improvement over the tran-
script 10-gram HMM/DNN-system and a 36% improvement
over the AED-model over the non-shallow-fusion result. The
use of external language models is crucial to obtain the best
speech recognition systems, and it is also important to develop
better strategies and methods for language model integration in
AED-models [24].

On English data, under the End-to-End Data limitation, both
extra text data and expert-curated pronunciation dictionaries are
excluded. In Table IV we present results with HMM/DNN-
systems, which use phoneme- or grapheme-units and systems
which use the official 4-gram or our transcript-only language
models. Creating English pronunciations for subword units is
difficult, because the units should be pronounced differently
depending on their context. Additionally, the segmentation is
based on text compression, and as such does not take phone-
mic information into account. Therefore, our grapheme- and
phoneme-unit comparison is performed with the official 4-gram
word-level language model.

Additional text-only data is a clear benefit in speech recog-
nition. The main novelty in our chosen Equal Data Setting
is to compare AED-models with HMM/DNN-systems using
transcript-based language models. Both the Finnish and English
results validate that this yields a meaningful comparison, where
the data difference is eliminated. Finally, on the English data,
we see that phoneme-units may offer little to no benefit over
grapheme-units, echoing similar results in [14].
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TABLE V
REVISITING RESULTS FROM EARLIER WORK, WHICH USED THE EQUAL DATA
SETTING, BUT NOT THE MATCHED ENCODER SETTING

YLE Test
Family Encoder Data WER [%]
Kaldi HMM [8] TDNN FP+SC+SD 28.07
ESPNet AED [8] | Transformer 27.84
Kaldi HMM [52] | TDNN FP Train20 26.15
AED [52] CRDNN 28.99
HMM CRDNN FP Train20 22.04
AED CRDNN 26.41

The earlier work used finnish parliament trainl6, speecon, and speechdat
(FP+SC+SD). The AED-models did not use language models, and the HMM/
DNN-systems all used different transcript language models that were trained
in the same way as those used in this work.

C. Matched Encoder Setting

We emphasize the importance of the Matched Encoder Setting
by presenting various results from our experiments, as well
as some external baselines. We show how not following the
Matched Encoder Setting could lead to drawing the wrong
conclusions.

First, we revisit some results that we previously presented
on the YLE test data. In [8], we presented results under the
Equal Data Setting, where the HMM/DNN-system and the AED-
model have similar performance. The number of parameters
and the use of auxiliary inputs were matched in that com-
parison. However, the AED-model used ESPNet Transformer-
architecture recipe, whereas the HMM/DNN-system relied on
a Kaldi TDNN-recipe. This leaves open the question of just
how much did the AED-model gain over the HMM/DNN-
system from using a more advanced neural model. In [52],
we again used the Equal Data Setting, this time with a Kaldi
HMM/TDNN-recipe compared against a CRDNN AED-model,
using the Finnish Parliament Train20 data, with the Kaldi system
outperforming the AED-model slightly. These latter results are
in Equal Data Setting with our new results, presented in Table V.
The new results show how under a Matched Encoder Setting,
the HMM/DNN-system win over the AED-model is actually
emphasized in this case. Furthermore, our new AED-model has
roughly equal performance compared to the Kaldi HMM/TDNN
on the Equal Data Setting comparison on Finnish Parliament
Train20, which is further evidence that results not under a
Matched Encoder Setting can be difficult to interpret. However,
we note that the primary result in [8] was that the external
text-only data is the key to improved results, which was shown
by a clear margin, and served to emphasize the importance of
using the Equal Data Setting.

In Table VI we report two initial sets of results from the course
of performing these experiments. On the Finnish Parliament
Train20 data, we tried two different combinations of batch size
and number of updates, both adding up to seeing 40 million
seconds of data. The HMM/DNN-system result change was
statistically insignificant (by bootstrap estimate [53]), but the
AED-model performed much better (=~ 30% relative) with 1
million iterations of 40 s batches. On Librispeech, we iteratively
improved the AED-model, which leapt from 6.26% word error

TABLE VI
DEVELOPMENT RESULTS WITH MATCHED ENCODER SETTING

Family | Batch | Tter. Notes Dev WER [%]
Finnish Parliament Train20 Dev16
AED 200s 200k No LS 24.10
40s IM - 16.80
HMM 200s 200k No LS 12.671
40s IM - 12.457
Librispeech Clean Other
AED 40s IM - 6.26 16.76
+Cont. above +80s +375k | - 5.14 15.04
AED 80s IM Big Dec 4.84 14.41
HMM 40s IM - 478 12.79
+Cont. above +80s +375k | - 4.53% 12.29%
HMM 80s M - 4571 | 12.24%

All results with CRDNN encoders. No LS stands for no label smoothing. Dagger
(1) marks statistically insignificant difference.

rate to 4.84% (a 23% relative improvement). The best AED-
model surpassed the initial HMM/DNN-system, but with the
changes in training hyperparameters, the HMM/DNN-system
improved 4% relative, and still had the lowest error rate.

In Table V we showed how experiments using unmatched
encoders can be difficult to interpret, particularly when the dif-
ferences in error rates are small. It was important to apply the best
AED-model neural modeling to the HMM/DNN-system as well
- otherwise it might have seemed as if the HMM/DNN-system
was outperformed. In Table VI we showed how the HMM/DNN
acoustic model learning is not highly dependent on training
hyperparameters, and the best AED-model training parameters
also yielded the best HMM/DNN-system.

D. Comparison Experiments

We compare our best AED-models and HMM/DNN-systems
under the Matched Encoder Setting and Equal Data Setting in
three tasks. We first optimize the AED-model, and then apply
the same hyperparameters to the corresponding HMM/DNN-
system. As explained in Section II-B, this sidesteps the favourite
child problem: the neural model optimization at least does not
favour the HMM/DNN-system.

Each task tests ASR models in slightly different conditions
and in the interest of making the set of experiments man-
ageable to run, we do not test every model and approach on
every task. On the Finnish Parliament Train20 and Librispeech
tasks we optimize CRDNN and wav2vec 2.0 recipes. Addition-
ally, on Librispeech, we adapt and apply a recently published
well-performing Conformer recipe from SpeechBrain. On the
Combined Finnish Data, we use the best CRDNN models from
Librispeech.

1) Finnish Parliament Train20 Experiments: On Finnish
Parliament Train20, we started with the AED-model from [52].
The CRDNN encoder is described in Section III. The atten-
tional decoder was a single 512-wide Gated Recurrent Unit
(GRU) layer, and used location-and-content aware attention.
The system was trained for 100 nominal epochs, where each
epoch had 10 000 updates on dynamically sized batches, tar-
geting 40 seconds of audio per batch. The system is trained
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TABLE VII
MES-EDS COMPARISON EXPERIMENTS ON THE FINNISH PARLIAMENT TRAIN20 DATA

WER [%]
Family Encoder 1st-pass LM Rescoring LM Devl6 | Testl6 | Test20
Kaldi HMM [52] | TDNN Transcript BPE 10-gram - 14.19 10.52 8.84
HMM 11.72 8.21 7.59

Transcript BPE 10-gram

FS HMM CRDNN - 14.18 10.55 9.39

AED - 14.26 10.39 8.57

HMM 8.61 5.94 8.23
Parl30M BPE 10- Parl30M BPE Transft

FS HMM CRDNN ar gram ar FSIOTIET 1996 | 652 | 9.63

AED Parl30M BPE Transformer | - 10.00 6.66 7.40

HMM Transcript BPE 10-gram 9.06 6.46 6.48

wav2vec 2.0

AED/CTC - 9.72 6.79 6.61
HMM wavavee 2.0 Parl30M BPE 10-gram Parl30M BPE Transformer 8.15 5.92 8.02
AED/CTC ' Parl30M BPE Transformer | - 8.48 6.02 7.09

FS stands for the flat start approach.

with Adam using a 0.0001 learning rate, without learning rate
scheduling.

This initial system was slightly improved by doubling the
attention context vector size. We also tried using multi-headed
attention, using a larger decoder, not using label smoothing, and
trading number of steps for a larger batch size (same amount
of data seen overall), but these did not improve results in our
implementation. Further improvements were found by training
more (75 additional nominal epochs of 5 000 updates) with larger
batches (80 s), using a NewBob learning rate schedule. Finally,
we improved the AED-model through sequence-discriminative
finetuning with MWER training. The MWER finetuning only
needed a few thousand steps to reach the best performance. At
that point, the resulting AED-model had reached parity with the
Kaldi HMM/TDNN baseline from [52]. However, a Matched
Encoder Setting HMM/DNN-system outperformed the AED-
model.

The wav2vec 2.0 models require less training to reach
good performance. Since they are considerably more compute-
expensive, we train them for 25 nominal epochs (10 000 updates,
40 s batches). We use NewBob learning rate scheduling through-
out training. After this, the AED-model is also slightly improved
through our modified MWER finetuning approach as described
in Section III-C.

We note that MWER training is a sequence-discriminative
finetuning step, while the HMM/DNN-system uses the
sequence-discriminative LF-MMI criterion throughout training.
The MWER finetuning only took a few thousand steps, so
on Finnish Parliament, we did not match this training step
with anything on the HMM/DNN-system side. We could have
continued the regular HMM/DNN-system training for a few
thousand more steps to match the training length exactly, but
the HMM/DNN-system had already converged, so it would
not have changed the results. However, we note that some
criterion minimizing the expected error could have been used
here.

On the Finnish Parliament data, we also experimented with
additional text resources. We present results using a 12-layer
Transformer neural language model trained for 200 nominal
epochs (with early stopping) on the transcripts, and another one

TABLE VIII
THE FINNISH PARLIAMENT TRAIN20 LANGUAGE MODEL PERPLEXITIES
NORMALIZED TO THE WORD LEVEL

Perplexity
Language model Dev16 Test16 Test20
Transcript BPE 10-gram 1307.78 | 1604.77 | 1424.81
Transcript BPE Transformer | 1122.20 | 1313.82 | 1154.50
Parl30M BPE 10-gram 387.93 489.67 1463.00
Parl30M BPE Transformer 224.46 192.93 1582.59

All models permit an open vocabulary.

TABLE IX
DETAILED LOOK AT THE FINNISH PARLIAMENT TRAIN20 MODEL SIZES
Parameter count
Submodel CRDNN | w2v2.0
Encoder 20.8M 318M
LF-MMI Head 1.19M 2.54M
CE Head 1.19M 2.54M
FS LF-MMI Head 579% -
Transcript BPE 10-gram 6.83M
Parl30M BPE 10-gram 19.2M
CTC Head 898k 1.79M
AED Head 898k 898k
Att. Decoder 8.85M 10.9M
Transcript BPE Transformer 88.3M
Parl30M BPE Transformer 88.3M

trained on the Parl30 M text. We also train a single-pass-capable
10-gram language model on the Parl30 M data.

The Finnish Parliament Train20 results are reported in
Table VII. Language model perplexities (normalized to the word
level) are shown in Table VIII. We remind readers less familiar
with Finnish, that the Finnish absolute perplexity values are
often much higher than e.g. English, due to the much larger
vocabulary. Model sizes are reported in Table IX. The N-gram
language model parameter counts are measured by the number
of N-grams in the model, though there may be both a probability
and a backoff weight associated with it.

2) Librispeech Experiments: On Librispeech we start with
the best AED-model configuration from Finnish Parliament
Train20. We improve the initial Librispeech AED-model with
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a 1024-wide decoder and training with an 80-second batch size
from the start for 100 nominal epochs of 10 000 updates. After
the 60th epoch, we use a NewBob learning rate schedule. This
equals seeing the full data a little over 23 times. We also try
a larger batch size, an even larger decoder, different learning
rates and learning rate schedules including warm-up, an LSTM
decoder, and lowering the label smoothing value, but the changes
listed above yield our best model. On Librispeech we use the
same wav2vec 2.0 configuration as Finnish Parliament Train20,
except we increase the batch size to 180 seconds, which helps
slightly.

We adapt the SpeechBrain Conformer;® and Conformerg*
optimized recipes to our data pipeline. Unlike our other recipes,
the Conformers use SpecAugment and large batch sizes (2520
seconds). The models train for 120 nominal epochs of 1824
updates (so that nominal epochs approximately match full
dataset epochs), using Noam learning rate scheduling with a
warm-up, and the AdamW optimizer [54]. Unlike the CRDNN
and wav2vec 2.0 AED-models, which use a GRU decoder, the
Conformer recipes use a 6-layer Transformer decoder.

At decode-time the Conformer recipe uses 10 checkpoint
parameter averaging [55], which improves results. However, the
recipe does not include an MWER finetuning step, which we add.
We decide to add MWER finetuning after parameter averaging,
because our MWER finetuning is run for relatively few steps
(20 nominal epochs of 200 updates, about 2 full epochs), which
does not yield meaningfully different checkpoints to average.
On all other results, MWER appears to provide a modest im-
provement, except with the Conformer;, AED-model on Test
Other. Furthermore, we verified that the improvements are from
MWER and not just any training after parameter averaging:
regular AED-model training after parameter averaging does not
improve the results, as shown with the Conformers AED-model
results.

Since the MWER finetuning happens after parameter av-
eraging (a non-standard approach), we match this on the
HMM/DNN-system side with regular training for an equivalent
amount of steps. The AED-model encoder is frozen, while
the HMM/DNN-system encoder is not - this may be a small
mismatch, but this way, the results more conclusively show that
the HMM/DNN-system finetuning after parameter averaging
is not an important step in our experiments. We only find
very small improvements in the Conformerg results and the
Flat Start Conformery, results, but not the main Conformery,
HMM/DNN-system. We decide to report results both with and
without MWER finetuning and continued training after param-
eter averaging, because the analysis in Section IV-E reveals
that most of the improvements from training after parameter
averaging do not stand credibility inspection.

For the CRDNN and wav2vec 2.0 models, we find that MWER
finetuning does not yield any improvement. We believe MWER
training has not found wide use on Librispeech even though it

3[Online].  Available: https://github.com/speechbrain/speechbrain/blob/
develop/recipes/LibriSpeech/ ASR/transformer/hparams/conformer_large.
yaml

4[Online].  Available: https://github.com/speechbrain/speechbrain/blob/
develop/recipes/LibriSpeech/ ASR/transformer/hparams/conformer_small.
yaml

is a highly competed dataset, though [56] and [57] report minor
improvements with it.

The Librispeech results are reported in Table X. We have
included many relevant results published elsewhere. We believe
that as small CRDNN models, our results are reasonable, beating
the Kaldi results and falling behind Returnn systems that also use
classic (non-Transformer) neural layers. Further improvements
to our results might be found through a combination of larger
models, longer training with more complex optimisation (such
as curriculum learning), augmentation, and additional language
models. Our Conformer; AED-model falls slightly behind a
comparable ESPnet model, which may be partly explained by
the ESPnet advanced S4 Decoder [58]. Our HMM/DNN-system
wav2vec2.0 results roughly match the Clean results obtained in
the original wav2vec 2.0 publication, but fall slightly behind on
the Other data, most likely due to us not using any augmentation,
and the original paper applying SpecAugment, which is very
beneficial on Librispeech [16].

The Librispeech language model perplexities are listed in
Table XTI and a detailed look at the model sizes in Table XII.

3) Combined Finnish Data Experiments: Finally, we use the
Librispeech CRDNN recipes on the Combined Finnish data.
Since the Combined Finnish Data is computationally demand-
ing, we decide to limit the Combined Finnish experiments to
CRDNN models.

Our chosen Equal Data Setting places an upper bound on the
language model data: the speech transcripts. However, because
language model training is decoupled from acoustic model
training in HMM/DNN-systems, we are able to further limit
the text data to one domain only. We try limiting the language
model data to either Finnish Parliament transcripts or Lahjoita
Puhetta transcripts, to see if those models work better on their
own domains. The Combined Finnish Data results are reported
in Table XIII. The language model perplexities are shown in
Table XIV and a detailed rundown of the parameter counts in
Table XV.

E. Analysis of Results

We analyze the test results of the Finnish Parliament Train20
and Librispeech tasks in detail. In addition to WER, we briefly
looked at Character Error Rate results, but they appeared to draw
the same picture as the word-level results, and we decided to
focus on WER in this work. Table X VI highlights key compar-
isons. A more comprehensive table of comparisons is published
online.’ We use a bootstrap estimate to measure how credible it
is that the winning system is truly better [53], treating the 95%
mark as a cutoff. To measure the extent to which the compared
systems produce similar output, we compute three quantities.
Sentence Difference is simply the percentage of utterances that
resulted in different outputs from the two systems. Additionally,
we compute Kendall’s rank correlation coefficient, tau (7) [60],
a measure of ranking agreement, on both utterance and speaker-
level WER. A tau value close to one indicates the same utterances
or speakers were (in relative terms) easy or difficult for both

S[Online]. Available: https:/github.com/aalto-speech/equal-data-matched-
encoder-experiments/blob/main/full-pairwise-analysis.pdf
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[Online]. ignorespaces Available: ignorespaces https://github.com/aalto-speech/equal-data-matched-encoder-experiments/blob/main/full-pairwise-analysis.pdf
[Online]. ignorespaces Available: ignorespaces https://github.com/aalto-speech/equal-data-matched-encoder-experiments/blob/main/full-pairwise-analysis.pdf
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TABLE X
MES-EDS COMPARISON EXPERIMENTS ON LIBRISPEECH

Encoder Dev WER [%] | Test WER [%]
Family Type Size LM Notes Clean | Other | Clean | Other
Ealdi HMM* TDNN 17™M , Official Word 4-Gram Perturbation, i-Vec., Phon. 3.87 10.22 4.17 10.62
eturnn HMM [7] LSTM 180M Phon. 34 8.3 3.8 8.8
Returnn AED [7] LSTM Unknown 4.3 12.9 44 13.5
CTC [36] wav2vec 2.0 | 318M - SSL, SpecAugment 2.1 4.5 22 4.5
ESPnet AED/CTC [58]¢ | Conformer 76.2M SpecAugment, S4 Decoder 2.07 5.31 2.29 5.13
Transducer [59]" Conformer 1B Transformer SSL, NST, SpecAugment 1.3 2.4 1.4 2.5
HMM CRDNN 20.8M Official Word 4-Gram - 3.64 985 389 1043
FS HMM 4.01 10.60 441 11.11
HMM Conformerg | 9.30M Official Word 4-Gram SpecAugment, FT¢ 2.81 6.49 3.19 6.81
HMM Conformery, | 76.2M Official Word 4-Gram SpecAugment 2.24 331 264 362
FS HMM SpecAugment, FT 2.63 5.70 291 5.96
HMM . 4.57 12.24 4.56 12.57
FS HMM CRDNN 20gM | ranscript BPE 10-gram 512 | 1330 | 535 | 13.68
AED - 4.84 14.41 5.11 15.04
HMM Conformers | 9.30M Transcript BPE 10-gram | SpecAugment 3.50 8.21 3.57 8.28
AED/CTC - SpecAugment 3.46 8.94 3.63 8.89
HMM Transcript BPE 10-gram | SpecAugment, FT 3.45 8.12 3.56 8.20
AED/CTC Conformerg 9.30M SpecAugment, FT 3.46 8.91 3.64 8.92
AED/CTC i SpecAugment, MWER 3.42 8.83 3.60 8.85
HMM Transcript BPE 10-gram SpecAugment 2.49 6.07 2.67 6.11
FS HMM Conformery, | 76.2M SpecAugment 3.03 6.64 3.08 6.63
AED/CTC - SpecAugment 2.34 5.86 2.85 5.94
HMM Transcript BPE 10-gram SpecAugment, FT 2.52 6.15 2.69 6.14
FS HMM Conformery, 76.2M SpecAugment, FT 2.96 6.64 3.00 6.63
AED/CTC - SpecAugment, MWER 2.32 5.87 2.64 6.03
HMM wavavee 2.0 | 318M Transcript BPE 10-gram | SSL 2.16 5.15 2.24 5.05
AED/CTC - SSL 2.39 5.93 241 6.07
“From: https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/sS/RESULTS, Phon. stands for phoneme units.
bSize mentioned in [14], Corresponding AED size not mentioned, but is similar.
“Encoder size estimated, as hyperparameters similar to our Conformery,. S4 Decoder stands for Structured State Space Decoder.
9The best reported results we are aware of. NST stands for Noisy Student Training.
°FT stands for training after 10-checkpoint parameter averaging, which matches MWER finetuning.
FS stands for the flat start approach.
TABLE XI TABLE XII
LIBRISPEECH LANGUAGE MODEL PERPLEXITIES NORMALIZED TO THE WORD DETAILED LOOK AT THE LIBRISPEECH MODEL SIZES
LEVEL, WITH RATE OF OUT-OF-VOCABULARY WORDS (OOVS) MARKED
Parameter count
Dev Test Submodel CRDNN | Confog | Confor | w2v2.0
Clean | Other | Clean | Other Encoder 20.8M 9.30M | 762M | 318M
Language model Perplexity LF-MMI Head 1.16M 327k 1.16M 2.30M
Transcript BPE 10-gram | 303.83 | 285.67 | 308.54 | 285.01 CE Head 1.16M 327k 1.16M 2.30M
Official Word 4-gram 151.65 | 140.61 | 158.13 | 145.75 FS LF-MMI Head 678k - 678k -
OOV Rate [%] Transcript BPE 10-gram 3.61M
Transcript BPE 10-gram 0.00 0.00 0.00 0.00 Official Word 4-gram 145M
Official Word 4-gram 0.33 0.55 0.40 0.51 CTC Head 2.57TM 725k 2.5TM 5.13M
Note: since the language models use different vocabularies, the perplexity AED Head 5.13M 725k 2.5TM 5.13M
differences are only an approximate measure. Att. Decoder 17.9M 2.58M 27.8M 19.9M

systems. A tau close to zero indicates the systems succeeded
and failed on completely unrelated utterances or speakers. This
type of agreement computation is naturally dependent on data,
but comparing agreement values within a particular test set is
possible.

We find that the CRDNN and wav2vec 2.0 HMM/DNN-
systems consistently outperform corresponding AED-models,
even under the Matched Encoder Setting and Equal Data Setting
comparison. An exception is the Finnish Parliament Test20

data with Parl30 M language models. On Test20, the Parl30 M
language models have higher perplexity (see Table VIII) and
thus hurt performance (also seen in [52]), and this effect is larger
on HMM/DNN-systems. Another exception is the wav2vec 2.0
system performance with the Parl30 M language models on
Finnish Parliament Test16 data, which yielded roughly equal
performance (credibility ~ 79%).

The Conformer encoder comparisons all lead to approx-
imately equal performance (credibility < 95%). Besides the
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TABLE XIII

MES-EDS COMPARISON EXPERIMENTS ON THE COMBINED FINNISH DATA

WER [%]
Finnish Parliament Lahjoita Puhetta YLE
Family | LM Dev16 Test16 Test20 Dev Test Test
HMM All Transcript BPE 10-gram | 11.43 (11.16) 7.97 (7.82) 7.78 (7.53) 22.00 (21.93) | 25.28 (25.17) | 24.04
HMM FP Transcript BPE 10-gram | 11.67 (11.12) 8.17 (7.93) 7.90 (7.70) 29.28 (28.95) | 32.99 (33.06) | 25.75
HMM LP Transcript BPE 10-gram | 16.46 (15.65) | 11.89 (11.00) | 10.87 (10.19) | 22.35 (22.01) | 25.90 (25.31) | 29.88
AED - 12.76 8.69 8.14 23.19 26.82 24.76

All rows use the CRDNN encoder. HMM WER in brackets is with LM weight optimized on current data development set, for comparison between LMs.

TABLE XIV
PERPLEXITIES OF THE COMBINED FINNISH 10-GRAM BPE LANGUAGE MODELS
TRAINED ON TRANSCRIPTS OF EITHER THE COMBINED DATA (ALL), THE
FINNISH PARLIAMENT (FP) SUBSET (DIFFERENT FROM TRAIN20), OR THE
LAHJOITA PUHETTA (LP) SUBSET

Perplexity
Finnish Parliament Lahjoita Puhetta YLE
Set Dev16 Test16 Test20 Dev Test Test
All | 1012.22 | 1361.00 | 1189.18 | 669.82 | 695.68 17.9k
FP 954.02 1257.96 | 1241.19 18.3k 18.9k 28.1k
LP 55.5k 74.5k 61.1k 562.04 | 562.04 | 165.7k

The perplexities normalized to the word level. All models permit an open vocabulary.
Some perplexities are very large, note thousands marked with .

TABLE XV
DETAILED LOOK AT THE COMBINED FINNISH MODEL SIZES
Submodel Parameter count
CRDNN Encoder 20.8M
LF-MMI Head 1.47M
CE Head 1.47M
All Transcript BPE 10-gram 12.9M
FP Transcript BPE 10-gram 9.30M
LP Transcript BPE 10-gram 3.62M
CTC Head 2.57TM
AED Head 5.13M
Att. Decoder 17.9M

encoder architecture, the difference to the CRDNN and wav2vec
2.0 experiments is that the Conformer recipes used very large
batch sizes and needed to train for much longer. Another dif-
ference is that the Conformer recipes used SpecAugment, but
we verified that this alone does not allow the AED-model to
reach parity. Adding SpecAugment to the CRDNN AED-model
recipe on Finnish Parliament improved the WER only from
14.36% — 13.64% on Devl16, 10.39% — 9.99% on Testl16,
and 8.57% — 8.47% on Test20, which is still worse than the
HMM/DNN-system without SpecAugment (having WERs of
11.72%, 8.21%, 7.59% on those evaluation sets respectively). A
final difference is that the Conformer AED-models used Trans-
former decoder layers, which may be beneficial in particular in
conjunction with large batch sizes and longer training.

The wav2vec 2.0 systems consistently outperform both
CRDNN and Conformer systems, with an exception on
HMM/DNN-systems on Finnish Parliament Test16 when us-
ing Parl30 M language models, which has roughly equal per-
formance (credibility ~ 54%). The Parl30 M language mod-
els appear to provide the most improvement on that data.

Another exception is the Librispeech Other data, where the
wav2vec 2.0 AED-model has roughly equal performance with
the Conformer;, AED-model (credibility ~ 59%).

The Flat Start HMM/DNN-systems on the other hand have
more varied comparisons. With transcript language models, Flat
Start CRDNN HMM/DNN-systems have roughly equal (credi-
bility 79%) performance with AED-models on Finnish Parlia-
ment Testl6. Librispeech Test Clean and Finnish Parliament
Test20 lead to AED-model wins, and Librispeech Test Other
to a Flat Start HMM/DNN-system win. With larger language
models, the CRDNN Flat Start HMM/DNN-system has equal
performance with the AED-model on Finnish Parliament Test16
(credibility 79%) and the Librispeech test sets and loses on
Finnish Parliament Test20, due to the aforementioned Parl30 M
phenomenon. The Flat Start Conformer;, HMM/DNN-system
loses to the AED-model on both Librispeech test sets. Finally,
in this work Flat Start HMM/DNN-systems lose to regular
HMM/DNN-systems without exception (though contrary results
exist in the literature [61]).

We computed errors on rare words, in this case words that do
not appear in the training data transcripts. We used Levenshtein
alignments to find instances where rare words in the reference
resulted in substitutions and deletions. Table XVII lists the
results. The AED-model has slightly higher error rates on the
rare words than the corresponding HMM/DNN-system in every
comparison except with Conformer;, encoders on Librispeech
Test Other. Yet the Flat Start HMM/DNN-system performs
slightly worse than the AED-model on all comparisons except
with CRDNN encoders on Librispeech Test Clean. Perhaps the
frame-level training in the main HMM/DNN-systems gives it
an edge in modeling an unfamiliar acoustic sequence. However,
the differences are not very large in any comparison.

We looked into word error streaks — how often do the
systems have multiple consecutive edit operations. Fig. 1 plots
the ratios of AED streaks to HMM streaks for streak lengths
upto four. Longer streaks are too rare to yield meaningful
data. With CRDNN encoders, the pattern is especially clear:
AED appears to have relatively more longer streaks than the
transcript HMM/DNN counterpart. This pattern is also visible
with Conformers (particularly on Librispeech Test Clean),
although for Conformers the result is less significant since
there are no results for the Finnish data. Additionally, the
Conformer figures show the effect of MWER finetuning,
which appears to decrease long streaks of errors. The
pattern of AED-models having more longer streaks than
HMM/DNN-systems is not seen with wav2vec 2.0 encoders.
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TABLE XVI

SELECTED PAIRWISE COMPARISONS ON THE TEST SETS, WITH (ITALIC) COMMENTS HIGHLIGHTING THE RESULTS INTERSPERSED

A B WER Difference (B-A) S-Diff. | WER Rank 7
Family Encoder LM Data Family [ Encoder [ LM Data | [pp.] [ Relative | Credib. | [%] Utt. | Spk.
The FS HMM has approximately equal overall WER with the AED, though models produce different output for > 50% of utterances.
FS HMM | CRDNN Transcript AED CRDNN - -0.16 -1.6% 79% 72.67 0.47 0.80

Y | FS HMM | CRDNN Parl30M AED CRDNN Parl30M +0.13 +2.0% 79% 53.48 0.54 | 0.83

E;" The Parl30M language model is key to the best performance on FP-16.

HMM w2v2.0 Parl30M AED/CTC | w2v2.0 Parl30M +0.09 +1.7% 79% 42.84 | 0.65 0.87
HMM w2v2.0 Parl30M HMM CRDNN Parl30M +0.01 +0.2% 54% 40.04 | 0.66 0.88

S On FP-20, the wav2vec 2.0 systems have equal performance.

£ | HMM | w220 | Transcript | AED/CTC | w2v20 | - | +0.12 | +18% | 82% | 2831 | 0.68 | 085
The FS HMM is close in WER with the AED, though models produce different output for > 50% of utterances.

FS HMM | CRDNN | Transcript | AED | CRDNN | - | 024 | 47% | 97% | 5115 | 049 | 0.65
§ The Conformer encoders lead to equal performance on Test Clean.

O | HMM Confof™ | Transcript | AED/CTC | Confo}W | - +0.04 | +12% | 69% | 3645 | 058 | 0.67

Eg HMM Confor, Transcript AED/CTC | Confo}™ | - 003 | -12% 67% | 2744 | 061 | 071

= | HMM Confoy, Orig. 800M | AED/CTC ConfoJL”W - -0.01 -0.2% 52% 30.95 0.53 0.61

§ The post-parameter-averaging MWER finetuning or HMM/DNN training only yield credible benefits for Conformery, AED/CTC.

£ | HMM Confog r Transcript HMM Confog Transcript | +0.02 +0.4% 69% 6.87 0.94 0.92

=S | FSHMM | Confof” | Transcript FS HMM | Confor, Transcript | +0.08 | +2.7% 95% 17.44 | 0.80 | 0.86
AED/CTC | ConfodW | - AED/CTC | Confog - +0.02 | +0.6% 75% 9.16 | 0.92 | 0.90
AED/CTC | Confo 24 Wl AED/CTC | Confor, - +0.21 +7.4% 100% 13.47 0.84 | 0.81
The HMM is slightly better than the AED with the smaller Conformer encoder, but the large one leads to equal performance on Test Other.
HMM Confog Transcript AED/CTC | Confog - +0.61 +6.9% 100% 59.65 0.57 0.75
HMM Confoy, Transcript AED/CTC | Confoy, - -0.17 -2.8% 94% 45.93 0.64 0.79
The wav2vec 2.0 and the Conformery, encoder lead to equal AED/CTC performance.

Z | AEDICTC | w2v20 | - | AED/CTC | Confo;, | - | 013 | 22% | 59% | 5172 | 057 | 076

o The official 4-gram LM lets the Conformery, HMM overtake and the FS HMM catch up with the AED - but leads to unequal data.

E HMM Confoy, Orig. 800M | AED/CTC | Confoy, - +0.32 +5.5% 100% 4791 0.58 0.71

= FS HMM ConfofT Transcript AED/CTC | Confor, - -0.69 -12% 100% 49.17 0.61 0.76

§ FS HMM ConfofT Orig. 800M | AED/CTC | Confoy, - -0.02 -0.3% 55% 51.75 0.52 0.67

2 The post-parameter-averaging MWER finetuning or HMM/DNN training only yield credible benefits for Confos HMM.

'Jj HMM Confog r Transcript HMM Confog Transcript | +0.08 +1.0% 96% 16.40 0.91 0.93
FS HMM Confof T Transcript FS HMM Confoy, Transcript | -0.00 -0.1% 52% 34.60 0.75 0.85
AED/CTC | ConfolW | - AED/CTC | Confog - +0.04 | +0.5% 75% 21.61 | 0.89 | 093
AED/CTC Confogf Wl AED/CTC | Confor, - -0.09 -1.5% 94% 19.60 | 0.87 0.91
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Credibility (Credib.) is probability of improvement (of the better system) measured by bootstrap estimate [53]. The comparisons not shown here all have credibility>
95%. Sentence difference (S-diff.) is the percentage of transcriptions that were different between 4 and B. The superscripts #” and 77 mean the post-10-model-averaging
minimum word error rate finetuning and HMM finetuning, respectively. FS stands for the flat start approach. Finnish parliament test16 and test20 are shortened to FP-

16 and FP-20.

More sophisticated statistical study of this phenomenon is left as
future work.

We also looked into relative WER on the shorter and longer
test set halves separately, but found it consistent across all speech
recognition systems. On Finnish Parliament, the longer half had
slightly higher WERs, whereas on Librispeech, the shorter half
had higher WERs. We looked at largest wins (by number of
edits) at the utterance level when comparing systems. This way
we found some individual utterances, which lead to one system
failing, with the other succeeding, proving the issue was not
due to the utterance itself. In some cases the AED-model drops
large portions of the utterance. We also find one case where the
AED-model produces pathological repetitive output. Both are
likely due to a failure of the attention mechanism.

In the Combined Finnish Data results in Table XIII the
HMM/DNN-system outperforms the AED-modelBoth recogni-
tion families are able to handle multiple domains, and addi-
tionally, both are able to improve over the Transcript CRDNN
systems trained on Finnish Parliament Train20. We find that
limiting the language model data improves the language model
perplexities on both Finnish Parliament and Lahjoita Puhetta,
but in light of the WER results, the limiting is not helpful.

V. DISCUSSION

Our work highlights an open question: which speech recog-
nition approach is the best one? We believe the Equal Data
Setting and Matched Encoder Setting principles offer a com-
pelling, fair alternative to competing for the state-of-the-art
results. Even under the End-to-End Data limitation, and using
the AED-model hyperparameters, the HMM/DNN-system con-
sistently outperformed the AED-model in terms of WER in the
CRDNN and wav2vec 2.0 experiments. In the Conformer ex-
periments, with the hyperparameters tuned for the AED-model,
and the HMM/DNN-system restricted to transcript language
models and grapheme units, the AED-model did not surpass
the HMM/DNN-system. One way to interpret these results is to
see the HMM/DNN-system as a benchmark system: the results
prove the room for improvement in the AED-model. Another
interpretation is that although research focuses more and more
on End-to-End speech recognition approaches, it is worthwhile
to apply the neural network innovations to HMM/DNN-systems
as well.

Our observations emphasize the need for more strictly
controlled comparisons of heterogeneous speech recognition
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TABLE XVII
ERROR RATES ON WORDS THAT DID NOT APPEAR IN THE TRAINING
TRANSCRIPTS
Family [ Encoder Rare-WER [%]
FP Train20 Test16 | Test20
Occurences [num] 1029 1006
HMM 29.15 45.92
FS HMM CRDNN 44.51 56.56
AED 35.76 48.41
HMM 22.16 39.76
w2v2.0
AED/CTC 23.62 41.75
Librispeech Clean Other
Occurences [num] 330 437
HMM 75.15 89.93
FS HMM CRDNN 79.70 93.82
AED 83.64 90.85
HMM Conformer§” | 7152 | 83.52
AED Conformer™W' | 73.64 | 84.44
HMM Conformery, 67.88 82.61
FS HMM | ConformerfT | 7576 | 87.19
AED ConformerW | 72,12 | 82.38
HMM 61.82 75.06
w2v2.0
AED/CTC 66.36 77.35

The HMM/ DNN-systems use transcript language models.

systems in addition to competition for the state-of-the-art er-
ror rates. The thousand-hour scale is a particularly interesting
ground for these comparisons, because no approach has proven
conclusively better at that scale and because it is reachable in
open datasets in many languages.

Analysing our empirical results, we find that the systems with
similar performance still fail on different utterances - each have
their own weaknesses. Between different HMM/DNN-systems,
the systems using GMM alignments consistently outperform
Flat Start systems. It appears that frame-level Cross Entropy
training with GMM alignments is still useful for producing the
best results, though we note that contrary results have also been
presented [61]. However, we find that some simplifications of
the HMM/DNN-system are possible, at least the thousand-hour
scale. Tree-clustering for state-tying and phoneme-based units
do not yield meaningful improvements in our experiments.

A. Limitations and Future Work

The experiments presented here leave some caveats regard-
ing how the decoding-side implementations are matched. We
believe something akin to a Matched Decoding Setting could be
proposed in the future. This might match the language modeling
context length, the use of neural language models in single-pass
search and the language model capacity. Internal language model
compensation (which matches the N-gram model probability
replacement in neural language model rescoring) could also be
a part of this.

Pure error rate performance is not the only relevant metric in
choosing a speech recognition system. Our comparison does not
consider for example the ability to deploy on mobile devices, the
capability for online recognition (all encoder architectures use
full utterance context in this work), nor the ease of development.
We reported parameter counts, which matter for memory usage

CRDNN wav2vec 2.0
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Fig. 1. Ratio of AED edit streaks per HMM edit streaks for streaks lengths 1
through 4.

and model capacity, though in the latter area, neural network
weights are not directly comparable with N-gram probabilities.
If anything, the parameter counts probably favored the AED-
models, which had in total more parameters than the correspond-
ing HMM/DNN-system throughout all the experiments.

We sidestepped the favourite child problem by optimiz-
ing the AED-model and applying the hyperparamaters to the
HMM/DNN-systems. This set an upper bound on the WER of
the HMM/DNN-system. If the AED-model had outperformed
the HMM/DNN-system, the conclusions would have been less
clear. In that case, one solution could be to re-do the optimization
in the other direction, applying the best HMM/DNN-system
parameters to the AED-model.

Our practical experiments are naturally not able to cover all
approaches. In particular, future work should include applying
our proposed principles to comparisons involving Transducer
models. Additionally, we concede that the manner in which we
sidestepped the favourite child problem may lead to combina-
torial amounts of work needed in comparisons involving more
than two approaches. For example, had we attempted to include
Transducers in this study, we would have had three pairs of
approaches, with each pair potentially requiring their own set of
hyperparameters and models.

Our analysis is able to show how models from different
recognizer families make different errors, even though they
may have similar performance. However, developing more
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advanced statistical methods would be a valuable contribu-
tion for the analysis of heterogeneous speech recognition
systems.

VI. CONCLUSION

Choosing a speech recognition approach to use is currently
difficult, both for deployment and for research, because there
are many competing families of speech recognition approaches,
each with their strengths and weaknesses.

We proposed two simple principles, and illustrated how those
principles help to design more revealing speech recognition
experiments. Experiments under the Equal Data Setting avoid
confounding variables related to data, whereas experiments un-
der the Matched Encoder Setting avoid confounding variables
related to neural architecture and training. We demonstrated how
to build AED-models and HMM/DNN-system adhering to these
principles. During the course of developing our HMM/DNN-
systems, we made multiple discoveries. We presented the multi-
head decoding approach, and showed how GMM-alignments are
still valuable for achieving the best results, though possibly not
for tree-clustering.

We presented experiments on three thousand-hour-scale
speech recognition tasks, comparing AED-models and
HMM/DNN-systems. We optimize AED-models, reaching our
HMM/DNN-system baselines from previous work. However, in
comparisons under our proposed principles, our HMM/DNN-
systems consistently yielded either equal or better error rates
than AED-models. Our findings highlight the viability of
HMM/DNN-systems in the era of End-to-End models.
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